
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Finding rational torsion points on hyperelliptic curves with an

application to point counting on a moduli space

av

Daniel Lännström

2016 - No 3

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Finding rational torsion points on hyperelliptic curves with an

application to point counting on a moduli space

Daniel Lännström

Självständigt arbete i matematik 30 högskolepoäng, avancerad nivå

Handledare: Jonas Bergström

2016

Abstract

For elliptic curves it is well-known that the zeroes of the division polynomi-
als characterize the torsion points. Here we will instead consider hyperelliptic
curves and present two algorithms for finding the rational torsion points. The
first algorithm is a naive brute-force search. The second algorithm is based on
the Cantor division polynomials – a generalization of the classical division poly-
nomials to hyperelliptic curves. We focus mainly on hyperelliptic curves defined
over finite fields of genus 2.

As an application we will compute the number of Fq-rational points on the
moduli space of hyperelliptic curves of genus 2 with marked Weierstrass point
and level N structure.

Acknowledgments

I wish to thank my advisor Jonas Bergström.

Contents

1 Introduction 2
1.1 Background: Modular curves . 2
1.2 Moduli space of hyperelliptic curves 5
1.3 Overview . 8

2 Preliminaries 9
2.1 Division polynomials for elliptic curves 9
2.2 Jacobian of hyperelliptic curves 11

2.2.1 Divisors . 12
2.2.2 Mumford representation 13
2.2.3 Reduction algorithm . 15
2.2.4 Cantor’s algorithm . 17
2.2.5 Jacobians defined over a finite field 21

3 Division points 23
3.1 Torsion points and division points 23
3.2 Cantor’s division polynomials . 23

3.2.1 The Padé problem . 25
3.2.2 Reduction to the Padé problem 26
3.2.3 General solution to the Padé problem 28
3.2.4 Formulas for Ar, Br . 30
3.2.5 Normalization . 31
3.2.6 Recursion . 33

3.3 Torsion algorithm . 34
3.4 Naive division point algorithm 37

3.4.1 Finding V from U . 38
3.5 Cantor’s division point algorithm 42

3.5.1 Neccessary condition . 42

4 Calculating #Hω2 [N](Fq) 47
4.1 The moduli space Hω2 [N] . 47
4.2 Representative polynomials . 49
4.3 The algorithm . 61
4.4 Notes about the implementation 64

Appendices 67

A Examples of division polynomials ψn 68

B Example output of Algorithm 13 70

1

1 Introduction

1.1 Background: Modular curves

The modular curves are curves that parametrize elliptic curves together with
some additional data (see for example [9]). In other words, each point on the
modular curve corresponds to an isomorphism class of elliptic curves, together
with additional data. In general, spaces that classifies some objects are called
moduli spaces (‘moduli’ is an old word for parameter). The interesting prop-
erty of moduli spaces is that they have both a ‘classifying structure’ and a
topological structure.

The ‘additional data’ we will consider here is an elliptic curve together with
a point of order N .

Definition 1. Let k be a field and consider pairs (E,P) where E is an elliptic
curve defined over k and P ∈ E(k) with ord(P) = N . We define an equivalence
relation by (E,P) ∼ (E′, P ′) iff there exists an isomorphism φ : E → E′ defined
over k̄ such that φ(P) = P ′. Let

S1[N](k) = {(E,P)}/ ∼ .

We will write [E,P] for the equivalence class of (E,P).

Remark. We stress that a priori, S1[N](k) is just a set of equivalence classes.

Modular curves as Riemann surfaces

Let N > 0 be an integer called the level and let

Γ1(N) =
{(

a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod N)

}
,

where ∗ denotes an arbitrary element in Z/NZ. Then Γ1(N) acts on the complex
upper half plane H = {z ∈ C | Im z ≥ 0} as Möbius transformations, i.e.,

(
a b
c d

)
(z) =

az + b

cz + d
.

The orbit space Y1(N) = Γ1\H can be given structure as a non-compact Rie-
mann surface. Compactifying this space by adding the so called cusps gives
the modular curve X1(N). Remarkably, Y1(N) can be proven to be the moduli
space of pairs (E,P) in Definition 1 with k = C. A little more precisely, there
is a natural bijection,

Y1(N)(C)←→ S1[N](C).

2

1.1. BACKGROUND: MODULAR CURVES 1. Introduction

Algebraic modular curves

Modular curves can also be defined algebraically. Let k = Q or k = Fq with
q = pr and p - N . From this algebraic perspective, X1(N) is a complete algebraic
curve (variety of dimension 1) defined over k. Let,

Y1(N) = X1(N)− {cusps}.

Then Y1(N) becomes an affine algebraic curve defined over k. Furthermore,
there is similarly a natural bijection,

Y1(N)(k)←→ S1[N](k).

So it makes sense to talk about Y1(N) as a moduli space.

By an important theorem by Igusa [9, Theorem 8.6.1], for each prime p - N ,
we have good reduction of X1(N)/Qmodulo p. Additionally, reducing modulo p
is compatible with the moduli structure defined in Definition 1. This intuitively
means, for p - N ,

X1(N)/Q (mod p) = X1(N)/Fp,

In other words, starting with k = Q and reducing modulo p gives the same
modular curve as starting with k = Fp.

Now, to the global object X1(N) defined over Q we associate a so called
incomplete global zeta function ζX1(N),Q(s). Recall that this function is given
in terms of the local zeta functions for the reductions of X1(N) modulo p (see
for example [11]). For p - N , let Vp denote the reduction of X1(N) modulo p
and let ζVp,Fp

denote the corresponding local zeta function. Then,

ζX1(N),Q(s) =
∏

p-N
ζVp,Fp

(s). (1.1)

But by the discussion above we have Vp = X1(N)/Fp. Furthermore recall
that for q = pr the local ζX1(N),Fq

(s) is obtained by a coordinate change from

ZX1(N),Fq
(u) = exp

(∞∑

m=1

Nm
um

m

)
, (1.2)

where Km = #X1(N)(Fqm), i.e. the number of Fqm -rational points on the
curve X1(N) defined over Fq.

Next, suppose we can find #S1(N)(Fpm) for all prime p and m > 0. Then
adding the number of rational cusps will give us Km = #X1(N)(Fpm). From
this we determine (1.2) for each p and hence also the global zeta function (1.1).
Intuitively, we study the global object X1(N) over Q, corresponding to the
global moduli problem, by solving the local moduli problems at pn. This is one
motivation for computing #S1(N)(Fq) = #Y1(N)(Fq).

3

1.1. BACKGROUND: MODULAR CURVES 1. Introduction

Number of Fq-rational points on Y1(N)

Applying the Lefschetz-Grothendieck trace formula to X1(N) yields,

|X1(N)(Fqn)| = qn + 1−
2g∑

i=1

αni , (1.3)

where {αi} ∈ C are eigenvalues of the Frobenius map acting on the Euler
characteristic in `-adic étale cohomology. In particular, {αi} are independent
of n.

For modular curves there is a theory of so called Hecke operators (see for
example [17]) that connects the eigenvalues {αi} with certain modular forms
(complex analytic functions on H that respects the group action of Γ1). Let
S2(Γ1(N)) denote the vector space of cusps forms of weight 2 and level N . As
a special consequence of the general theory we have,

dimS2(Γ1(N)) = 0 =⇒ αi = 0 for 1 ≤ i ≤ 2g

The mathematical software package Sage [8] has functionality for computing
the dimension of S2(Γ1(N)) for a given level N .

sage : [Gamma1(n) . d imens ion cusp forms () for n in [1 . . 1 8]]
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 2 , 1 , 1 , 2 , 5 , 2]

This computation shows, in particular, that dimS2(Γ(N)) = 0 for 1 ≤ N ≤ 10,
i.e. there are no non-trivial cusp forms of weight 2 for levels below 11.

Hence, for 1 ≤ N ≤ 10, (1.3) becomes,

|X1(N)(Fqn)| = qn + 1. (1.4)

Let cN,qn denote the number of cusps in X1(N)(Fqn). Then (1.4) implies,
for 1 ≤ N ≤ 10,

|Y1(N)(Fqn)| = qn + 1− cN,qn . (1.5)

Proposition 1. Let N be a odd prime and let ζN be a primitive Nth root of
unity.

(i) The are a total of N − 1 cusps in X1(N)(F̄q). Of these (N − 1)/2 lie Fq
and (N − 1)/2 lie in Fq(ζN + ζ−1

N).

(ii) If q ≡ ±1 (mod N) then ζN +ζ−1
N lies in Fq. If q 6≡ ±1 (mod N) then ζN +

ζ−1
N lies in Fqm where m is the least integer such that qm ≡ ±1 (mod N).

Proof. For (a) see [18, Example 13.3].
To prove (b) it is enough to show ζN +ζ−1

N lies in Fqm iff qm ≡ ±1 (mod N).
Recall that the Frobenius map fixes exactly Fqm . This means, ζN + ζ−1

N ∈ Fqm
iff (ζN + ζ−1

N)q
m

= ζN + ζ−1
N . But since we are working in characteristic p, we

have (ζN + ζ−1
N)q

m

= ζq
m

N + (ζ−1
N)q

m

. Hence the following equation is equivalent
to ζN + ζ−1

N ∈ Fqm .

ζq
m

N + ζ−q
m

N = ζN + ζ−1
N (1.6)

4

1.2. MODULI SPACE OF HYPERELLIPTIC CURVES 1. Introduction

If q ≡ 1 (mod N) then by Fermat’s little theorem, ζq
m

N = ζN and ζ−q
m

N = ζN .

Similarly, if q ≡ −1 (mod N) then ζq
m

N = ζ−1
N and ζ−q

n

N = ζN . This proves one
direction.

Conversely, assume that Equation (1.6) holds. Multiplying (1.6) with ζq
m

N

yields,

ζq
m+1
N + ζq

m−1
N = ζ2qm

N + 1 ⇐⇒ ζ2qm

N − ζq
m+1
N − ζq

m−1
N + 1 = 0

⇐⇒ (ζq
m

N − ζN)(ζq
m

N − ζ−1
N) = 0.

(1.7)

Hence either ζq
m

N = ζN or ζq
m

N = ζ−1
N . This implies that qm ≡ 1 (mod N) or

qm ≡ −1 (mod N).

Assume that N is an odd prime. Then it follows that,

cN,qn =

{
N − 1 if qn ≡ ±1 (mod N)

(N − 1)/2 otherwise
. (1.8)

Then for N an odd prime and qn ≡ ±1 (mod N),

|Y1(N)(Fqn)| = qn + 1− (N − 1) = qn −N + 2. (1.9)

On the other hand, if qn 6≡ ±1 (mod N), then

|Y1(N)(Fqn)| = qn + 1− (N − 1)/2. (1.10)

In more general terms, this means there are a pair of polynomials

f1(x) =x+ 1− (N − 1)

f2(x) =x+ 1− (N − 1)/2,

such that,

|Y1(N)(Fqn)| =
{
f1(qn) qn ≡ ±1 (mod N)

f2(qn) qn 6≡ ±1 (mod N)
. (1.11)

We say that the pair (f1, f2) are point counting polynomials for the moduli
space Y1(N).

Let M(N) be any moduli space and assume there exist point counting
polynomials f1, f2 for M(N). Then by calculating a number of data points
(qn,#M(N)(Fqn)) with qn ≡ ±1 (mod N) we can determine f1 by polynomial
interpolation. Similarly, by calculating a number of data points (qn,#M(N)(Fqn))
with qn 6≡ ±1 (mod N) we can determine f2.

The number of data points needed will depend on the degree of the polyno-
mials fi. In the case of Y1(N) we know that fi is a linear polynomial, so we
only need 2 points to uniquely determine f1, f2.

1.2 Moduli space of hyperelliptic curves

Definition 2. Let k be a field and let C be a smooth, projective curve of genus
g ≥ 1 over k. If there exists a finite separable morphism φ : C → P1

k such that
deg φ = 2 we say that C is a hyperelliptic curve. As usual we let C(k) denote
the k-rational points.

5

1.2. MODULI SPACE OF HYPERELLIPTIC CURVES 1. Introduction

Intuitively, the morphism φ give a 2 : 1 cover of P1. The ramification points
of this cover are called Weierstrass points. In general when char k 6= 2,
a hyperelliptic curve will admit a Weierstrass equation of the form y2 = f(x)
where deg f = 2g+2 and the zeroes of f(x) are the Weierstrass points. However,
in the special case when there exists a k-rational Weierstrass point ω ∈ C(k) it
is possible to move ω to ∞ and hence get a Weierstrass equation of the form
y2 = g(x) where deg g = 2g + 1.

The next natural question is: What is the generalization of modular curves
for hyperelliptic curves? Or, in other words, how can we represent the moduli
space of hyperelliptic curves with some additional level data? When g = 2 the
moduli space is given as a 3-dimensional affine variety defined over Z[1/N].

We follow the same idea as for modular curves, i.e. determine the number
of rational points on the moduli space locally at pn.

However, recall that elliptic curve has a geometric group structure, which
is implicit in Definition 1. To generalize this definition we need to associate
a group structure with the the hyperelliptic curve C. The so called Jacobian
J(C) (defined later) is a group structure associated with the curve C.

Definition 3. Consider pairs (C,P) where C is a hyperelliptic curve of genus
g defined over k and P ∈ J(C)(k) such that ord(P) = N . Let (C,P) ∼ (C ′, P ′)
iff there exists a k̄-isomorphism φ : C → C ′ such that φ(P) = P ′. Then, define,

Hg[N](k) = {(C,P)}/ ∼ . (1.12)

Let [C,P] denote the equivalence class of (C,P).

As mentioned above Hg[N] can be defined as an algebraic variety over
Z[1/N].

Langlands program is a series of deep conjectures that relates algebraic num-
ber theory with representation theory. The modular forms are generalized to so
called automorphic forms. The conjectures implies, in particular, a generaliza-
tion of the Hecke theory.

This implies a similar result forH2[N] as for the modular curve Y1(N). More
precisely, let N be an odd prime. Then if the dimension of a certain vector space
of automorphic forms of level N is zero, then the moduli space H2[N] admits a
pair of point counting polynomials f1, f2. Similarly, to the modular curve case
we expect the first few spaces to have dimension 0.

Furthermore, in the modular curve case (dimension 1) the point counting
polynomials fi are linear. ForH2[N] (dimension 3) we instead expect deg fi = 3.

A slightly different moduli space

Unfortunately, the techniques presented later will not allow us to compute
#H2[N](Fqn) easily. The main machinery only works with hyperelliptic curves
with a marked Fqn -rational Weierstrass point (equivalently has a Weierstrass
equation of degree 5). So we will only be able to count pairs (H,P) where H
is in this specific subclass of hyperelliptic curves. Because of this limitation, we
will consider the moduli space Hω2 [N] (defined later) where every hyperelliptic
curve comes with marked Fqn -rational Weierstrass point.

6

1.2. MODULI SPACE OF HYPERELLIPTIC CURVES 1. Introduction

Note that Hω2 [N] is not a subset of H2[N] since for Hω2 [N] we will define the
equivalence relation on pairs (H,P) differently. However, there is a map

φ : Hω2 [N]→ H2[N]

(H,P)/ ∼Hω
2 [N] 7→ (H,P)/ ∼H2[N] .

(1.13)

For g = 2 the Weierstrass points of a hyperelliptic curve are the 6 ramification
points. In other words, if the hyperelliptic curve is given by y2 = f(x) where
deg f = 6 then the Weierstrass points are the roots of f(x). Similarly, if y2 =
f(x) for deg f = 5 then the Weierstrass points are the 5 roots and ∞. This
implies that the map φ has degree 6.

However, heuristically, it seems likely there are point counting polynomials
for Hω2 [N] iff there are point counting polynomials for H2[N].

Experimental results

By explicit computer calculations we have determined #Hω2 [N](Fq) for N =
3, 5, 7 and some odd prime powers q (see Table 1.1). For N = 3, 5 these data
points do lie on appropriate point counting polynomials (see Conjectures 1 and
2). However, for N = 7 we can’t interpolate the data with appropriate poly-
nomials. This suggests (assuming Langlands conjecture) that there exists a
non-zero automorphic form for N = 7.

q q (mod 3) |Hω2 [3](Fq)| q (mod 5) |Hω2 [5](Fq)| q (mod 7) |Hω2 [7](Fq)|
3 0 - 3 24 3 18
5 2 82 0 - 5 108
7 1 256 2 340 0 -
9 0 - 4 746 2 708
11 2 1108 1 1356 4 1302
13 1 1882 3 2194 6 2142
17 2 4366 2 4910 3 4860
19 1 6172 4 6916 5 6810
23 2 11152 3 12164 2 12114
27 0 - 2 19680 6 9765
29 2 22762 4 24486 1 ?
31 1 27928 1 29896 3 ?

Table 1.1: Number of Fq-rational points on Hω2 [N] for N = 3, 5, 7.

In the table, the ‘-’ symbol means there is no good reduction since p|N . The
‘?’ symbol denotes a value that is theoretically possible to compute with the
techniques/implementation given later, but it has not been computed because
of time constrains.

The conjectured point counting polynomials looks like this:

Conjecture 1. For q = pr where p 6= 3 we have

|Hω2 [3](Fq)| = q3 − 2q2 + 2q − 3. (1.14)

7

1.3. OVERVIEW 1. Introduction

Conjecture 2. For q = pr where p 6= 5 we have

|Hω2 [5](Fq)| =
{
q3 + 4q − 19 q ≡ 1, 4 (mod 5)

q3 − 3 q ≡ 2, 3 (mod 5)
(1.15)

1.3 Overview

Our main goal will be to find an algorithm to compute |Hω2 [N](Fq)| . We will
not enumerate pairs [H,P] directly. Instead our first logical step is the following
formula (proved later in Chapter 4, Theorem 10),

|Hω2 [N](Fq)| =
∑

[H]k

c(H)

Autk(H)
, (1.16)

where c(H) denotes the number of points P ∈ J(H)(Fq) with ord(P) = N .
To calculate the sum (1.16) we will find,

(i) an algorithm to compute c(H), and,

(ii) a way to rewrite the sum (1.16) into an expression not involving the auto-
morphism groups.

To find an algorithm for computing c(H) we will consider N -division points in
J(H)(Fq). These are points P such that NP = 0, or equivalently, ord(P)|N .
In Chapter 3, we will give two algorithms for finding the N -division points.
First a naive algorithm, based on a brute-force approach and, secondly, a more
sophisticated algorithm utilizing the Cantor division polynomials. In practice,
the first algorithm ended up faster than the second.

In Chapter 4 we will rewrite (1.16) using the Orbit-Stabilizer theorem. From
this we will finally obtain an algorithm (Algorithm 13) to compute |Hω2 [N](Fq)|.

8

2 Preliminaries

2.1 Division polynomials for elliptic curves

Later we will see a generalization of the classical division polynomials to hy-
perelliptic curves. Therefore, we begin by giving an overview of the classical
division polynomials for elliptic curves. For details see [19].

Let k be a field with char(k) 6= 2, 3. Then an elliptic curve over k is given
by a Weierstrass equation of the form

y2 = x3 +Ax+B, (2.1)

where the discriminant ∆ = −16(4A3 + 27B2) is non-zero (this is equivalent
with the curve being non-singular).

The point P = (a, b) lies on the elliptic curve E if a, b ∈ k̄ and (a, b) satisfies
the equation (2.1). We use the notation E(k) to denote points (a, b) ∈ E with
a, b ∈ k.

The most interesting property of an elliptic curve E is that there is a geo-
metric group structure on the points of E (usually called the group law). In fact
this group is abelian. So for points P,Q ∈ E we denote the group operation by
P + Q ∈ E. The neutral element in the group is the point at infinity which
we denote 0.

For a positive integer n there is a endomorphim [n] : E → E given by

P 7→ nP = P + P + · · ·+ P.

A n-torsion point is a point P = (x, y) ∈ E in the kernel of [n], i.e. nP = 0
in the group law. We let E[n] ⊂ E denote the subset of n-torsion points on E.

We will see that we can characterize E[n] as the roots of the so called division
polynomials defined over k.

The integer division polynomials ψn ∈ Z[A,B, x, y] are defined induc-
tively.

ψ0 = 0

ψ1 = 1

ψ2 = 2y

ψ3 = 3x4 + 6Ax2 + 12Bx−A2

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 8B2 −A3)

And,

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1, for m ≥ 2

ψ2m =
ψm
ψ2

(ψ2
m−1ψm+2 − ψm−2ψ

2
m+1), for m ≥ 3.

(2.2)

9

2.1. DIVISION POLYNOMIALS FOR ELLIPTIC CURVES 2. Preliminaries

Furthermore define two more families of polynomials φn and ωn.

φm = xψ2
m − ψm+1ψm−1 for m ≥ 1,

ω1 = y,

ωm =
1

2ψ2
(ψ2
m−1ψm+2 − ψm−2ψ

2
m+1) for m ≥ 2.

The key property is that we can obtain the division polynomials for E : y2 =
x3+Ax+B defined over k from the integer division polynomials ψn ∈ Z[A,B, x, y]
defined by the formulas above. Indeed, let τ : Z[A,B, x, y]→ k[x, y] by the lin-
ear extension of the natural map Z[A,B]→ k, given by

A 7→ A

B 7→ B

n ∈ Z 7→ n1k.

(2.3)

Then τ(ψn) ∈ k[x, y] is the division polynomial for E defined over k.

To save space let ψn, φn, ωn denote τ(ψn), τ(φn), τ(ωn) respectively.

Theorem 1. Let P = (x, y) be a point on the elliptic curve E defined over k.
Then

nP =
(φn(x, y)

ψ2
n(x, y)

,
ωn(x, y)

ψ3
n(x, y)

)

Proof. This is usually proved analytically by properties of the Weierstrass P-
functions. See [19, Section 9.5].

From this, we can characterize the n-torsion points.

Proposition 2. Let P = (x, y) be a point on an elliptic curve E defined over
k. Then nP = 0 iff ψn(x, y) = 0.

Proof. By Theorem 1, nP = 0 is equivalent to

(φn(x, y)

ψ2
n(x, y)

,
ωn(x, y)

ψ3
n(x, y)

)
= 0.

But
(
φn(x,y)
ψ2

n(x,y) ,
ωn(x,y)
ψ3

n(x,y)

)
represents the point at infinity iff the denominators are

zero. That is, ψn(x, y) = 0.

Furthermore, it turns out that if n is odd then ψn(x, y) can be reduced by
the equation y2 = f(x) to a polynomial in only x. If n is even then ψn =
ψ2Pn(x) where Pn is a polynomial in only x. We define univariate division
polynomials Pn ∈ Z[A,B, x] by

Pn(x) =

{
ψn if n odd

ψn/ψ2 if n even
(2.4)

A similar recursion as for the ψn holds for the univariate Pn.

Let E be an elliptic curve defined over a finite field Fq, i.e , A,B ∈ Fq. Then
as before we consider Pn as a polynomial in Fq[x]. If (a, b) ∈ E is a n-torsion
point with b 6= 0 then Pn(a, b) = 0 by Proposition 2. Further, if a, b ∈ Fq we
get the following proposition by the polynomial remainder theorem.

10

2.2. JACOBIAN OF HYPERELLIPTIC CURVES 2. Preliminaries

Proposition 3. Let P = (a, b) ∈ E(Fq) with b 6= 0. Then nP = 0 iff
Pn(x) ≡ 0 (mod (x− a)) in Fq[x].

Note that (a, 0) ∈ E(Fq) has order 2. But these are exactly the Fq-rational
zeroes of x3 +Ax+B. It is pretty clear these are the only solutions we discard
when going from ψn to Pn. From this observation we can devise a simple
algorithm to finding all Fq-rational n-torsion points: E[n](Fq).

Algorithm 1. Given an elliptic curve E defined over Fq with equation y2 =
x3 +Ax+B and n > 0 the following algorithm will find E[n](Fq).

1. Record 0 =∞ as a n-torsion point.

2. If n is even, record all Fq-rational zeros of x3 +Ax+B.

3. Compute the polynomial Pn(x) by computing the integer polynomial and
reducing modulo p.

4. Factor Pn(x) into irreducible factors f1, f2, . . . fk over Fq.

5. For each factor fi:

(a) If fi is linear then the zero α of fi is the x-coordinate of a n-torsion
point.

(b) Lift α to E by finding the corresponding y-values {βj} in the Weier-
strass equation such that βj ∈ Fq

(c) Record {(α, βj)}j .

Proof. Note that for each zero α ∈ Fq we have either (i) β = 0 or (ii) β =
±
√
α3 +Aα+B. However, the square root does not need to lie in Fq (it can

also lie in Fq2).
Further, we prove that if (α, β1), β1 6= 0, is a n-torsion point then (α, β2) =

(α,−β1) is also a n-torsion point. Recall that the inverse operation in the group
law is given by P = (x, y) 7→ −P = (x,−y). So, if (α, β) is a n-torsion point,
i.e. n(α, β) = 0, then

n(α,−β) = n(−(α, β)) = −n(α, β) = −0 = 0.

Thus (α,−β) is a n-torsion point. This proves correctness.

We will generalize the above algorithm to hyperelliptic curves.

2.2 Jacobian of hyperelliptic curves

To every hyperelliptic curve H we will associate a group structure J(H) called
the Jacobian of H. If H is an elliptic curve then J(H) is isomorphic to the
geometric group law on H. We follow the exposition in [19].

11

2.2. JACOBIAN OF HYPERELLIPTIC CURVES 2. Preliminaries

2.2.1 Divisors

Assume k is a field with char k 6= 2. From this point forward, a hyperelliptic
curve H will be assumed to have a rational Weierstrass point. Or equivalently,
we assume a hyperelliptic curve is given as the of the vanishing locus of a
Weierstrass equation of the form

y2 = f(x),

where f ∈ k[x] is a polynomial of degree 2g + 1.

Definition 4. For a point P = (x, y) on H, P ′ = (x,−y) is also on H since
(−y)2 = y2 = f(x). The map w : H → H given by

P = (x, y) 7→ w(P) = (x,−y).

is called the hyperelliptic involution.

Definition 5. Let H be a hyperelliptic curve. Then the divisor D is a finite
formal sum ∑

i

ni[Pi], (2.5)

where ni ∈ Z and Pi ∈ H. Let div(H) denote the group of divisors of H.
For a divisor D, we define the degree of D as degD =

∑
i ni. The subgroup

of divisors of degree 0 is denoted div0(H).

Remark. Note that div(H) is the free group generated by the set of points on
H. In particular, div(H) is abelian.

Since every point Pi in a divisor D either has positive or negative coefficient,
we can decompose D as

D = div0(D) + div∞(D), (2.6)

where,

div0(D) =
∑

ni>0

ni[Pi], (2.7)

div∞(D) =
∑

ni<0

ni[Pi]. (2.8)

We also let deg0(D) = deg div0(D).

Now recall that the function field of an algebraic variety k(V) is the rational
functions on V . To every rational function f ∈ k̄(H) we associate a divisor
D ∈ div(H) representing the ‘zeroes’ and ‘poles’ of f .

Recall that for any meromorphic function f : C → C we talk about poles
and zeroes. For example f(z) = z has a pole of order 1 at infinity and a zero of
order 1 at z = 0. We say that f(z) has order 1 at z = 0 and order −1 at z =∞.

Interestingly, it is possible to define an algebraic analogue: For f ∈ k̄(H)
and P ∈ H we denote the order of vanishing of f at P by ordP (f). We will
not prove this here, cf. [18, II.3]).

12

2.2. JACOBIAN OF HYPERELLIPTIC CURVES 2. Preliminaries

Example 1. Let k = Q and consider the elliptic curve C : y2 = x3 +1. Consider
the rational function x on C. Plugging in x = 0 gives y2 = 1 i.e. y = ±1. So
the function x vanishes exactly at the points (0, 1), (0,−1). Since x/x = 1 has
no zeroes, the zeros at (0, 1) and (0,−1) are simple, i.e. the order is 1.

What happens at infinity? Note that,

x =
x3

x2
=
x3 + 1− 1

x2
=
y2 − 1

x2
.

Switching to projective coordinates we get

(Y/Z)2 − 1

(X/Z)2
=
Y 2 − Z2

X2
.

Hence x has a pole of order 2 at (0 : 1 : 0) = 0.

Definition 6. The principal divisor associated with f is

div(f) =
∑

ordP (f)[P], (2.9)

where the sum is taking over all points on P.
Denote the subgroup of principal divisors with Princ(H). That is,

Princ(H) = {D ∈ div(H) | div(f) = D for some rational function f }.

Remark. Note that the definition only makes sense if finitely many ordP (f) is
non-zero. This is true but we will not prove this here. See [18, Proposition
II.1.2].

Example 2. Continuing Example 1 we see that

div(x) = [(0, 1)] + [(0,−1)]− 2[∞].

Recall that meromorphic functions has the same number of poles as zeroes
(counting multiplicity). Analogously:

Theorem 2. Principal divisors have degree 0. That is, deg div(f) = 0 for all
f ∈ k̄(H).

Proof. See [18, Proposition II.3.1(b)].

Theorem 2 implies that Princ(H) ⊂ div0(H). Then define:

Definition 7. Let H be a hyperelliptic curve. Then the Jacobian of H, de-
noted J(H), is the quotient group div0(H)/Princ(H).

Equivalently, the elements of the Jacobian are divisor classes under the
equivalence relation D ∼ D′ iff D −D′ ∈ Princ(H).

2.2.2 Mumford representation

Definition 8. A divisor D =
∑
i ci([Pi] − [∞]) where Pi = (ai, bi) is called

semi-reduced if, for all i,

1. ci ≥ 0,

13

2.2. JACOBIAN OF HYPERELLIPTIC CURVES 2. Preliminaries

2. if bi = 0 then ci = 1,

3. only one of Pi, w(Pi) = [(ai,−bi)] appears in D.

If further, deg0(D) ≤ g, then D is called reduced.

Definition 9. For any two divisors D =
∑
i di[Pi] and E =

∑
j ej [Pj] we define

the greatest common denominator of D,E as

gcd(D,E) =
∑

i

ci[Pi],

where ci = max(di, ei).

Theorem 3. There is a bijection between semi-reduced divisors D and poly-
nomial pairs (U(x), V (x)) such that,

1. U is monic,

2. deg(U) =
∑
i ci and deg(V) < deg(U),

3. U |(V 2 − f).

The bijection is given by,

(U, V) 7→ gcd(div(U),div(y − V)).

Furthermore, the above bijection maps reduced divisors D to (U, V) such
that deg V < degU ≤ g.

Proof. See [19, Theorem 13.5].

Given an arbitrary divisor D with degree 0 there is a semi-reduced divisor
D′ representing the same divisor class, i.e. D′ ∼ D. The following example
illustrates the general technique.

Example 3. Let P = (a, b) be a point on the hyperelliptic curve C : y2 = x5 + 1
with b 6= 0. Then consider the divisor D = −1[(a, b)] + 2[(a,−b)] − [∞]. Note
that D is not semi-reduced since (i) it contains a negative coefficient and (ii) it
contains both [(a, b)] and [(a,−b)]. However,

D ∼ −1[(a, b)] + 2[(a,−b)]− [∞] + div(x− a)

∼ −1[(a, b)] + 2[(a,−b)]− [∞] + [(a, b)] + [(a,−b)]− 2[∞]

∼ 3[(a,−b)]− 3[∞]

Hence [D] is represented by the semi-reduced divisor D′ ∼ 3[(a,−b)] − 3[∞].
Moreover, since C has genus 2 and deg0(D′) = 3 > 2, D′ is not reduced.

Using the technique in the example, it is not hard to believe:

Proposition 4. Every divisor class can be represented by a semi-reduced divi-
sor.

The next problem is going from a semi-reduced divisor to a reduced divisor
in the same divisor class. In the next section we will give an algorithm that
solves this problem.

14

2.2. JACOBIAN OF HYPERELLIPTIC CURVES 2. Preliminaries

Proposition 5. Every divisor class is uniquely represented by a reduced divisor.

Proof. Existence follows from the algorithm in the next section. Uniqueness is
more complicated, requiring the Riemann-Roch theorem. See [19, Proposition
13.6] for proof.

Combining Theorem 3 and Proposition 5, it follows that every divisor class
corresponds to a polynomial pair (U(x), V (x)).

Corollary 1. Every divisor class [D] is uniquely represented by a pair of poly-
nomials (U, V) such that

1. U is monic

2. deg(V) < deg(U) ≤ g

3. U |(V 2 − f)

The pair (U(x), V (x)) is called the Mumford representation of the class [D].

Furthermore, there is a there is a natural way to view points P ∈ H as
divisors in J(H).

Proposition 6. For a point P = (x, y) consider the map i : H → J(H) given
by P 7→ [P]− [∞]. The claim is that i is injective.

To save space we will write (x, y) ∈ J(H) for the image of P = (x, y) ∈ H
under i.

Proof. For any P , D = [P]− [∞] is a reduced divisor with degree 1 ≤ g. Hence
the class is uniquely represented by D. This proves i is injective.

2.2.3 Reduction algorithm

In this section we will compute the unique Mumford representation for a given
semi-reduced divisor D.

Lemma 1. (a) Let

U(x) =

k∏

i=1

(x− ai)ci ,

where ai ∈ k̄ and ci ∈ Z, i.e. U(x) is rational function. Then

div(U(x)) =
k∑

i=1

ci([Pi] + [w(Pi)]− 2[∞]),

where Pi = (ai,
√
f(ai)) and w(Pi) = (ai,−

√
f(ai)).

(b) Let V (x) be a polynomial. Then div(y − V (x)) = D is a semi-reduced
divisor and div(y + V (x)) = w(D).

(c) Let A(x), B(x) be polynomials. Then div(A(x) − B(x)y) = D is a semi-
reduced divisor and div(A(x) +B(x)y) = w(D).

15

2.2. JACOBIAN OF HYPERELLIPTIC CURVES 2. Preliminaries

Proof. For (a),(b), see [19, Proposition 13.2].
(c) Let D = div(A(x)−B(x)y). Then since,

A(x)−B(x)y = B(x)(A(x)/B(x)− y), (2.10)

we have,

D = div(A(x)−B(x)y) = div(B(x)) + div(A(x)/B(x)− y) (2.11)

Note that A(x)/B(x) − y will have finite poles (ai,±
√
f(ai)) where ai are the

zeroes of B(x). So every finite pole of div(A(x)/B(x) − y) will cancel out one
of the zeros (ai,±

√
f(ai)) in div(B(x)). Hence D is semi-reduced.

Furthermore, since A(x) +B(x)y = B(x)(A(x)/B(x)) + y),

div(A(x) +B(x)y) = div(B(x)) + div(A(x)/B(x) + y). (2.12)

The finite poles (ai,±
√
f(ai)) in div(A(x)/B(x)+y) have opposite signs on the

y-coordinate. Moreover by (b),

div0(A(x)/B(x) + y) = w(div0(A(x)/B(x)− y)). (2.13)

Hence,
div(A(x) +B(x)y) = w(D). (2.14)

Algorithm 2. Let D be a semi-reduced divisor and let (U, V) be the polynomial
pair corresponding to D by Theorem 3. Then the following algorithm computes
the Mumford representation of the unique reduced divisor D′ such that D ∼ D′.

1. Let U ′ = (f − V 2)/U and V ′ = −V (mod U ′).

2. Multiply U ′ with a constant to make U ′ monic.

3. If degU ′ ≤ g then output (U ′, V ′) otherwise let U = U ′ and V = V ′ and
goto step 1.

Proof. Since (U, V) is a semi-reduced divisor, U | (f−V 2) so U ′ is a polynomial.
Because V ′ is the remainder when dividing with U ′ it follows that deg V ′ <
degU ′. Further,

f − (V ′)2 ≡ f − (−V)2 ≡ f − V 2 (mod U ′).

But since U ′ | f − V 2 we have f − (V ′)2 ≡ 0 (mod U ′). Hence (U ′, V ′) is a
semi-reduced divisor.

Next, we need to prove (i) that the divisor (U ′, V ′) is equivalent to the divisor
(U, V) in step 1, and (ii) that the loop terminates.

Let
D = (U, V) = gcd(div(U(x)),div(y − V (x))).

Then div(U(x)) = D + w(D). Further, take E = D − div(y − V (x)), then,
div(y − V (x)) = D + E.

Suppose to get a contradiction that [(a, b)] is a common divisor of w(D)
and E. If (i) b = 0 then (a, b) is a zero of both y − V (x) and y + V (x) and

16

2.2. JACOBIAN OF HYPERELLIPTIC CURVES 2. Preliminaries

therefore also a zero of U(x). Then D contains both [(a, b)] and [(a,−b)] which
contradicts that D is a semi-reduced divisor.

If (ii) b 6= 0 then D+E contains both [(a, b)] and [(a,−b)]. This contradicts
that D + E = div(y − V (x)) is a semi-reduced divisor by Lemma 1(b). Thus
gcd(E,w(D)) = 1.

Now, by Lemma 1(b),

div(y + V (x)) = w(D + E) = w(D) + w(E). (2.15)

A similar argument as above shows that gcd(E,w(E)) = 1.
But since,

UU ′ = f − V 2 = (y − V (x))(y + V (x)), (2.16)

we have,
div(U) + div(U ′) = D + E + w(D + E). (2.17)

By subtracting div(U) = D + w(D) from both sides we get,

div(U ′) = E + w(E). (2.18)

Further, by definition,

gcd(div(U ′(x)),div(y − V ′(x))) = gcd(div(U ′(x)),div(y + V (x))). (2.19)

Recall that gcd(E,w(E)) = 1 and gcd(E,w(D)) = 1. Thus combining Equa-
tions (2.19), (2.18) and (2.15) yields,

(U ′, V ′) = gcd(div(U ′(x)),div(y + V (x))) = w(E) (2.20)

But
D − div(y − V (x)) = −E = w(E)− div(U ′). (2.21)

Hence D ∼ w(E). This proves (i).

To prove that the algorithm terminates we show that the degree of U de-
creases in every iteration of the loop. Suppose that degU ≥ g+1. Then because
deg f = 2g + 1,

deg f < 2 degU.

Further since deg V < degU ,

deg(V 2) = 2 deg V < 2 degU.

Now (2.16) gives,

degU + degU ′ = deg(f − V 2) < 2 degU.

Hence degU ′ < degU. This concludes the proof.

2.2.4 Cantor’s algorithm

The Mumford representation gives a very concrete and computational realiza-
tion of the elements of J(H). We present an algorithm by David Cantor [4] for
efficiently computingD1+D2 whenD1, D2 are given in Mumford representation.

17

2.2. JACOBIAN OF HYPERELLIPTIC CURVES 2. Preliminaries

Algorithm 3. Let D1 = (U1, V1), D2 = (U2, V2) be given points of J(H). The
following algorithm computes the Mumford representation of the sum D3 =
D1 +D2.

1. Let d = gcd(U1, U2, V1 + V2). Use the Extended Euclidean Algorithm to
find polynomials h1, h2, h3 such that

d = U1h1 + U2h2 + (V1 + V2)h3. (2.22)

Let
V0 = (U1V2h1 + U2V1h2 + (V1V2 + f)h3)/d, (2.23)

and

U =
U1U2

d2
, V = V0(mod U). (2.24)

Then D′ = (U, V) is semi-reduced and D′ ∼ D1 +D2.

2. Reduce D′ = (U, V) to Mumford representation D3 by the reduction al-
gorithm. Then D3 is the unique Mumford representation of the divisor
class D1 +D2.

Proof. We only prove correctness here. Refer to [4] for time complexity.
Note that d|U1 and d|U2. Further, since d|U1 and U1|(f − V 2

1) we have
d|(f − V 2

1). Hence,

V1V2 + f = V1(V1 + V2) + (f − V 2
1),

is divisible by d. This shows (2.23) is well-defined.
First we prove that D′ = (U, V) is semi-reduced. It is clear U is a monic

polynomial and deg V < degU . Furthermore, tedious but routine calculations
show, V 2 − f ≡ 0 (mod U). Thus D′ = (U, V) is a semi-reduced divisor.

Now it remains to show D′ ∼ D1 +D2. We do this by showing:

There is a D′′ ∼ D1 +D2 such that ordP (D′′) = ordP (D′) for all P (2.25)

Let P = (a, b) be an arbitrary point. Assume ri is the order of vanishing of P
in Di and si the order of vanishing of w(P). That is,

D1 = (U1, V1) = r1([P]− [∞]) + s1([w(P)]− [∞]) + . . . (2.26)

D2 = (U2, V2) = r2([P]− [∞]) + s2([w(P)]− [∞]) + . . . (2.27)

We begin by showing:

Lemma 2. ordP ((y − V0)d) ≥ r1 + r2.

Proof. The following functions

U1U2, (y − V1)U2, (y − V2)U1, (y − V1)(y − V2) = f + V1V2 − (V1 + V2)y,

have order of vanishing at least r1 + r2 at P by (2.26) and (2.27).
Then the lemma follows from,

(y−V2)U1h1 + (y−V1)U2h2 + ((V1 +V2)− f −V1V2)h3 = dy−dV0 = d(y−V0).

18

2.2. JACOBIAN OF HYPERELLIPTIC CURVES 2. Preliminaries

Back to the proof of Algorithm 3. There are several cases.

Case A. s1 = s2 = 0 or b = 0.
If b = 0 then P = w(P) = (a, 0). But since D1, D2 are semi-reduced, we can

assume with loss of generality that s1 = s2 = 0.
We will prove,

1. ordP (U) = r

2. ordP (y − V0) ≥ r

where

r =

{
r1 + r2 if b 6= 0

r1 + r2(mod 2) if b = 0
.

When b 6= 0 this implies that ordP (D′) = ordP (U, V) = r1 + r2 since

(U, V) = gcd(div(U),div(y − V)) = gcd(div(U),div(y − V0)), (2.28)

where the last equality follows from V = V0 (mod U). Hence (1), (2) implies
that ordP (D′) = ordP (D1 +D2).

Moreover, when b = 0, we have P = w(P) = (a, 0). Then for some k,
r1 + r2 = r + 2k and

D1 +D2 = (r + 2k)([P]− [∞]) + . . . ,

where the dots represent remaining terms without P and w(P). But since
2k([P]− [∞]) = k(2[P]− 2[∞]) is principal, we can let D′′ = r([P]− [∞]) + . . .
represent the divisor class D1 +D2. Then ordP (D′′) = r. Therefore (1) and (2)
implies ordP (D′) = ordP (D′′).

Subcase 1. r1 = r2 = 0
In this case Ui(P) 6= 0, so U(P) 6= 0 and d(P) 6= 0. Then neither P nor

w(P) appears in (U, V). So ordP (U, V) = 0 = r1 + r2. Since d(P) 6= 0, Lemma
2 implies that ordP (y − V0) ≥ r1 + r2.

Subcase 2. At least one ri > 0 and b 6= 0. If both ri > 0 then (V1 + V2)(P) =
V1(a) + V2(a) = 2b 6= 0. On the other hand, assume exactly one ri > 0, say
r1 > 0. Then V1(a) = b. Suppose that V2(a) = −b. Then y − V2 vanishes
at P . But by assumption r2 = 0 so U1 does not vanish at P by (2.27). In
either case d(P) 6= 0. But since U = U1U2/d

2, this implies that ordP (U) =
ordP (U1) + ordP (U2) = r1 + r2. (ii) follows from d(P) 6= 0, as in the previous
case.

Subcase 3. Both r1, r2 > 0 and b = 0 Since D1, D2 are reduced by assumption,
r1 = r2 = 1. On the other hand, U1, U2 has simple zeros at x = a. Further
since V1(a) = 0 and V2(a) = 0 it follows that V1 + V2 has at least a simple zero
at P . Hence d has a simple zero at P . This implies that U = U1U2/d

2 does not
vanish at x = a. Moreover, since d(y−V0) vanishes of order at least r1 +r2 = 2,
but d only has a simple zero, we have ordP (y − V0) ≥ 1. Hence (1), (2) holds
with r = 0.

Subcase 4. Exactly one ri > 0 and b = 0 Assume r1 = 1 and r2 = 0. Suppose
that (V1 + V2)(P) = 0. Then V2(a) = 0 so y − V2 has a zero at P . But since
r2 = 0 this implies that U2 does not vanish at P . In either case, d(P) 6= 0.
Hence as in subcase (2), ordP (U) = r and ordP (y − V0) ≥ 1 with r = 1.

19

2.2. JACOBIAN OF HYPERELLIPTIC CURVES 2. Preliminaries

Case B. r1 > 0, s2 > 0 and b 6= 0.
Because D1, D2 are semi-reduced this implies that r2 = 0 and s1 = 0.
Since s2 > 0 it follows V2(a) = −b. Then (y − V2)(P) = 2b 6= 0. But since

(y + V2)(y − V2) = f − V 2
2 , U2|(f − V 2

2) and ordP (U2) ≥ s2,

ordP (y + V2) ≥ s2.

Then because V1 + V2 = (y + V2)− (y − V1),

ordP (V1 + V2) ≥ min(r1, s2)

But since d is the gcd,
ordP (d) = min(r1, s2).

Now, assume without loss of generality that r1 ≥ s2. Then

ordP (U) = r1 + s2 − 2 min(r1, s2) = r1 − s2. (2.29)

Furthermore because ordP ((y − V0)d) ≥ r1 + r2 = r1,

ordP (y − V0) = ordP ((y − V0)d)− ordP (d) ≥ r1 − s2.

Hence ordP (D′) = ordP (U, V) = r1 − s2.
If r1 = s2 then

D1 +D2 = r1([P]− [∞]) + s2([w(P)]− [∞]) +D′′

= r1([P] + [w(P)]− 2[∞]) +D′′,

where D′′ denotes the rest of the terms. Then since ([P] + [w(P)] − 2[∞]) is
principal, D′′ ∼ D1 +D2. Further, (2.29) implies that U(P) 6= 0 so D′ does not
contain P or w(P). Hence D′ and D′′ agree on the points P , w(P).

Assume that r1−s2 > 0. Then since D′ is semi-reduced, D′ does not contain
[w(P)] − [∞]. Consider D′′ = D1 + D2 − s2([P] + [w(P)] − 2[∞]). Because
([P] + [w(P)]− 2[∞]) is principal, D′′ ∼ D1 +D2. On the other hand D′′ agrees
with D′ on P and w(P). That is, ordP (D′′) = r1 − s2 and ordw(P)(D

′′) = 0.

The cases (C) r1 = r2 = 0, and (D) s1 > 0 and r2 > 0 follows by letting P
and w(P) switch places.

Remark. Cantor’s algorithm requires concrete elements in k for the coefficients
of (U, V). This means we can’t let the coefficients of U(X) be polynomials
themselves in some indeterminate. More precisely, the algorithm needs to de-
termine the degree of the polynomial which is impossible if the coefficients are
indeterminate. This is a crucial difference from the special case of elliptic curves
where we have an addition map.

Remark. We further note here that for different applications it might be useful to
consider some of the explicit special cases of Cantor’s algorithm in [6]. However
these also only operates on concrete coefficients.

To motivate the next section, we note that the above discussion does suggest
a naive algorithm for calculating torsion points over finite fields. Since we are
working with finite fields, we can just check for every x, y ∈ Fq if n(x, y) = 0 in
the Jacobian using Cantor’s algorithm.

20

2.2. JACOBIAN OF HYPERELLIPTIC CURVES 2. Preliminaries

Algorithm 4. Let H be a hyperelliptic curve over the finite field Fq. Then the
following algorithm algorithm will find all Fq-rational n-torsion points.

1. For each x in Fq:

(a) Find the y ∈ Fq such that (x, y) ∈ H. I.e. plug in the x-value and
solve the curve’s equation for y over Fq.

(b) Calculate n(x, y) using Cantor’s algorithm (Algorithm 3).

(c) If n(x, y) = 0 record (x, y) as a torsion point. Otherwise continue.

One obvious drawback with Algorithm 4 is that the run-time will increase
(at least) linearly with q since we are looping over all the elements of Fq. In the
next chapter we will present a more sophisticated approach that will not have
this heavy dependence on q.

2.2.5 Jacobians defined over a finite field

We shall now consider certain subgroups of the Jacobian J(H), similar to the
subgroup E(Fq) of points on the elliptic curve E defined over Fq.

Let σ ∈ Gal(F̄q/Fq). For any zero-degree divisor D =
∑
i ni([(xi, yi)]− [∞])

we extend the action of σ to J(H) by letting σ(D) =
∑
i ni([σxi, σyi]− [∞]).

Definition 10. Let Fq be a finite field. Then the divisor D ∈ Div0(H) is
defined over Fq if D is fixed by the Galois group, i.e.

σ(D) = D

for all σ ∈ Gal(F̄q/Fq).
Similarly, for a divisor class [D] ∈ J(H) with unique reduced representative

D, we say [D] is defined over Fq if D = σ(D) for all σ ∈ Gal(F̄q/Fq). Let
J(H)(Fq) denote the divisor classes defined over Fq.

Remark. Let D = [(x0, y0)] + [(x1, y1)] − 2[∞] defined over Fq. Note that it is
not necessarily true that x0, x1, y0, y1 ∈ Fq. Instead the coordinates might lie
in some field extension of Fq.

A priori J(H)(Fq) is not a group. We need to check that if D1, D2 are two
divisors defined over Fq then D1 +D2 is also defined over Fq. Since J(H)(Fq) is
by definition a subset of J(H) it then follows that J(H)(Fq) inherits an addition
from J(H).

Theorem 4. A divisor class in J(H) with Mumford representation (U(X), V (X))
is defined over Fq iff U(X), V (X) ∈ Fq[X].

Proof. First assume that U(X), V (X) in Fq. Then the automorphisms σ ∈
Gal(F̄q/Fq) permute the zeroes of U(X) and V (X). This implies σ fixes the
divisor (U(X), V (X)) = gcd(div(U),div(y − V)). Hence (U, V) is defined over
Fq.

Conversely, let D = (U(X), V (X)) and assume [D] = [σ(D)] for all σ ∈
Gal(F̄q/Fq). Let R be the unique reduced divisor representing D. Then consider
σ(R). Since [R] = [D] there exists some f such that D−R = div(f). But then
σ(D) − σ(R) = div(σ(f)). Hence [σ(R)] = [σ(D)]. Further by considering the
definition of reduced divisor, σ(R) is reduced.

21

2.2. JACOBIAN OF HYPERELLIPTIC CURVES 2. Preliminaries

Next, let σ(R) be represented by (U ′, V ′). The claim is that U ′ = σ(U),
V ′ = σ(V) where σ acts on the coefficients of U respective V . By definition,

σ(R) =
∑

i

ni([σxi, σyi]− [∞]).

Then since σ is an automorphism,

U ′(X) = (X − σx0)(X − σx1) . . . (X − σxt) = Xt − σe1X
t−1 + · · ·+ (−1)tσet,

where ei are the elementary symmetric polynomials in x0, x1, . . . , xt, i.e. the
coefficients of U . Thus U ′ = σ(U).

Recall that V ′ is uniquely determined by the condition V ′(σxi) = σyi. But,

σ(V)(σxi) = σas(σxi)
s + σas−1(σxi)

s−1 + · · ·+ σa0

= σasσx
s
i + σas−1σx

s−1
i + · · ·+ σa0

= σ(asx
s
i + · · ·+ a0) = σyi.

Hence V ′ = σ(V).
Now, since both R and σ(R) are reduced, R = σ(R). So (U ′, V ′) = (U, V).

That is, the coefficients of U, V are fixed by all σ. Then since the fixed field of
Gal(F̄q/Fq) is Fq it follows that the coefficients of U, V lies in Fq.

Proposition 7. The set J(H)(Fq) is a well-defined group and a subgroup of
J(H).

Proof. By the discussion above it is enough to show J(H)(Fq) is closed under di-
visor addition. Take D1 = (U1, V1), D2 = (U2, V2) ∈ J(H)(Fq). Then Cantor’s
algorithm let us compute D1 +D2 = (U, V). Since every step in the algorithm is
polynomial arithmetic it follows U, V ∈ Fq and hence D1 +D2 ∈ J(H)(Fq).

22

3 Division points

3.1 Torsion points and division points

We will in this chapter find two algorithms for computing so called division
points.

Let H be a hyperelliptic curve of genus g defined over a finite field Fq.
For any integer n ≥ 0 there is an endomorphism [n] : J(H) → J(H) given by
D 7→ nD = D +D + · · ·+D. If n < 0 we take [n](D) = −[−n](D).

It turns out the kernel of [n] has an easy description [16, pp. 4].

Theorem 5. Assume that gcd(n, p) = 1. Then, over the algebraic closure F̄q,

ker[n] ∼= (Z/nZ)2g,

where the right-hand expression is a direct sum of 2g copies of Z/nZ.

Definition 11. A point P = (x, y) ∈ H(Fq) such that i(x, y) ∈ ker[n] is called
a n-torsion point. Alternatively, we write this as n(x, y) = 0 in J(H). We let
H[n](Fq) denote the set of n-torsion points.

Remark. We require as part of the definition that a torsion point is Fq-rational.

Problem 1. Assume we are given a hyperelliptic curve H defined over Fq and
integer n > 1. How do we find all n-torsion points?

Using the terminology in [5], we define:

Definition 12. Let H be a hyperelliptic curve defined over Fq. A divisor D in
J(H)(Fq) is called a n-divisor point for H if D ∈ ker[n]. We let J(H)[n](Fq)
denote the set of n-division points.

Remark. Note that n-torsion points are (rational) points on the curve. In con-
trast, division points are divisors in the Jacobian.

Clearly if P = (x, y) ∈ H is a n-torsion point then i(x, y) ∈ J(H) is a n-
division point. In other words, finding n-torsion points is a subproblem of the
more general problem:

Problem 2. Assume we are given a hyperelliptic curve H defined over Fq and
integer n > 1. How do we find all n-division points?

Next, we will see that we can solve Problem 1 by a direct analogue of Algo-
rithm 1 using a generalization of division polynomials to hyperelliptic curves.

3.2 Cantor’s division polynomials

In [5] Cantor generalizes the classical division polynomials for elliptic curves to
hyperelliptic curves. We will give an outline of the construction here but leave

23

3.2. CANTOR’S DIVISION POLYNOMIALS 3. Division points

n ψn
1 0
2 1
3 4a5x

5 + 4a4x
4 + 4a3x

3 + 4a2x
2 + 4a1x+ 4a0

4 10a3
5x

12 + 24a4a
2
5x

11 + 16a2
4a5x

10 + 26a3a
2
5x

10 + 40a3a4a5x
9 + 20a2a

2
5x

9

+30a2
3a5x

8 + 40a2a4a5x
8 − 10a1a

2
5x

8 + 80a2a3a5x
7 − 80a0a

2
5x

7 − 2a3
3x

6

+8a2a3a4x
6 − 16a1a

2
4x

6 + 64a2
2a5x

6 + 68a1a3a5x
6 − 112a0a4a5x

6 − 4a2a
2
3x

5

+16a2
2a4x

5 − 8a1a3a4x
5 − 64a0a

2
4x

5 + 152a1a2a5x
5 − 8a0a3a5x

5 − 10a1a
2
3x

4

+40a1a2a4x
4 − 80a0a3a4x

4 + 110a2
1a5x

4 + 120a0a2a5x
4 − 40a0a

2
3x

3

+40a2
1a4x

3 + 240a0a1a5x
3 + 10a2

1a3x
2 − 40a0a2a3x

2 + 80a0a1a4x
2

+160a2
0a5x

2 + 4a2
1a2x− 16a0a

2
2x+ 8a0a1a3x+ 64a2

0a4x+ 2a3
1

−8a0a1a2 + 16a2
0a3

5 4(5a4
5x

16 + 16a4a
3
5x

15 + 16a2
4a

2
5x

14 + 20a3a
3
5x

14 + 56a3a4a
2
5x

13 + 70a2
3a

2
5x

12

+56a2a4a
2
5x

12 − 140a1a
3
5x

12 + 280a2a3a
2
5x

11 − 224a1a4a
2
5x

11 − 560a0a
3
5x

11

−28a3
3a5x

10 + 112a2a3a4a5x
10 − 224a1a

2
4a5x

10 + 336a2
2a

2
5x

10 + 252a1a3a
2
5x

10

−1232a0a4a
2
5x

10 − 8a3
3a4x

9 + 32a2a3a
2
4x

9 − 64a1a
3
4x

9 − 80a2a
2
3a5x

9

+256a2
2a4a5x

9 − 48a1a3a4a5x
9 − 1088a0a

2
4a5x

9 + 1040a1a2a
2
5x

9

−360a0a3a
2
5x

9 − 3a4
3x

8 − 8a2a
2
3a4x

8 + 80a2
2a

2
4x

8 − 64a1a3a
2
4x

8 − 320a0a
3
4x

8

−64a2
2a3a5x

8 − 148a1a
2
3a5x

8 + 880a1a2a4a5x
8 − 1248a0a3a4a5x

8

+990a2
1a

2
5x

8 + 1000a0a2a
2
5x

8 − 8a2a
3
3x

7 + 32a2
2a3a4x

7 − 80a1a
2
3a4x

7

+256a1a2a
2
4x

7 − 640a0a3a
2
4x

7 − 64a3
2a5x

7 − 48a1a2a3a5x
7 − 640a0a

2
3a5x

7

+1040a2
1a4a5x

7 + 512a0a2a4a5x
7 + 2720a0a1a

2
5x

7 − 28a1a
3
3x

6

+112a1a2a3a4x
6 − 560a0a

2
3a4x

6 + 336a2
1a

2
4x

6 − 224a1a
2
2a5x

6

+252a2
1a3a5x

6 − 560a0a2a3a5x
6 + 2912a0a1a4a5x

6 + 2240a2
0a

2
5x

6

−168a0a
3
3x

5 + 280a2
1a3a4x

5 − 448a0a2a3a4x
5 + 896a0a1a

2
4x

5 − 224a2
1a2a5x

5

−448a0a
2
2a5x

5 + 784a0a1a3a5x
5 + 2688a2

0a4a5x
5 + 70a2

1a
2
3x

4 − 280a0a2a
2
3x

4

+56a2
1a2a4x

4 − 224a0a
2
2a4x

4 + 672a0a1a3a4x
4 + 896a2

0a
2
4x

4 − 140a3
1a5x

4

−560a0a1a2a5x
4 + 1120a2

0a3a5x
4 + 56a2

1a2a3x
3 − 224a0a

2
2a3x

3

+112a0a1a
2
3x

3 + 896a2
0a3a4x

3 − 560a0a
2
1a5x

3 + 16a2
1a

2
2x

2 − 64a0a
3
2x

2

+20a3
1a3x

2 − 48a0a1a2a3x
2 + 240a2

0a
2
3x

2 − 80a0a
2
1a4x

2 + 256a2
0a2a4x

2

−640a2
0a1a5x

2 + 16a3
1a2x− 64a0a1a

2
2x− 8a0a

2
1a3x+ 160a2

0a2a3x
−64a2

0a1a4x− 320a3
0a5x+ 5a4

1 − 24a0a
2
1a2 + 16a2

0a
2
2 + 32a2

0a1a3 − 64a3
0a4)

(a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0)

Table 3.1: First generic division polynomials for the genus 2 hyperelliptic curve
y2 = a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0.

24

3.2. CANTOR’S DIVISION POLYNOMIALS 3. Division points

out the technical proofs. See Table 3.1 and Appendix A for examples of division
polynomials.

Let H be a hyperelliptic curve with Weierstrass equation y2 =
∑2g+1
i=1 aix

i

with a2g+1 6= 0. Let R be the ring Z[a0, . . . , an]. Cantor finds polynomials
ψn(x, y) ∈ R[x, y] such that the following characterization of torsion points
holds. This is a generalization of the characterization in Proposition 2 for elliptic
curves.

Proposition 8. Let P ∈ H be a point on the curve and n ≥ g+1 be an integer.
Then nP = 0 in J(H), if and only if,

1. ψn−g(P) 6= 0, and

2. ψn+i(P) = 0 for −g + 1 ≤ i ≤ g − 1.

Let K = R[x, y]. We will find polynomials δn(X), εn(X) ∈ K[X] (i.e. the
coefficients are polynomials in R[x, y]) such that the following theorem holds.

Theorem 6 (8.35 in [5]). Let r ≥ g+ 1 and let (x, y) be a generic point on H.
Then

n(x, y) = (δn

(x−X
4y2

)
, εn

(x−X
4y2

)
), (3.1)

where the RHS is a pair corresponding to the Mumford representation of the
divisor n(x, y) ∈ J(H).

Remark. We remark that δn

(
x−X
4y2

)
is not necessarily a monic polynomial so we

need to divide by the leading coefficient to obtain the Mumford representation.

Remark. The caveat ‘generic point’ avoids some degenerate cases where the
formula does not hold. For our purposes, this limitation will not be important.

Remark. For g = 1 (elliptic curves) this reduces to the formula in Theorem 1.

We will prove Theorem 6 later in this section and Proposition 8 at the end
of Section 3.3.

The torsion points will be shown to be characterized by the vanishing of
certain coefficients of δr(X). These coefficients will be proved to be the division
polynomials ψn+i in Proposition 8.

However, to be able to use the Cantor’s division polynomials we need an
efficient way to compute them. Fortunately, Cantor derived a recursion general-
izing the simple recursion (2.2) for classical division polynomials. The derivation
is laborious and technical but the recursion formula itself is relatively simple and
easy to implement.

3.2.1 The Padé problem

The first step is to reduce the problem of finding n-torsion points to the well-
known problem of finding Padé approximants.

Recall that the Taylor series is the best approximation of a function by a
polynomial P (x). Analogously, the Padé approximant R(x) is the best approx-
imation by rational function R(x) = A(x)/B(x).

25

3.2. CANTOR’S DIVISION POLYNOMIALS 3. Division points

Definition 13. Let f be a function with power series expansion

S(x) =
∞∑

i=0

six
i,

and m ≤ 0, n ≤ 1 integers. The Padé approximation of order (m,n) is
R(x) = A(x)/B(x) where A(x), B(x) are polynomials with degA ≤ m and
degB ≤ n. Further we require that the power series expansion of R(x) agree
with S up to order m+ n. More explicitly,

R(0) = f(0) = s0

R′(0) = f ′(0) = s1

...
R(m+n)(0) = f (m+n)(0) = sm+n

(3.2)

Let H(x) be the power series expansion of R(x). Then the condition (3.2)
is the same as

S(x)−H(x) = O(x(m+n+1)).

Then since A(x)/B(x) = H(x),

A(x)−B(x)S(x) = A(x)−B(x)(H(x) +O(x(m+n+1)))

= A(x)−B(x)H(x) +B(x)O(x(m+n+1)))

= B(x)O(x(m+n+1))) = O(x(m+n+1))).

So condition (3.2) is equivalent to A(x)−B(x)S(x) being divisible by x(m+n+1).

3.2.2 Reduction to the Padé problem

Let H be a hyperelliptic curve of genus g given by Y = F (X). We want to
compute the reduced representative of r(x, y) for some integer r ≥ g + 1 and
point (x, y) ∈ H.

First we make a variable change such that the point (x, y) becomes

P0 = (0, (−1)g+1y).

The sign on y is chosen such that the division polynomials ψr gets positive
leading coefficients.

Let z, Y ′ be the new variables. Set X = x− z, and E(z) = F (x− z). Then
H ′ : Y ′2 = E(z) is a hyperelliptic curve of genus g such that P0 ∈ H ′.

Let
√
E(z) =

∞∑

i=0

siz
i, (3.3)

be the formal Taylor series expansion of
√
E(z) with constant term s0 =

(−1)g+1y.
Assume for the moment that we have polynomials Ar(z), Br(z) such that,

(a) zr divides Ar(z)−Br(z)
√
E(z)

26

3.2. CANTOR’S DIVISION POLYNOMIALS 3. Division points

(b) 2 degAr ≤ r + g and 2 degBr + 2g + 1 ≤ r + g.

We will prove that finding such Ar, Br is an instance of the Padé problem in
Proposition 10. A general solution to the Padé approximation problem is given
in the next section.

The next theorem is a stepping stone towards the central formula (3.1).

Theorem 7. Let r ≥ g+ 1. Then the reduced divisor representing r(0, s0) has
z-coordinates given by the zeroes of the polynomial

Dr(z) = −(Ar(z)
2 −Br(z)2E(z))/zr. (3.4)

Before the proof, we need two lemmas.

Lemma 3. If r ≥ g + 1 then Dr(z) is a polynomial and degDr(z) = g.

Proof. See [5, Lemma 7.1 pp. 129].

Lemma 4. The function Ar(z)−Br(z)Y ′ has exactly r + g zeros. Further,

div(Ar(z)−Br(z)Y ′) = r[P0] +D′ − (r + g)[∞], (3.5)

where D′ is a positive divisor of degree g such that D′−g[∞] is a reduced divisor
of degree 0.

Proof. By Lemma 1(c), div(Ar(z)−Br(z)Y ′) is semi-reduced. It only remains
to show (i) Ar(z)− Br(z)Y ′ has exactly r + g zeroes and (ii) Ar(z)− Br(z)Y ′
has a zero of order r at P0.

Assume Ar(z)−Br(z)Y ′ has α zeroes. By Equation (2.14), Ar(z)−Br(z)Y ′
and Ar(z) +Br(z)Y

′ has the same number of zeroes. Then

Ar(z)
2 −Br(z)2Y ′2 = (Ar(z)−Br(z)Y ′)(Ar(z) +Br(z)Y

′)

has exactly 2α zeroes. But

Ar(z)
2 −Br(z)2Y ′2 = Ar(z)

2 −Br(z)2E(z) = −zrDr(z)

is a polynomial in z of degree r + g by Lemma 3. For every zero z0 of the
polynomial either (i) E(z0) 6= 0 and we have two zeroes (z0,±

√
E(z0)) on H ′,

or (ii) E(z0) = 0 in which case (z0, 0) is a double root on H ′. Therefore the
number of zeroes of Ar(z)

2 −Br(z)2Y ′2 is 2(r + g). Hence α = r + g.
Moreover, condition (a) implies that Ar(z)−Br(z)Y ′ has a zero of at least

order r at P0. This proves (3.5).

Proof of Theorem 7. Consider Ar(z) − Br(z)Y ′ as an element in the function
field of H ′.

Note that div(Ar(z)−Br(z)Y ′) ∼ 0. Then rewriting (3.5) using the notation
(0, s0) = i(0, s0) = [(0, s0)]− [∞] gives

D′ + r[P0]− (r + g)[∞] = D′ − g[∞] + r(0, s0) ∼ 0

27

3.2. CANTOR’S DIVISION POLYNOMIALS 3. Division points

Therefore,
D′ − g[∞] ∼ −r(0, s0).

So D′ − g[∞] is the reduced divisor representing −r(0, s0).
Furthermore, since −D ∼ w(D) for any divisor D,

r(0, s0) = −(−r(0, s0)) ∼ w(−r(0, s0)) ∼ w(D′ − g[∞]) = w(D′)− g[∞]. (3.6)

Hence the reduced divisor representing r(0, s0) is w(D′)− h[∞].
By definition of the w-map, D′ and w(D′) have the same z-coordinates.

Therefore, to prove the theorem it is enough to show the z-coordinates of D′

are the zeroes of Dr(z).
Now by definition, D′ is given by the zeroes of Ar(z)− Br(z)Y ′ except the

order r zero at P0.
On the other hand, by Lemma 1(c),

div(Ar(z) +Br(z)Y
′) = w(D)− (r+ h)[∞] = −r(0, s0) +w(D′)− h[∞]. (3.7)

Hence w(D′) is given by the zeroes of Ar(z) +Br(z)Y
′ except the order r zero

at P0. Thus the g (with multiplicity) z-coordinates of D′ are among the zeroes
of

Dr(z) = −(Ar(z)−Br(z)
√
E(z))(Ar(z) +Br(z)

√
E(z))/zr

= −(Ar(z)
2 −Br(z)2E(z))/zr.

But by Lemma 3, degDr(z) = g so the zeroes are exactly the z-coordinates
in D′.

After a ‘normalization’, Dr(z) will become the δr in (3.1). Finding r-torsion
points will then amount to finding which P = (x, y) makes certain coefficients
in δr(X) vanish.

3.2.3 General solution to the Padé problem

Fist we give the classical solution to the Padé approximant problem in terms
of determinants and then we prove that the conditions (a), (b) on Ar, Br is an
instance of the Padé problem.

Let S(z) =
∑∞
j=0 sjz

j be a formal power series and consider the n×n-matrix,

Hm,n =

sm−n+1 sm−n+2 · · · sm
sm−n+2 sm−n+3 · · · sm+1

...
...

. . .
...

sm−1 sm · · · sm+n−2

sm sm+1 · · · sm+n−1

. (3.8)

Let hm,n = detHm,n for m ≥ 0, n ≥ 1. For n = 0 let hm,n = 1 and for
n ≤ −1 let hm,n = 0.

Further let Sj =
∑j
i siz

i, and consider the (n+ 1)× (n+ 1)-matrix

28

3.2. CANTOR’S DIVISION POLYNOMIALS 3. Division points

Um,n(z) =

sm−n+1 sm−n+2 · · · sm+1

sm−n+2 sm−n+3 · · · sm+2

...
...

. . .
...

sm−1 sm · · · sm+n−1

sm sm+1 · · · sm+n

znSm−n zn−1Sm−n+1 · · · Sm

. (3.9)

Define um,n(z) = detUm,n(z). Note that um,n is a polynomial in z with
degree less than m. Next let

Vm,n =

sm−n+1 sm−n+2 · · · sm+1

sm−n+2 sm−n+3 · · · sm+2

...
...

. . .
...

sm−1 sm · · · sm+n−1

sm sm+1 · · · sm+n

zn zn−1 · · · 1

. (3.10)

And let vm,n(z) = detVm,n(z). Then vm,n is a polynomial in z with degree
less than n.

For wm,n = um,n − vm,nS(z) we have,

wm,n = −
∞∑

j=0

zm+n+j+1 det

sm−n+1 sm−n+2 · · · sm+1

sm−n+2 sm−n+3 · · · sm+2

...
...

. . .
...

sm−1 sm · · · sm+n−1

sm sm+1 · · · sm+n

sm+1+j sm+2+j · · · sm+n+1+j

. (3.11)

Proposition 9. The coefficient of zm in um,n(z) is (−1)nhm,n+1. The coefficient
of zn in vm,n(z) is (−1)nhm+1,n.

Proof. The coefficient in zm in zn−jSm−n is sm−n+j . So the coefficient of zm

in um,n(z) is

∣∣∣∣∣∣∣∣∣∣∣∣∣

sm−n+1 sm−n+2 · · · sm+1

sm−n+2 sm−n+3 · · · sm+2

...
...

. . .
...

sm−1 sm · · · sm+n−1

sm sm+1 · · · sm+n

sm−n sm−n+1 · · · sm

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣

sm−n sm−n+1 · · · sm
sm−n+1 sm−n+2 · · · sm+1

sm−n+2 sm−n+3 · · · sm+2

...
...

. . .
...

sm−1 sm · · · sm+n−1

sm sm+1 · · · sm+n

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)nhm,n+1.

Now consider (3.10). By the cofactor expansion of the last row, the terms
containing zn are

29

3.2. CANTOR’S DIVISION POLYNOMIALS 3. Division points

C1,n+1 = (−1)n+2M1,n+1 = (−1)n

∣∣∣∣∣∣∣∣∣∣∣

sm−n+2 · · · sm+1

sm−n+3 · · · sm+2

...
. . .

...
sm · · · sm+n−1

sm+1 · · · sm+n

∣∣∣∣∣∣∣∣∣∣∣

= (−1)nhm+1,n

The following classical theorem by Jacobi solves the Padé problem [1].

Theorem 8. The Padé approximant of order (m,n) is equal to (um,n(z), vm,n(z))
up to a constant.

The Ar, Br are given as certain Padé approximations of
√
E(z). Let

mr =

⌊
r + g

2

⌋
, nr =

⌊
r − g − 1

2

⌋
, (3.12)

Proposition 10. Finding polynomials Ar, Br such that (a), (b) are satisfied are
an instance of the Padé approximation problem.

Proof. The claim is that Ar, Br is the Padé approximant of order (mr, nr) to√
E(z).
First note that 2 degAr ≤ r + g is equivalent to degAr ≤

⌊
r+g

2

⌋
= mr and

similarly 2 degB + 2g + 1 ≤ r + g is equivalent to degB ≤ nr.
If r + g is even then r − 2g = r + g − 2g is also even. Then

mr + nr =
r + g

2
+
r − g − 2

2
= r − 1.

On the other hand if r + g is odd then

mr =
r + g − 1

2
, nr =

r − g − 1

2
,

so mr + nr = r − 1.
Then (a) states, zr = zmr+nr+1 divides Ar(x) − Br(x)

√
E(z). But this is

equivalent to condition (3.2) in the definition of Padé approximant.

3.2.4 Formulas for Ar, Br

Now we get formulas for Ar, Br in terms of the determinants defined above.
Let

Ar(z) =

{
−zr if 0 ≤ r ≤ g
umr,nr if g + 1 ≤ r (3.13)

Br(z) =

{
0 if 0 ≤ r ≤ g
vmr,nr

if g + 1 ≤ r (3.14)

Cr(z) =

{
1 if 0 ≤ r ≤ g
−wmr,nr

/zr if g + 1 ≤ r (3.15)

fr =

{
0 if − 1 ≤ r ≤ g − 1

hmr+1,nr+1 if g ≤ r (3.16)

30

3.2. CANTOR’S DIVISION POLYNOMIALS 3. Division points

From Theorem 8 and Proposition 10 the above formulas for Ar(z), Br(z)
satisfies the conditions (a), (b).

The Cr(z) is an error term representing how far R(z) = Ar(z)/Br(z) is from
approximating

√
E(z). Moreover, fr is an expression (not necessarily a poly-

nomial) which becomes the division polynomial ψr(x, y) after a normalization
and switching back to x, y-coordinates.

From Proposition 9 this essential proposition follows.

Proposition 11. The leading coefficient of Dr(z) is −f2
r if r + g is even and

−a2g+1f
2
r if r + g is odd.

Proof. For r ≤ g it follows trivially from the definition, so assume r ≥ g + 1.
Recall that

Dr(z) = −(Ar(z)
2 −Br(z)2E(z))/zr (3.17)

is a polynomial of degree g. Let dg be the coefficient of zg.
Also, Ar(z), Br(z) are polynomials of degree mr and nr. Let amr

and bnr

denote the leading coefficients of Ar, Br.
If r+g is even then degAr = mr = (r+g)/2 and degBr = nr = (r−g−2)/2.

Since degEr = 2g + 1, the term Br(z)
2E(z) has degree

(r − g − 2) + 2g + 1 = r + g − 1 < r + g

soBr(z)
2E(z) can not contribute to the leading coefficient ofDr. But degAr(z)

2 =
r + g, so dg = −a2

mr
. By Proposition 9, amr = hmr,nr+1.

But since r + g is even, mr+1 = mr and nr+1 = nr + 1. Then

h2
mr,nr+1 = h2

mr+1,nr+1
= f2

r .

Thus dg = −f2
r .

On the other hand if r+g is odd then mr = (r+g−1)/2, nr = (r−g−1)/2.
Then

degAr(z)
2 = r + g − 1 < r + g

but
degBr(z)

2E(z) = r − g − 1 + 2g + 1 = r + g.

Since E(z) has leading coefficient−a2g+1, Equation (3.17) yields dg = −a2g+1b
2
nr

.
By Proposition 9 again, b2nr

= h2
mr+1,nr

. Because r + g is odd mr+1 = mr + 1
and nr+1 = nr. Then

h2
mr+1,nr

= h2
mr+1,nr+1

= f2
r .

Thus dg = −a2g+1f
2
r .

3.2.5 Normalization

A priori fj is not a polynomial since we need square roots in the Taylor series
(3.3). We need to multiply by a normalizing factor to finally get the division
polynomials.

31

3.2. CANTOR’S DIVISION POLYNOMIALS 3. Division points

Example 4. Consider the curve C : y2 = x5 +1. Then f5 contains roots
√
x5 + 1.

Factorizing f5 yields,

f5 =
5
(
x10 − 108x5 + 16

)(
x5 − 4

)
x

128 (x5 + 1)
7
2

which still isn’t a polynomial, but the square roots disappeared since g = 2 is
even.

We need to multiply fr by a factor (2y)vr (vr defined below) to get a poly-
nomial.

Example 5. Let’s try (rabbit out of hat) to multiply last example with (2y)9.
Then using the curve’s equation,

ψ5 = (2y)9f5 = 29(x5 + 1)9/2f5

= 20
(
x10 − 108x5 + 16

)(
x5 − 4

)(
x4 − x3 + x2 − x+ 1

)
(x+ 1)x.

Furthermore,

ψ5/(2y)2 = 5
(
x10 − 108x5 + 16

)(
x5 − 4

)
x.

This is analogous with elliptic curve division polynomials being divisible by 2y if
r is odd and this will allow us to generalize the univariate division polynomials
in (2.4).

Before continuing we need notation for truncating polynomials and formal
power series.

Definition 14. Let

f(z) =
n∑

i=0

aix
i

be a formal power series with n ≤ ∞ and r ≥ 0 be an integer. Then denote the
truncated formal power series of degree r with

f(z){1r} =

r∑

i=0

aix
i. (3.18)

Similarly let f(z)[1r] denote the sequence

a0, a1, . . . , ar.

Remark. Note that Cantor’s definition allows us to ‘splice’ the polynomial. That
is, select coefficients from a given index set. The notation here is chosen to be
consistent with [5].

Now we can define the normalized division polynomials.

Let

vr =

(
r

2

)
−
(
g

2

)
= (r2 − r − g2 + g)/2,

32

3.2. CANTOR’S DIVISION POLYNOMIALS 3. Division points

and define,

ψr = (2y)vrfr, (3.19)

αr(z) = 2(2y)vr−1−1Ar(4y
2z){1g}, (3.20)

βr(z) = (2y)vr−1Br(4y
2z){1g}, (3.21)

γr(z) = (2y)vr+1Cr(4y
2z){1g}, (3.22)

δr(z) = (2y)2vrDr(4y
2z). (3.23)

Let R be the ring Z[a0, . . . an] where ai are the coefficients in the curve’s
equation. Then, the following analogue of the elliptic curve case holds.

Theorem 9 (Theorem 8.15 in [5]). If n− g is even then ψn ∈ R[x]. Further, if
n− g is odd then ψn ∈ (2y)gR[x].

Moreover, Proposition 11 carries over to the normalized division polynomials.

Proposition 12. Let r ≥ g + 1. Then the leading coefficient of δr(z) is
−(4y2)gψ2

r if r + g is even and −a2g+1(4y2)gψ2
r if r + g is odd.

Proof. If r + g is even then the leading coefficient of δr(z) = (2y)2vrDr(4y
2z)

is, by Proposition 11,

−f2
r (4y2)g(2y)2vr = −(fr(2y)vr)2(4y2)g = −ψ2

r(4y2)g.

The case when r + g is odd follows similarly.

Next we state a formula (without proof) that allows us to compute εr from
the previously defined normalized division polynomials.

Proposition 13 (Equation (8.15) in [5]). When r ≥ g + 1,

εr(z) =
yz(ψ2

r−1δr+1(z)− ψ2
r+1δr−1(z))

ψr−1ψ2
rψr+1

(mod δr(z)). (3.24)

3.2.6 Recursion

Similar to the elliptic curve case g = 1, the ψr can be recursively computed.
For g = 2 and s ≥ r, it holds [5, Equation (1.8)],

ψsψrψs+rψs−r =

∣∣∣∣∣∣

ψs−2 ψs−1ψr+ ψsψr+2

ψs−1ψr−1 ψrψs ψs+1ψr+1

ψsψr−2 ψs+1ψr−1 ψs+2ψr

∣∣∣∣∣∣
(3.25)

If g > 2 the recursion formula becomes more complicated.
We define a (g + 1) × (g + 1) matrix below. The last column is written on

block matrix notation so the sequence γr−g+1γs+1[1g−2] should be expanded to
g − 2 entries.

Br,s =

ψr−gψs ψr−g+1ψs+1 γr−g+1γs+1[1g−2]
ψr−g+1ψs−1 ψr−g+2ψs γr−g+2γs[1g−2]

...
...

...
ψrψs−g ψr+1ψs−g+1 γr+1γs−g+1[1g−2]

 (3.26)

33

3.3. TORSION ALGORITHM 3. Division points

Then the following formula [5, Equation (8.26)] holds for 2g − 1 ≤ r ≤ s,

det Bs,r = ψs−rψs+r

g∏

k=2

(ψr−g+kψs−g+k). (3.27)

Note that this formula expresses ψr+s in previous ψi, so we can use it to
recursively compute ψn.

Since ψr = 0 for r < g the left hand side is 0 if s − r < g. So we assume
s− r ≥ g. Then s ≥ 3g − 1 and hence r+ s ≥ 5g − 2. So for n ≥ 5g − 2 we can
write n = s+ r and use (3.27) to compute ψn recursively.

Algorithm 5. The following algorithm computes the division polynomial ψn
for n ≥ 0.

1. If n < 5g − 2 then compute ψn from the determinant definition (3.16).

2. Otherwise, if n− g is even let

r =

⌊
n− g

2

⌋
, s =

⌊
n+ g

2

⌋
,

and if r − g is odd, let

r =

⌊
n− g

2

⌋
, s =

⌊
n+ g

2

⌋
+ 1.

3. Then compute ψn recursively for n = r + s using (3.27).

Proof. Let n ≥ 5g − 2. Then

r ≥
⌊

5g − 2− g
2

⌋
= 2g − 1,

so the condition 2g − 1 ≤ r ≤ s holds.
It remains to show r+s = n in both cases. If n−g is even, so is n−g+2g =

n+ g. Then
r + s = (n− g)/2 + (n+ g)/2 = n.

On the other hand if both are odd then

r + s = (n− g − 1)/2 + (n+ g − 1)/2 + 1 = n.

3.3 Torsion algorithm

We define the univariate division polynomials analogously to the elliptic
curve case:

Pn =

{
ψn n− g even

ψn/(2y)g n− g odd.
(3.28)

Then similar to Proposition 8.

34

3.3. TORSION ALGORITHM 3. Division points

Proposition 14. Let H be a hyperelliptic curve and let P = (x, y) ∈ H.
Assuming that ord(P) 6= 2, then n(x, y) = 0 in J(H) iff for all

n− g + 1 ≤ i ≤ n+ g − 1

we have Pi(x) = 0.

Proof. We show that this follows from Proposition 8. Note that the only zeroes
of ψn we lose going to Pn are the zeroes of (2y)g, i.e. points with y-coordinate
0. Moreover a point P = (x, y) has y-coordinate 0 iff ord(P) = 2.

Fix a finite field Fq with characteristic p 6= 2 and let H be a curve defined
over Fq. The latter assumption means ai ∈ Fq. Then let Pn be the result of
reducing the coefficients of Pn modulo p. More precisely, if

Pn = p0 + p1x+ · · ·+ pkx
k,

with pi ∈ Z, then
Pn = p0 + p1x+ · · ·+ pkx

k,

where pi ≡ pi(mod p). Thus while Pn ∈ R[x] we have in contrast Pn ∈ Fq[x].

The key proposition is the following.

Proposition 15. Let H be an hyperelliptic curve and let P = (x, y) ∈ H
with x, y ∈ Fq. Assuming that ord(P) 6= 2, then n(x, y) = 0 in J(H)(Fq) iff
Pi(x) = 0 for n− g + 1 ≤ i ≤ n+ g − 1.

Proof. The construction of the Cantor division polynomials Pn goes through
working in Fq instead of R.

Now we can state the aforementioned algorithm.

Algorithm 6. Let H be an hyperelliptic curve given by a Weierstrass equation
y2 =

∑2g+1
i=1 aix

i where ai ∈ Fq and let n ≥ g + 1 be an integer. Then the
following algorithm computes H[n](Fq), i.e. the n-torsion points.

1. If n is even, record the points with order 2.

2. Compute the 2g − 1 polynomials Pn−g+1, Pn−g+2, . . . Pn+g−1 using the
recursion.

3. Reduce the coefficients of Pi modulo p to get Pi for n−g+1 ≤ i ≤ n+g−1.

4. Let g(x) = gcd(Pn−g+1, Pn−g+2, . . . , Pn+g−1).

5. Factor g(x) into irreducible factors over Fq.

6. For each linear irreducible factor x− α in g(x):

(a) Find the y-values β such that (α, β) ∈ H(Fq).

(b) Record (α, β) as a n-torsion point.

The correctness of the algorithm follows from Proposition 14. We will now
prove Proposition 8.

35

3.3. TORSION ALGORITHM 3. Division points

Lemma 5. Let r > g and assume we have fr 6= 0, fr+i = 0 for i = 1, 2, . . . 2h−1.
Then (i) h ≤ g and (ii) zh|Cr.

Proof. See [5] Lemma 3.29.

Let Θ denote the set of divisors with reduced representativeD with deg0(D) <
g, i.e. the finite part of D contain less that g points with multiplicity.

Lemma 6. Let P = (x, y) with y 6= 0. Then ψn(x, y) = 0 ⇐⇒ n(x, y) ∈ Θ.

Proof. Let (U(X), V (X)) be the Mumford representation of D. Then since
U(x) = 0 iff the point (x, y) or (x,−y) appear in D, deg0(D) < g is equivalent
to degU(X) < g. By Theorem 6, U(X) = δr. But the leading coefficient of δr
is either −ψ2

n(4y2)g or −a2g+1ψ
2
n(4y2)g by Proposition 12. This completes the

proof.

Lemma 7. Let h be an integer and let P = (x, y) ∈ H with y 6= 0. Assume
ψr(x, y) 6= 0, ψr+i(x, y) = 0 for 1 ≤ i ≤ 2h− 1 and ψr+2h(x, y) 6= 0. Then

rP ∼ h(x,−y) +D − (g − h)[∞],

where D is a divisor with positive coefficients and exactly g − h finite points
(with multiplicity) and no infinite points.

Proof. Let E be the reduced representative of nP (i.e. the unique reduced
divisor E such that nP ∼ E). By Lemma 5, h ≤ g and zh|Cr(z). Since
ψn(x, y) 6= 0 by assumption, nP 6∈ Θ by Lemma 6. Therefore, by definition, E
contains exactly g finite points.

Since
Cr(z) = (Ar −Br

√
E(z))/zr

and zh|Cr we have that Ar(z) − Br(z)
√
E(z) is divisible by zr+h. Since the

formal series
√
E(z) is taken so that the constant coefficient is (−1)g+1y, we

have
P0 = (0, (−1)g+1y)

as a zero of Ar(z) − Br(z)Y
′ with order r + h. Furthermore recall that the

number of zeroes of Ar(z)−Br(z)Y ′ is r+g. Hence

0 ∼ div(Ar(z)−Br(z)Y ′) ∼ (r + h)[P0] +D − (r + g)[∞], (3.29)

where D is a positive divisor with g − h finite points. Then

r(x, y) ∼ −h(x, y) +D − (g − h)[∞] ∼ h(x,−y) +D − (g − h)[∞], (3.30)

since −h(x, y) ∼ h(x,−y).

Finally, we are ready to prove Proposition 8.

Proof of Proposition 8. Let ψn−g 6= 0 and ψn+i = 0 for −g+ 1 ≤ i ≤ g− 1 then
ψn+g 6= 0 by Lemma 5. Next by Lemma 7 with g = h we have

(n− g)P ∼ g[w(P)]− g[∞]. (3.31)

36

3.4. NAIVE DIVISION POINT ALGORITHM 3. Division points

Adding gP = n[P]− g[∞] to both sides gives,

nP ∼ g[w(P)] + g[P]− 2g[∞] ∼ 0, (3.32)

since g[P] + g[w(P)]− 2g[∞] = div(X − x) is principal.

Conversely, assume nP = 0 in J(H). Then

(n− g)P ∼ −gP = −g[P] + g[∞] ∼ g[w(P)]− g[∞], (3.33)

where the last relation comes from adding g[P] + g[w(P)]− 2g[∞] ∼ 0.
Note that the right hand side of (3.33) is a reduced divisor with deg0 = g.

So since the reduced representative is unique, (n− g)P 6∈ Θ. Hence ψn−g 6= 0.
Furthermore, adding jP , where 1 ≤ j ≤ 2g − 1, to both sides in (3.33) gives

(n− g + j)P ∼ g[w(P)]− g[∞] + j[P]− j[∞]. (3.34)

If j ≥ g then
(n− g + j)P ∼ (j − g)[P]− (j − g)[∞]. (3.35)

Since j − g < 2g − g < g, (n− g + j)P ∈ Θ.
When j < g,

(n− g + j)P ∼ (g − j)[P]− (g − j)[∞], (3.36)

and so (n− g + j) ∈ Θ. This proves ψn+i = 0 for all −g + 1 ≤ i ≤ g − 1.

3.4 Naive division point algorithm

Algorithm 6 gives an efficient way to solve the torsion problem (Problem 1).
We next attempt the division point problem (Problem 2). First we give a naive
algorithm based on an exhaustive enumeration.

Recall that by Theorem 4 the Mumford pair (U, V) is defined over Fq iff
U(X), V (X) ∈ Fq[X]. Since there are only a finite number of polynomials in
Fq[X], the theorem gives us a way to enumerate all divisor classes in J(H)(Fq).

Algorithm 7. Let H be a hyperelliptic curve defined over Fq with genus g.
The following algorithm finds all n-division points J(H)[n](Fq).

1. Enumerate all Mumford pairs (U, V) with U, V ∈ Fq.

2. For each Mumford pair (U,V):

(a) Compute n(U, V) using Cantor’s algorithm (Algorithm 3).

(b) If n(U, V) = 0 in J(H) then record (U, V).

Proof. By Theorem 4 looping over the polynomials (U, V) such that U, V ∈
Fq[X] gives all divisors [D] ∈ J(H)(Fq). Since we simply check if nD = 0 this
gives the kernel.

For time complexity the essential part is how we implement Step 1.

The naive way to implement Step 1 is to loop over all pairs X,Y (not nec-
essarily Mumford) and check if (X,Y) is a valid Mumford pair. Choosing this
implementation, the conditions in Corollary 1 implies that Step 1 is given by:

37

3.4. NAIVE DIVISION POINT ALGORITHM 3. Division points

1. For all polynomial U, V ∈ Fq[X] with degU ≤ g and deg V < degU ,

(a) If U | f − V 2 then record (U, V) as a Mumford pair.

(b) Otherwise, continue.

Since we have q choices for each coefficient, the number of possible U is
O(qg+1). Since deg V < degU , for a given U , the number of possible V is
O(qg). So the above implementation has a time complexity of O(q2g+1).

In the next section we will derive a faster algorithm for finding valid Mumford
pairs (U, V) given a fixed U . However, even with this implementation we still
need to enumerate all U in Step 1. This means that Algorithm 7 is O(qg+1).

3.4.1 Finding V from U

Given a polynomial U(X) ∈ Fq[X] we seek the polynomials V (X) ∈ Fq[X] such
that (U(X), V (X)) is a Mumford pair. This is an essential step in the naive
algorithm. Furthermore, in the next section we will present a more sophisticated
algorithm, based on Cantor’s division polynomials, that gives a candidate list
of U -values (without corresponding V values).

Consider the general case g ≥ 1 for the moment. Let

U(X) =
k∏

i=1

(X − αi)ci , (3.37)

where k ≤ g and ci ≥ 1. Suppose that (U, V) is a Mumford pair. Then

the pair (U, V) represents the divisor
∑k
i=1 ci([(αi, βi)] − [∞]), where βi =

V (αi). In other words, U determines the x-coordinates and V determines the
y-coordinates.

Now consider a fixed U . Then by Theorem 3 there is a 1-1 correspondence
between polynomials V corresponding to U and reduced divisors of the form

D =
∑

i=1

ci([(αi, yi)]− [∞]) (3.38)

where yi are such that (αi, yi) ∈ H. It is easy to enumerate the divisors D with
x-coordinates αi. Indeed since we must have yi = ±

√
f(αi), we only need to

chose a sign for each yi.

It remains to give an algorithm to compute the inverse to the bijection in
Theorem 3. That is, for a given reduced D find the corresponding pair (U, V).
The algorithm is based on the proof of Theorem 13.5 in [19].

Equation (3.37) uniquely determines U from the x-values αi. Next we
need to construct a corresponding V such that (i) deg V < degU and (ii)
f − V 2 ≡ 0 (mod U).

Assume that we have a sequence of polynomials Vi(X) such that

(i) Vi(αi) = βi, and

(ii) V 2
i ≡ f (mod (x− αi)ci).

38

3.4. NAIVE DIVISION POINT ALGORITHM 3. Division points

Consider the system of congruences

V ≡ Vi (mod (X − αi)ci) (3.39)

for 1 ≤ i ≤ k. Then since the polynomials (X − αi)ci are mutually relatively
prime for 1 ≤ i ≤ k, the Chinese Remainder Theorem tells us that there exists
and unique solution V modulo (X − α1)c1 . . . (X − αk)ck = U . Then since the
solution is defined modulo U , we have deg V < degU . Furthermore

V ≡ Vi (mod (X − αi)ci), (3.40)

implies that,

1. V (αi) = βi, and,

2. f − V 2 ≡ f − V 2
i ≡ 0 (mod (X − αi)).

Then (2) with (ii) implies that for 1 ≤ i ≤ k,

f − V 2 ≡ 0 (mod (x− αi)ci). (3.41)

Thus f − V 2 ≡ 0 (mod U). Hence (U, V) is the Mumford pair representing D.

It remains to show how to construct the sequence {Vi} such that (i), (ii)
holds.

To simplify notation, let W = Vi, α = αi, β = βi and c = ci. If β = 0 then
by the assumption that D is reduced, we must have c = 1. Let W (X) = 0, then
since W 2(α) = f(α) = 0, we have f −W 2 ≡ f − 0 ≡ f ≡ 0 (mod (X − α)).

Assume that β 6= 0. We will inductively construct W (X). For 1 ≤ j ≤ c,
we will construct Wj(X) such that f −W 2

j ≡ 0 (mod (x − α)j). Then clearly
W = Wc.

Definition 15. Define sequences {Wj}cj=1, {kj}cj=2, and {Pj}cj=2 inductively
by

W1(X) = β, (3.42)

Wj+1(X) = Wj(X) + kj+1(X − α)j , for 1 ≤ j < c, (3.43)

where

Pj+1(X) =
(f −W 2

j)

(X − α)j
, (3.44)

kj+1 = Pj+1(α)/(2β). (3.45)

Proposition 16. Then for 1 ≤ j ≤ c,

f −W 2
j ≡ 0 (mod (x− α)j). (3.46)

And Pj(X) is a polynomial for 2 ≤ j ≤ c.

39

3.4. NAIVE DIVISION POINT ALGORITHM 3. Division points

Proof. Induction on j. Note that W1(X) = β implies W 2
1 (α) = β2 = f(α)

which yields f −W 2
j ≡ 0 (mod (x − α)j). By definition it follows that P2 is a

polynomial.
Assume the statement holds for Wj(X). Then it follows from (3.46) that

Pj+1 is a polynomial. Further, Pj+1(α) = 2kj+1β = 2kj+1Wj(α) implies that

Pj+1(X)− 2kj+1Wj ≡ 0 (mod (X − α)) (3.47)

Multiplying (3.47) with (X − α)j yields

f −W 2
j − 2kj+1Wj(X − α)j ≡ 0 (mod (X − α)j+1). (3.48)

But this means,

f −W 2
j+1 ≡ f −W 2

j − 2kWj(X − α)j − k2(X − α)2j (3.49)

≡ f −W 2
j − 2kWj(X − α)j ≡ 0 (mod (x− α)j+1). (3.50)

Algorithm 8. Let D =
∑k
i=1 ci([(αi, βi)] − [∞]) be a reduced divisor. Then

the following algorithm finds the corresponding Mumford pair (U, V).

1. Let U(X) =
∏k
i=1(X − αi).

2. For each 1 ≤ i ≤ k, compute Vi recursively using Definition 15.

3. Solve the system of congruences (3.39) using the Chinese Remainder The-
orem. Let V be the solution.

By permuting the signs of βi, this give us a way to generate the set of valid
V given a fixed U . For simplicity we will now only consider g = 2 and make the
idea more explicitly.

Recall that (U, V) ∈ J(H)(Fq) is equivalent to U, V ∈ Fq[X]. Further since
g = 2 we have degU ≤ 2. Based on the possible degrees of U we can classify U
in the following categories.

A. U(X) = 1

B. U(X) = X − α1,

C. U(X) = (X − α1)(X − α2) for α1 6= α2,

D. U(X) = (X − α1)2.

We describe an algorithm based on the above cases that takes as input a
U(X) ∈ Fq[X] and output the set of V such that (U(X), V (X)) is a Mumford
pair.

A

Since deg V < degU , the only possibility is V (X) = 0. Note that (1, 0) repre-
sents the neutral element.

40

3.4. NAIVE DIVISION POINT ALGORITHM 3. Division points

B

Note that V must be a constant since deg V < degU = 1. If f(α1) is a square
in Fq then let β1 = ±

√
f(α1) ∈ Fq. Then we have two (or one if β1 = 0)

possibilities, either V (X) = β1 or V (X) = −β1. If f(α1) is a non-square in Fq
we can still get a square root β1 ∈ Fq2 , but then D = [(α1, β1)] − [∞] is not
defined over Fq. Hence in this case there are no V .

C

The divisor D = [(α1, β1)] + [(α2, β2)] − 2[∞], for α1 6= α2, is defined over
Fq iff the Frobq(D) = D, where Frob is the Frobenius map. There are two
cases: (i) either Frobq([α1, β1]) = (α1, β1) and Frobq([α2, β2]) = (α2, β2), or,
(ii) Frobq([α1, β1]) = (α2, β2) and Frobq([α2, β2]) = (α1, β1).

Assume U(X) splits over Fq i.e. α1, α2 ∈ Fq. Recall that x ∈ Fq iff
Frobq(x) = x. From this we see that case (i) is equivalent to α1, α2 ∈ Fq. But
case (i) also implies that Frobq(β1) = β1 and Frobq(β2) = β2. Hence β1, β2 ∈
Fq. In other words, when U(X) splits over Fq we only need to look for βj =

±
√
f(αj) ∈ Fq. In this case we take K = Fq.
On the other hand if Fq is irreducible over Fq then α1, α2 ∈ Fq2 . Then

we are in case (ii) and β1, β2 ∈ Fq2 since Frobq2(βj) = Frobq(Frobq(βj)) = βj .

Hence we only need to look for βj = ±
√
f(αj) ∈ Fq2 . We take K = Fq2 .

Let β1 = ±
√
f(α1) ∈ K and β2 = ±

√
f(α2) ∈ K. Here we have 2 choices

of sign. For a given choice let V1(X) = β1 and V2(X) = β2. Then we need to
solve the system

V ≡ V1 ≡ β1 (mod (X − α1)) (3.51)

V ≡ V2 ≡ β2 (mod (X − α2)). (3.52)

Note that this is system over K[X] so a solution V might not lie in Fq[X].
However, if the solution V does lie in Fq[X], then (U(X), V (X)) is Mumford
pair representing a divisor defined over Fq.

D

Let D = [(α1, y1)] + [(α1, y2)] − 2[∞]. Then y2 = ±y1 but since the divisor is
reduced we must have y1 = y2, i.e. we can assume without loss of generality
that D = 2([(α1, β1)] − 2[∞]). Further note we can assume that (i) α1 ∈ Fq
and (ii) β1 6= 0 since y1 = 0 implies that D ∼ 0.

If f(α1) is not a square in Fq there is no V . If f(α1) is a square, we have

one choice of sign: β1 = ±
√
f(α1). Then by making Algorithm 8 explicit using

Definition 15,

V (X) = W2(X) = W1(X) + k2(X − α1) = β1 + k2(X − α1), (3.53)

where P2(X) = (f − β2
1)/(X − α1) and k2 = P2(α1)/(2β1).

Hence we get two V corresponding the choice of sign.

Algorithm 9. Let H a hyperelliptic curve of genus 2 over Fq. Given a poly-
nomial U(X) ∈ Fq[X] the above algorithm finds all V (X) ∈ Fq[X] such that
(U(X), V (X)) is a Mumford pair representing a divisor D ∈ J(H)(Fq).

41

3.5. CANTOR’S DIVISION POINT ALGORITHM 3. Division points

3.5 Cantor’s division point algorithm

Since division points and torsion points coincide when g = 1 we assume that
g ≥ 2.

3.5.1 Necessary condition

Let k ≤ g. We will derive a necessary condition for

D = (x1, y1) + (x2, y2) + · · ·+ (xk, yk),

being a division point. In general this will be k equations in two unknown
polynomials a(X), b(X) that must be satisfiable. When g = 2 this will turn
out to imply that two 2× 2 determinants vanish. From this we can compute a
candidate list of possible U . For each U we then compute all corresponding V
and then use Cantor’s algorithm to check if n(U(X), V (X)) = 0.

Note that since [n] is an homomorphism,

nD = n
(

(x1, y1) + · · ·+ (xk, yk)
)

=
(
n(x1, y1) + · · ·+ n(xk, yk)

)
. (3.54)

Substituting x = xi in Theorem 6, we get that n(xi, yi) is represented by the
pair (

δin

(xi −X
4y2
i

)
, εin

(xi −X
4y2
i

))
.

So nD = 0 in J(H) implies that the sum

k∑

i=1

(
δin

(xi −X
4y2
i

)
, εin

(xi −X
4y2
i

))
∼ 0.

This holds iff there is a function f ∈ F̄q(H) such that

div(f) =
k∑

i=1

(
δin

(xi −X
4y2
i

)
, εin

(xi −X
4y2
i

))
. (3.55)

By clearing denominators and using the relation Y 2 = F (X) we can assume
that f is on the form f = a(X) + b(X)Y , where a(X), b(X) are polynomials.

Assume we have such a(X), b(X). Then by Lemma 1(c),

(a(X) + b(X)Y)(a(X)− b(X)Y) = a(X)2 − b(X)2Y 2 = a(X)2 − b(X)2F (X)

has roots exactly the x-coordinates of (3.55). If ai is a zero of δin then by
assumption ai is a x-coordinate in (3.55) and therefore a zero of a(X) + b(X)Y .
Thus,

a(X)2 − b(X)2F (x) ≡ 0 (mod (X − ai)).
for all zeroes ai of δin. Hence, for 1 ≤ i ≤ k,

a(X)2 − b(X)2F (x) ≡ 0
(

mod δin

(xi −X
4y2
i

))
. (3.56)

42

3.5. CANTOR’S DIVISION POINT ALGORITHM 3. Division points

If this system is solvable then, by the Chinese Reminder Theorem, it has an
unique solution modulo

δ = lcm
1≤i≤k

(
δin

(xi −X
4y2
i

))
.

Since deg δin ≤ g, we have deg δ ≤ kg ≤ g2. So we can assume without loss of
generality that the solution to the system satisfies deg(a(X)2−b(X)2F (x)) ≤ g2.
This implies that 2 deg a(X) ≤ g2 and 2 deg b(X) ≤ g2 − 2g − 1.

But since (δin, ε
i
n) is a Mumford pair, Y = εin for all zeroes of δin. This proves

the following proposition.

Proposition 17. For k ≤ g let D =
∑k
i=1(xi, yi). If nD = 0 in J(H) then there

are polynomials a(X), b(X), not both identically zero, with 2 deg a(X) ≤ g2 and
2 deg b(X) ≤ g2 − 2g − 1 that satisfies

a(X) + b(X)εin

(xi −X
4y2
i

)
≡ 0

(
mod δin

(xi −X
4y2
i

))
(3.57)

for 1 ≤ i ≤ k.

Now consider the special case g = 2. Let D be a n-divison point. Then
either (i) k = 1, i.e. D = (x1, y1) is a n-torsion point or (ii) k = g = 2. Case (i)
is dealt with in Algorithm 6. We will now deal with case (ii).

The degree condition on b implies that b(X) = 0. Hence (3.57) implies that

δin

(xi −X
4y2
i

))
| a(X),

for i = 1, 2. Thus there are polynomials k1, k2 such that

a(X) = δ1
n

(x1 −X
4y2

1

)
k1,

a(X) = δ2
n

(x2 −X
4y2

2

)
k2.

That is,

δ1
n

(x1 −X
4y2

1

)
k1 = δ2

n

(x2 −X
4y2

2

)
k2. (3.58)

In other words, δ1
n and δ2

n are proportional.
By assumption,

(δ1
n, ε

1
n) + (δ2

n, ε
2
n) ∼ 0. (3.59)

Then since for any Mumford pair (U, V),

−(U, V) ∼ w((U, V)) = (U,−V),

it follows, since the Mumford representation is unique,

(δ1
n, ε

1
n) ∼ −(δ2

n, ε
2
n) ∼ (δ2

n,−ε2n). (3.60)

This implies that ε1n and ε2n are proportional.

43

3.5. CANTOR’S DIVISION POINT ALGORITHM 3. Division points

Let (∆1
n, E

1
n) and (∆2

n, E
2
n) be pairs corresponding to (δ1

n, ε
1
n), (δ2

n, ε
2
n) such

that ∆1
n,∆

2
n are monic (see remark in Theorem 6). Then

∆1
n = X2 + a1X + b1

and
∆2
n = X2 + a2X + b2,

where ai, bi are polynomials in xi, yi. Let

f1(x1, x2, y1, y2) =

∣∣∣∣
b1 b2
a1 a2

∣∣∣∣ (3.61)

The requirement that δ1
n, δ

2
n are proportional is then equivalent to f1 = 0. Sim-

ilarly let
E1
n = c1X + d1,

E2
n = c2X + d2,

and,

f2(x1, x2, y1, y2) =

∣∣∣∣
c1 c2
d1 d2

∣∣∣∣ . (3.62)

Similarly the requirement that ε1n, ε
2
n are proportional is equivalent to f2 = 0.

Proposition 18. In summary,

f1(x1, x2, y1, y2) = f2(x1, x2, y1, y2) = 0, (3.63)

is a necessary condition for n((x1, y1) + (x2, y2)) ∼ 0.

We will show that the condition (3.63) can reformulated as a polynomial
condition in the coefficients of U .

Proposition 19. Using the relations y2
1 = F (x1) and y2

2 = F (x2) we can rewrite
f1(x1, x2, y1, y2), f2(x1, x2, y1, y2) as polynomials h1(x1, x2), h2(x1, x2) in x1, x2

only.

Proof. It is enough to show fi(x1, x2,−y1, y2) = fi(x1, x2, y1, y2) and fi(x1, x2, y1,−y2) =
fi(x1, x2, y1, y2) for i = 1, 2

Let D′ = (x1,−y1) + (x2, y2). Then

nD′ ∼
(
δn

(x1 −X
4(−y1)2

)
, εn

(x1 −X
4y2

1

))
+
(
δn

(x2 −X
4y2

2

)
, εn

(x2 −X
4y2

2

))
(3.64)

Let f ′1(x1, x2, y1, y2), f ′2(x1, x2, y1, y2) denote the polynomials corresponding to
D′. Then f ′i(x1, x2, y1, y2) = fi(x1, x2,−y1, y2).

Because (−y1)2 = y2
1 , Equation (3.64) implies that D and D′ have the same

corresponding ∆, E. This means fi = f ′i . Hence

fi(x1, x2,−y1, y2) = fi(x1, x2, y1, y2) (3.65)

for i = 1, 2.
The proof of fi(x1, x2, y1,−y2) = fi(x1, x2, y1, y2) is exactly the same.

44

3.5. CANTOR’S DIVISION POINT ALGORITHM 3. Division points

Proposition 20. The polynomials h1(x1, x2), h2(x1, x2) are anti-symmetric.

Proof. We need to show hi(x2, x1) = −hi(x1, x2) for i = 1, 2.

Let D′ = (x2, y2) + (x1, y1) (opposite order) and let h′1(x1, x2), h′2(x1, x2)
be the h-polynomials corresponding to D′. Then h′i(x1, x2) = hi(x2, x1) by
definition (3.62). Further since switching two rows in matrix changes the sign,

h1(x2, x1) = h′1(x1, x2) =

∣∣∣∣
c2 c1
d2 d1

∣∣∣∣ = −
∣∣∣∣
c1 c2
d1 d2

∣∣∣∣ = −h1(x1, x2) (3.66)

A similar argument shows, h2(x2, x1) = −h2(x1, x2).

Since h1, h2 are anti-symmetric we can divide them by the Vandemonde
determinant (x1 − x2). Let

g1(x1, x2) = h1(x1, x2)/(x1 − x2),

g2(x1, x2) = h2(x1, x2)/(x1 − x2).

Then g1, g2 are symmetric polynomials in x1, x2.

We need to deal with any solutions we lose when dividing by x1 − x2.

Proposition 21. If D = (x1, y1) + (x2, y2) is an n-division point with x1 = x2

then D is a 2n-torsion point.

Proof. The only possibilities when x1 = x2 is (i) D = (x1, y1) + (x1, y1) =
2(x1, y1) or (ii) D = (x1, y1)+(x1,−y1) = 0. Clearly, we don’t lose any solution
in (ii). In (i) we have D = 2(x1, y1). Hence nD = 2n(x1, y1) = 0.

So our dichotomy splits into a trichotomy.

Proposition 22. Let D be a non-trivial n-division point. Then either

1. D = (x1, y1) is an n-torsion point,

2. D = 2(x1, y1) is a 2n-torsion point, or,

3. D = (x1, y1) + (x2, y2) with x1 6= x2.

We have already found an efficient algorithm for the torsion problem so it
only remains to find an algorithm for Case 3.

Recall that a symmetric polynomial can be rewritten in terms of elementary
symmetric polynomials. Let s0(x1, x2), s1(x1, x2) be the elementary symmetric
polynomials in x1, x2. Then write g̃1(t0, t1), g̃2(t0, t1) for polynomials such that
g̃1(s0(x1, x2), s1(x1, x2)) = g1(x1, x2) and g̃2(s0(x1, x2), s1(x1, x2)) = g2(x1, x2).

Let (U(X), V (X)) be the Mumford representation of D = (x1, y1)+(x2, y2).
Then by definition

U(X) = (X − x1)(X − x2) = X2 − s0X + s1.

So g̃1(s0, s1) = g̃2(s0, s1) = 0 are necessary conditions on the coefficients of
U(X). This means we can generate a candidate list of possible U(X) by finding
all elements a0, a1 ∈ Fq such that g̃1(a0, a1) = g̃2(a0, a1) = 0.

45

3.5. CANTOR’S DIVISION POINT ALGORITHM 3. Division points

Algorithm 10. Let H be a hyperelliptic curve of genus 2 defined over Fq. The
following algorithm finds a complete candidate list of n-divisors.

1. Calculate

δin

(xi −X
4y2
i

)
, εin

(xi −X
4y2
i

)
,

for i = 1, 2 using the formulas (3.23) and (3.24).

2. Calculate ∆i
n, E

i
n for i = 1, 2.

3. Compute f1(x1, x2, y1, y2), f2(x1, x2, y1, y2) by evaluating the determinants
in (3.61), (3.62).

4. Substitute the relation y2
1 = F (x1) and y2

2 = F (x2) to obtain h1(x1, x2)
and h2(x1, x2).

5. Compute g1(x1, x2), g2(x1, x2) by dividing with x1 − x2.

6. Determine g̃1(t0, t1), g̃2(t0, t1) using Gauss’ Algorithm [7].

7. For each i, j ∈ Fq
(a) If g1(i, j) = g2(i, j) = 0 record X2 − jX + i as a candidate.

For every U(X), V (X) in the candidate list, it is then a simple (and fast)
matter of testing if n(U(X), V (X)) = 0 using Cantor’s Algorithm (Algorithm
3). Since the candidate list is complete this gives us an algorithm for finding
the n-division points J(H)[n](Fq).

Computations suggest the following:

Conjecture 3. Let L be the candidate list generated in Algorithm 10. Then
|L| grows, on average, linearly with q. Also, for all curves,

|L| ≤ q + 1.

We summarize Cantor’s algorithm for finding n-divison points.

Algorithm 11. Let H be a hyperelliptic curve of genus 2 defined over Fq.
Then the following algorithm computes the n-division points J(H)[n](Fq).

1. Compute and record all n-torsion points using Algorithm 6.

2. Compute all 2n-torsion points (x1, y1). Record D = 2(x1, y1) as an n-
division point.

3. Compute a candidate list L of possible U(X) using Algorithm 10.

4. For each U(X) ∈ L:

(a) Compute all V (X) such that (U(X), V (X)) is a Mumford pair using
Algorithm 9.

(b) For each pair (U(X), V (X)):

i. Compute n(U(X), V (X)) using Cantor’s Algorithm (Algorithm
3). If

n(U(X), V (X)) = 0,

record the divisor (U(X), V (X)) as an n-division point.

46

4 Calculating #Hω
2 [N](Fq)

4.1 The moduli space Hω
2 [N]

We will now consider the moduli space Hω2 [N] where every hyperelliptic curve
comes with a marked k-rational Weierstrass point.

Definition 16. Let C be a hyperelliptic curve (Definition 2) of genus g defined
over k and let ω ∈ C(k) be a Weierstrass point. We call the pair (C,ω) a
hyperelliptic curve defined over k with Weierstrass point.

Remark. Recall that an elliptic curve is defined as a pair (E,O) where E is a
projective, smooth genus 1 curve defined over k and O ∈ C(k) is a point fixed
to be the origin. So even though hyperelliptic curves with Weierstrass point is a
special class of general hyperelliptic curves, the definition is somewhat natural.

We want morphism between hyperelliptic curves with Weierstrass point to
preserve the Weierstrass point.

Definition 17. Let Rg denote the category of H = (C,ω) hyperelliptic curves
of genus g defined over k̄ with Weierstrass point. The morphisms φ : (C,ω) →
(C ′, ω′) are morphisms φ : C → C ′ with the additional requirement that φ(ω) =
ω′.

Definition 18. For N ≥ 1 let Hωg [N] be the moduli space of pairs (H,D)
where H = (C,ω) ∈ Rg and D ∈ J(H) is a divisor with ord(D) = N . And the
isomorphisms between (H,D) and (H ′, D′) are given by isomorphisms φ : H →
H ′ such that the induced isomorphism

φ̂ : J(H)→ J(H ′)

D 7→ D′.
(4.1)

The k-rational points Hωg [N](k) are pairs (H,D) such that H is defined over
k and D ∈ J(H)(k).

Remark. Note that Hωg [N] consists of equivalence classes [H,D]k̄ where the k̄

subscript denotes that the isomorphisms φ are defined over k̄.
For further use we introduce the notation [H,D]k for the equivalence classes

of pairs (H,D) where the isomorphisms φ are defined over k.

Definition 19. With N fixed, define for a H ∈ Rg defined over k,

E(H) = {D ∈ J(H)/k | ord(D) = N} (4.2)

c(H) = |E(H)| . (4.3)

Now, for k = Fq and g = 2, we will use the aforementioned algorithm to
count the number of points in H2[N](Fq).

First, note that if N is odd then the division point algorithms allows us to
compute E(H), c(H) in the following way:

47

4.1. THE MODULI SPACE Hω2 [N] 4. Calculating #Hω2 [N](Fq)

Algorithm 12. For odd N = pe11 p
e2
2 . . . pekk , the following algorithm computes

E(H) and c(H).

1. Compute the set of N -division points J(H)[N](Fq) using Algorithm 11.

2. For each D ∈ J(H)[N](Fq),

(a) Loop over 1 ≤ i ≤ k.

For each i, compute (N/pi)D using Cantor’s Algorithm (Algorithm 3).
If (N/pi)D = 0 we discard D and continue the outer loop, otherwise
continue the inner loop.

(b) At this point we know D ∈ E(H).

Proof. Since ord(D) = N implies that nD = 0 the set of N -division points are
a complete candidate set. Further, if nD = 0 but ord(D) 6= N then ord(D) =
N ′ for some divisor N ′ 6= N of N . Since N ′ 6= N there exists a pi in the
prime decomposition of N such that pi - N . Hence N ′ | (N/pi) and therefore
(N/pi)D = 0.

Remark. If N is odd prime then c(H) = |J(H)[N](Fq)|.

Definition 20. Let
H2 = R2/ ∼=Fq

.

In other words, H2 denotes the Fq-isomorphism classes of R2.

Our starting point for computing the number of Fq-rational points onHω2 [N]
is the following theorem, based on a technique in [2].

Theorem 10.

|Hω2 [N](Fq)| =
∑

[H]∈H2

c(H)∣∣AutFq
(H)

∣∣ . (4.4)

Proof. To save space let k = Fq and k̄ = F̄q. Further let R denote the set of
H ∈ R2 defined over k.

Take a fixed pair Y = (H,P) ∈ R. Then the following identity holds.
See [10] or [12] for proof.

∑

[X]∈R/∼=k

X∼=k̄Y

1

|Autk(X)| = 1. (4.5)

Then, (4.5) implies that,

|Hω2 [N](Fq)| =
∑

[H,P]k̄

1 =
∑

[H,P]k̄

∑

[C,Q]k
(H,P)∼=k̄(C,Q)

1

|Autk(C,Q)| (4.6)

=
∑

[C,Q]k

1

|Autk(C,Q)| . (4.7)

48

4.2. REPRESENTATIVE POLYNOMIALS 4. Calculating #Hω2 [N](Fq)

It remains to prove

∑

[H,P]k

1

|Autk(H,P)| =
∑

[H]k

c(H)

|Autk(H)| . (4.8)

Note that G = Autk(H) acts on pairs (H,Q) ∈ R. It is clear (H,Q), (H,P)
lies in the same G-orbit iff [H,Q]k = [H,P]k. Further the stabilizer GP is all the
k-automorphisms fixing P , i.e. GP = Autk(H,P). Then by the Orbit-Stabilizer
theorem, |Autk(H)| = |G.P | |GP | . Hence,

∑

[H]k

c(H)

|Autk(H)| =
∑

[H]k

∑

P∈E(H)]

1

|Autk(H)| =
∑

[H]k

∑

P∈E(H)

1

|G.P | |GP |
(4.9)

=
∑

[E,P]k

1

|GP |
=
∑

[E,P]k

1

|Autk(H,P)| . (4.10)

Our next step is to rewrite (4.4) so we don’t need to explicitly compute the
automorphism groups.

Remark. We mention as a side note that it might be possible to calculate (4.4)
directly. For small genus there are (slow) algorithms based on certain invariants
that calculate the automorphism group. Moreover, for determining isomor-
phism classes when g = 2 there is a fast algorithm [13]. This functionality is
implemented in the software package Magma [3].

4.2 Representative polynomials

Definition 21. Let S = {f(x) ∈ Fq[x] | deg f = 2g + 1, f(x) square-free}.

Intuitively, we will find a complete set of representatives for S while control-
ling how much of the automorphism group ‘remains’.

Proposition 23. Let k be a field with char(k) 6= 2. For every f(x) ∈ S there
is a corresponding hyperelliptic curve Hf = (Cf ,∞) of genus g defined over k
with Weierstrass point. The curve is defined by the equation, Cf : y2 = f(x).

On the other hand, we have already stated that a hyperelliptic curve H =
(C,ω) with Weierstrass point admits a Weierstrass equation y2 = f(x) with
deg f = 2g+1. We also need to determine much choice there are when choosing
the Weierstrass equation. Compare with [14, Corollary 4.33] and [15, Proposi-
tion 1.2].

Proposition 24 (Proposition 1.2 in [15]). Let k be a field with char(k) 6= 2.
Let (C,ω) be a hyperelliptic curve with Weierstrass point defined over a field
k. Then there exists non-constant functions x, y ∈ k(C) sending ω to ∞ and
satisfying a Weierstrass equation

y2 = f(x),

49

4.2. REPRESENTATIVE POLYNOMIALS 4. Calculating #Hω2 [N](Fq)

where the polynomial f ∈ k[x] and deg f(x) = 2g+1. Further, such an equation
is unique up to variable change of the form,

y 7→ γy

x 7→ αx+ β.
(4.11)

where γ, α ∈ k∗ and β ∈ k.

Thus every hyperelliptic curve H = (C,ω) defined over k with Weierstrass
point is equal to Hf for some non-square polynomial f ∈ k[x] with deg f =
2g + 1.

For γ, α, β ∈ Fq with α, γ 6= 0, let G denote the group of transformations

y 7→ γy

x 7→ αx+ β.
(4.12)

Proposition 25. For the group G we have, |G| = q(q − 1)2.

Proof. There are q choices for β ∈ Fq and (q − 1)2 choices for γ, α ∈ F∗q .

For f ∈ S consider the equation y2 = f(x) and let the above G act on the

equation resulting in γ2y2 = f(αx+ β). That is, y2 = f(αx+β)
γ2 . This motivates

the following definition.

Proposition 26. For S and G as above the following holds.

(a) The group G acts on the set S. The action of g ∈ G on S is given by

g.f = (α, β, γ).f =
f(αx+ β)

γ2
.

(b) For constant k ∈ Fq and f ∈ S we have k(g.f) = g.(kf).

Proof. Clearly, (1, 0, 1).f = f(x+0)
1 = f . Further, let g1 = (α1, β1, γ1), g2 =

(α2, β2, γ2). Then the transformation g1g2 is given by

x
g27−→ α2x+ β2

g17−→ α2(α1x+ β1) + β2 = α1α2x+ (β2 + α2β1) (4.13)

y
g27−→ γ1y

g17−→ γ1γ2y (4.14)

Then,

(g1g2).f =
f(α1α2x+ β1 + α1β2)

(γ1γ2)2
. (4.15)

But on the other hand,

g1.(g2.f) = g1.
f(α2x+ β2)

γ2
2

=
f(α2(α1x+ β1) + β2

γ2
1γ

2
2

(4.16)

Hence (g1g2).f = g1.(g2.f). This proves G is an action on S.

50

4.2. REPRESENTATIVE POLYNOMIALS 4. Calculating #Hω2 [N](Fq)

For (b) we have by definition,

k(g.f) = k
a2g+1(αx)5 + · · ·+ a1(αx) + a0

γ2

=
ka2g+1(αx)5 + · · ·+ ka1(αx) + ka0

γ2

= g.(kf).

Proposition 27. Fix a Hf with f ∈ S. Then g = (α, β, γ) ∈ G induces an

isomorphism g∗ : Hf
∼−→ Hg.f . defined over Fq.

Proof. There exists a field isomorphism between the function fields F̄q(Hf), F̄q(Hg.f)
given by

1 7→ 1,

x 7→ αx+ β,

y 7→ γy.

But recall that there is an equivalence of categories between smooth, projec-
tive curves and functions fields. Hence there is a corresponding isomorphism
g∗ : Hf

∼−→ Hg.f .

Proposition 28. Hf1
∼=Fq Hf2 iff G.f1 = G.f2.

Proof. Proposition 24 proves the ‘if’ part.
Conversely, assume that G.f1 = G.f2. Then there is a g ∈ G such that

g.f1 = f2. Thus by Proposition 27 there is an isomorphism Hf1
∼=Fq

Hf2
.

Definition 22. Fix H1 ∈ Rωg and let

T (H1) = {ψ : H1
∼−→ H2 | H2 ∈ Rωg }.

Then there is a bijection Ψ: G→ T (H1) given by g 7→ g∗.

Proposition 29. Let Φ: Hg → S/G be the function given by

[Hf] 7→ G.f

Then Φ is well-defined and a bijection.

Proof. Proposition 28 implies that Φ is well-defined and injective and Proposi-
tion 23 implies that Φ is surjective.

Proposition 30. Let Gf denote the stabilizer of the action of G on S. Then
|Gf | = |Aut(Hf)|.

Proof. By definition, Gf = {g ∈ G | g.f = f}. ⊂ G. For any g ∈ Gf , the
induced isomorphism g∗ ∈ AutHf . Hence Ψ(Gf) ⊂ AutHf . Conversely, take
φ ∈ AutHf . Then by Definition 22 φ = g∗ for an element g ∈ G such that
g.f = f . Thus g ∈ Gf . This proves that Ψ(Gf) = Aut(Hf).

51

4.2. REPRESENTATIVE POLYNOMIALS 4. Calculating #Hω2 [N](Fq)

In conclusion, orbits of G corresponds to isomorphism classes and stabilizers
correspond to automorphism groups. This allows us to rewrite the sum (4.4)
using the Orbit-Stabilizer theorem.

∑

[H]∈H2

c(H)

|Aut(H)| =
∑

f∈S/G

c(Hf)

|Gf |
=

∑

f∈S/G

c(Hf) |G.f |
|G| (4.17)

But since c(H) only depends on the isomorphism class, this is equal to,

∑

f∈S

c(Hf)

|G| (4.18)

Equation (4.18) gives us a way to compute the original sum (4.4) without
knowing the automorphism groups. However, ideally, we don’t want to use
(4.18) directly since we need to invoke the division point algorithm for each
f ∈ S. We will study the effect of the action and subdivide S into different
classes to minimize the number of terms in the sum (i.e. calls to the division
point algorithm).

Proposition 31. Assume that Fq has characteristic different from 5. Let

f = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 ∈ S.
Then there is a representative

f ′ = b5x
5 + b3x

3 + b2x
2 + b1x+ b0 ∈ S,

i.e. without x4 term, such that f ′ ∈ G.f .
Furthermore, for a given f ′ ∈ S with b4 = 0 there are exactly q number of

f ∈ S such that f is represented by f ′.

Proof. If charFq 6= 5, the Tschirnhaus transformation T : x 7→ x − a4/(5a5)
makes the coefficient of x4 vanish. But this transformation is on the form given
in Proposition 24. Let t = (1, a4/4, 1) ∈ G be the group element corresponding
to T . Then f ′ = t.f has no x4 term, so f ′ = t.f is the representative we seek.

For the second part of the proposition let f ′ ∈ S be such that b4 = 0. Then
let g ∈ G be the transformation x′ = x + β, y′ = y for β ∈ Fq. Then, for each
β ∈ Fq, g.f ′ ∈ S is represented by f ′. Conversely, if f ∈ S is represented by f ′

then t.f = f ′. Taking g0 = (1,−a4/4, 1) ∈ G we see that

g0.f
′ = g0.(t.f) = (g0t).f = f.

Hence
{g.f ′ | g = (1, β, 1), β ∈ Fq}

are exactly the polynomials in S that is represented by f ′. Since there are q
choices for β, there are a total of q polynomials f ∈ S such that f is represented
by f ′.

Using Proposition 31 we can simplify the sum (4.18).

∑

f∈S

c(Hf)

|G| =
∑

f ′∈S
b4=0

q c(Hf ′)

|G| =
∑

f ′∈S
b4=0

q c(Hf ′)

q(q − 1)2
=
∑

f ′∈S
b4=0

c(Hf ′)

(q − 1)2
. (4.19)

Intuitively, we rigidify part of the group action G by requiring a4 = 0 for
the representatives. We make this statement more precise.

52

4.2. REPRESENTATIVE POLYNOMIALS 4. Calculating #Hω2 [N](Fq)

Definition 23. Let

S′ = {f = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 ∈ S | a4 = 0},

and
G′ = {(α, γ) | (α, 0, γ) ∈ G} ⊂ G.

Proposition 32. Then,

(a) G′ acts on the set S′.

(b) If g ∈ G such that g.S′ = S′ then g ∈ G′.

Proof. Let f ′1 = a5x
5 + a3x

3 + a2x
2 + a1x + a0 ∈ S′ and let g ∈ G be a

transformation with β = 0. Then

g.f ′1 =
1

γ2
(a5(αx)5 + a3(αx)3 + a2(αx)2a1(αx) + a0).

That is g.f ′1 ∈ S′. This proves (a).

Next let f ′2 ∈ S′. Then any g ∈ G with β 6= 0 gives a non-zero coefficient of
x4 in g.f ′1. Hence for any g ∈ G such that g.f ′1 = f ′2 we have β = 0. This proves
G′ is exactly the set fixing S′.

Now by Proposition 32(b), using Proposition 28 for the right equivalence,

G′.f ′1 = G′.f ′2 ⇐⇒ G.f ′1 = G.f ′2 ⇐⇒ Hf ′1
∼= Hf ′2 .

And further, by Proposition 32(b) and Proposition 30,

∣∣AutHf ′1

∣∣ =
∣∣∣G′f ′1

∣∣∣ .

Moreover, the requirement that β = 0 implies that

|G′| = (q − 1)2.

Roadmap. The idea is to divide S′ into different classes for which better
representatives can be found and hence minimize the number of terms in the
sum (4.19).

Proposition 33. Let

f = a5x
5 + a3x

3 + a2x
2 + a1x+ a0 ∈ S′ (4.20)

such that two consecutive coefficients ad, ad−1 in f are non-zero.
Let Af = add−1/a

d−1
d . Then if Af is a quadratic residue in Fq, the following

holds.

(a) There is an unique representative f ′ ∈ S′ with ad = ad−1 = 1 such that
f ∈ G′.f ′, and,

(b) for such f ′ ∈ S′, we have |G.f ′| = (q − 1)2/2.

53

4.2. REPRESENTATIVE POLYNOMIALS 4. Calculating #Hω2 [N](Fq)

Proof. We make the Ansatz g = (α, γ) ∈ G′ and solve for α, γ ∈ F∗q .
Letting g act on an arbitrary f ∈ S′ gives

g.f =
1

γ2
(a5α

5x5 + a3α
3x3 + a2α

2x2 + a1αx+ a0) (4.21)

We want

adα
d

γ2
= 1 (4.22)

ad−1α
d−1

γ2
= 1. (4.23)

Dividing (4.22) with (4.23) yields

ad
ad−1

α = 1 ⇐⇒ α =
ad−1

ad
(4.24)

Hence we have solved for α.
Plugging this in (4.22), (4.23) we get

add−1

ad−1
d

= γ2 (4.25)

By assumption Af = add−1/a
d−1
d is a quadratic residue in Fq. Hence we get two

solutions for γ (characteristic is not 2)

γ = ±
√
add−1

ad−1
d

(4.26)

But since for g1 = (α, γ), g2 = (α,−γ) we have g1.f = g2.f for all f ∈ S′, it
follows that there is an unique f ′ ∈ S′ with bd−1 = bd = 1 such that f ∈ G′.f ′.
Since we have no choice anywhere, f ′ is unique. This proves (a).

For (b) assume g = (α, γ) ∈ G′ such that g.f ′ = f ′. This holds iff

αd−1/γ2 = 1

αd/γ2 = 1.

This system holds iff α = 1 and γ = ±1. Thus g = (1,±1). Hence the stabilizer∣∣∣G′f ′
∣∣∣ = 2. Hence by the Orbit-Stabilizer Theorem, |G′.f ′| = (q−1)2

2 .

Proposition 34. Let d be an integer, 1 ≤ d ≤ 3. Take

f = a5x
5 + a3x

3 + a2x
2 + a1x+ a0

in S′ such that ad, ad−1 6= 0. Let r denote a fixed quadratic non-residue in Fq.
Then there exists an unique

f ′ = b5x
5 + · · ·+ xd + xd−1 + · · · ∈ S′

such that either

54

4.2. REPRESENTATIVE POLYNOMIALS 4. Calculating #Hω2 [N](Fq)

(i) f ∈ G′.f ′, or,

(ii) f ∈ G′.(rf ′).
Furthermore, as we go through all polynomials f ∈ S′ with ad, ad−1 6= 0, half
will fall in case (i) and half in case (ii).

Proof. Either Af = add−1/a
d−1
d is a quadratic residue or a non-residue in Fq.

The first implies (i) by Proposition 33. We show that Af being non-residue
implies (ii).

Let r ∈ F∗q be a quadratic non-residue and consider rf ∈ S′. Then

Arf =
add−1

ad−1
d

.

Note that r and add−1/a
d−1
d are non-residues by assumption. Then by quadratic

reciprocity, radd−1/a
d−1
d is a quadratic residue. Hence by Proposition 33, there

exists f ′ ∈ S′ with bd−1 = bd = 1 such that rf ∈ G′.f ′. We need to show
f ∈ G′.(rf ′).

Let g = (α0, γ0) ∈ G′ be such that g.f ′ = rf . Then using Proposition 26(b),

r2f = rrf = r(g.f ′) = g.(rf ′).

But by letting g′ = (1, r) we see g′.(r2f) = f . Hence f ∈ G′.(rf ′).
Now it remains to prove that exactly half of

{add−1/a
d−1
d | ad−1, ad ∈ F∗q} (4.27)

are residues.
Note that add−1/a

d−1
d is a residue iff both add−1, a

d−1
d are residues. Assume

first that d even. Then add−1 is always a residue, so add−1/a
d−1
d is a residue iff

ad−1
d is a residue. But since d − 1 is odd, ad−1

d is a residue iff ad is a residue.
Hence half of (4.27) are residues.

The case when d is odd follows similarly.

Proposition 35. Let r ∈ F∗q be a fixed quadratic non-residue. Let

f = a5x
5 + a3x

3 + a2x
2 + a1x+ a0 ∈ S′

with a0 6= 0.
Then, (a) there exists a non-unique

f ′ = b5x
5 + b3x

3 + b2x
2 + b1x+ 1 ∈ S′

such that either

(i) f ∈ G′.f ′, or,

(ii) f ∈ G′.(rf ′).
Furthermore:

(a) For each f there are q − 1 choices for f ′.

55

4.2. REPRESENTATIVE POLYNOMIALS 4. Calculating #Hω2 [N](Fq)

(b) As we go through f ∈ S′ with a0 6= 0 half will fall in case (i) and the other
half in case (ii).

(c) For each f ′ ∈ S′ with b1 = 1 we have |G′.f ′| = (q − 1)2/2.

Proof. (a) Either a0 is a quadratic residue or not. First assume that a0 is a
residue and take c ∈ F∗q such that c2 = a0. Then for g = (1, c) ∈ G′,

g.f =
1

c2
(a5x

5 + · · ·+ a0) = a5/a0x
5 + · · ·+ 1.

Hence we take f ′ = g.f .
On the other hand if a0 is a non-residue then ra0 is a residue by Quadratic

Reciprocity. So then rf = ra5x
5 + · · ·+ ra0 satisfies part (a) of the proposition.

Let f ′ be such that rf ∈ G′.f ′. Then by Proposition 26(b), r2f ∈ G′.(rf ′).
Since r2 is a residue, this implies that f ∈ G′.(rf ′).

(b) Let f ′ ∈ S′ with b0 = 1 be in the orbit of either f or rf . Then for each
α ∈ F∗q consider g = (α, 1) ∈ G′. Then ,

g.f ′ = b5(αx)5 + · · ·+ (αx) + 1

is another representative for f . Conversely, let f ′1, f
′
2 be representatives with

constant term 1. Then the transformation between them must preserve the
constant term. Then, f ′2 = g.f ′1 where g = (α, 1) for some α ∈ Fq. Hence there
are exactly q − 1 representatives f ′ for each f .

(c) By Quadratic Reciprocity exactly half of a0 ∈ F∗q are residues.

(d) Let f ′ ∈ S′ with b1 = 1. We show that |Gf ′ | = 1. For g = (α, γ) ∈ G′
assume g.f ′ = f ′. This holds iff α = 1 and γ = ±1, i.e. g = e.

Proposition 36. Let

f = a5x
5 + a3x

3 + a1x ∈ S′

with a1 6= 0. Then there exists a

f ′ = b5x
5 + b3x

3 + x ∈ S′

such that f ∈ G′.f ′.
Let Df denote the number of representatives f ′ for f . Then for all f ,

Df =

{
(q − 1)/4 if q ≡ 1(4)

(q − 1)/2 if q ≡ 3(4)
(4.28)

Furthermore, for each f ′ ∈ S′ with b1 = 1 and b2 = b0 = 0 we have

|G′.f ′| =
{

(q − 1)2/4 if q ≡ 1(4)

(q − 1)2/2 if q ≡ 3(4)
(4.29)

56

4.2. REPRESENTATIVE POLYNOMIALS 4. Calculating #Hω2 [N](Fq)

Proof. Since a1 6= 0 we can take α = 1/a1. Then for g = (α, 1) we have,

g.f = a5α
5x5 + · · ·+ a1αx = a5α

5x5 + · · ·+ x.

Hence we take f ′ = f.g.

Recall that if q ≡ 1(4) then (i) −1 is a residue, and (ii) −α is a residue for
every residue α ∈ F∗q . On the other hand if q ≡ 3(4) then (i) −1 is a non-residue,
and (ii) −α is a non-residue for every residue α ∈ F∗q .

We prove (4.28). Consider f ′ ∈ S′ with b1 = 1, b0 = 0. For quadratic
residues α ∈ F∗q there is a γ ∈ F∗q such that γ2 = α. For the transformation
g = (α, γ),

g.f ′ =
α5

γ2
a5x

5 +
α3

γ2
a3x

3 +
α

γ2
x =

α5

γ2
a5x

5 +
α3

γ2
a3x

3 + x.

So g.f ′ is another representative for f . Conversely, any map between represen-
tatives must preserve the linear coefficient, i.e. we require that α/γ2 = 1 ⇐⇒
γ2 = α. Thus {g.f ′} are exactly the representatives of f . Hence

Df =
∣∣{g.f ′ | α ∈ F∗q , α residue}

∣∣ .

First assume that q ≡ 1(4). Then −α ∈ F∗q is a residue. Let δ ∈ F∗q such
that δ2 = −α and let g′ = (−α, δ). Then

g′.f ′ =
−α5

δ2
a5x

5 +
−α3

δ2
+ x.

But
−α5

δ2
=
−α5

−α = α4 =
α5

γ2
,

and
−α3

δ2
=
−α3

−α = α2 =
α3

γ2
.

Hence g′.f ′ = g.f ′. So we are counting the representatives twice by counting
residues α ∈ F∗q . Hence Df = (q − 1)/4.

On the other hand for q ≡ 3(4), let α, α′ ∈ F∗q be residues such that α4 =
(α′)4 and α2 = (α′)2. Then since −α is not a residue, the only solution is α = α′.
This proves that g.f ′ are distinct for each residue α ∈ F∗q . Thus Df = (q−1)/2.

Let f ′ ∈ S′ with b1 = 1 ad b2 = b0 = 0 and consider the stabilizer G′f ′ .
Clearly, g = (1, 1) = e ∈ G′ fixes f ′. Assume that g.f ′ = f ′. Then equating
coefficients yields

α5

γ2
= 1 (4.30)

α3

γ2
= 1 (4.31)

α

γ2
= 1 (4.32)

Dividing (4.31) with (4.32) gives α2 = 1. So α = ±1. For α = 1 Equation
(4.32) implies that γ = 1. Hence this solution corresponds to g = (1,±1).

57

4.2. REPRESENTATIVE POLYNOMIALS 4. Calculating #Hω2 [N](Fq)

Setting α = −1 in (4.32) gives γ2 = −1. This equation is solvable iff −1 is a
quadratic residue. Hence for q ≡ 1(4) the transformations g = (−1,±γ) fixes f ′.

Thus in this case
∣∣∣G′f ′

∣∣∣ = 4. On the other hand if q ≡ 3(4) then g = (1,±1) are

the only transformations fixing f ′ so |G′.f ′| = 2. This proves Equation (4.29).

Definition 24. Let W be the union of the sets of in Table 4.1. We call W the
set of representatives.

Set Polynomials
WA f = a5x

5 + x3 + x2 + a1x+ a0; a5 ∈ F∗q , a1, a0 ∈ Fq
WB.1 f = a5x

5 + x2 + x+ a0; a5 ∈ F∗q , a1 ∈ Fq
WB.2 f = a5x

5 + a2x
2 + 1; a5, a2 ∈ F∗q

WC.1 f = a5x
5 + a3x

3 + x+ 1; a5, a3 ∈ F∗q
WC.2 f = a5x

5 + a3x
3 + 1; a5, a3 ∈ F∗q

WC.3 f = a5x
5 + a3x

3 + x; a5, a3 ∈ F∗q
WD.1 f = a5x

5 + x+ 1; a5 ∈ F∗q
WD.2 f = a5x

5 + 1; a5 ∈ F∗q
WD.3 f = a5x

5 + x; a5 ∈ F∗q
Table 4.1: Representative sets

We will prove the following theorem later.

Theorem 11. Let r ∈ Fq be a fixed quadratic non-residue. Then for each
f ∈ S′ there is a f ′ ∈ W such that either (i) f ∈ G′.f ′ or (ii) f ∈ G′.rf ′.
However in the case f ′ ∈WC.3 or f ′ ∈WD.3 we always have (i). More precisely,
for f ′ ∈ S′ define

d(f ′) =

{
f ′ if f ′ ∈WC.3 ∪WD.3

f ′, rf ′ otherwise.

The claim is that {d(f ′) | f ′ ∈ W} is a complete set of representatives for S′

w.r.t the action of G′.

a3, a2 6= 0 a3 = 0, a2 6= 0 a3 6= 0, a2 = 0 a3 = a2 = 0
Class A Class B Class C Class D

Table 4.2: A first classification into cases

We classify S′ into cases fixing as much of G′ as possible using Proposition
34, Proposition 35, and Proposition 36. Our first division into classes is as in
Table 4.2. Further we split the sum

∑

f∈S′

c(Hf)

(q − 1)2

in subsums corresponding to the classes. For I ∈ {A,B,C,D}, let

UI =
∑

f∈I

c(Hf)

(q − 1)2
.

58

4.2. REPRESENTATIVE POLYNOMIALS 4. Calculating #Hω2 [N](Fq)

We will split the cases and subsums further.

First, we need to make sure that G′ respects a division into classes based on
non-zero conditions on the coefficients.

Proposition 37. Take an arbitrary f = a5x
5 + a3x

3 + a2x
2 + a1x + a0 ∈ S′.

Further, let N(f) = {i ∈ N | ai 6= 0} be the index of the non-zero coefficients of
f and let Z(f) = {0, 1, 3, 5} −N(f) be the index of the zero coefficients. Then
for g ∈ G′, N(g.f) = N(f) and Z(g.f) = Z(f).

Proof. It is enough to prove N(g.f) = N(f).

Let g = (α, γ) ∈ G′ then

g.f =
α5

γ2
a5x

5 +
α3

γ2
a3x

3 +
α2

γ2
a2x

2 +
α

γ2
a1x+

1

γ2
a0.

Since αi/γ2ai 6= 0 ⇐⇒ ai 6= 0 the proposition follows.

Class A

Let f ∈ A then Proposition 34 implies that there exists an unique f ′ ∈WA such
that either (i) f ∈ G′.f ′ or (ii) f ∈ G′.rf ′. From this Theorem 11 is proved for
f ∈ A. Further, for a representative f ′ ∈WA the f ∈ G′.f ′ ⊂ A are exactly the
f ∈ A having normal form f ′. So by uniqueness of the representative,

UA =
∑

f∈A

c(Hf)

(q − 1)2
=

∑

f ′∈WA

|G′.f ′| c(Hf ′)

(q − 1)2
+
∑

f ′∈WA

|G′.f ′| c(Hrf ′)

(q − 1)2
.

But by Proposition 33, 34 we have |G′.f ′| = |G′.rf ′| = (q − 1)2/2. Hence,

UA =
∑

f∈WA

c(Hf)

2
+
∑

f∈WA

c(Hrf)

2
. (4.33)

Class B

Class B
a3 = 0, a2 6= 0

Class B.1
a1 6= 0

Class B.2
a1 = 0

Figure 4.1: Further classification of Class B

If f ∈ B.1 then using a similar argument as for the Class A case proves
Theorem 11 for f ∈ B.1 and yields,

UB.1 =
∑

f∈WB.1

c(Hf)

2
+

∑

f∈WB.1

c(Hrf)

2
. (4.34)

59

4.2. REPRESENTATIVE POLYNOMIALS 4. Calculating #Hω2 [N](Fq)

On the other hand assume f ∈ B.2, i.e. f = a5x
5 + a2x

2 + a0. Then since
f is by assumption separable we can assume without loss of generality that
a0 6= 0. Then by Proposition 35 there exists a normal form f ′ ∈WB.2 such that
either (i) f ∈ G′.f ′ or (ii) f ∈ G′.f ′. This proves Theorem 11 for f ∈ B.2. For
f ′ ∈ WB.2 the f ∈ G′.f ′ ⊂ B.2 are exactly the f ∈ B.2 with normal form f ′.
But since every f ∈ B.2 has q − 1 representatives on normal form, we need to
divide the sum with q − 1. Hence,

UB.2 =
∑

f∈B.2

c(Hf)

(q − 1)2
=

∑

f ′∈WB.2

|G′.f ′| c(Hf ′)

(q − 1)(q − 1)2
+

∑

f ′∈WB.2

|G′.f ′| c(Hrf ′)

(q − 1)(q − 1)2
.

Then since |G′.f ′| = (q − 1)2/2,

UB.2 =
∑

f∈WB.2

c(Hf)

2(q − 1)
+

∑

f∈WB.2

c(Hrf)

2(q − 1)
. (4.35)

Class C

Class C
a3 6= 0, a2 = 0

Class C.1
a1, a0 6= 0

Class C.2
a1 = 0, a0 6= 0

Class C.3
a1 6= 0, a0 = 0

Figure 4.2: Further classification of Class C

If f ∈ C.1 then two consecutive coefficients are non-zero. So we can use the
same argument as in Class A to prove Theorem 11 and,

UC.1 =
∑

f∈WC.1

c(Hf)

2
+

∑

f∈WC.1

c(Hrf)

2
. (4.36)

If f ∈ C.2 then we can use Proposition 35 similar to Class B.2 to prove,

UC.2 =
∑

f∈WC.2

c(Hf)

2(q − 1)
+

∑

f∈WC.2

c(Hrf)

2(q − 1)
. (4.37)

Let f ∈ C.3, i.e. f = a5x
5 + a3x

3 + a1x. Note that since f is assumed
separable, we can assume without loss of generality that a1 6= 0. Hence f is
of the form required by Proposition 36. So there exists a f ′ ∈ WC.3 such that
f ∈ G′.f ′. Further each f ′ ∈WC.3 corresponds exactly to the f ∈ G′.f ′ ⊂ C.3.

First assume that q ≡ 1(4). Then |G′.f ′| = (q−1)2/4 and there are (q−1)/4
choices for normal form of f ∈WC.3. Hence,

UC.3 =
∑

f∈C.3

c(Hf)

(q − 1)2
=

∑

f ′∈WC.3

|G′.f ′| c(Hf ′)

(q − 1)2

4

q − 1

=
∑

f ′∈WC.3

c(Hf ′)

(q − 1)2

(q − 1)2

4

4

q − 1
=

∑

f ′∈WC.3

c(Hf ′)

q − 1
.

60

4.3. THE ALGORITHM 4. Calculating #Hω2 [N](Fq)

On the other hand if q ≡ 3(4) then |G′.f ′| = (q−1)2/2 and there are (q−1)/2
choices for normal form of f ∈WC.3. Hence,

UC.3 =
∑

f∈C.3

c(Hf)

(q − 1)2
=

∑

f ′∈WC.3

2 |G′.f ′| c(Hf ′)

(q − 1)2(q − 1)
=

∑

f ′∈WC.3

c(Hf ′)

q − 1
.

Thus, in both cases,

UC.3 =
∑

f∈WC.3

c(Hf)

q − 1
. (4.38)

Class D

Class D
a3 = a2 = 0

Class D.1
a1, a0 6= 0

Class D.2
a1 = 0, a0 6= 0

Class D.3
a1 6= 0, a0 = 0

Figure 4.3: Further classification of Class D

For D.1 we have two consecutive coefficients non-zero. Then a similar argu-
ment as in the Class A case proves,

UD.1 =
∑

f∈WD.1

c(Hf)

2
+

∑

f∈WD.1

c(Hrf)

2
. (4.39)

For D.2 an argument similar to the B.2 case proves,

UD.2 =
∑

f∈WD.2

c(Hf)

2(q − 1)
+

∑

f∈WD.2

c(Hrf)

2(q − 1)
. (4.40)

Finally, the D.3 case is proved in the same way as the C.3 case. Thus,

UD.3 =
∑

f∈WD.3

c(Hf)

q − 1
. (4.41)

4.3 The algorithm

Let

U = UA + UB.1 + UB.2 + UC.1 + UC.2 + UC.3 + UD.1 + UD.2 + UD.3,

where the subsums Ui are given by the equations (4.33) - (4.41).

Proposition 38. For the set W of representatives we have

|W | ≤ q3 + 4q2 − 6q + 1.

61

4.3. THE ALGORITHM 4. Calculating #Hω2 [N](Fq)

q #terms Q(q)
3 67 86
7 831 954
11 3193 3390
13 5043 5436
17 10979 11664
19 15231 16038
23 26579 27786
29 52475 54348

Table 4.3: Number of terms in U depending on q

Furthermore, let u denote the number of terms in the sum U and let

Q(q) = 2q3 + 7q2 − 11q + 2.

Then,
u ≤ Q(q).

Proof. Consider Table 4.1. We give an upper bound by considering all polyno-
mials (including non-separable) of the form in column two. However note that
the set W does not contain non-singular polynomials.

For Class A we have q2(q − 1) choices for the coefficients. For B.1 we have
q(q − 1) choices and for B.2 we have (q − 1)2 choices. For any subclass of C,D
we have (q − 1)2 and (q − 1) respectively. Hence,

|W | ≤ q2(q − 1) + q(q − 1) + (q − 1)2 + 3(q − 1)2 + 3(q − 1)

= q3 + 4q2 − 6q + 1.

Consider the subsums Ui. Note that for ClassesA,B.1, B.2, C.1, C.2, D.1, D.2
we have two terms for each representative f ′ and for Classes C.3, D.3 only a
single term for each representative. Hence,

u ≤ 2q2(q − 1) + 2q(q − 1) + 2(q − 1)2 + 5(q − 1)2 + 5(q − 1)

= 2q3 + 7q2 − 11q + 2

Remark. Table 4.3 shows the true number of terms in U versus the polynomial
Q(q). The difference comes from non-separable polynomials counted by Q but
not included in W . But since the majority of polynomials will be separable, the
polynomial Q gives a pretty tight bound.

Finally, we state the algorithm for counting rational points on the moduli
space Hω2 [N].

Algorithm 13. Let r be a fixed quadratic non-residue in Fq. The following
algorithm will generate a set L of tuples (f, b, w) such that

|Hω2 [N](Fq)| =
∑

(f,b,w)∈L
t(f, b, w), (4.42)

62

4.3. THE ALGORITHM 4. Calculating #Hω2 [N](Fq)

where t is the function

t(f, b, w) =

{
1
w c(Hf) if b False
1
w (c(Hf) + c(Hrf)) if b True

(4.43)

Note that f denotes a representative polynomial, b is a flag signifying if we have
the non-residue case in the sum and w is a weight.

The following steps will generate L where each step corresponds to a class
in Table 4.1.

A. For all (a5, a1, a0) ∈ F∗q ×Fq ×Fq, let

f = a5x
5 + x3 + x2 + a1x+ a0,

and return (f,True, 1/2) if disc(f) 6= 0.

B. (1) For all (a5, a0) ∈ F∗q ×Fq, let

f = a5x
5 + x2 + x+ a0,

and return (f,True, 1/2) if disc(f) 6= 0.

(2) For all (a5, a2) ∈ F∗q ×F∗q , let

f = a5x
5 + a2x

2 + 1,

and return (f,True, 1/2(q − 1)) if disc(f) 6= 0.

C. (1) For all (a5, a3) ∈ F∗q ×F∗q , let

f = a5x
5 + a3x

2 + x+ 1,

and return (f,True, 1) if disc(f) 6= 0.

(2) For all (a5, a3) ∈ F∗q ×F∗q , let

f = a5x
5 + a3x

3 + 1,

and return (f,True, 1/2(q − 1)) if disc(f) 6= 0.

(3) For all (a5, a3) ∈ F∗q ×F∗q , let

f = a5x
5 + a3x

3 + x,

and return (f,False, 1/(q − 1)) if disc(f) 6= 0.

D. (1) For all a5 ∈ F∗q , let

f = a5x
5 + x+ 1,

and return (f,True, 1/2) if disc(f) 6= 0.

(2) For all a5 ∈ F∗q , let

f = a5x
5 + 1,

and return (f,True, 1/2(q − 1)) if disc(f) 6= 0.

(3) For all a5 ∈ F∗q , let

f = a5x
5 + x,

and return (f,False, 1/(q − 1)) if disc(f) 6= 0.

See Appendix B for an example of the output of this algorithm.

63

4.4. NOTES ABOUT THE IMPLEMENTATION4. Calculating #Hω2 [N](Fq)

4.4 Notes about the implementation

As part of this project, Algorithm 13 for calculating #Hωw[N](Fq) was imple-
mented in Sage/Python. The author’s implementation of the algorithms in this
paper is available as a GitHub repository.1

The results of the computations are presented in Tables 1.1. The computa-
tions took weeks on a computer with Intel(R) Core(TM) i7 950 CPU and 19,6
GB of RAM.

Naive division point algorithm vs Cantor’s division point algorithm

When calculating |Hω2 [N](Fq)| using Algorithm 13 we have two options for
determining c(H): either, Cantor’s division point algorithm or the naive algo-
rithm. In practice, it turns out that the naive algorithm is actually faster than
Cantor’s division point algorithm. However, the torsion algorithm (Algorithm
6) can be useful in application where we are interested in torsion points rather
than division points.

Another property detrimental to Cantor’s division algorithm is that it’s time
complexity with respect to N grows fast. The naive algorithm seem to have nicer
asymptotic behavior with respect to N . This is not surprising since the number
of Mumford pairs (U, V) only depends on q (and the genus).

Overall, when computing |Hω2 [N](Fq)|, the biggest hurdle is the sheer num-
ber of curves (i.e. number of terms in the sum U , c.f. Proposition 38 and Table
4.3). So we require significant speed-ups to be able to continue calculations for
bigger q in a reasonable amount of time.

Possible improvements of Cantor’s division point algorithm

The performance of Cantor’s division algorithm can probably be improved with
a better implementation. Our implementation follows the presentation in Chap-
ter 3 closely. It uses symbolic manipulations and then reduces modulo p to get
a polynomial in Fq[x]. Instead of working with symbolic expressions in char-
acteristic 0, it would be preferable to work with multivariate polynomials in
characteristic p.

The most time intensive part of Cantor’s division algorithm is Case 3 (Propo-
sition 22). Instead of deriving necessary conditions on the coefficients on U(X)
it might be faster to solve the polynomial equation system in Proposition 17
directly using Gröbner basis algorithms.

1https://github.com/neural99/cantor-division-polynomials/

64

Bibliography

[1] G.A. Baker and P.R. Graves-Morris. Padé Approximants. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1996.

[2] Jonas Bergström. Equivariant counts of points of the moduli spaces of
pointed hyperelliptic curves. Documenta Mathematica, 14:259–296, 2009.

[3] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra
system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997.
Computational algebra and number theory (London, 1993).

[4] David G Cantor. Computing in the jacobian of a hyperelliptic curve. Math-
ematics of computation, 48(177):95–101, 1987.

[5] David G Cantor. On the analogue of the division polynomials for hyperellip-
tic curves. Journal fur die reine und angewandte Mathematik, 447:91–146,
1994.

[6] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Ver-
cauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Dis-
crete Mathematics and Its Applications. CRC Press, 2005.

[7] David Cox, John Little, and Donal O’shea. Ideals, varieties, and algo-
rithms, volume 3. Springer, 1992.

[8] The Sage Developers. Sage Mathematics Software (Version x.y.z), YYYY.
http://www.sagemath.org.

[9] F. Diamond and J. Shurman. A First Course in Modular Forms. Graduate
Texts in Mathematics. Springer, 2005.

[10] Gerard Van Der Geer and Marcel Van Der Vlugt. Supersingular curves of
genus 2 over finite fields of characteristic 2. Mathematische Nachrichten,
159(1):73–81, 1992.

[11] K. Ireland and M.I. Rosen. A Classical Introduction to Modern Number
Theory. Graduate Texts in Mathematics. Springer, 1990.

[12] Nicholas M Katz and Peter Sarnak. Random matrices, Frobenius eigenval-
ues, and monodromy, volume 45. American Mathematical Soc., 1999.

[13] Reynald Lercier, Christophe Ritzenthaler, and Jeroen Sijsling. Fast com-
putation of isomorphisms of hyperelliptic curves and explicit galois descent.
The Open Book Series, 1(1):463–486, 2013.

[14] Q. Liu. Algebraic Geometry and Arithmetic Curves. Oxford graduate texts
in mathematics. Oxford University Press, 2002.

[15] P. Lockhart. On the discriminant of a hyperelliptic curve. Trans. Amer.
Math. Soc., 342(2):729–752, feb 1994.

65

BIBLIOGRAPHY BIBLIOGRAPHY

[16] James S. Milne. Abelian varieties (v2.00), 2008. Available at
www.jmilne.org/math/.

[17] James S. Milne. Modular functions and modular forms (v1.30), 2012. Avail-
able at www.jmilne.org/math/.

[18] J.H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in
Mathematics. Springer, 2009.

[19] L.C. Washington. Elliptic Curves: Number Theory and Cryptography, Sec-
ond Edition. Discrete Mathematics and Its Applications. CRC Press, 2008.

66

Appendices

67

A Examples of division polynomials ψn

n ψn
0 0
1 0
2 0
3 1

4 8
(
x7 + x2 + 1

) 3
2

5 35x24 + 280x19 + 1624x17 − 1920x14 − 6888x12 − 8176x10 + 960x9 + 3552x7

+3808x5 + 2240x3 + 64x2 − 16
6 16 (7x29 + 378x24 + 4536x22 − 9408x19 − 43064x17 − 58464x15 + 11328x14

+49392x12 + 72576x10 − 768x9 + 51968x8 − 2880x7 − 7056x5 − 4032x3

+128x2 − 2688x− 96)
(
x7 + x2 + 1

) 3
2x

7 294x60 + 90552x55 + 1558200x53 − 4540368x50 − 22618792x48 − 43267392x46

−7182336x45 − 72610944x43 − 311235456x41 + 11630080x40 − 389252864x39

+147399168x38 + 382940096x36 − 66241536x35 + 212583168x34 − 546846720x33

+104579328x32 − 2056006400x31 + 17170432x30 − 4765603584x29

+209044480x28 − 5715598336x27 + 1084823040x26 − 2783271936x25

+2202520320x24 − 386629632x23 + 1851745280x22 − 1428774912x21

+612577280x20 − 2979809280x19 + 176885760x18 − 4193064960x17

−115286016x16 − 4034752512x15 − 226443264x14 − 2274148352x13

−229859840x12 − 569589760x11 − 174354432x10 + 3309568x9 − 127045632x8

−2476032x7 − 67436544x6 − 3999744x5 − 12861440x4 − 1261568x3 − 4096x2

−114688x− 2048
8 32 (21x72 + 27720x67 + 657888x65 − 2873640x62 − 18505760x60 − 63264768x58

−23339520x57 − 275413600x55 − 2044149184x53 − 72934400x52 − 4222556800x51

+915071520x50 + 4867721936x48 − 1750325248x47 + 3055555328x46

−17304698880x45 + 1501491712x44 − 73235185408x43 + 980305920x42

−181840834560x41 + 12279156736x40 − 236482598912x39 + 65364463360x38

−125828702208x37 + 158301513216x36 − 25741660160x35 + 192538157056x34

−112900702208x33 + 135594432512x32 − 286863768576x31 + 58792357888x30

−486940805120x29 − 5483782144x28 − 541795065856x27 − 9612180480x26

−348065693696x25 − 12762579200x24 − 106924556288x23 − 27868442624x22

−13720092672x21 − 38019153920x20 − 24301426688x19 − 22792749056x18

−30488944640x17 − 2526363648x16 − 30466670592x15 − 243156992x14

−23103406080x13 − 778846208x12 − 10448994304x11 − 529858560x10

−2161246208x9 − 167247872x8 + 19013632x7 − 54198272x6 + 8142848x5

−42205184x4 − 229376x3 − 7364608x2 − 262144x− 4096)
(
x7 + x2 + 1

) 3
2

Table A.1: Division polynomials ψn for the curve y2 = x7 + x2 + 1

68

A. Examples of division polynomials ψn

n ψn
0 0
1 0
2 1
3 4

(
x4 − x3 + x2 − x+ 1

)
(x+ 1)

4 10
(
x5 − 4

)2
x2

5 20
(
x10 − 108x5 + 16

)(
x5 − 4

)(
x4 − x3 + x2 − x+ 1

)
(x+ 1)x

6 5
(
7x20 − 4872x15 − 7408x10 − 12672x5 − 768

)(
x5 − 4

)2
x2

7 8 (7x40 − 22344x35 + 224896x30 − 9451008x25 + 170240x20 − 57028608x15

−3272704x10 − 4767744x5 − 32768)
(
x4 − x3 + x2 − x+ 1

)
(x+ 1)

8 84x60 − 981792x55 − 8072256x50 − 5136395520x45 − 9367057920x40

−90223337472x35 − 114657705984x30 − 117268611072x25 − 155547729920x20

−229528043520x15 − 38803603456x10 + 1686110208x5 − 16777216
9 120 (x60 − 36688x55 − 4458384x50 − 1658593280x45 − 18198906880x40

−157336670208x35 − 345653886976x30 − 471787716608x25 − 137167994880x20

−3177185280x15 + 20634402816x10 + 956301312x5 − 25165824)
(
x5 − 4

)2
(
x4 − x3 + x2 − x+ 1

)
(x+ 1)x2

10 5 (33x90 − 3375036x85 − 1711423536x80 − 1004715154752x75

−16454837809920x70 + 107245196473344x65 + 8625335817756672x60

+45127976765325312x55 + 129275034097025024x50 + 177878883340124160x45

+112684530311102464x40 − 21097774263042048x35 − 120707800543264768x30

−113963990249373696x25 − 31192453658705920x20 − 1612226569961472x15

−294252504416256x10 + 13761075216384x5 − 137438953472)
(
x5 − 4

)
x

11 20 (11x100 − 2849880x95 − 4687088560x90 − 4736403754560x85

−228260548980480x80 + 8318978192722944x75 + 539433596351938560x70

+4633662928140779520x65 + 19543192767179653120x60

+44163514993394319360x55 + 105048907680124502016x50

+192921432429963509760x45 + 215770750752883998720x40

+104480531283884113920x35 + 24139882138079068160x30

+6825760756013727744x25 + 4975917911056056320x20

+581389708311920640x15 − 9399793625333760x10 + 2585226714808320x5

+12094627905536)
(
x5 − 4

)2(
x4 − x3 + x2 − x+ 1

)
(x+ 1)x2

12 286x140 − 173476592x135 − 783432002592x130 − 1386703609201664x125

−178473610832230400x120 + 19420141440911278080x115

+1337537876751441264640x110 + 5775492980719979069440x105

−70211475056340534558720x100 + 570541603890434827878400x95

+12214411860600600615976960x90 + 31700306704971426410004480x85

+71336210739921187168583680x80 + 342110600164855061948661760x75

+1182057089086649162897817600x70 + 2075789928293154565138677760x65

+2009314878073796352991559680x60 + 1241067977133844114943508480x55

+883346574302886168058920960x50 + 1010816491486338401855078400x45

+835729572546537590127329280x40 + 318007660009052542798397440x35

+46576321773027950476656640x30 + 2481806824910507558830080x25

−386086108820092118630400x20 + 108841941951977342631936x15

+2288945503411799851008x10 + 139827761230599159808x5 + 72057594037927936

Table A.2: Division polynomials ψn for the curve y2 = x5 + 1

69

B Example output of Algorithm 13

Polynomial c Class w
x5 + x3 + x2 + 2 2 A 1/2
2x5 + 2x3 + 2x2 + 1 0 A 1/2
x5 + x3 + x2 + x 0 A 1/2
2x5 + 2x3 + 2x2 + 2x 0 A 1/2
x5 + x3 + x2 + x+ 1 0 A 1/2
2x5 + 2x3 + 2x2 + 2x+ 2 0 A 1/2
x5 + x3 + x2 + x+ 2 0 A 1/2
2x5 + 2x3 + 2x2 + 2x+ 1 0 A 1/2
x5 + x3 + x2 + 2x 0 A 1/2
2x5 + 2x3 + 2x2 + x 2 A 1/2
x5 + x3 + x2 + 2x+ 2 0 A 1/2
2x5 + 2x3 + 2x2 + x+ 1 2 A 1/2
2x5 + x3 + x2 + 1 2 A 1/2
x5 + 2x3 + 2x2 + 2 0 A 1/2
2x5 + x3 + x2 + x+ 1 0 A 1/2
x5 + 2x3 + 2x2 + 2x+ 2 2 A 1/2
2x5 + x3 + x2 + x+ 2 0 A 1/2
x5 + 2x3 + 2x2 + 2x+ 1 2 A 1/2
2x5 + x3 + x2 + 2x 0 A 1/2
x5 + 2x3 + 2x2 + x 0 A 1/2
2x5 + x3 + x2 + 2x+ 1 0 A 1/2
x5 + 2x3 + 2x2 + x+ 2 0 A 1/2
2x5 + x3 + x2 + 2x+ 2 0 A 1/2
x5 + 2x3 + 2x2 + x+ 1 0 A 1/2
x5 + x2 + x 0 B.1 1/2
2x5 + 2x2 + 2x 0 B.1 1/2
x5 + x2 + x+ 1 0 B.1 1/2
2x5 + 2x2 + 2x+ 2 0 B.1 1/2
x5 + x2 + x+ 2 0 B.1 1/2
2x5 + 2x2 + 2x+ 1 0 B.1 1/2
2x5 + x2 + x 0 B.1 1/2
x5 + 2x2 + 2x 2 B.1 1/2
2x5 + x2 + x+ 1 0 B.1 1/2
x5 + 2x2 + 2x+ 2 2 B.1 1/2

Polynomial c Class w
x5 + 1 0 B.2 1/4
2x5 + 2 0 B.2 1/4
x5 + x2 + 1 2 B.2 1/4
2x5 + 2x2 + 2 0 B.2 1/4
x5 + 2x2 + 1 0 B.2 1/4
2x5 + x2 + 2 2 B.2 1/4
2x5 + 1 0 B.2 1/4
x5 + 2 0 B.2 1/4
2x5 + x2 + 1 2 B.2 1/4
x5 + 2x2 + 2 0 B.2 1/4
2x5 + 2x2 + 1 0 B.2 1/4
x5 + x2 + 2 2 B.2 1/4
x5 + x3 + x+ 1 2 C.1 1/2
2x5 + 2x3 + 2x+ 2 2 C.1 1/2
2x5 + x3 + x+ 1 0 C.1 1/2
x5 + 2x3 + 2x+ 2 0 C.1 1/2
x5 + x3 + 1 0 C.2 1/4
2x5 + 2x3 + 2 0 C.2 1/4
x5 + 2x3 + 1 0 C.2 1/4
2x5 + x3 + 2 0 C.2 1/4
2x5 + x3 + 1 0 C.2 1/4
x5 + 2x3 + 2 0 C.2 1/4
2x5 + 2x3 + 1 0 C.2 1/4
x5 + x3 + 2 0 C.2 1/4
2x5 + x3 + x 0 C.3 1/2
2x5 + 2x3 + x 0 C.3 1/2
2x5 + x+ 1 0 D.1 1/2
x5 + 2x+ 2 0 D.1 1/2
x5 + 1 0 D.2 1/4
2x5 + 2 0 D.2 1/4
2x5 + 1 0 D.2 1/4
x5 + 2 0 D.2 1/4
x5 + x 2 D.3 1/2
2x5 + x 0 D.3 1/2

Table B.1: Output of algorithm 13 for N = 3, q = 3

70

