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Abstract

We will give a short introduction to function �elds, aimed at providing

us with tools to compute L-polynomials of hyperelliptic function �elds.

We use these tools to conclude the existence of extensions of these function

�elds for which we can both provide a lower limit on their number of

rational places and compute their genus. Using these techniques we write

a program in Java aimed at searching for function �elds with a large

number of rational places with respect to its genus. Finally we present

the results of running the program over various small �nite �elds and

genera.

1 Function �elds

This chapter contains an algebraic introduction to function �elds. Some the-
orems will have their proofs presented, but many will not. The proofs, and a
much more detailed theory, is available in [STI].

There are other ways to approach the subject of function �elds, and we will
touch upon that in Section 1.5.

De�nition 1. An algebraic function �eld F/K is an extension �eld F of K,
that contains some x transcendental over K with [F : K(x)] <∞.

The �eld of constants K̃ of F/K are the elements in F that are algebraic over
K; we will assume that we have K algebraically closed in F , so that K = K̃.

An important special case of function �elds are when F = K(x), where x
is some element transcendental over K; if this is the case F/K is said to be a
rational function �eld.

1.1 Places

De�nition 2. A discrete valuation of F/K is a function v : F → Z∪{∞} with
the following properties:

1. v(x) =∞ if and only if x = 0
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2. v(xy) = v(x) + v(y) for all x, y ∈ F

3. v(x+ y) ≥ min(v(x), v(y)), for all x, y ∈ F

4. There is some element z ∈ F such that v(z) = 1

5. v(k) = 0 for all k 6= 0 in K

We can use discrete valuations to de�ne places of F/K, which will be one of the
most important concepts in this text.

De�nition 3. A place P of F/K with valuation vP , where vP is a discrete
valuation, is a set P = {f ∈ F : vP (f) > 0}.

To each place P of F/K corresponds a so called valuation ring O, with
K $ O $ F , such that O is local with maximal ideal P (we often write this as
OP ). The valuation ring OP can be described by OP = {f ∈ F : vP (f) ≥ 0}.
For valuation rings the following hold: for each f ∈ F either f ∈ O or f−1 ∈ O.
The set of all places of F/K is denoted by PF .

De�nition 4. If P is a place of F/K and x ∈ F we say that P is a zero of x if
vP (x) > 0, a pole if vP (x) < 0. If x has a zero (pole) at P , that zero (pole) is
said to be of order vP (x) (−vP (x)).

Example 1. Consider the rational function �eld F2 (x) /F2. In Example 2 we
will discuss the places of F2 (x) /F2 in more detail; here we give a concrete
example of how places and valuations are connected. Let p (x) = x2 + x + 1 ∈
F2 [x] (note that p is irreducible) and consider the elements of F2 (x) as rational
functions. Any non-zero element f ∈ F2 (x) can be written as f = upn, where u
has neither a zero nor a pole at the zeros of p, in a unique way. We then de�ne
vp (f) = n, and we put vp (0) = ∞. This ful�lls all the criteria of a discrete
valuation, so Pp(x) = {f : vp (f) > 0} is a place. The valuation ring OP then

consists of all f(x)g(x) , with f, g ∈ F2 [x] and p (x) - g (x).

Since P is a maximal ideal in OP , OP /P must be a �eld. We denote by x(P )
the residue class of x ∈ F in OP /P , and if x is not in OP we write x(P ) =∞.

De�nition 5. Let P ∈ PF , and let OP be the valuation ring corresponding to
P . Then the residue class �eld FP is de�ned by FP = OP /P . The mapping
from F to FP ∪{∞} given by x 7→ x(P ) is known as the residue class map (with
respect to P ).

De�nition 6. Let P ∈ PF . The degree of P is de�ned by degP = [FP : K]. If
degP = 1 we say that P is a rational place.

Theorem 1. [STI, Prop. I.1.14] For each P ∈ PF we have degP ≤ [F : K(f)] <
∞, where f ∈ P and f 6= 0. Thus every place has �nite degree.
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Theorem 2. [STI, Coro. I.1.19] Every z ∈ F with z transcendental over K
has at least one zero and one pole.

Theorem 3. [STI, Coro. I.1.19] PF 6= ∅

Proof. This follows immediately from the previous theorem.

In fact PF is in�nite for all F/K.

Example 2. The simplest function �elds are the rational ones. For rational
function �elds (i.e. K(x)/K) it's easy to determine the places. We can show
that the places of K(x)/K have valuation rings on the form

Op(x) =

{
f(x)

g(x)
: f(x), g(x) ∈ K[x], p(x) - g(x)

}

where p (x) is an irreducible polynomial in K [x]. This could be recognized as
the localization of K[x] with respect to S = {g(x) : p(x) - g(x)} ⊆ K[x]. The
only valuation ring not on this form corresponds to the place at in�nity, and
can be written as

O∞ =

{
f(x)

g(x)
: f(x), g(x) ∈ K[x], deg f ≤ deg g

}
.

It can be shown that degPp(x) = deg p and degP∞ = 1, so that the rational
places (excluding P∞) correspond to p(x) = x − α ∈ K[x], which in turn cor-
respond to the elements of K. Thus the rational places of a rational function
�eld are in a one-to-one correspondence with K ∪ {∞}.

1.2 Divisors

Divisors will be critical to this paper; they allow us to de�ne the genus of a
function �eld, and later on the zeta function, from which we will �nd the L-
polynomial. Much of the work we do will be to compute these L-polynomials
and draw conclusions from them.

De�nition 7. A divisor D of a function �eld F/K is a formal sum of places,

D =
∑

P∈PF

nPP,

with nP ∈ Z and only �nitely many nP being non-zero. The set of all divisors
DF form an abelian group, with addition given by D+D′ =

∑
P∈PF

(nP +n′P )P .
If D = 1 · P for some P ∈ PF , D is said to be a prime divisor.

For each P ∈ PF we de�ne vP : DF → Z as vP (D) = nP , so we may write
D =

∑
P∈PF

vP (D) · P . Using this we can give a partial order to DF , given by
D ≤ D′ if and only if vP (D) ≤ vP (D′) for all P ∈ PF .
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De�nition 8. The degree of a divisor D is degD =
∑
P∈PF

vP (D) degP .

Theorem 4. [STI, Coro. I.3.4] Any element x ∈ F have only �nitely many
zeros (poles) in PF .

De�nition 9. For 0 6= x ∈ F , let Z be the set of zeros of x and N be the set
of poles of x (so both Z and N are �nite subsets of PF ). Then we may de�ne
the following (using the valuations from De�nition 3):

Zero divisor (x)0 =
∑
P∈Z vP (x)P

Pole divisor (x)∞ =
∑
P∈N (−vP (x))P

Principal divisor (x) = (x)0 − (x)∞

Note that from De�nition 2 we have (k) = 0⇔ k ∈ K r {0}.

De�nition 10. The set PF = {(x) : x ∈ F} is called the group of principal
divisors of F (this is a subgroup of DF ). The factor group CF = DF /PF is
known as the divisor class group of F .

De�nition 11. For a divisor D we de�ne L(D) = {x ∈ F : (x) ≥ −D} ∪ {0}.
L(D) is known as the Riemann-Roch space associated with D.

Note that x ∈ L (D) is equivalent to vP (x) ≥ −vP (D) for all P ∈ PF .

Theorem 5. [STI, Lemma I.4.6] L (D) is a vector space over K

Proof. If x, y ∈ L (D) and a ∈ K, we have, for all P ∈ PF , vP (x+ y) ≥
min (vP (x) , vP (y)), using De�nition 2. Since min (vP (x) , vP (y)) ≥ −vP (D)
we must have x + y ∈ L (D). Also vP (ax) = vP (a) + vP (x) = vP (x) by
De�nition 2, so vP (ax) ≥ −vP (D), and thus ax ∈ L (D). Since both x+ y and
ax is in L (D) it must form a vector space.

De�nition 12. The dimension of a divisor D ∈ DF , denoted dimD, is de�ned
as the K-dimension of L (D).

Theorem 6. [STI, Lemma I.4.7(b)] If D < 0, where D ∈ DF , then L(D) = {0}.

Proof. If there is an x such that 0 6= x ∈ L (D) this would imply that (x) ≥
−D > 0, which means that x has a zero but no pole, contradicting Theorem
2.

We would like to show that the dimension of a divisor is �nite.

Theorem 7. [STI, Lemma I.4.8] If A,B ∈ DF and A ≤ B we have L (A) ⊆
L (B), and

dim (L (B) /L (A)) ≤ degB − degA.
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Proof. L (A) ⊆ L (B) means that {x ∈ F : (x) ≥ −A} ⊆ {x ∈ F : (x) ≥ −B}
and clearly (x) ≥ −A implies (x) ≥ −B if A ≤ B, so the �rst statement follows.

We can assume that B = A + P for some P ∈ PF , and then use induction
to prove the general case. Let t ∈ F be such that vP (t) = vP (B) = vP (A) + 1.
Then if x ∈ L (B) we have that vP (x) ≥ −vP (B) = −vP (t), so xt ∈ OP . We
may thus de�ne φ : L (B)→ FP by φ (x) = (xt) (P ). Then φ is a K-linear map,
with kerφ = {x ∈ L (B) : vP (xt) > 0}. However, vP (xt) > 0 is equivalent to
vP (x) ≥ −vP (A), so in fact kerφ = L (A), so there is a K-linear injective map
from L (B) /L (A) to FP , which implies that dim (L (B) /L (A)) ≤ dimFP =
degP = degB − degA.

Theorem 8. [STI, Prop. I.4.9] For any D ∈ DF , L (D) is a �nite dimensional
vector space over K.

Proof. We write D = D+ −D−, with D+ ≥ 0 and D− ≥ 0. Using the previous
theorem we see that dim (L (D+) /L (0)) ≤ degD+. However, L (0) = K ((x) =
0 if x ∈ K, so K ⊆ L (0), while 0 6= x ∈ L (0) implies that (x) ≥ 0, so x has no
pole, thus x ∈ K by Theorem 2), so dim (L (D+)) = dim (L (D+) /L (0)) + 1 ≤
1 + degD+. Since D ≤ D+, we have L (D) ⊆ L (D+), so

dimL (D) ≤ dimL
(
D+
)
≤ 1 + degD+

so that L (D) is �nite dimensional.

De�nition 13. For a function �eld F/K we de�ne its genus (denoted g) to be

max
D∈DF

(degD − dimD + 1)

Note that g is non-negative, which follows from letting D = 0, so that
degD − dimD + 1 = 0.

The genus of a function �eld is probably its most important characteristic.
In general it's hard to determine, but for the classes of function �elds that we
will examine it is easy to compute.

Example 3. We once again consider the rational function �elds, in order to
determine their genus. LetK(x)/K be a rational function �eld, and consider the
pole divisor of x, (x)∞. Let r ∈ N and consider the vector space Lr = L (r (x)∞).
We then have that 1, x, x2, . . . , xr are all in L, so r+ 1 ≤ dim (Lr). We can also
show that deg (x)∞ = 1 (in general, for any function �eld and x ∈ F we have
deg (x)0 = deg (x)∞ = [F : K (x)]). Thus deg (Lr) = r. To proceed further we
will need Riemann's Theorem:

Theorem 9. [STI, Thm. I.4.17(b)] (Riemann) If F/K is a function �eld there
is an integer c such that dimD = degD − g + 1, whenever degD ≥ c.

We will not prove this. Using this we see that, for large enough r, we have
dim (Lr) = deg (Lr) − g + 1 = r − g + 1, but since r + 1 ≤ dim (Lr) we must
have g ≤ 0; we have already shown that g ≥ 0 for any function �eld, so we must
have g = 0 for rational function �elds.
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1.3 The zeta function and L-polynomial

In this part we will assume that K = Fq, and denote the genus with g. We
will also use the notation An, with An = |{D ∈ DF : D ≥ 0 and degD = n}|. It
would be good to know that the An:s are not in�nite:

Theorem 10. [STI, Lemma V.1.1] An <∞

Proof. A positive divisor can be written as a sum of prime divisors, so we need
only show that S = {P ∈ PF : degP ≤ n} is �nite. Pick any x ∈ F r Fq and
consider S0 =

{
P ∈ PFq(x) : degP ≤ n

}
. Clearly P ∩Fq (x) ∈ S0 for any P ∈ S.

Also, any P0 ∈ S0 has only �nitely many extensions in F , so if S0 is �nite we
are done. From Example 2 we know that the places of Fq (x) /Fq (a rational
function �eld) correspond to monic, irreducible polynomials over Fq (and the
place at in�nity), so there are only �nitely many places of Fq (x), implying that
S0 is also �nite.

De�nition 14. For a function �eld F/Fq we de�ne the zeta function as

Z (w) =

∞∑

n=0

Anw
n ∈ C [[w]]

One can show that Z (w) converges for |w| < q−1, and we can then extend
it to all of C (with a simple pole at w = 1). This is similar to the more famous
Riemann zeta function (this is easier to see if we consider Z(q−s)).

De�nition 15. The function de�ned by L (t) = (1− t) (1− tq)Z (t) is known
as the L-polynomial of F/Fq.

It's not di�cult to see that L ∈ Z [x].

Theorem 11. [STI, Thm. V.1.15] For a function �eld F/Fq we have

1. degL = 2g

2. If L (t) = a2gt
2g + a2g−1t2g−1 + · · ·+ a1t+ a0 we have

(a) a0 = 1

(b) a2g = qg

(c) a2g−i = qg−iai for i ∈ {0, 1, · · · , g}
(d) a1 = N − (q + 1), where N = |{P ∈ PF : degP = 1}|, the number of

places of degree one in F .

In order to compute the L-polynomial, we will need so called constant �eld
extensions.

De�nition 16. A constant �eld extension Fr (r ∈ Z+) of a function �eld F/Fq
is a function �eld over Fqr with Fr = FFqr , the composite �eld of F and the
new �eld of constants, Fqr .
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(A brief remainder of what a composite �eld is: if Φ, A,B are all �elds, with
A and B being sub�elds of Φ, then the composite �eld of A and B, denoted
AB, is the intersection of all sub�elds of Φ that contain both A and B.)

The following theorem will be used later to compute the L-polynomials.

Theorem 12. [STI, Coro. V.1.17] Let Nr be the number of places of degree one
in the constant �eld extension Fr of F/Fq, i.e. Nr = |{P ∈ PFr

: degP = 1}|,
and let Sr = Nr − (qr + 1). If L (t) = t2ga2g + t2g−1a2g−1 + · · ·+ ta1 + a0 is the
L-polynomial of F/Fq we then have

a0 = 1

and
iai = Sia0 + Si−1a1 + · · ·+ S1ai−1

for i ∈ {1, 2, . . . , g}. [STI, Corollary V.1.17]

1.4 Hyperelliptic function �elds

Throughout this section we will assume that charK 6= 2, since most of the
following need some special treatment when charK = 2. (Mostly, but not solely,
this is done by replacing y2 with y2 + y in the text below.)

We saw in Example 3 that the rational function �eld has genus 0, and con-
versely any function �eld with genus 0 and at least one divisor of degree one is
rational. Elliptic function �elds, which have genus one, are thus the simplest
non-rational function �elds.

De�nition 17. If F/K is a function �eld, with g = 1 and at least one divisor
of degree 1, then it is said to be an elliptic function �eld.

If K is algebraically closed or �nite (we will always use �nite �elds) we are
guaranteed to have at least one divisor of degree one, so that all function �elds
of genus one are elliptic.

Theorem 13. [STI, Props. VI.1.2, VI.1.3] If F/K is an elliptic function �eld
there exist x, y ∈ F and f ∈ K [x], f square free and deg f = 3, such that

y2 = f (x)

and
F = K (x, y)

The converse also holds, i.e. every square free polynomial of degree three
over K gives an elliptic function �eld.

Hyperelliptic function �elds are a reasonable next step in our studies after
elliptic function �elds.

De�nition 18. A hyperelliptic function �eld is a function �eld F/K with g ≥ 2,
such that there exists a rational sub�eld K(x) ⊆ F with [F : K(x)] = 2.
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The following theorem is a analogue to Theorem 13.

Theorem 14. [STI, Prop. VI.2.3] Let F/K be a hyperelliptic function �eld
with genus g. Then there exist a square free polynomial f ∈ K [x], with deg f
being either 2g + 2 or 2g + 1, and elements x, y ∈ F such that

y2 = f(x)

and
F = K (x, y)

Conversely, if F = K (x, y) and y2 = f(x) for some square free polynomial
f with degree d ≥ 4, then F/K is a hyperelliptic function �eld with genus

g =

{
d−1
2 if 2 - d
d−2
2 if 2|d

1.5 Parallels in other subjects

A geometric view of function �elds starts with an algebraic curve V ; the function
�eld is then the set of all rational functions on V . Conversely, to every function
�eld corresponds a unique, projective, non-singular algebraic curve (there may
be many curves with the same function �eld, but only one of them is non-
singular). Results in one of these domains can be carried over to the other. An
example is the genus; a function �eld has the same genus as its corresponding
curve. This is in turn is related to the genus of topology; if we consider curves
over C we will have a real surface; the number of holes in it is equal to its genus.

Algebraic function �elds (i.e. function �elds over �nite �elds) are also closely
related to number �elds in number theory (for brevity we will drop the �alge-
braic� pre�x for the rest of this section). Number �elds and function �elds are
collectively known as global �elds. A number �eld is a sub�eld F of C with
[F : Q] <∞; this is similar to De�nition 1. One example of their close relation
is the Z-function. In De�nition 14 we stated that Z (w) =

∑∞
n=0Anw

n for a
function �eld F/Fq and |w| < q−1. We can rewrite Z as

Z (w) =
∏

P∈PF

(
1− wdegP

)−1
(1)

since every factor in the product can be written as a geometric sum. (This takes
a perhaps more familiar form if we substitute w with q−s.) For a number �eld
K we de�ne the ring of integers OK as the ring of all integral elements in K (an
integral element is the solution to some monic polynomial in Z [x]). We may
then de�ne the Dedekind zeta function as the analytic continuation of

ζK (s) =
∑

I⊆OK ,I 6=(0)

||I||−s
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where I runs through the non-zero ideals of OK and ||I|| denotes the index of
I, i.e. ||I|| = |OK/I| (which is always �nite and well-de�ned). We can rewrite
this in a way similar to what we did in the function �eld case, to arrive at

Z(s) =
∏

P⊆OK

(
1− ||P ||−s

)−1
(2)

where P ranges over the prime ideals of OK . The prime ideals in the ring of
integers are used instead of places in function �elds. We can de�ne valuations
vP by letting vP (t) be the smallest n such that t ∈ Pn. In the world of function
�elds, we could have started with valuation rings of F/K (rather than with
valuations, as was done in this text) and de�ned valuation corresponding to a
valuation ring OP as follows: select a prime element t for P ; for every 0 6= z ∈ F
there is a unique representation z = utn, where u ∈ OP r P and n ∈ Z; we say
that the valuation of z at P is vP (z) = n.

In fact the prime ideals of OK act as the prime ideals of Cx, the integral
closure of K in K [x]. However, di�erent choices of x gives rise to di�erent
embeddings, which in turn gives rise to di�erent Cx and thus di�erent prime
ideals. By using the places instead of the prime ideals, we avoid these problems.
In the geometric view the places correspond to the whole projective space, while
the various Cx correspond to a�ne pieces of it. If we take the intersection
of a place P and some Cx we will have either prime ideal of C, or K; e.g.
P∞ ∩ Cx = K, while P0 ∩ C1/x = K.

ζ-functions exist in many areas of mathematics and are characterized by for-
mal similarities. They are complex valued, and take complex arguments. At �rst
they are often only de�ned for some complex numbers, but can sometimes be
analytically extended to almost all of C, usually to some meromorphic function.
We can sometimes rewrite them as an Euler product, which is to say a product
where the index runs over some kind of primes (e.g. primes numbers, prime
ideals). (1) and (2) above are examples of Euler products. Both Cx and OK are
Dedekind domains, which means that their ideals factor into prime ideals in a
unique way, which is what enables us to write the ζ-functions as Euler products.
Usually we would like to �nd some kind of functional equation for the ζ-functions

(for a Z-function of F/Fq it takes the form Z (w) = qg−1w2g−2Z
(

1
qw

)
, which

is essentially the Riemann-Roch theorem). The original ζ-function, due to Rie-
mann, is de�ned as the analytical continuation of

ζ (s) =
∞∑

n=1

1

ns

with Euler product

ζ (s) =
∏

p prime

1

1− p−s

and functional equation

ζ (s) = 2sπs−1 sin
(πs

2

)
Γ (1− s) ζ (1− s)
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(where Γ denotes the gamma function).

2 The program

The source code is available at algebra.ethna.se. The program is written in
Java; with hindsight this might not have been the best choice of language, due
to the lack of support for symbolic mathematics in Java. Java seems to lack
solid libraries (or built in support) for symbolic mathematics, so large parts of
the program are used to represent �nite �elds and polynomials over them. Java
is an object oriented language, so the program is organized into classes. When
we below refer to the classes we have italicized their names.

The results from the program are compared with data from manYPoints.org,
where tables of upper and lower bounds for the largest algebraic function �elds
of given genus over a given �nite �eld are available.

2.1 Theory

2.1.1 Information about extensions from the L-polynomial

In order to prove the existence of function �elds with N large with respect to g
we consider hyperelliptic function �elds. Hyperelliptic function �elds are useful
to us since we can easily �nd their genus and L-polynomials. Using the L-
polynomial of a hyperelliptic function �eld we can �nd some information about
extensions of them, including the genus and a lower limit on the number of
rational places. The following theorem is central to this paper:

Theorem 15. Let F/Fq be a hyperelliptic function �eld, de�ned by y2 = f(x),
with genus g and N rational places and L-polynomial L (t). Then there exists
an extension F ′ of F with degree d = L (−1), such that F ′/Fq2 is a function
�eld with genus d (g − 1) + 1 and at least dN rational places.

The proofs of these formulas depend on class �eld theory, which we will not
cover. We will try to give some motivation however. At the core of this is the
class group from De�nition 10; one can prove that subgroups of the class group
corresponds to extensions of F . If we �nd the index of one such subgroup, we
know that this is the degree of the extension corresponding to the subgroup. We
then know that every rational place of F must split completely in the extension
F ′, so N ′ (the number of rational places in PF ′) must be at least dN (where N
is the number of rational places in PF ).

At the same time we can show that d = [F ′ : F ] =
∏
ζn=1,ζ 6=1 LF (ζ), where

LF is the L-polynomial of F , and F ′ has �eld of constants Fqn ; in our case we
use n = 2, so d = LF (−1). (Note that we could use another n and that way �nd
other extensions, e.g. over Fq3 . We restrict ourselves to n = 2 for simplicity.)

The L-polynomial of F/K is connected to the class group by h = L (1) =
ord {[A] ∈ CF : deg [A] = 0}, h is known as the class number of F/Fq. [A] is the
element in CF = DF /PF corresponding to A in DF , and deg [A] = degA (it can
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be shown that this de�nition of degree is independent of the chosen representa-
tive A). The group C0F = {[A] ∈ CF : deg [A] = 0} (obviously a subgroup of CF )
is thus the group of divisor classes of degree zero, and can be shown to be �nite
(so that h ∈ N).

A more detailed account of this section can be found in [GEER] or [RÖK].

2.1.2 What we're looking for

There are various bounds on the maximal number of rational places of a function
�eld with genus g over Fq.

Theorem 16. [STI, Thm. V.2.3] (Hasse-Weil bound) For a function �eld F/Fq
with N rational places and genus g, we have |N − (q + 1)| ≤ 2g

√
q

Various improvements can be made, including the Serre bound, |N − (q + 1)| ≤
g
⌊
2
√
q
⌋
.

At manYPoints.org tables are kept for certain q (all primes under 100 and
some powers of 2, 3, 5, 7, 11, 13, 17, 19), and g ≤ 50.

We are however interested in �nding lower bounds. In order to be entered
into the tables at manYPoints.org the bound need to be greater than bq,g/

√
2,

where bq,g is the current best greater bound for function �eld over Fq with genus
g. Thus it's not enough just to �nd any lower bound to �ll in the blanks (e.g. at
q = 54, where most g lack lower bounds, we cannot enter any bound we �nd).

2.1.3 Program sketch

A high level sketch of the program:

1Input : q , g
2P:={ square−f r e e po lynomia l s in GF(q ) [ x ] with degree 2g+2

or 2g+1}
3

4f o r (p in P) {
5FF := HyperE l l i p t i cFunc t i onF i e ld (p , GF(q ) )
6N := #Rat iona lP lace s (FF)
7

8L( t ) := LPolynomial (FF)
9

10d := L(−1)
11g ' := d∗( g−2)/2
12N' := d∗N
13

14i f (N' > CurrentLowerLimit ( g ' , q^2) )
15pr in t FF+" has an extens i on with at l e a s t "+N'+"

r a t i o n a l p l a c e s and genus "+g '+" over GF("+(q^2)+") ,
which i s b e t t e r than the cur rent know lower l im i t . "

16}

11



2.1.4 Finding the L-polynomial

In order to �nd the L-polynomial of F/Fq we use Theorem 12. This means
that we need to be able to �nd the number of rational places of F and of the
constant �eld extensions Fr, for 0 ≤ r ≤ g (the numbers Nr in the theorem).
We saw in Example 2 that the places of K (x) /K correspond to K ∪ {∞}. So
the rational places of K(x, y)/K, which is an extension of K (x), must all �lie
over� the rational places of K (x). Since we know that y2 = f (x) we can �nd
the rational places of K(x, y)/K by �nding the number of solutions (x, y) ∈ K
to y2 = f(x) and accounting for the place at in�nity. If we wish to �nd the
rational places of Fr we allow x and y to be in Fqr instead of Fq.

2.1.5 Representation of Fq

A fundamental part of the program must be the representation of Fq, since most
computations happen in some �nite �eld. If q is prime this is easy (we need only
integer computations modulo q), but if q = pn, with n > 1, we need to be more
sophisticated. In this case we have Fq =

Fp[x]
(s) , where s ∈ Fp [x] is irreducible

in Fp and has degree n. The �rst problem is then to �nd s; the approach we
use is to pick a random monic polynomial with the correct degree until we �nd
one that is irreducible. To test for irreducibility we use Rabin's test, detailed in
appendix A.1.

The simplest approach, where e.g. F81 and F9 are both represented as ex-
tensions of F3 carries with it some problems; it is not trivial to take an element
in F9 and map it to F81. One would have to �nd a homomorphism φ from F9 to
F81 such that φ (F9) is a sub�eld of F81. Instead of doing that we could represent
F81 as

F9[x]
(r) , where r ∈ F9 [x] is irreducible and of degree 2. If we represent F81

this way the required homomorphism is simply the identity map.
This picture shows two di�erent �towers� of �nite �elds, both having their

base in F3, but leading to two di�erent representations of F81, both having F9

as a sub�eld (of course), but how F9 is embedded in F3[x]
(x4+x+2) is not obvious.

F3[x]
(x4+x+2)

∪
F3 ⊂ F3[x]

(x2+1) ⊂ F9[y]
(y2+x+1)

The code thus has two di�erent classes for representing �nite �elds:

• GF (p,n), which represents Fpn as a direct extension of Fp

• ExtGF (Fq,n), which represents a degree n extension of Fq.

2.2 Practical details

Listing all square-free polynomials of a given degree is done by �rst listing all
polynomials, and then checking for squares. We list the polynomials recursively,
�rst listing all polynomials of degree n−1 and then adding all possible axn terms
to them.

12



Internally the program represents the elements of Fp (p prime) as the integers
0, 1, · · · , p−1. Addition and multiplication is carried out modulo p, the additive
inverse of a is computed as p − a, and multiplicative inverses are found using
the extended euclidean algorithm.

The elements of Fpn , p prime, n > 1 are represented as polynomials over Fp
with degree less that n. If we denote by m the polynomial used to extend Fp
to Fpn we �nd the multiplicative inverse of an element by using the euclidean
algorithm, like when n = 1, the main di�erence being the use of the polynomial
euclidean algorithm rather than the ordinary one. We also need to be able to
do long division using polynomials in order to do multiplication, in order to �nd
the remainder when we divide the product with m.

This means that the program contains a total of three di�erent classes rep-
resenting polynomials:

1. FieldElement, polynomials over the integers, used to represent elements
of Fq

2. Polynomial, polynomials over the elements of some �nite �eld, also used
to represent the elements in ExtGF, e.g. the elements of F9[y]

(y2+x+1)

3. SPolynomial, polynomials over some ExtGF. While the above two serve as
both elements of various �elds and as polynomials, SPolynomial are never
considered as elements of a �eld.

There are three classes which represent �nite �elds:

1. SimpleGF, used for �elds Fp, p prime

2. GF, used for �elds Fq. No obvious embedding of e.g. F9 into F81

3. ExtGF, replaces GF when you need a speci�c embedding of some sub�eld

The ExtMath class contains various methods, mostly the euclidean algorithm
for integers, FieldElements and Polynomials.

ZPolynomial represents a polynomial over Z; such polynomials cannot be
accommodated in the other polynomial classes since Z doesn't form a �eld. The
L-polynomials are stored as ZPolynomials.

FunctionField contains information on a speci�c hyperelliptic function �eld,
and methods to compute its L-polynomials and other metrics, e.g. N .

Main ties the other components together, and is responsible for output to
the user. This is also where the data from manYPoints.org is loaded into the
program, enabling results from the program to be automatically checked against
the current best know values.

3 Results and discussion

[GEER] and [RÖK] have already done similar searches. While [RÖK] only
searched through q = 5, q = 7 and q = 11 (thus the results where over F25, F49
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and F121), [GEER] seems to have done a more comprehensive search. (Quite a
few of the lower bounds found at manYPoints.org come from these two papers,
which should show the usability of this approach.) In short, no new results have
been found. The following values were searched:

q d (degree of de�ning polynomial)

3 5,6
5 5,6,7
7 5,6
9 5
11 5
25 3

For some of these a list of all L-polynomials found was saved, for possible
further analysis.

The foremost limit of this approach is the time needed to search trough all
curves. Di�erent polynomials over Fq with degree d might give rise to the same
hyperelliptic curve, but we only do trivial reductions to remove these doubles.
The number of polynomials we search trough for a given degree d and �nite �eld
Fq is 2qd (the number of polynomials of degree d ≥ 0 is qd+1, but we restrict the
�rst coe�cient to either 1 or some random non-square in Fq, since substitution
allows us to transform any polynomial into one of these forms). Some of these

polynomials are discarded since they are not square free; there are
(

1− 1
q

)
qd

monic square free polynomials of degree d (see e.g. [YUAN]), so we need to

compute the L-polynomials of 2
(

1− 1
q

)
qd (not distinct) function �elds. With

the computation of an L-polynomial as the �computational unit� we thus have
time-complexity O

(
qd
)
. This complexity is to be considered bad.

The computations required to compute an L-polynomial depend on q and
the genus g of the function �eld. From theorem 12 we see that every increase in g
leads to an exponential increase in the size of the �eld where we look for solutions
(x, y) to y2 = f(x). The time required for L-polynomial computation increases
very rapidly with g (there's a notable delay in computing the L-polynomial for
a single genus three curve).

From theorem 15 we see that increases in g leads directly to greater genus
g′ of the extension. Since we are interested in g′ ≤ 50 we cannot increase g very
much. For example, with q = 5 and g = 3 we have most g′ greater than 100, so
a search with q = 5 and g = 4 can be expected to �nd very few extensions with
genus g′ ≤ 50. A similar problem occurs if we try to �ll the gaps in q′ = 25,
31 ≤ g′ ≤ 50; a search with q = 5 and g = 2 gives curves with to few points (less
than 1/

√
2 of the greater bound) while g = 3 leads to g′ mostly being greater

than 50.
The running time of the program isn't very impressive. While it's written in

Java, which might itself be faster than e.g. Mathematica, Maple or Magma, the
lack of good libraries for handling �nite �elds or function �elds drags it down.
It is much more time consuming when you have to develop this functionality
yourself. Also, much time and thought have probably been put into optimizing
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these functions in e.g. Magma, while we've done very little in that regard. The
problems in Section 2.1.5 could have been avoided with a smarter selection of
irreducible polynomials for constructing the �nite �elds, and potentially a�ect
performance.
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A Appendices

A.1 Rabin's irreducibility test

1Inputs :
2f − monic polynomial in GF(q ) [ x ] o f degree n
3p [ i ] − d i s t i n c t prime f a c t o r s o f n , 0<i<k+1
4Output :
5t rue − i f f i s i r r e d u c i b l e over GF(q )
6f a l s e − i f f i s r e du c i b l e over GF(q )
7
8r [ i ] := n/p [ i ] f o r 0<i<k+1
9
10f o r i =1 , . . . , k
11h := x^(q^r [ i ] ) − x (mod f )
12i f gcd (h , f ) != 1
13e x i t ( f a l s e )
14
15h := x^(q^n) − x (mod f )
16i f h = 0
17e x i t ( t rue )
18e l s e
19e x i t ( f a l s e )
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