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Abstract

We study optimal portfolio theory through a fractal framework in the presence of
heavy tails and autocorrelated increments (Noah and Joseph effects). We show key
results from the estimation of fractal dimensions and develop thereupon by proving
the novel result that the Box-Counting dimension of a portfolio is concave. In order
to illustrate the impact of the fractal dimension of return series a short exposition
on fractional Brownian motion and Lévy stable processes is also rendered. We
also introduce key concepts from optimization theory, portfolio theory and fractal
geometry which are necessary to understand our approach, which to the best of our
knowledge is new.
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1 Introduction

”Une même expression, dont les géomètres avaient considéré les propriétés abstraites,
. . . représente aussi le mouvement de la lumière dans l’atmosphère, quelle détermine les
lois de la diffusion de la chaleur dans la matière solide, et quelle entre dans toutes les
questions principales de la théorie des probabilités” [1].

- Joseph Fourier

This is not an essay on the theory of heat, as the quote by Fourier might indicate.
Rather, it stands to elucidate the fact that subjects, at first glance seemingly different,
may very well be united by their theoretical underpinnings. Its relevance comes from the
fact that Mandelbrot’s analysis of the length of the coast of Britain [2] is very much in
the same spirit as the mathematics which may be applied to finance, or even probability.
In common, they hold self-affine geometry; small parts resemble the whole. Our aim is
to use traits of self-affinity found in finance to derive an alternative, or complementary,
measure of the riskiness of a stock and apply the results to portfolio theory.

First, we need to understand what is meant by risk in the context of finance and
economics. Economists have long equated, at least in their minds, the variance of some
measurement quantity, most often price or returns, with risk. Perhaps the earliest ac-
count of such thinking is found in H. Markowitz’s article Portfolio Selection of 1952 [3]
even though economic awareness of the concept of risk in itself predates him. As early
as in 1921 F. H. Knight published his seminal work titled Risk, Uncertainty and Profit
[4] and its importance was realized even earlier. We will not go at great lengths to
discuss what risk is, but informally note that any measure of risk should be increasing
proportional to the probabilistic magnitude of our harm.

Bearing the concept of risk in mind, let us consider random processes. The tradition
within financial literature is to consider normally and log-normally distributed prices
or returns. This began as early as in 1900 when L. Bachelier published his doctoral
dissertation [5]. The beauty of these processes lies in their predictability. In casual
language, they exhibit what we call mild randomness.

Example 1.1 (Mild Randomness). Pick any one person at random (uniformly) from
the earth’s population and record their length. If we continue this process for a sufficient
time we will expect the sample distribution to be approximately normal. Even though we
expect some outliers their impact on the mean will eventually be negligible. In general,
phenomena which are approximated by the various limit theorems of classical probability
theory are considered mild and their distributions are characterized by flat tails.

If we apply the same reasoning toward financial markets we would expect a rather
calm set of price changes. Nevertheless, the data strongly refute any such claims.

Example 1.2 (Wild Randomness). Consider the stock market. If returns were normal
we would expect outliers to be negligible to expectation. Between 1916 and 2003 theory
would predict six days of index swings beyond 4.5% - there were 366 such days. Similarly,
changes of 7% or more would occur once every 300,000 years, but we have seen 48 such
days [6].
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Not only does variance as a model of risk underestimate the tails of the distribution
of returns, as illustrated in example 1.2, but returns also demonstrate trend-like behavior
known as momentum within the financial litterature [7]. Clearly, the implications for
the individual investor are huge.

Since L. Bachelier, in the very beginning of the 20th century, normality assumptions
have played a major part in modern finance. The perhaps two most important models in
modern finance, the Markowitz portfolio model from [3] and the Black-Scholes-Merton
stochastic differential equation from [8], rest heavily on the Gaussian foundation. Even
though we by no means wish to refute their significance to the development of modern
financial mathematics it is our belief that over-confidence in variance as a successful
estimator of risk can, and has, had disastrous consequences. Especially since the second
moment, variance, is infinite for a whole class of distributions known as Lévy stable
distibutions (with the exception of the extreme case of the normal distribution). Hence,
owing to B. B. Mandelbrot’s ingenuity, we intend to expand on H. Markowitz’s intellec-
tual heritage with a fractal measure of risk. It is our ambition that such a measure better
captures extreme variations and anti-persistent tendencies and thus better accounts for
the risk of disaster, taken in the meaning of major crashes of any collection of assets.

2 Background material

In order to treat the ideas discussed in the introduction with logical clarity, a mathemat-
ically precise framework is required. Our intention is to render a self-contained account
of the applications of fractals to portfolio theory and thus assume only the basics of real
analysis (such as from [9]), set and measure theory (as presented in [10]), probability and
topology - areas which, though the foundation of our study, are not of primary interest
to us. We also require some knowledge of Fourier transforms such as from [11] or [12]
to calculate dimensions of stochastic processes, especially due to its close relation with
the characteristic function of a random variable. References for more difficult results
used as background are given unless they are proven in the appendix. We now review
concepts key to our purpose from optimization theory, portfolio theory, topology, the
study of fractals, and their relation to probability.

2.1 Optimization

The aim of this section is to present optimization theory, specifically through the method
of saddle point optimality. We have chosen this route as we believe it to be minimal in the
sense that we do not have to delve particularly deep into convex analysis compared with
the machinery needed for the alternate route of proving KKT necessary and sufficient
conditions directly [13]. Nevertheless we are still able to provide a rigorous account of
that which will be needed in treating the main problem. Further, the intrinsic geometric
nature of a saddle point is appealing and easy to grasp without relying on a background
in optimization theory. For a more general and extensive treatment of convex analysis
and optimization we refer to [14] and [13].
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2.1.1 Terminology

Before we commence we need the following intuitive definition of optimality.

Definition 2.1. x̄ is a local minimum of f : X → R if f(x̄) ≤ f(x) for all x ∈ Nε(x̄)∩X
and for some ε > 0. Similarly, x̄ is a global minimum of f : X → R if f(x̄) ≤ f(x) for
all x ∈ X. We define maxima by calling x̄ a local (global) maximum of f : X → R if x̄
is a local (global) minimum of −f(x).

In general, we consider a problem of the form below, where we look for the optimal
solution. Moreover, it is clear from the above definition that, we can without loss of
generality, solely study mimima.

Problem 1 (The General Primal Optimization Problem).

min
x∈X

f(x)

s.t. gi(x) ≤ 0, hj(x) = 0
(1)

where f, gi, hj for i = 1, ...,m and j = 1, ..., l are functions from X ⊂ Rn → R. We can
thus define the feasible set

S = {x ∈ X : gi(x) ≤ 0, hj(x) = 0}. (2)

Any member x ∈ S is called a feasible solution.

Remark 2.1.1. We will often write g(x) = (g1(x), ..., gm(x))t, h(x) = (h1(x), ..., hl(x))t.

We now define convexity for functions and for sets.

Definition 2.2. We say that a set X is convex whenever for all x, y ∈ X, λx+ (1−λ)y
is also a member of X for all λ ∈ [0, 1].

A function f : X → R for a convex set X is convex whenever

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y) (3)

for all x, y ∈ X and λ ∈ [0, 1]. Similarly, f is concave whenever −f is convex.

Remark 2.2.1. If the inequality (3) is strict, we say that the function f is strictly
convex (or concave when suitable).

Example 2.1. An important class of convex sets are the polyhedral sets, S = {x ∈ Rn :
Ax ≤ b}. They are the finite intersections of closed half-spaces and are easily shown
to be convex. Let x, y ∈ S and λ ∈ [0, 1]. Then since x, y ∈ S, Ax ≤ b and Ay ≤ b.
Thus A(λx + (1 − λ))y = λAx + (1 − λ)Ay ≤ b, which precisely means that the convex
combination also lies in S.
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We now present some propositions which make it much easier to verify that a func-
tion is convex. It is not just of theoretical interest to study which operations preserve
convexity; it is in fact of great practical importance as it allows us to reduce checking
convexity of more difficult functions into that of checking convexity for several more
basic functions. Aside from the trivial operation, addition, convexity is also preserved
under multiplication and composition of functions under suitable conditions. We will
prove these statements in the following.

Proposition 2.1. Let f : X → R, g : X → R be non-negative and convex on the convex
set X ⊂ Rn and assume that (f(x) − f(y))(g(x) − g(y)) ≥ 0 for all x, y ∈ X. Then fg
is convex on X.

Proof. Let α ∈ [0, 1] and x, y ∈ X. Let

F (x, y, α) = α(fg)(x) + (1− α)(fg)(y)− (fg)(αx+ (1− α)y). (4)

Note that convexity of fg is equivalent to F (x, y, α) ≥ 0, ∀α, x, y. Using convexity of f
and g, one sees that

F (x, y, α) = α(fg)(x) + (1− α)(fg)(y)− (fg)(αx+ (1− α)y)

≥ α(fg)(x) + (1− α)(fg)(y)

− (αf(x) + (1− α)f(y)) (αg(x) + (1− α)g(y))

= (α− α2)(fg)(x) + (1− α− (1− α)2)(fg)(y)

− α(1− α)(f(x)f(y) + g(x)g(y))

= α(1− α) (f(x)g(x) + f(y)g(y)− f(x)f(y)− g(x)g(y))

≥ α(1− α)D(x, y)

(5)

where D(x, y) = (f(x)− f(y))(g(x)− g(y)). This was assumed to be non-negative and
thus the result follows.

Proposition 2.2. Let f : Y → R, g : X → Y be convex functions, with f non-decreasing
on the convex set Y ⊂ R. Then f ◦ g is convex on X.

Proof. Let α ∈ [0, 1]. Since f is convex and non-decreasing and g is convex.

f(g(αx+ (1− α)y)) ≤ f(αg(x) + (1− α)g(y)) ≤ αf(g(x)) + (1− α)f(g(y)). (6)

The result follows.

The algebraic definition of convexity is tedious to check even for simple sets and
functions. We therefore present the following equivalent forms for suitably differentiable
functions.

Proposition 2.3. A differentiable function f on a non-empty open convex set X is
convex if and only if it holds for all x, y ∈ X that

f(y) ≥ f(x) +∇f(x)t(y − x) (7)
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Proof. Let f(x) be convex on X. Then for arbitrary x, y ∈ X and α ∈ [0, 1]

f((1−α)x+αy) ≤ (1−α)f(x) +αf(y)↔ f((x+ α(y − x))− f(x)

α
≤ f(y)− f(x). (8)

Letting α→ 0 this becomes ∇f(x)t(y − x) ≤ f(y)− f(x).
Let also a, b ∈ X, ω ∈ [0, 1] and assume the inequality (7). Then

(1− ω)f(a) + ωf(b) ≥ f(x) + (1− ω)[∇f(x)t(a− x)] + ω[∇f(x)t(b− x)]

= f(x) +∇f(x)t[ω(b− x) + (1− ω)(a− x)] = f(x) +∇f(x)t[(1− ω)a+ ωb− x]
(9)

and then letting x = (1− ω)a+ ωb gives

(1− ω)f(a) + ωf(b) ≥ f(x) +∇f(x)t(0) = f(x) = f((1− ω)a+ ωb). (10)

Thus we have proven both directions of the proposition.

We end this section with the following useful characterization of convexity. It pos-
sesses the added benefit of being easy to check for most functions of interest to us.

Proposition 2.4. Let X be a non-empty open convex set and let f : X → R be twice
differentiable on X. Then f is convex on X if and only if the Hessian matrix of f is
positive semidefinite (PSD) at each point of X.

Proof. Let f be convex and let y ∈ X. Since X is open we find that for sufficiently small
|λ| 6= 0 and any x ∈ X, x + λy is also in X. By proposition 2.3 and since f is twice
differentiable

f(y + λx) ≥ f(y) + λ∇f(y)tx and

f(y + λx) = f(y) + λ∇f(y)tx+
λ2

2
xtH(y)x+ λ2‖x‖2O(y, λx).

(11)

Subtracting the latter from the former of (11), we get

λ2

2
xtH(y)x+ λ2‖x‖2O(y, λx) ≥ 0. (12)

Dividing by λ2 and letting λ→ 0, we find that xtH(y)x ≥ 0, which precisely means that
H is PSD.

Now suppose that H is PSD ∀x ∈ X. The mean value theorem from calculus allows
us to make the following representation:

f(x) = f(y) +∇f(y)t(x− y) +
1

2
(x− y)tH(z)(x− y) (13)

where z = λx + (1 − λ)y for some λ ∈ (0, 1). Since H(x) is PSD and therefore in
particular (x− y)tH(z)(x− y) ≥ 0, we find that

f(x) ≥ f(y) +∇f(y)t(x− y). (14)

Which by proposition 2.3 is equivalent to convexity for a differentiable function.
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Remark 2.4.1. If we replace positive definite (PD) with PSD and insert strict inequal-
ities where suitable a similar result holds for PD Hessians implying strict convexity.

Remark 2.4.2. If we replace postive semidefiniteness with negative semidefiniteness an
equivalent result holds for concavity. This follows immediately by considering −f , of
which the Hessian matrix then has the opposite sign by linearity of differentiation.

2.1.2 Duality and Saddle-Point Optimality

Problem 2 (The General Dual Optimization Problem).

max
u∈Rm,v∈Rl

θ(u, v)

s.t. u ≥ 0,
(15)

where the Langrangian, L : Rn+m+l → R is defined as

L(x, u, v) = f(x) +

m∑

i=1

uigi +

l∑

j=1

vjhj (16)

and the ui, vj are the Lagrange mutliplicators of the corresponding gi, hj. Using this, the
dual function θ : Rm+l → R is defined as

θ(u, v) = inf
x∈X
L(x, u, v). (17)

Remark 2.1. Note that the dual problem is particularly well-behaved in the sense that
the problem becomes unconstrained whenever we do not have inequality constraints in
the primal problem (1). This follows since if we have no functions gi, neither do we
have corresponding Lagrange multiplicators ui in the Lagrangian and thus the vectorial
constraint u ≥ 0 is irrelevant.

We now provide an example which illustrates how to explicitly calculate the dual
function.

Example 2.2. Consider the convex optimization problem to minimize f : R2 → R,
f(x, y) = x2 + y2 over the convex set {(x, y) ∈ R2 : ax2 + by2 − 1 ≤ 0}, with a, b greater
than 0. The Lagrangian is

L(x, y, u) = x2 + y2 + u(ax2 + by2 − 1). (18)

To find the dual function we need to minimize the Lagrangian. Since u ≥ 0, a > 0, b > 0
we are just minimizing a sum of squares. Clearly x = y = 0 and therefore θ(u) = −u.

In order to prove the main results of this section, saddle-point optimality and the
KKT-conditions, we first need the following result known as the weak duality theorem.

10



Theorem 2.5. Suppose x is feasible to the primal problem and (u, v) is feasible to the
dual problem. Then

f(x) ≥ θ(u, v). (19)

Proof. The proof is trivial and follows immediately since L − f ≤ 0, for all feasible x
(i.e. x ∈ S).

We also have the following useful corollary.

Corollary 2.5.1. Suppose (x̄, ū, v̄) are feasible to the primal and dual problem respec-
tively and that f(x̄) = θ(ū, v̄). Then (x̄, ū, v̄) solve the primal and dual problem respec-
tively.

Proof. f(x) ≥ θ(u, v) for all (x, u, v), but f(x̄) = θ(ū, v̄). Hence x̄ is a global minimum
of f . The argument for θ is analogous.

Definition 2.3. Given a solution (x̄, ū, v̄), it is called a saddle-point of the Lagrangian
L if ū ≥ 0 and

L(x̄, u, v) ≤ L(x̄, ū, v̄) ≤ L(x, ū, v̄) (20)

for all x ∈ X, and all (u, v) with u ≥ 0.

Theorem 2.6. A solution (x̄, ū, v̄), x̄ ∈ X, ū ≥ 0 is a saddle point of L if and only if

• L(x̄, ū, v̄) = minx∈X L(x, ū, v̄),

• g(x̄) ≤ 0, h(x̄) = 0 and

• ūtg(x̄) = 0.

Furthermore, (x̄, ū, v̄) is a saddle point if and only if x̄ and (ū, v̄) are solutions to the
primal and dual problem respectively and without duality gap, that is f(x̄) = θ(ū, v̄).

Proof. Let (x̄, ū, v̄) be a saddle point of the Lagrangian. Then by the definition above
the first condition must be true. Moreover, if (20) is to hold for all x ∈ X, and all (u, v)
with u ≥ 0, we clearly must have that g(x̄) ≤ 0, h(x̄) = 0 for else we could find (u, v)
that violate L ≤ f . Using the definition of the Lagrangian, we find by rewriting of (20)
that

f(x̄) + ūtg(x̄) + v̄th(x̄) ≥ f(x̄) + utg(x̄) + vth(x̄). (21)

Hence the third condition must also hold, for if not then ūtg(x̄) > 0 for u = 0 but by
assumption ūtg(x̄) ≤ 0 since ū ≥ 0, g(x̄) ≤ 0.

Conversely, suppose that (x̄, ū, v̄) fulfills the three conditions for x̄ ∈ X, ū ≥ 0. Then
L(x̄, u, v) ≤ f(x̄) = L(x̄, ū, v̄) ≤ L(x, ū, v̄) shows that (x̄, ū, v̄) is a saddle point of L.

For the second equivalence, suppose again that (x̄, ū, v̄) is a saddle point of L. By
assumption and the second property, x̄ is feasible to the primal. Since ū ≥ 0, (ū, v̄) is
feasible to the dual. Further, the first part of the theorem yields that

θ(ū, v̄) = L(x̄, ū, v̄) = f(x̄) + ūtg(x̄) + v̄th(x̄) = f(x̄). (22)
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Thus, by the corollary to the weak duality theorem, we know that (x̄, ū, v̄) solve both
problems without duality gap.

Last, let x̄ and (ū, v̄) be optimal to the primal and dual problem respectively and
suppose that f(x̄) = θ(ū, v̄). Then since x̄, ū, v̄ are part of the optimal solutions, we
have that x̄ ∈ X, g(x̄) ≤ 0, h(x̄) = 0 and ū ≥ 0. Now consider

θ(ū, v̄) = min
x∈X
{f(x) + ūtg(x) + v̄th(x)} ≤ f(x̄) + ūtg(x̄) + v̄th(x̄) ≤ f(x̄). (23)

Since x̄ and (ū, v̄) are optimal to the primal and dual respectively, we know that
ūtg(x̄) = 0 and thus, L(x̄, ū, v̄) = f(x̄) = θ(ū, v̄) = minx∈X{f(x) + ūtg(x) + v̄th(x)} =
minx∈X L(x, ū, v̄).

Now, it may not always be expedient to search for a saddle point directly. We thus
require a method that produces a saddle point given sufficiently nice functions. Reprieve
is provided by the Kurosh-Kuhn-Tucker sufficient conditions. This will be our primary
workhorse in subsequent optimization problems.

Theorem 2.7. For differentiable functions f, g and h suppose that x̄ ∈ S and that there
exists ū ≥ 0 and v̄ such that

∇L(x̄, ū, v̄) = ∇f(x̄) +∇g(x̄)tū+∇h(x̄)tv̄ = 0 and

ūtg(x̄) = 0.
(24)

These are called the KKT-conditions. Assume further that f and g are convex and that h
is affine on a nonempty, open convex set X. Then (x̄, ū, v̄) is a saddle point of L(x̄, ū, v̄).

Proof. Suppose that (x̄, ū, v̄) with x̄ ∈ S and ū ≥ 0 satisfies the KKT-conditions (24).
Then by affinity of h and convexity of f and the gi we find

f(x) ≥ f(x̄) +∇f(x̄)t(x− x̄)

gi(x) ≥ gi(x̄) +∇gi(x̄)t(x− x̄) for i = 1, ..,m

hi(x) = hj(x̄) +∇hj(x̄)t(x− x̄) for j = 1, .., l

(25)

and for all x ∈ X. Multiplying the second and the third equation by ūi and v̄i respec-
tively, and adding them to the first, it follows that L(x̄, ū, v̄) ≤ L(x, ū, v̄). Further since
x̄ ∈ S we have that g(x̄) ≤ 0, h(x̄) = 0 and by assumption ūtg(x̄) = 0. It follows that
L(x̄, u, v) ≤ L(x̄, ū, v̄). Hence, (x̄, ū, v̄) a saddle point.

The beauty in the above theorem lies in the fact that we have reduced a rather difficult
problem, that of finding a saddle point, to one solvable by methods of elementary calculus
and linear algebra. I.e. that of finding a point which satisfies the KKT-conditions (24).
Such a point is called a KKT-point.

12



2.1.3 Minimizing Concave Functions

Sadly, as we will later show, the fractal dimension of a portfolio is not convex, but
concave. This means that we cannot use material just presented to find an optimal
solution. However, there is solace in the following theorem.

Definition 2.4. We say that x is an extreme point of a non-empty convex set, C, if the
decomposition

x = λy + (1− λ)z (26)

for y, z ∈ C, λ ∈ (0, 1) implies x = y = z.

Theorem 2.8. Suppose that x̄ solves minx∈C f(x) where f : C → R is strictly concave
and C is convex and compact. Then x̄ is an extreme point of C. In fact, the solution to
the problem always lies within the set of extreme points of C.

Proof. Let x̄ be the global minimum and suppose it is not an extreme point. Then we
can write x̄ = λy + (1− λ)z where x, y, z are all distinct and in C. By strict concavity

f(x̄) = f(λy + (1− λ)z) > λf(y) + (1− λ)f(z). (27)

Hence, either f(y) or f(z) is less than f(x̄) contradicting the fact that x̄ solves the
problem. We conclude by Weierstrass’ theorem that such a solution always exists since
C is compact.

Before we proceed we give an example to illustrate the usefulness of the above theo-
rem.

Example 2.3. Remember that in particular linear programs have affine, and thus con-
cave, objective functions. It therefore follows from the theorem above that all linear
programs of the form minx∈Rn atx subject to Ax ≤ b are solved by the extreme points of
the set determined by the inequality (we could have equality as well) Ax ≤ b. These ideas
are used in for example the simplex method, which is of great practical importance.

There is further solace in the following proposition. We will show that the set of
extreme points of a certain set extremely often considered in portfolio theory is finite
and rather trivial.

Proposition 2.9. Let C = {x ∈ Rn : x ≥ 0, etx = 1} where e is a vector of all 1s. Then
the set of extreme points of C is given by

CE =
n⋃

i=1

{x ∈ C : xi = 1, xj = 0 ∀j 6= i}. (28)

Proof. Clearly any point of CE is an extreme point. Now suppose x is an extreme point
but x /∈ CE , then x can be expressed as the non-negative combination of two points of
the hyperplane defined by etx = 1, but this precisely means that x is not an extreme
point. Thus CE are all the extreme points of C.

13



2.2 The Markowitz Model

There is one last stop to be made before starting to consider fractals. Namely Markowitz’s
original 1952 model [3]. Not only is the Markowitz Model an excellent example of opti-
mization theory at use, it is also the very foundation of our study of optimal portfolios.
Our approach and presentation is inspired by [15].

2.2.1 The Basics of Portfolio Theory

Optimal portfolio theory is the mundane study of finding the best, or more technically,
optimal, placement of securities for an investor given risk-return preferences using op-
timization and other mathematics. We again state the problems, basic definitions and
assumptions and analyze their necessity.

However, first we wish to mention the Portfolio Universe. We define it as the set of se-
curities available in a given optimization problem. It need not be every security available
in the market but simply an arbitrary subset. More tangibly, in financial applications
it is most often a set of similar assets which are of interest as viewed comparatively, for
instance the S&P 500. We now define the portfolio, its associated reward and risk.

Definition 2.5. We let the portfolio (weighting) be denoted by x ∈ Rn. Where n is the
number of securities in the universe. The return of the portfolio universe is the random
vector denoted r ∈ Rn, and its covariance matrix is Σ ∈ Rn×n, Σ = E((r − r̄)(r − r̄)t).
Moreover, for convenience, we introduce the vector of all 1’s, namely e ∈ Rn.

Remark 2.5.1. Note that we do not require 0 ≤ xi ≤ 1 for i ∈ {1, 2, ..., n} in the
definition above. This means that we allow so-called short-selling; the selling of assets
that one does not actually own, but borrows.

Remark 2.5.2. We try to avoid the word stock in order to allow for more general classes
of assets such as risky bonds or oil. However, the essentials are not lost if one just thinks
stock, every time one hears asset or security.

This makes the importance of the following definitions clear.

Definition 2.6. The reward of a portfolio is the expectation of its return

ρ(x) = E(rtx) = r̄tx. (29)

Definition 2.7. The risk of a portfolio is the variance of its return

R(x) = Var(rtx) = E((rtx− E(rtx))2) = E(xt(r − r̄)(r − r̄)tx) = xtΣx (30)

We are now ready to present the first and simplest problem of portfolio theory with
n securities. However, before we start, for the sake of completeness, we digress shortly
on estimation.

14



2.2.2 Estimation of Mean and Variance

We do not make any explicit assumption about the origin of the return vector. For our
purposes it suffices to assume that it some known probability distribution with finite
variance such that its expectation and covariance matrix are available to us. Moreover,
this thesis is predominantly theoretical and does not treat analysis of data in detail.
Nevertheless, Portfolio Theory is an inherently applied subject and its practical uses
depend heavily on the estimation of the return vector. In general, one uses a financial
time series to estimate returns by historical averages. These are then, in some sense,
projected into the future as an estimate for the expected return.

A mathematical description of a time series as the graph of a function may be found
in section 3. For now, we consider a time series as a collection of ordered measurement
points for some quantity between time 1 and T , all integers.

Definition 2.8. The sample expected return vector is given by

r̄ =
1

T

T∑

i=1

r(i). (31)

Remark 2.8.1. We use the notation r(i) instead of ri since the subscript may be con-
fused with meaning the return of the ith asset.

Definition 2.9. The sample covariance matrix is given by

Σ =
1

T − 1

T∑

i=1

(r(i)− r̄)t(r(i)− r̄). (32)

2.2.3 Discussion and Solution of the n-security problem

In the problem, preferences are such that there exists a linear preference for portfolio
return whereas disfavor of risk is quadratic. Moreover, we use a scalar trade-off factor,
µ, for return which captures the inherent relative preferences for risk and return of the
person and/or firm facing the optimization problem. Lastly, we normalize the budget
constraint to 1. Each entry of the optimal portfolio x̄ can then be interpreted as the
fraction of available resources to be invested in a certain security.

Problem 3 (The n-Security Problem).

min
x

R(x)

2
− µρ(x)

s.t. etx = 1
(33)

In order for our problems to be well-behaved we need further assumptions. The first
of which is a slight restriction on the covariance matrix. Since σ(ri, rj) = σ(rj , ri) and
since for arbitrary x ∈ Rn

xtΣx = xt(r − r̄)(r − r̄)tx = (xt(r − r̄))2 ≥ 0 (34)
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we have that Σ is symmetric positive semidefinite. We further impose the restriction
that all assets are in fact risky. This corresponds to:

Assumption 1. The covariance matrix is positive definite. That is, Σ > 0.

The absence of risk is in our context precisely means zero variance (of at least one
asset), this means that the covariance matrix of the universe has only non-zero eigenval-
ues under the assumption of riskiness. In particular Σ has rank n so that assumption 1
implies the existence of an inverse Σ−1. Moreover, semi-definiteness already guarantees
that our class of problems is convex. In particular, they are solved analytically without
excessive trouble since they are also differentiable. This brings us to

Lemma 2.10. Any problem with objective function of the form

π(x) = xtAx+ btx+ c (35)

where A ∈ Sn+ (the set of symmetric positive semi-definite matrices), b ∈ Rn and c ∈ R
is convex and differentiable.

Proof. Differentiability follows immediately from differentiability of polynomials. Hence,
we can find the Hessian of π(x) as

Hπ(x) = J(∇π(x)) = J(∇(xtAx+ btx+ c)) = J(2Ax− b) = J(2Ax) = 2A

which was assumed to be in Sn+ and hence convexity follows from proposition 2.4. J(·)
denotes the Jacobian matrix.

Assumption 2. The return is not a multiple of e = (1, ...1)t. I.e. r̄ 6= ce,∀c ∈ R.

Proposition 2.11. Suppose assumption 1 holds. Then (33) has the unique primal and
dual solution

x̄ = Σ−1(λ̄e+ µr̄), λ̄ =
1− µetΣ−1r̄

etΣ−1e
(36)

and associated return
ρ(x) = r̄tΣ−1(λ̄e+ µr̄). (37)

Proof. We will use saddle-point optimality. The Lagrangian of (33) is

L(x, λ) =
xtΣx

2
− µr̄tx− λ(etx− 1) (38)

and has gradient

∇L(x, λ) = ∇x
tΣx

2
−∇µr̄tx−∇λ(etx− 1) = Σx− µr̄ − λe. (39)

Setting ∇L(x, λ) = 0 (dual feasibility) and applying left multiplication of Σ−1 yields

x = Σ−1(λe+ µr̄). (40)
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Substituting x̄ into the budget constraint yields the primal feasiblility equation

et(Σ−1(λe+ µr̄))− 1 = 0

⇔et(Σ−1(λe+ µr̄))− etΣ−1e

etΣ−1e
= etΣ−1

(
λe+ µr̄ − e

etΣ−1e

)
= 0

(41)

We now try to find a root by considering only the parenthesis. We have that

λe =
e

etΣ−1e
− µr̄. (42)

Left multiplication by etΣ−1

etΣ−1e
gives

λ̄ =
1− µetΣ−1r̄

etΣ−1e
. (43)

Further, we note that substituting λ = λ̄ solves the original equation. We now finish
by noting that since the problem (33) is convex by lemma 2.10, and since (x̄, λ̄) is a
KKT point the main result follows by theorem 2.7. Hence, (x̄, λ̄) is a saddle point and
the unique optimal solution to the primal and dual problem without duality gap. The
associated return follows by substition of x̄.

2.2.4 Introducing Risk-Free Assets

We will now consider problem 4, which essentially is (33) with cash. Cash is typically
some fixed-income security such as government T-bills which is regarded as risk-free.
Technically, nothing is truly risk-free however the default risk of most industrialized
nations is sufficiently small such that the default risk is negligible and the approximation
sensible. We define the new portfolio z = (x, xc) where xc is the amount invested (or
borrowed) in cash. Moreover, set ā = (r̄, rc). We let rc = r̄c be the return of cash and

Σz =

(
Σ 0
0 0

)
be the associated covariance matrix. Hence, it is obvious that cash does

not affect portfolio variance directly, i.e.

R(z) = zt
(

Σ 0
0 0

)
z = xtΣx = R(x). (44)

We now formulate and solve problem 4.

Problem 4.

min
z

ztΣzz

2
− µātz

s.t. etz = 1

(45)

Proposition 2.12. Suppose assumption 1 holds. Then (45) has the unique primal and
dual solution

z̄ = (x̄t, xc)t =
(
µΣ−1(r̄ − erc), 1− µetΣ−1(r̄ − erc)

)
, λ̄ = −µrc (46)
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Proof. The Lagrangian is

L(z, λ) =
ztΣzz

2
− µātz − λ(etz − 1)

=
xtΣx

2
− µ(r̄t, rc)(xt, xc)t − λ(etx+ xc − 1)

(47)

which has gradient

∇L(z, λ) = Σzz − µā− λe = Σz(x
t, 0)t − µ(r̄t, rc)t − λe. (48)

Applying dual feasibility, ∇L(z, λ) = 0, and multiplying from the left by

(
Σ−1 0

0 1

)
(49)

yields
x = Σ−1(µr̄ + λe) (50)

and by considering the last row of the gradient of the Lagrangian, we get

µrc + λ = 0⇔ λ = −µrc. (51)

Substituting this x into the budget constraint gives us quite naturally that the difference
between a full portfolio and that which was invested in risky assets is, in fact, invested
(borrowed) in cash

et(Σ−1(µr̄ + λe), xc) = 1⇔ xc = 1− etΣ−1(µr̄ + λe). (52)

To finish the proof, note that we have now shown that (z̄, λ) satisfy the KKT conditions.
By lemma 2.10 the problem is convex. Now note that the assumptions of theorem 2.7 are
fulfilled and (z̄, λ̄) is thus a saddle-point and the unique optimal solution to the primal
and dual problem respectively without duality gap.

Remark 2.12.1. For rc = 0 this returns the risky Markowitz solution. This also makes
intuitive sense. There is no reason to invest in an asset if it neither provides positive
return, nor any hedging (remember that the last row and column of the covariance matrix
is identically 0).

We wish to comment further on the assumption of cash as risk-free. If we instead
consider cash a risky asset in problem (33) we would face the problem that the risk
would be very low in most cases and thus the eigenvalue of Σ corresponding to cash
would be very small. Equivalently, the cash eigenvalue of Σ−1 would be very large and
hence since the placement in cash is proportional to the cash eigenvalue of Σ−1 would
be very sensitive to small errors in the practical approximation of the riskiness of cash.
The approximation thus also makes sense from a practical standpoint as to minimize
the error bars of the portfolio variance.
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2.3 Fractals and Fractal Dimensions

Before proceeding with the main topic, we need to introduce the concepts of fractal and
fractal dimension. We introduce merely the basics. Our account is based on [16] and
further knowledge is found within.

The fractal dimension is often represented as the Box-Counting dimension. We will
prefer its use over the Hausdorff-Besicovitch dimension due to the geometric intuition of
the previous. For many simple cases, including fractional Brownian motion, as defined
below, they are equal. Even though we will primarily be counting boxes, the other
definition is also of interest as some theoretical aspects are better treated.

Definition 2.10. Let F be a bounded non-empty subset of Rn and let Nδ(F ), δ > 0 be
the smallest number of n-dimensional boxes of sides of length at most δ which can cover
F . The upper and lower Box-Counting dimensions of F , are defined as

DB(F ) = lim sup
δ→0+

lnNδ(F )

− ln δ
, (53)

and

DB(F ) = lim inf
δ→0+

lnNδ(F )

− ln δ
. (54)

Provided both limits exist and are equal, the Box-Counting dimension is then

DB(F ) = lim
δ→0+

lnNδ(F )

− ln δ
. (55)

We wish to establish some basic machinery required for performing our dimensional
calculations. As such, the Hausdorff-Besicovitch Dimension, the related measure, and
some elementary properties are presented below.

Definition 2.11. Let F ⊂ Rn and s ≥ 0. Then for any δ > 0 we define

Hsδ(F ) = inf

{ ∞∑

i=1

(diam Ui)
s : {Ui} is a δ-cover of F

}
. (56)

Then we denote Hs(F ) = limδ→0Hsδ(F ) the s-dimensional Hausdorff measure of F .
We can then define the Hausdorff-Besicovitch Dimension, DH , as

DH(F ) = inf{s ≥ 0 : Hs(F ) = 0}. (57)

We remind the reader that for a metric space X, a subset F of X has diameter defined
as the supremum over all distances between elements of F .

Remark 2.11.1. For any set F we have that DH(F ) ≤ DB(F ) since the boxes of
DB also constitute a δ-covering and we take the infimum over all such coverings when
constructing DH .
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Even though our study concerns the generalized notion of self-affine processes, it
can still be useful to have an intuitive notion of what is a fractal. We will not give a
mathematical definition as they often are different, for different authors. For example,
one can think of a fractal subset of Euclidean space R2 to be one in which the fractal
dimension DH ∈ (1, 2) and if we ”look” at a small part of the set, it should look like a
scaled copy of the whole. However, this should only be regarded as an intuitive image
and not a formal definition.

We now give two examples.

Example 2.4 (The Cantor Set). Consider the interval [0, 1]. If we cut away the middle
third of length 1/3 we are left with two bars of length 1/3 each call them c1, c2. If we repeat
this process for c1, c2 and so on, ad infinitum, we obtain the cantor set. Interestingly,
the dimension of this set is positive, and not zero as one may expect from a union of
essentially point-like sets. Mandelbrot illustrates in [2] that is, in fact, ln 2

ln 3 .

Example 2.5 (The Mandelbrot Set). Let Pc : C→ C be defined by Pc(z) = z2 + c and
let Pnc = Pc ◦ ... ◦ Pc (i.e. composed with itself n times). The Mandelbrot set is then
defined as

M = {c ∈ C : ∃s ∈ R, ∀n ∈ N, |Pnc (0)| ≤ s}. (58)

The Mandelbrot set also emphasizes the point that what we called a fractal above is only
the intuition. It is shown in [18] that the boundary of the Mandelbrot set has Hausdorff
dimension equal to 2. For a visualization generated in MATLAB we refer to figure 1.

2.3.1 Techniques for Calculating Dimensions

Certain mappings under stronger continuity assumptions do not alter the dimension of
a set. In general we are interested in those that are Hölder or Lipschitz continuous .

Definition 2.12. Let F ⊂ Rn and f : F → Rm. The function f is said to be Hölder
continuous of order α on F if there exist constants c > 0, α > 0 such that

|f(x)− f(y)| ≤ c|x− y|α (59)

for all x, y ∈ F . If the relation holds for α = 1 the mapping is said to be Lipschitz.
Moreover, if for some c > 0

1

c
|x− y| ≤ |f(x)− f(y)| ≤ c|x− y| (60)

for all x, y ∈ F the function is said to be (c-)bi-Lipschitz on F .

Lemma 2.13. Let F ⊂ Rn and f : F → Rm be a mapping such that f fulfills a Hölder-
condition of order α (for α = 1 this is ordinary Lipschitz continuity). Then ∀s ≥ 0

Hs/α(f(F )) ≤ cs/αHs(F ). (61)
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Figure 1: The Mandelbrot set. Notice how each small ”blob” resembles the whole. This
is at the very essence of fractal geometry. MATLAB code for how to generate the image
above can be found in chapter 13 of [17].

Proof. As {Ui} is a δ-cover of F and since

diam f(F ∩ Ui) ≤ c(diam F ∩ Ui)α ≤ c(diam Ui)
α, (62)

it follows that {f(F ∩ Ui)} is an cδα-cover of f(F ). Hence,

∑

i

(diam f(F ∩ Ui))s/α ≤ cs/α
∑

i

(diam Ui)
s. (63)

Therefore, Hs/αcδα (f(F )) ≤ cs/αHsδ(F ). The result follows by taking δ → 0.

Lemma 2.14. Let F ⊂ Rn and suppose that f : F → Rm satisfies a Hölder condition
of order α. Then DHf(F ) ≤ (1/α)DH(F ).
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Proof. For s > DH(F ) the previous lemma yields Hs/α(F ) ≤ cs/αHs(F ) = 0. Hence by
definition DH(f(F )) ≤ s/α. Certainly, s ≤ DH(F ) and the result follows.

Theorem 2.15. Let F be a bounded set subset of X of fractal dimension D and suppose
f is bi-Lipschitz on F . Then the image f(F ) also has fractal dimension D.

Proof. Take α = 1 (and c = 1) in the lemma above and apply to f−1 : f(F )→ F .

Note in particular that all affine (and thus all linear) transformations are covered by
the above proposition. We can think of this as meaning that we can stretch and shift
graphs at will without affecting the dimension to be calculated.

As financial time series can from our viewpoint be interpreted as graphs of continuous
functions, the dimensional properties of the latter are of obvious interest.

Proposition 2.16. Let f : [0, 1]→ R be continuous and let δ ∈ (0, 1). We define m to
be the least integer greater than or equal to 1/δ. Then if Nδ is the number of squares of
the δ-mesh that interesect the graph of f ,

δ−1
m−1∑

i=0

Rf [iδ, (i+ 1)δ] ≤ Nδ ≤ 2m+ δ−1
m−1∑

i=0

Rf [iδ, (i+ 1)δ] (64)

where
Rf [t1, t2] = sup

t1≤t,u≤t2
|f(t)− f(u)| (65)

is the maximum range over the interval [t1, t2].

Proof. Consider an interval of length δ. The number of of δ-meshes that intersects f on
such on interval is between Rf [iδ, (i+1)δ]δ−1 and Rf [iδ, (i+1)δ]δ−1 +2. The proposition
follows by summing over all such intervals.

The immediate application of the above proposition is to find an upper bound for
the dimension of the graph of a function f .

Corollary 2.16.1. Let f : [0, 1] : R and suppose that f fulfills a Hölder condition of
2 − s, 1 ≤ s ≤ 2. Then the graph of f has Hausdorff-Besicovitch and Box-Counting
dimensions less than or equal to s.

Proof. By definition we have that Rf [t1, t2] ≤ c|t1− t2|2−s for some c ∈ R. Then by (64)

Nδ ≤ 2m+ δ−1mcδ2−s ≤ (1 + δ−1)(2 + cδ−1δ2−s) = (1 + δs−1)(2 + cδ)δ−s ≤ eδ−s (66)

for sufficiently small δ > 0. Then
lnNδ

− ln δ
≤ s (67)

and the result follows from the definition 2.10 and the fact that DB ≥ DH .
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2.4 Joseph and Noah effects

The Joseph and Noah effects are allusions to biblical stories [6]. The naming stems
from the old testament in which Joseph was a slave who prophecized that there would
be seven years of prosperity following seven years of famine; it is thus used to describe
anti-persistent behavior in financial markets. Similarly, the Noah effect stems from the
story of Noah and his ark. Allegedly, God flooded the earth in Noah’s sixth hundred
year. In finance, it is used to describe market crashes, which lie in the tails of return
distributions.

We now extend the ideas of fractal geometry from the previous section to random
variables. Mandelbrot et al. ([19], [20]) define self-affine processes as in the following.

Definition 2.13. Given X(0) = 0, a stochastic process is called self-affine if there exists
α > 0 such that

{X(ct1), ..., X(ctk)} d= {cαX(t1), ..., cαX(tk)} (68)

for all c, ti ≥ 0 where i = 1, 2, 3, ..., k. We call α the (self-)affinity index.

Remark 2.13.1. Some authors, especially within probability refer to such processes as
self-similar (for instance those in the bibliography). We have chosen to use Mandelbrot’s
convention since our work is primarily based on his.

By no means we wish to suggest that there is an actual stochastic process driving
the stock market, or at least not one that we can know. Nevertheless, to illustrate the
Joseph and Noah effects we need a mathematical model of market returns. Moreover, B.
B. Mandelbrot demonstrates in [6] that certain self-affine processes bare high resemblance
to the actual behavior of the market.

2.4.1 Fractional Brownian Motion and the Joseph Effect

Definition 2.14. Fractional Brownian motion (fBm) of index α (0 < α < 1) is a
stochastic process X : [0,∞)→ R such that:

• It holds almost surely that X(t) is continuous and that X(0) = 0.

• ∀t ≥ 0 and h > 0, the increments, X(t + h) −X(t), are stationary and normally
distributed with mean 0 and variance h2α, such that

P (X(t+ h)−X(t) ≤ x) =
h−α√

2π

∫ x

−∞
exp

(
(−y2/2h2α)

)
dy. (69)

Remark 2.14.1. Note that usual Brownian motion is characterized by α = 1/2 and
thus this definition is a generalization of standard Brownian motion.

Proposition 2.17. Fractional Brownian motion of index α is self-affine with affinity
index α.
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Proof. The mean and variance of a Gaussian process uniquely determine the process,
see for instance [21]. From definition 2.14 it is clear that both {X(ct)} and {cαX(t)}
have the same mean and variance. Hence they are equal in distribution.

Proposition 2.18. Fractional Brownian motion of order α satisfies a Hölder condition
of order α almost surely.

Proof. Let 0 < h < t and 0 < γ < α. By self-affinity and stationary increments

E[|X(t)−X(h)|1/γ ] = E[|X(t− h)|1/γ ] = |t− h|α/γE[|X(1)|1/γ ]. (70)

The result follows by application of the Kolmogorov-Centsov Theorem as found in [22]
page 53.

Proposition 2.19. The Box-Counting dimension DB, and the Hausdorff dimension, of
the graph of fractional Brownian motion is almost surely 2− α.

Proof. We acquire an upper bound by corollary 2.16.1 and the fact that index-α fBm
satisfies a Hölder condition of order α almost surely.

We will construct a mass distribution on the graph with finite s-energy for s < 2−α
to obtain a lower bound on the fractal dimension.

If we define r = |X(t+ h)−X(t)| and r = w1−αhα we get the estimate

E
[
(|X(t+ h)−X(t)|2 + h2)−s/2

]

=

∫ ∞

0
(r2 + h2)−s/2

h−α√
2π

exp

( −r2

2h2α

)
dr

=
h−α√

2π

∫ ∞

0
(r2 + h2)−s/2 exp

( −r2

2h2α

)
dr

=
h−α√

2π

∫ ∞

0
(w2−2αh2α + h2)−s/2 exp

(−w2α

2

)
w−αhα

2
dw

=
1

2
√

2π

∫ ∞

0
(w2−2αh2α + h2)−s/2 exp

(−w2α

2

)
w−αdw

≤c
∫ h

0
(h2)−s/2w−αdw + c

∫ ∞

h
(w2−2αh2α)−s/2w−αdw

≤c1h
1−α−s

(71)

for some c, c1 > 0. Now, it is easy to check that µf (A) = L{t ∈ [0, 1] : (f, f(t)) ∈ A}
is a mass distribution on the graph of f in accordance with definition A.2. Then the
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associated s-energy (for definition see the appendix) is

Is = E
(∫ ∫

|x− y|−sdµX(x)dµY (y)

)

=

∫ 1

0

∫ 1

0
E
[
(|(X(t)−X(u)|2 + |t− u|2)s/2

]
dtdu

≤
∫ 1

0

∫ 1

0
c1|t− u|1−α−sdtdu <∞

(72)

whenever s < 2 − α. It then follows by proposition A.2 that DH(graph f) ≥ 2 − α.
Hence DH(graph f) = 2− α almost surely.

Now we have shown what we set out to do, namely that we have shown that the
index α specified in the distribution of the increments of fBm is precisely its fractal
dimension. Next, we wish to tie this rather theoretical aspect of the process (69) to the
return movements of financial data. To do this, we first define the autocorrelation and
autocovariance functions.

Definition 2.15. The Autocovariance function of a stochastic process, X(t), is given by

R(t1, t0) = Cov(X(t1), X(t0)). (73)

The Autocorrelation function of a Stochastic Process X(t) is given by

ρ(t1, t0) =
Cov(X(t1), X(t0))√
V ar(X(t1))V ar(X(t0))

. (74)

When t0 = 0 we may drop the second variable for convenience.

Proposition 2.20. The autocorrelation function of index-α fBm is given by

ρ(t) =
1

2

(
(t+ 1)2α − 2t2α + (t− 1)2α

)
. (75)

Proof. The autocovariance function for the increments, ∆X(t), of fBm is defined as

ρ(t) =
E[((X(t+ 1)−X(t))(X(1)−X(0))]√
E[(X(t+ 1)−X(1))2]E[(X(1)−X(0))2]

=
E[((X(t+ 1)−X(t))X(1)]

E[X(1)2]
=

E[(X(t+ 1)X(1)−X(t)X(1))]

E[X(1)2]

=

(
(t+ 1)2α − 2t2α + (t− 1)2α

)
E[X(1)2]

2E[X(1)2]

(76)

using that X(0) = 0 almost surely, that E[X(t)] = 0, and the fact that the process is
self-affine.
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Corollary 2.20.1. Note in particular that for α ∈ [0, 1],

α > 1/2 ⇒ ρ > 0,
α = 1/2 ⇒ ρ = 0,
α < 1/2 ⇒ ρ < 0.

(77)

Moreover,
∑∞

t=1 |ρ(t)| is finite if and only if α ≤ 1/2.

Remark 2.20.1. The property
∑∞

t=1 |ρ(t)| =∞ is referred to as long-range dependence.
The intuition is that if limt→∞ |ρ(t)| = 0 sufficiently slow, this means not only that the
sum does not converge but also that there is correlation between increments separated
very far by time.

Remark 2.20.2. α = 1/2 yields the expected result of uncorrelated increments, as
exhibited by standard Brownian motion.

From the corollary above in combination with proposition 2.19 we immediately see
that for a fractal Brownian motion {X}t≥0, DH(graph X) > 1.5 means that the process
is anti-persistent; it exhibits the Joseph effect. Similiarily, for DH(graph X) < 1.5 the
process is persistent, and does in fact exhibit long-range dependence.

Example 2.6. Consider the simple stock price model S(t) = ertX(t) where X(t) is
fractional Brownian motion of index α and the return parameter r > 0. Together, the
multiple rX(t) can be thought of to be the time-varying return. Then

E[S(t)] = S(0)

∫ ∞

0
exp(rtx) exp

(−x2

2t2α

)
dx = S(0)

∫ ∞

0
exp

(
rtx− x2

2t2α

)
dx. (78)

Note that the integral on the right hand is increasing in α whenever t ≥ 1. This reflects
the fact that we should expect a much more ”undisturbed” growth of the stock price
whenever we have persistent behavior and long-range dependence.

2.4.2 Lévy Processes and the Noah Effect

Just a fBm is a natural generalization of the normal random walk to include persistent
and anti-persistent behavior (correlated increments), we can also instead generalize to
Lévy Processes to include fat tails. We also show the Noah effect, fat tails, is character-
ized by the Hausdorff dimension of the graph of Lévy stable processes.

Definition 2.16. A Lévy process is a stochastic process, {X(t)}t≥0, that satisfies:

• It holds almost surely that X(0) = 0 and that X(t) is continuous; that is for all
ε > 0, lims→t P (|X(s)−X(t)| > ε) = 0.

• The increments X(t+τ)−X(t) are independent of t for all t, τ ≥ 0. We can write
X(t+ τ)−X(t) = X(τ).

• The increments X(t + τ) − X(t) and X(s + ζ) − X(s) are independent for all
s, t, τ, ζ ≥ 0, t 6= s.

26



Such a process is called stable if it also adheres to the definition below. We apologize
in advance for the notational overload on the parameter α and ask the reader to note
that its use in this section differs from the previous. We use the two conventions as
they are standard in their respective (sub-)fields. In fact, the two uses obey an inverse
relation.

Definition 2.17. A random variable (or vector) X has a stable distribution if there
exist a, b, c ∈ R>0 and c1 ∈ R such that

aX1 + bX2
d
= cX + c1 (79)

where X1, X2 are independent copies of X.
A random variable is called stable of index α or simply α-stable if the number a, b, c

satisfy
aα + bα = cα (80)

For α ∈ (0, 2]. Further, this generalizes naturally to stochastic processes, which we call
stable if the random vectors (X(t1), ..., X(td)) are stable for all t1 < ... < td.

Example 2.7 (Normal Distribution). Consider three independent and normally dis-
tributed random variables X,X1, X2 all with mean µ and variance σ2. Then aX1 + bX2

is normally distributed with mean (a+ b)µ and variance (a2 + b2)σ2. Therefore, aX1 +

bX2
d
= (a2 + b2)1/2X + (a + b − (a2 + b2)1/2)µ. Comparing with definition 2.17 we note

that the normal distribution is α-stable with α = 2.
A plot of the probability density functions of the normal (S1(1, 0, 0)) and Cauchy

(S2(1, 0, 0)) distributions can be found in figure 2.

We now introduce characteristic functions to give another alternate approach to
stable distributions.

Definition 2.18. The characteristic function of a random variable X is given by

φX(u) = E[eiuX ], u ∈ R. (81)

Definition 2.19 (equivalent to definition 2.17). A random variable X is said to have a
stable distribution if there are parameters α ∈ (0, 2], σ ≥ 0, β ∈ [−1, 1] and µ ∈ R such
that the characteristic function has following form:

φX(θ) = E[eiθX ] =

{
exp

(
−σα|θ|α(1− iβsgn(θ) tan(πα2 ) + iµθ)

)
if α 6= 1

exp
(
−σα|θ|α(1 + iβsgn(θ)( 2

π ) ln |θ|+ iµθ)
)

if α = 1
(82)

Remark 2.19.1. Since α and (σ, β, µ) completely characterize stable random variables
we can for an apporiate stable X write X ∼ Sα(σ, β, µ).

Remark 2.19.2. The definitions 2.17 and 2.19 are equivalent. More details can be
found in [23].
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Figure 2: The probability density functions of the Cauchy distrubtion S1(1, 0, 0) and
Standard Normal distribution S2(1, 0, 0). Note how the tail is ”fatter” for smaller α.

Lemma 2.21. Suppose X is a random variable with E[|X|γ ] < ∞. Then for integers

0 ≤ j ≤ γ, φX has finite derivative of order j given by φ
(j)
X (θ) = E[(iX)jeiθX ].

Proof. j = 0 is trivial. Assume that the statements holds for j−1, we wish to show that
it holds for j. The result follows by induction if we differentiate under the integral sign
for j − 1. This is allowed since E[|X|γ ] <∞ and is proven in [24] proposition 9.2.1.

We are are now ready to prove that α-stable Lévy processes exhibit fat tails for
almost all α.

Proposition 2.22. Suppose that the variance of an α-stable Lévy process is finite. Then
α = 2.

Proof. Suppose α ∈ (0, 2) and that the variance, E[X2] = E[|X|2] is finite. Then by
lemma 2.21 the derivative of X must exist, however, we see by definition 2.19 that this
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is possible if and only if α = 2.

In fact the result can be extended to the general tail behavior of Lévy stable processes
and is done so in [23].

Proposition 2.23 (property 1.2.16 in [23]). If X is a random variable with α-stable
distribution for α ∈ (0, 2), then for any γ ∈ (0, α) E[|X|γ ] <∞, but E[|X|α] =∞.

Alternate proof idea. A different way to think of it is to use fractional derivatives defined

via φ
(γ)
X = E[(iX)γeiθX ]. Then the ideas of lemma 2.21 and proposition 2.22 might be

extended to include the powers γ ∈ (0, α). Such an approach has not been spotted in
the literature and may be interesting to investigate further.

Thus not only do α-stable random variables have infinite variance for α < 2 but their
decay rate also decreases as the index of stability, α, increases. For α = 2 we retrieve
the Gaussian normal case which even has finite variance.

Example 2.8 (Cauchy distribution). The Cauchy distribution with probability density
function

f(x) =
1

π(1 + x2)
(83)

is stable with α = 1. We can find its characteristic function as

φX(t) = E[eitX ] =

∫ ∞

−∞
eitxfdx =

∫ ∞

−∞
eitx

(
1

π(1 + x2)

)
dx

= e−|t|
(84)

by the Fourier inversion formula since the Fourier transform of e−|t| is precisely 2
1+ω2 .

Compare this with definition 2.19 and the result follows.

We now restrict our attention to processes which are also symmetric. They are
defined below.

Definition 2.20. A random variable X is said to be stable symmetric (around 0) if its
characteristic function is given by

φX(θ) = E[eiθX ] = e−σ
α|θ|α (85)

with α, σ as in definition 2.19.

Remark 2.20.1. The attentive reader will note that the Cauchy distribution in the pre-
vious example fits this definition. So would also the normal distribution had we specified
mean 0. This explains the parenthesis (around 0) in the definition above.

We are now ready to once again set our class of processes in the context of fractal
geometry.
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Proposition 2.24. An α-stable symmetric Lévy process is self-affine with self-affinity
index 1/α.

Proof. The increments X(h) = X(t + h) − X(t) satisfy E[eiθ(X(t+h)−X(t))] = e−hσ
α|θ|α .

Consider the characteristic functions of X(ct) and c1/αX(t) and note that they are the
same.

Just as fractional Brownian motion illustrates the behavior of different-dimensional
persistent behavior we use stable Lévy processes to better understand fractal dimension
in the context of fat tails. The next proposition illustrates that the decay-rate of such
fractals, and thus how fat their tails are, depends directly on the fractal dimension.

Finally, we are also able to show that the decay-rate as in proposition 2.23 is directly
related to the fractal dimension of the graph.

Proposition 2.25. The Hausdorff and Box dimensions of a symmetric α-stable Lévy
process is a.s. max(1, 2− 1/α).

Remark 2.25.1. We will show below that DB graph X ≤ max(1, 2 − 1/α). As the
establishment of the lower bound is rather more difficult, we only outline a heuristic
sketch of the idea. The derivations below are a slight extension of the partial proof found
in [16].

Proof of upper bound. We will show that DB graph X ≤ max(1, 2− 1/α) almost surely.
Let Rf as in proposition 2.16. Since the process is self-affine with exponent 1/α we have
that

E[RX [t, t+ δ]] = δ1/αE[RX [0, 1]]. (86)

By proposition 2.16 it then follows that the Nδ intersecting squares of the δ-mesh are
bounded by

E[Nδ] ≤ 2m+mδ−1δ1/αE[RX [0, 1]]. (87)

where m is the least integer greater than or equal to 1/δ, so m ≤ 2/δ. It may be
shown that E[RX [0, 1]] < ∞. Hence E[Nδδ

β] ≤ c for suitable c and small δ with β =
max(1, 2− 1/α). So

E

[ ∞∑

k=1

N2−k(2−k)β+ε

]
≤ c

∞∑

k=1

(2−k)ε <∞. (88)

Therefore Nδδ
β−ε →< ∞ almost surely. In particular, Nδδ

β−ε → 0. The result follows
by definition of the Hausdorff and Box-Counting dimensions. For more details consult
propositions 4.1 and 16.8 of [16].

Sketch of proof of lower bound. Let µf (A) = L{t ∈ [0, 1] : (f, f(t)) ∈ A}. This is the
mass distribution needed for us to use proposition A.2. Then [16] defines the Fourier
transform of µf as

µ̂f (u) =

∫

graph f
eix·udµf (x). (89)
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Notice that the s-potential as in definition A.2 is just the convolution

Φs(x) =

∫
|x− y|−sdµf (y) = (|x|−s ∗ µf )(x). (90)

Then its Fourier transform is given by the product of the transforms of the elements
of the convolution above. The transform of |x|−s is c|u|s−2 where c ∈ R depends on s.
Hence

Φ̂s(u) = µ̂f (u)c|u|s−2. (91)

Then by Parselval’s theorem

∫
Φs(x)dµ(x) = (2π)2

∫
Φ̂s(u)µ̂f (u)du (92)

and therefore

Is(µf ) = (2π)2c

∫
|u|s−2|µ̂f (u)|2du. (93)

The idea is now to use that (89) is closely related with the characteristic function as
in definition 2.19 to establish that the integral (93) is finite if max(1, s ≤ 2 − 1/α) by
proposition A.2.

Thus, finally we have shown that the higher the fractal dimension of certain ran-
dom processes means that it is more wild. In the context of Lévy stable processes the
decay-rate of the tails are characterized by the fractal dimension through proposition
2.23. Moreover, in the previous section it was shown that persistent and anti-persistent
behavior of fractional Brownian motion is characterized by the fractal dimension. In
fact, the degree of anti-persistent behavior was shown to be increasing with the fractal
dimension. To us, it thus seems reasonable, in light of the Markowitz model, instead of
variance, we try to minimize the fractal dimension. We now develop the tools necessary.

3 On the Empirical Estimation of the Fractal Dimension

So far all is well in theory, however, we need a practical tool to measure, or at least
estimate, the dimension of a set. In this context a natural selection is the Hurst, or
Hölder, exponent. The approach below stems from [25] and is an extension thereof.
Consider a return series defined below:

Definition 3.1. We define the time series of an asset, xi, as a function P i(t) = P it :
I → R that for any time value t ∈ I outputs the return, Pi(t), of that asset, where I is
any ordered set of return measurement points. Furthermore, when speaking of the fractal
dimension such a time series, we implicitly refer to the fractal dimesion of the graph of
P i(t).

The Generalized Hurst Exponent of a (financial) time series, Hq, is defined by
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Definition 3.2. The Generalized Hurst exponent is defined implicitly by

Hq ∈ R+ s.t.

(
T∑

t=1

|P (t+ τ)− P (t)|q
)1/q

∝ τHq (94)

where P (t) denotes the price at time t and τ ∈ R+ denotes the step-distance.
The definition above is general, however, we will mainly focus on the case of where

we have equality in (94) with K = 1 below:

Hq =
ln
(∑T

t=1 |P (t+ τ)− P (t)|q
)1/q

− lnK

ln τ
. (95)

Remark 3.2.1. This form (with K = 1) is namely invariant under affine transforma-
tions of the time series since any constants (multiplicative or additive) are cancelled.
This affine invariance mirrors the bi-Lipschitz invariance of the Hausdorff dimension
shown in theorem 2.15.

In the following sections we will build on the established theory for the exponent.
The convergence properties of the exponent, in one form or another, date back to the last
century. We will build on these properties, found in the section immediately below, to
establish the general result which ties together the Box-Counting dimension of a convex
combination of functions.

3.1 Limit Approximations for the Fractal Dimension

Proposition 3.1. Let X,Y ⊂ R. Then for a graph of a piecewise continuous function
f : X → Y it holds that limτ→0+ H1 = 2−DB. I.e. the first moment Hurst exponent is
asymptotically accurate in measuring the Box-Counting dimension.

Proof. We can without loss of generality assume that the total time measurement length
is 1. Let Rτ = 〈|Pt+1 − Pt|〉 where τ = 1

2m ,m ∈ N is the step length, such that there
are 1

τ = 2m subintervals. If H∗1 denotes the asymptotic first moment Hurst exponent we
have that

H∗1 = lim
τ→0

lnRτ − lnK

ln τ
. (96)

Where K is a constant of proportionality attributed to (94). Clearly limτ→0
lnK
ln τ =

0, ∀K ∈ R. We can thus, without loss of generality, disregard lnK in the following limit
argument.

Next, by piecewise continuity of f there will be a mean of Rττ boxes in each subinterval

of length τ , and thus, since there are 1
τ subintervals, there are Rτ

τ2
boxes, implying

τ2Nτ = Rτ .
Therefore

H∗1 = lim
τ→0

lnRτ
ln τ

= lim
τ→0

ln τ2Nτ

ln τ
= lim

τ→0

lnNτ + ln τ2

ln τ
= 2−DB (97)
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as desired.

Before generalizing the above proposition to higher moments of q, we need to do
some extra leg-work. It is useful to define τ0 = min(1, sup{x ∈ R : |P (t + x) − P (t)| <
1, x > 0}). This serves several purposes. First and foremost it guarantees that for
τ ∈ (0, τ0) we have ln〈|Pt+1 − P − t|q〉 < 0 for all q ≥ 1. Further it guarantees that
〈|Pt+1 − P − t|〉 ≥ 〈|Pt+1 − P − t|q〉 for all q ≥ 1. This will make the following lemma
next to tautological.

Lemma 3.2. For τ ∈ (0, τ0), H(q) = Hq for any time series is an increasing function
of q.

Proof. From (95) we immediately see that for fixed τ < τ0, Hq increases as q increases
since K only depends on τ .

We are now prepared to generalize the previous proposition to higher moments of
the Hurst exponent. This step’s usefulness relates to the more beneficial smoothness
properties higher orders possess.

Proposition 3.3. Let X,Y ⊂ R. Then for a graph of a piecewise continuous function
f : X → Y , it holds that limτ→0+ Hq = 2−DB. I.e. every moment of the Hurst exponent
is asymptotically accurate in measuring the Box-Counting dimension.

Proof. We can without loss of generality assume that the total measurement length is
1. Let Rτ = 〈|Pt+1 − Pt|q〉1/q, such that there are 1

τ subintervals.
Instead of using the box definition of Box-Counting definition, we use the equivalent

definition where instead we use the largest set of rectangles of size inf |Pt+1 − Pt|q by τ .
In case there does not exists ε > 0 such that for all τ ∈ Nε(0)∩R+, τ > inf |Pt+1−Pt|q we
can always rescale the time series (which does not change the dimension by dimensional
invariance under affine transformations as shown in theorem 2.15) such that the piece is
sufficiently small (in height).

Thus for a piecewise continuous function, for which we have already established
existence of DB, we have that

lim sup
τ→0+

− ln τ2Nτ ≥ − ln

(
lim inf
τ→0+

Rτ

)
. (98)

Whereupon it is established that

2−DB = 2− lim sup
τ→0+

lnNτ

− ln τ
= lim sup

τ→0+

lnNττ
2

ln τ
≥ lim sup

τ→0+

Rτ
τ

= H∗q . (99)

However, by the lemma above,
Hq ≥ Hw (100)
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for q ≥ w ≥ 1, τ ∈ (0, τ0) and by the previously established fact that

H∗1 = 2−DB (101)

we conclude that
H∗q = 2−DB. (102)

Remark 3.3.1. It would be interesting to investigate whether the piecewise continuity
assumption above can be replaced by f ∈ Lp(X), for instance for p = q. In practice, a
time series will always be represented by a continuous function since the measurement
points are finite. However, it may be of theoretical interest as this might allow us to take
convex combinations of sets like the Cantor dust and study their dimension. That is, we
would render it onto the plane as the graph of a function.

3.2 Concavity of the Box-Counting Dimension

The Hurst exponent is a measure of jaggedness and long-term memory of the time
series. It is thus closely related with the Box-Counting dimension of certain processes as
discussed in section 2. As we have motivated in that section, a high fractal dimension
is undesirable for an asset that we wish to invest in since it may exhibit fat tails or
autocorrelation. It is therefore natural to try to minimize such an undesirable property.
In order to do so, we prove that the Hausdorff dimension when taken over a convex
combination of functions, is a concave function. This approach is to the best of our
knowledge novel.

Proposition 3.4. For all 1 > τ > 0, H1(x) of a financial time series is a convex
function of the portfolio vector, x.

Proof. We replace proportionality with an arbitrary constant, K, and set q = 1 and sum
notation is introduced. Thus

KτH1 =
∑

t∈I
|Pt+1 − Pt|. (103)

As we are interested in portfolio returns and not those of individual time series, P (·) =∑n
i=1 xiP

i(·). So

KτH1(x) =
∑

t∈I
|
n∑

i=1

xi(P
i
t+1 − P it )|

⇒H1(x) =
ln
(∑

t∈I |
∑n

i=1 xi(P
i
t+1 − P it )|

)
− lnK

ln τ
.

(104)

The result now follows from the composition rules of convex and concave functions since
H1(x) is the negative (since τ is the inverse of the number of steps and thus τ < 1)
logarithm (convex) of the sum (affine) of the absolute values (convex) of the sum of
affine functions and each is increasing.
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Sadly, H1 is only piecewise differentiable without additional assumptions. We there-
fore turn our attention to the generalized Hurst exponent for even q ≥ 2.

Proposition 3.5. For all 1 > τ > 0, and even q ≥ 2, Hq(x) of a financial time series
is a convex, q-times continuously differentiable function of the portfolio vector, x.

Proof. We replace proportionality with an arbritrary constant, K and sum notation is
introduced. Thus

KτHq =

(∑

t∈I
|Pt+1 − Pt|q

)1/q

. (105)

As we are interested in portfolio returns and not those of individual time series, P (·) =∑n
i=1 xiP

i(·). Further, since q is even we can remove the absolute value function, such
that

KτHq(x) =

(∑

t∈I
(
n∑

i=1

xi(P
i
t+1 − P it ))q

)1/q

⇒ Hq(x) =
ln
(∑

t∈I(
∑n

i=1 xi(P
i
t+1 − P it ))q

)1/q − lnK

ln τ
.

(106)

The result now follows from the composition rules of convex and concave functions since
Hq(x) is the negative logarithm (convex) of the qth root (convex for even q) of the
sum (affine) of qth powers (convex) and each is increasing. Note further that all these
compositions are at least q times continuously differentiable, thus Hq(x) is too.

Even though at first glance we would expect an averaging process to make the data
more smooth, these results should not surprise our intuition. They simply state that the
weighted average of several time series is more jagged than its most jagged component
series. Heuristically, this happens since we should not expect the different fractal shapes
to ”cancel” since they are in a sense the product of an infinitely limiting process. We now
turn to differentiability, our interest thereof should be apparent in regard to optimization.
Moreover, if the reader is not already convinced by the strength of these results, we also
have the following more general corollary which rests on the convexity properties of the
Hurst exponent.

Proposition 3.6. Let X,Y ⊂ R. The Box-Counting dimension of a weighted average of
any number, n ∈ N, of piecewise continuous functions fi : X → Y is a concave function
of the weightings xi. I.e.

n∑

i=1

xiDB(fi) ≤ DB

(
n∑

i=1

xifi

)
. (107)

Where
∑n

i=1 xi = 1, xi ≥ 0, i = 1, 2, ..., n.
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Proof. This is an immediate corollary of the convexity of H1, the preservation of con-
vexity under limits, and the asymptotic equality between H1 and DB.

We end this section with an example to illustrate the meaning of these ideas.

Example 3.1. Consider an n + m-tuple of n fBm processes, Bi, of different dimen-
sion DB,i and m symmetric stable Lévy processes, Lj, of dimensions DB,j. Then the
dimension of the graph of

n∑

i

xiBi +

m∑

j

yjLj (108)

is a concave function of (x, y) where x = (x1, ..., xn) ∈ Rn and y ∈ Rm is defined
equivalently.

The example is of course also true for the Hausdorff dimension as it is equal to the
Box-Counting dimension for the processes considered.

4 Optimal Portfolios for a Fractal Measure of Risk

Before we begin with the solution of the problem, we note a particularly useful form of
H2.

Proposition 4.1. Let

M =
∑

t∈I
∆P (t)∆P t(t). (109)

Then

H2(x) =
ln
(
xtMx

)
− lnK

2 ln τ
and

∇H2(x) =
Mx

(ln τ)xtMx
.

(110)

Proof. We have, assuming K = 1 without loss of generality, since we will differentiate
away the constant anyway. Now let ∆P (t) = (P1(t+ 1)− P1(t), ..., (Pn(t+ 1)− Pn(t)))t

then

Hq(x) =
ln
(∑

t∈I(
∑n

i=1 xi(P
i
t+1 − P it ))q

)1/q

ln τ
=

ln
(∑

t∈I(x
t∆P (t))q

)

q ln τ
,

H2(x) =
ln
(∑

t∈I(x
t∆P (t))2

)

2 ln τ
=

ln
(∑

t∈I(x
t∆P (t))(xt∆P (t))

)

2 ln τ

=
ln
(∑

t∈I(x
t∆P (t))(∆P t(t)x)

)

2 ln τ
=

ln
(∑

t∈I x
t(∆P (t)(∆P t(t))x

)

2 ln τ

=
ln
(
xt
∑

t∈I
[
(∆P (t)(∆P t(t))

]
x
)

2 ln τ
=

ln
(
xtMx

)

2 ln τ
.

(111)

And by the chain rule and differentiation of quadratic forms the result follows.
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We are now ready to present the main problem of this project. Namely to minimize
(a heuristic measure of) the fractal dimension for a portfolio.

Problem 5.

min
x∈Rn

− ln
(
xtMx

)

2 ln τ
− µr̄tx,

s.t. etx = 1,

x ≥ 0.

(112)

The constraint x ≥ 0 precisely means that short-selling is banned. Further, since
this makes the feasible set compact, we are guaranteed the existence of a minimum. In
fact, it is trivially found under suitable assumptions on the objective function since the
feasible set is a polyhedral set.

4.1 Portfolios of Minimal Dimension

Proposition 4.2. M is positive semi-definite.

Proof. Let x ∈ Rn and consider xtMx. We can write this as

xtMx = xt
∑

t∈I
∆P (t)∆P t(t)x =

∑

t∈I
xt∆P (t)∆P t(t)x =

∑

t∈I
(xt∆P (t))2 ≥ 0. (113)

Assumption 3. M is positive definite.

We do not need the assumption above for the solution of problem 5 but it is necessary
for completeness of the theory. If we compare with the problems found in the section on
Markowitz’s original model, the PD assumption was necessary to find a solution since
we used matrix inversions. Even if we do not work with matrix inversions here, this may
be useful in completing the theory with alternate objective function approaches that still
include the Hurst exponent.

Proposition 4.3. The objective function (112) is concave and strictly-concave under
assumption 3.

Proof. Using the gradient obtained in (111) we find that the assoicated Hessian matrix
is

−M ln τxtMx− 2MxtMx ln τ

(ln τxtMx)2 =
M

(ln τxtMx)
(114)

which is a negative multiple ofM (remember ln τ < 0). The result follows by proposition
4.2.

The concavity shown above allows us to transfer the applied problem of finding an
optimal portfolio to that of finding the extreme point of a particularly simple convex
polyhedron.
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Proposition 4.4. Problem 5 is solved by some x ∈ CE where

CE =

n⋃

i=1

{x ∈ C : xi = 1, xj = 0 ∀j 6= i},

C ={x ∈ Rn : x ≥ 0, etx = 1}.
(115)

Proof. This is an immediate corollary of theorem 2.8 and proposition 2.9.

Remark 4.4.1. A less complicated way to say this would be to say that problem 5 is
solved by one of the standard Euclidean basis vectors ei.

We have thus reduced problem 5 to evaluating n functions and choosing the smallest.
This can be done numerically in MATLAB in next to no time. Moreover, this illustrates
an interesting property of the concavity of the dimension of portfolio vis-à-vis the con-
vexity of the variance. Loosely speaking, the superposition of time-series of different
dimension actually increases their dimension, whereas it would decrease the variance.
The implication is that investors following the simple decision rule specified by the opti-
mization problem 5 will simply the pick the one asset which suits their relative preference
of jaggedness versus return whereas the Markowitz investor would prefer to ”spread his
risks”. We do not think it realistic to contradict the old adage of not putting all eggs
in one basket, but it is nevertheless interesting to investigate how well the specification
does in actually picking individual stocks. Another route, to avoid this, might be to
”convexify” the objective function by composing it with the exponential function or to
add a variance term to it. Even better fated might be the attempt to convexify and
then add a variance term (or in the opposite order). We discuss this further in the next
section.

4.2 Alternate Objective Functions

Regrettably the concavity of the objective function of problem 5 forces the optimal
solution to a basis vector ei. This means that the ”optimal portfolio” in our sense is
completely undiversified. We therefore present 2 alternative objective functions f1, f2

and comment briefly on them.
The first which comes to mind is the simple ”convexification” discussed above

f1 = exp (kH2(x))− µr̄tx. (116)

(116) has the advantage that for suitable choice of k it is convex. Moreover, in the
extreme case of µ = 0 it even has the same minimum as problem 5 since exp(·) is
increasing on the feasible set. However, there is no real justification for selecting this
objective function other than that it has nicer properties then the original one. Problem
5 is clearly not equivalent with the alternation using f1.

The alternative approach is to simply add a variance term to objective function of
problem 5. We obtain

f2 = ν
xtΣx

2
−H2(x)− µr̄tx. (117)
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Figure 3: The left graph shows the 10 smallest objective functions for vectors ei (these
correspond to the investment strategies of investing purely in one stock). The right
graph shows the difference between the return of the 10 ”most optimal” (in regard to
the optimization problem 5) stocks and the Markowitz portfolio as given by the index.
Estimation was carried out between the first of January 2004 and the first of January
2008. Returns were measured between the first of January 2008 and the first of January
2010. Another figure can be found on the next page.

f2 is not convex nor concave. However, it falls under the broader class of difference of
convex (DC) functions. There exist convergent algorithms for finding optimum of such
functions and they are considered in [26] in more detail.

4.3 Empirical tests

We now present data from the OMX Nordic 40 index (data retrieved from [27] and
[28]) with which we compute numerically the optimal portfolio of problem 5. This is
almost trivial due to proposition 4.4. Our intention is to compare our portfolio selection
model with that of Markowitz. However, according to the Capital Asset Pricing Model
(CAPM) introduced by Sharpe in [29] we need not actually calculate Markowitz’s port-
folio (problem 3 with an added non-negativity constraint x ≥ 0) since it is equivalent to
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Figure 4: The same as the preceding two graphs but for different times. Estimation was
carried out between the first of January 2008 and the first of January 2010. Returns
were measured between the first of January 2010 and the first of January 2012.

the market portfolio. We remind the reader that the market portfolio is the weighted
average of all stocks combined in one portfolio where the weighting is according to their
relative market capitalization (the value of the company considered). Since we only con-
sider the Nordic market, our market portfolio will precisely be the OMX Nordic 40 index
and we therefore compare the returns of that index with the stocks optimal according
to the solution of problem 5.

The procedure for testing our model is done as follows. We compute the objective
function for all 40 stocks in the index, which we then compare for µ = 1 where data
is taken from an estimation period (for instance between 2004 and 2008). We do not
justify the assumption µ = 1. This would be part of calibrating the model somehow for
preferences of risk and return. Nevertheless, it can be noted that the ordering does not
change much for different values of µ and that this can easily be checked with the code
included. Finally we compare the returns of our 10 best stock picks with that of the
index for a trial period (e.g. 2008-2010).

In reference to the figures 3 and 4, it is observed that our 10 stocks, at least on

40



average, outperformed the market for the first trial period as found in figure 3. The
converse is true for the second trial period.

An explanation for this may be that the first trial period overlaps with the recent
financial crisis. The importance of non-turbulent stock picks may thus be greater than
otherwise, i.e. if the market is stable. Thus, the relative safety of low-dimensional stocks
could be beneficial during wild market movements whereas they just exhibit a further
cost when the market is calm. It must also be recognized that the amount of data
presented is insufficient to draw any definite conclusions. Nevertheless, we believe its
inclusion to be illustrative of the fact that our measure is easy to work with numerically.

5 Discussion and Conclusion

In this thesis we have presented results from optimization theory, portfolio theory, prob-
ability and fractal geometry in order investigate portfolio theory under heavy tail and
autocorrelation assumptions. We used saddle-point optimality to derive the Kurosh-
Kuhn-Tucker conditions for optimality which we then applied to solve Markowitz’s port-
folio model. In order to expand on his work, we illustrated the importance of fractal
dimension (here the Hausdorff, or Box-Counting, dimensions) with respect to fractional
Brownian motion and symmetric α-stable Lévy processes. Specifically, we showed for
these processes that a higher fractal dimension implies undesirable properties for invest-
ment. Using this, we then motivated and constructed a suitable objective function for
minimization. We solved this problem in section 4 by characterizing the candidates for
optimality by the extreme points of the convex polyhedron C = {x ∈ Rn : x ≥ 0, etx = 1}
which precisely are the Euclidean basis vectors ei. Further, we gave an example through
the data acquired from the Nasdaq OMX Nordic 40 index and compared our results to
those of Markowitz.

Our main contributions are the concavity of the Box-Counting dimension, DB, of
propositions 3.4 to 3.6 but also the statement and solution of problem 5. Lastly, we also
have some thoughts on how to improve the framework in the following.

Hurst, or as in this context more suitable, Hölder, exponents started out as a local
property of a set, due to Hölder. Our thinking is in line with that of fractional Brownian
motion (or symmetric Lévy stable motion), which has one Hölder exponent, as demon-
strated, globally. However, real financial markets generally have a multitude of local
Hölder exponents. We will often note in time series that where variation is the wildest,
Lebesque measure is the smallest. This leaves us vulnerable to averaging out these wild
fluctuations which will, to some extent, make us miss the point of finding disaster risk
which should be the greatest precisely on these sets of small Lebesque measure.

Problem 5 may perhaps be generalized to the broader study of multifractals. Man-
delbrot et al. illustrate in [19] that multifractals have a time-dependent Hölder exponent,
τ(t), which is concave (as a function of time). We could thus perhaps consider maximiz-
ing the integral ∫

(τ(t, x) + ρ(t, x)) dtdx (118)
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or some variation thereof. This author speculates that the theories of optimal control
and the calculus of variations may well be useful in this study. Moreover, the objective
functions f1, f2 as described in (116,117) may also be of interest for further research.
In particular, some variation of (117) may be interesting as it is a mixture of our and
existing theory. Beside the fact that it accounts for the diversification issue discussed
previously, it might help shed further light on the issue whether our risk measure works
well during turbulent times.
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A Further Computational Techniques for Dimensions

These topics are sometimes far from the main issue of this thesis and we believe them
to disturb the flow of ideas. In order to precisely determine the fractal dimension of
fractional Brownian motion we need some basic potential theory. The approach stems
from chapter 4.3 of [16].

Definition A.1. Let µ be a measure defined on a bounded subset X of Rn. If 0 <
µ(X) <∞, we say that µ is a mass distribution.

Example A.1. Any probability measure on a bounded set X ⊂ Rn is a mass distribution
since µ(X) = 1.

The example above sets us in the right direction (considering fBm). We first construct
a lower bound for the Hausdorff measure in order to proceed to construct a lower bound
on the dimension.

Proposition A.1 (Proposition 4.9a of [16]). Let µ be a mass distribution, let F ⊂ Rn
be a Borel set, and let 0 < c < ∞. Then if lim supr→0 µ(Nr(x))/rs < c for all x ∈ F
then Hs(F ) ≥ µ(F )/c.

Proof. For δ > 0 let

Fδ = {x ∈ F : µ(Nr(x)) < crs for all 0 < r ≤ δ}. (119)

Next, let {Ui} be a δ-cover of F . Then by definition of Fδ it is also a cover of that set.
Then for a neighborhood Ndiam (Ui)(x) such that Ui ∩ Fδ 6= ∅ that N certainly contains
Ui. Hence,

µ(Ui) ≤ µ(N) ≤ c(diam (Ui))
s. (120)

Thus
µ(Fδ) ≤

∑

i

{µ(Ui) : Ui ∩ Fδ 6= 0} ≤ c
∑

i

(diam (Ui))
s. (121)

Since µ(Ui) is any δ-coveer of F , it follows that µ(Fδ) ≤ cHsδ(F ) ≤ cHs(F ). Then set
y = 1/δ. The sets Fy are then increasing so the limits can be moved inside the measure
and the result follows.

Definition A.2. For s ≥ 0 the s-potential at a point x ∈ Rn of the mass distribution µ
defined on X ⊂ Rn is defined as

Φs(x) =

∫

X

dµ(y)

|x− y|s . (122)

The associated s-energy is

Is(µ) =

∫

X
Φs(x)dµ(x). (123)
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We are now ready to use the integrals above to find a lower bound on the Hausdorff
dimension. This is the result used to find the lower bound of the Hausdorff dimension of
the graph of fBm. The idea is that if the energy is finite, the distribution of mass must
be finite almost everywhere. We then use the previous proposition to extract the result
desired.

Proposition A.2 (Theorem 4.13a of [16]). Let X be a subset of Rn. If there is a mass
distribution µ on X with Is(µ) <∞ then Hs(X) =∞ and DH(X) ≥ s.

Proof. Let µ be a mass distribution on X and suppose that Is(µ) <∞. Also let

E =

{
x ∈ X : lim sup

r→0
µ(Nr(x))/rs > 0

}
. (124)

Then for x ∈ E there exists strictly decreasing {ri} → 0 such that µ(Nri(x)) ≥ εrsi . Now
define qi = (ri + ri+1)/2 such that 0 < ri+1 < qi < ri. If we let Ai = Nri(x) \Nqi(x) we
get µ(Ai) ≥ 1

4εr
s
i by continuity. Thus

Φs(x) =

∫

X

dµ(y)

|x− y|s ≥
∞∑

i=1

∫

Ai

dµ(y)

|x− y|s ≥
∞∑

i=1

1

4
ε =∞ (125)

since |x − y|−s ≥ r−si on Ai. However since the s-energy is finite the mass must be
distributed on a set of measure 0 and Φs(x) <∞ almost everywhere. Hence µ(E) = 0.
Therefore, lim supr→0 µ(Nr(x))/rs = 0 for x ∈ X \E. The result follows by applying the
previous proposition.

B MATLAB Code

B.1 Index Data Management

% read_files_into_big_matrix.m

clear all

close(’all’)

names=dir(’*.dat’); % directory listing

d=zeros(6000,length(names)+1); % allocate big matrix

start=datenum(’2000-01-01’);

for i=1:length(names)

% disp(names(i).name)

clear q

q=importdata(names(i).name,’;’); % stuff into column of matrix

datum=datenum(q.textdata)-start;
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value=q.data;

for j=1:length(q.data)

d(datum(j),i)=value(j);

if (i==1)

d(datum(j),length(names)+1)=datum(j)+start;

end

end

end

jj=0;

for j=1:6000

if (d(j,41)>3000)

jj=jj+1;

dd(jj,:)=d(j,:);

end

end

dataarray=datestr(dd(:,41));

% load_omx_data.m

d=zeros(6000,2); % allocate big matrix

q=importdata(’omx/OMX.dat’,’;’);

start=datenum(’2000-01-01’);

datum=datenum(q.textdata)-start;

value=q.data;

for j=1:length(q.data)

d(datum(j),1)=value(j);

d(datum(j),2)=datum(j)+start;

end

omx=zeros(10,2);

jj=0;

for j=1:6000

if (d(j,2)>3000)

jj=jj+1;

omx(jj,:)=d(j,:);

end

end

omxdate=datestr(omx(:,2));

% all returns
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omx_r=(omx(2:end,1)-omx(1:end-1,1))./omx(1:end-1,1);

% function for average return between T1 and T2

omx_R=@(T1,T2)mean(omx_r(T1:T2))’;

B.2 Computations

allstock=zeros(2912,40);

allreturn=zeros(2913,40);

R=zeros(40,1);

for stock=1:40

tim=dd(1:end-1,41)-dd(1,41);

r=(dd(2:end,stock)-dd(1:end-1,stock))./dd(1:end-1,stock);

for k=1:length(r)

if isnan(r(k))

r(k)=0;

end

if r(k) < -0.99 | r(k)> 5000

r(k)=0;

end

end

if 0

subplot(2,1,1); plot(tim,r)

subplot(2,1,2); hist(r,50)

end

allreturn(:,stock)=r;

dP=r(2:end)-r(1:end-1);

% plot if necessary

if 0

plot(dP)

axis([0 3000 -1 1])

title(num2str(stock))

pause(0.1);

end

allstock(:,stock)=dP; % big matrix
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end

% covariance matrix for the entire time 1 to 2912

M=allstock’*allstock;

% function to get covariance matrix between T1 and T2

MMM=@(T1,T2)allstock(T1:T2,:)’*allstock(T1:T2,:);

% function to get average return

R=@(T1,T2)mean(allreturn(T1:T2,:))’;

% Hurst exponent of portfolio vector x

H2=@(x,T1,T2)(-0.5*log(x’*MMM(T1,T2)*x)/log(T2-T1));

%we are not guaranteed non-neg since we assumed K=1

% return of portfolio vector x

RR=@(x,T1,T2)x’*R(T1,T2);

if 0

hurst=zeros(40,1);

ret=zeros(40,1);

T1=500;

T2=2900;

for k=1:40

x=zeros(40,1);

x(k)=1;

hurst(k)=H2(x,T1,T2);

ret(k)=RR(x,T1,T2);

end

hurst_ret=[hurst, ret]

subplot(2,1,1); bar(hurst);

subplot(2,1,2); bar(ret);

end

cost=@(x,T1,T2,mu)(-H2(x,T1,T2)-mu*RR(x,T1,T2));

%.....get ticker name

for k=1:40

company(k)=cellstr(names(k).name(1:end-4));

end

if 1

% close(’all’)

47



omxx=omx_R(2037+600,2548+600) %..omx return

%Change T1,T2 etc in the script for different graphs and also omxx

%above.

for mu=1;

T1=1657;

T2=2165;

% mu=0.1;

obj0=zeros(40,1);

for k=1:40

x=zeros(40,1);

x(k)=1;

obj0(k)=cost(x,T1,T2,mu);

end

% bar(obj0)

[s,indx]=sort(obj0,’ascend’); % indx contains where they come from

index=indx(2:11);

if 1

subplot(1,2,1);

barh(obj0(index))

title([’\mu=’ num2str(mu)])

end

% index

set(gca,’YTick’,1:length(index),’Ylim’,[0 length(index)+1]) % ticker axis labels

set(gca,’YTickLabel’,company(index))

TT1=1657; % future time

TT2=2165;

ret_later=R(TT1,TT2);

hitlist=[index, ret_later(index)];

if 1

subplot(1,2,2);

end

barh(ret_later(index)-omxx)

set(gca,’YTick’,1:length(index),’Ylim’,[0 length(index)+1])

set(gca,’YTickLabel’,company(index)) % ticker axis labels

pause(0.001)

end
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if 0 % scatter plot

figure

plot(obj0,ret_later,’*’)

title(’Correlation Objective function vs. later return’)

xlabel(’Objective function’)

ylabel(’Later return’)

end

end
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[1] J. Fourier. Théorie Analytique de la Chaleur. Chez Firmin Didot, Paris, 1822.

[2] B. Mandelbrot. The Fractal Geometry of Nature. Freeman, New York, 1982.

[3] H. Markowitz. Portfolio selection. The Journal of Finance, 7:77–91, 1952.

[4] F. Knight. Risk, Uncertainty and Profit. Hart, Schaffner & Marx, New York, 1921.
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