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Abstract

For elliptic curves it is well-known that the zeroes of the division polynomi-
als characterize the torsion points. Here we will instead consider hyperelliptic
curves and present two algorithms for finding the rational torsion points. The
first algorithm is a naive brute-force search. The second algorithm is based on
the Cantor division polynomials — a generalization of the classical division poly-
nomials to hyperelliptic curves. We focus mainly on hyperelliptic curves defined
over finite fields of genus 2.

As an application we will compute the number of IF-rational points on the
moduli space of hyperelliptic curves of genus 2 with marked Weierstrass point
and level N structure.
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1 Introduction

1.1 Background: Modular curves

The modular curves are curves that parametrize elliptic curves together with
some additional data (see for example [9]). In other words, each point on the
modular curve corresponds to an isomorphism class of elliptic curves, together
with additional data. In general, spaces that classifies some objects are called
moduli spaces (‘moduli’ is an old word for parameter). The interesting prop-
erty of moduli spaces is that they have both a ‘classifying structure’ and a
topological structure.

The ‘additional data’ we will consider here is an elliptic curve together with
a point of order N.

Definition 1. Let k be a field and consider pairs (E, P) where E is an elliptic
curve defined over k and P € E(k) with ord(P) = N. We define an equivalence
relation by (&, P) ~ (E’, P') iff there exists an isomorphism ¢: £/ — E’ defined
over k such that ¢(P) = P’. Let

SINI(k) = {(E, P)}/ ~ .
We will write [E, P] for the equivalence class of (E, P).

Remark. We stress that a priori, S1[N](k) is just a set of equivalence classes.

Modular curves as Riemann surfaces

Let N > 0 be an integer called the level and let

PNy = {(e4)eSta@) | (24)= (51) (mod M)},

where * denotes an arbitrary element in Z/NZ. Then I'; (N) acts on the complex
upper half plane H = {z € C | Imz > 0} as M&bius transformations, i.e.,

(¢ Dw=-2t

The orbit space Y1(N) = I';\IH can be given structure as a non-compact Rie-
mann surface. Compactifying this space by adding the so called cusps gives
the modular curve X;(N). Remarkably, ¥1(N) can be proven to be the moduli
space of pairs (E, P) in Definition 1 with &k = C. A little more precisely, there
is a natural bijection,

Y1(N)(C) «— Si[N](©).
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Algebraic modular curves

Modular curves can also be defined algebraically. Let £ = Q or k = IF; with
g =p" and p t N. From this algebraic perspective, X (V) is a complete algebraic
curve (variety of dimension 1) defined over k. Let,

Y1(N) = X1(N) — {cusps}.

Then Y;(N) becomes an affine algebraic curve defined over k. Furthermore,
there is similarly a natural bijection,

V() (k) < S1[N](B).
So it makes sense to talk about Y7 (NN) as a moduli space.

By an important theorem by Igusa [9, Theorem 8.6.1], for each prime p{ N,
we have good reduction of X;(N)/Q modulo p. Additionally, reducing modulo p
is compatible with the moduli structure defined in Definition 1. This intuitively

means, for p{ N,
X1(N)/Q (mod p) = X1(N)/Fp,

In other words, starting with & = Q and reducing modulo p gives the same
modular curve as starting with k =IF,,.

Now, to the global object X;1(NN) defined over @ we associate a so called
incomplete global zeta function (x,(n),q(s). Recall that this function is given
in terms of the local zeta functions for the reductions of X;(/N) modulo p (see
for example [11]). For p 1 N, let V, denote the reduction of X;(N) modulo p
and let (v, r, denote the corresponding local zeta function. Then,

Cx(v).q(s) = HCVP,FP(5)~ (1.1)
pIN

But by the discussion above we have V,, = X;(NN)/F,. Furthermore recall
that for ¢ = p” the local (x, (n),F, (s) is obtained by a coordinate change from

o0 um
Zx, () p, (0) = exp ( > Nmm>, (1.2)

m=1

where K, = #X1(N)(Fyn), i.e. the number of F,m-rational points on the
curve X (V) defined over IFy.

Next, suppose we can find #.51(N)(IFpm) for all prime p and m > 0. Then
adding the number of rational cusps will give us K,,, = #X1(N)(Fpm). From
this we determine (1.2) for each p and hence also the global zeta function (1.1).
Intuitively, we study the global object X;(N) over Q, corresponding to the
global moduli problem, by solving the local moduli problems at p™. This is one
motivation for computing #.S51(N)(F,) = #Y1(N)(F,).



1.1. BACKGROUND: MODULAR CURVES 1. Introduction

Number of I -rational points on Y7 (V)
Applying the Lefschetz-Grothendieck trace formula to X1 (V) yields,

\Xl(N)(Fqn)lzqnﬂLl—Za?, (1.3)

where {a;} € C are eigenvalues of the Frobenius map acting on the Euler
characteristic in ¢-adic étale cohomology. In particular, {c;} are independent
of n.

For modular curves there is a theory of so called Hecke operators (see for
example [17]) that connects the eigenvalues {«;} with certain modular forms
(complex analytic functions on H that respects the group action of T'y). Let
S2(T'1(N)) denote the vector space of cusps forms of weight 2 and level N. As
a special consequence of the general theory we have,

dim Sy(T1(N)) =0 = a; =0for 1 <i<2g

The mathematical software package Sage [8] has functionality for computing
the dimension of So(I'1(N)) for a given level N.

sage: [Gammal(n).dimension_cusp_forms() for n in [1..18]]
(0, o, 0, 0, 0, 0, 0,0,0,0,1,0,2,1,1, 2,5, 2]

This computation shows, in particular, that dim Sy(I'(V)) = 0 for 1 < N < 10,
i.e. there are no non-trivial cusp forms of weight 2 for levels below 11.

Hence, for 1 < N < 10, (1.3) becomes,
X2 (V) ()| = g + 1. (1.4)

Let ¢y gn denote the number of cusps in X7 (N)(IF4n). Then (1.4) implies,
for 1 < N <10,
Yi(N)(Fgn) =¢" +1—cngn. (1.5)

Proposition 1. Let N be a odd prime and let {5 be a primitive Nth root of
unity.

(i) The are a total of N — 1 cusps in X;(N)(F,). Of these (N —1)/2 lie IF,
and (N —1)/2 lie in F,(Cy + ¢yt

(ii) If ¢ = £1 (mod N) then (y + (' lies in F,. If ¢ # +1 (mod N) then (y +
(y' lies in Fym where m is the least integer such that ¢™ = +1 (mod N).

Proof. For (a) see [18, Example 13.3].

To prove (b) it is enough to show (n —|—C;,1 lies in IFym iff ¢ = 1 (mod N).
Recall that the Frobenius map fixes exactly F,m. This means, {y + C;,l cFym
iff (Cw + C&l)qm =(y+ (j;,l. But since we are working in characteristic p, we
have ((y +(yH)4" = C?Vm +(¢x1)9". Hence the following equation is equivalent
to (v + Cy' € Fym.

GG = v+ Gy (1.6)




1.2. MODULI SPACE OF HYPERELLIPTIC CURVES 1. Introduction

If g = 1 (mod N) then by Fermat’s little theorem, C}{,m = (y and (X,qm =(n-
Similarly, if ¢ = —1 (mod N) then qu\,m = (5! and (;,qn = (n. This proves one
direction. N

Conversely, assume that Equation (1.6) holds. Multiplying (1.6) with (%
yields,

LT = = G T - T =0
= Wk~ =0

Hence either Qq\,m = (y or C]qvm = (5'. This implies that ¢™ = 1 (mod N) or

(1.7)

g™ = —1 (mod N). O
Assume that N is an odd prime. Then it follows that,
N = {é\]f\f —11)/2 i)ftfler;ij:el et ' (1.8)
Then for N an odd prime and ¢ = +1 (mod N),
[Yi(N)(Fgn)|=¢"+1—(N—1)=¢"— N +2. (1.9)
On the other hand, if ¢"™ # £1 (mod N), then
Yi(N)(Fy)| = " +1— (N = 1)/2. (1.10)

In more general terms, this means there are a pair of polynomials

filx)=x+1—(N-1)
fo(x) =2 +1— (N —-1)/2,

such that,
fi(@") ¢" ==+1 (mod N)
V(W) (Fpn)| = {4 . (L.11)
f2(q") ¢" # £1 (mod N)
We say that the pair (f1, f2) are point counting polynomials for the moduli
space Y1(N).

Let M(N) be any moduli space and assume there exist point counting
polynomials fi, fo for M(N). Then by calculating a number of data points
(¢", #M(N)(Fyn)) with ¢" = £1 (mod N) we can determine f; by polynomial
interpolation. Similarly, by calculating a number of data points (¢", #M(N)(F 4 ))
with ¢" # +1 (mod N) we can determine fs.

The number of data points needed will depend on the degree of the polyno-
mials f;. In the case of Y7(IV) we know that f; is a linear polynomial, so we
only need 2 points to uniquely determine f1, fo.

1.2 Moduli space of hyperelliptic curves

Definition 2. Let k be a field and let C be a smooth, projective curve of genus
g > 1 over k. If there exists a finite separable morphism ¢: C' — P} such that
deg ¢ = 2 we say that C is a hyperelliptic curve. As usual we let C'(k) denote
the k-rational points.
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Intuitively, the morphism ¢ give a 2 : 1 cover of P!. The ramification points
of this cover are called Weierstrass points. In general when chark # 2
a hyperelliptic curve will admit a Weierstrass equation of the form y? = f(x)
where deg f = 2g+2 and the zeroes of f(x) are the Weierstrass points. However,
in the special case when there exists a k-rational Weierstrass point w € C(k) it
is possible to move w to co and hence get a Weierstrass equation of the form
y? = g(x) where degg = 29 + 1.

The next natural question is: What is the generalization of modular curves
for hyperelliptic curves? Or, in other words, how can we represent the moduli
space of hyperelliptic curves with some additional level data? When g = 2 the
moduli space is given as a 3-dimensional affine variety defined over Z[1/N].

We follow the same idea as for modular curves, i.e. determine the number
of rational points on the moduli space locally at p”.

However, recall that elliptic curve has a geometric group structure, which
is implicit in Definition 1. To generalize this definition we need to associate
a group structure with the the hyperelliptic curve C. The so called Jacobian
J(C) (defined later) is a group structure associated with the curve C.

Definition 3. Consider pairs (C, P) where C is a hyperelliptic curve of genus
g defined over k and P € J(C)(k) such that ord(P) = N. Let (C, P) ~ (C", P')
iff there exists a k-isomorphism ¢: C' — C” such that ¢(P) = P’. Then, define,

Hy[NI(k) ={(C, P)}/ ~ . (1.12)
Let [C, P] denote the equivalence class of (C, P).

As mentioned above H,[N] can be defined as an algebraic variety over
Z[1/N].

Langlands program is a series of deep conjectures that relates algebraic num-
ber theory with representation theory. The modular forms are generalized to so
called automorphic forms. The conjectures implies, in particular, a generaliza-
tion of the Hecke theory.

This implies a similar result for 5[N] as for the modular curve Y7 (N). More
precisely, let N be an odd prime. Then if the dimension of a certain vector space
of automorphic forms of level N is zero, then the moduli space Hz[N] admits a
pair of point counting polynomials fi, fo. Similarly, to the modular curve case
we expect the first few spaces to have dimension 0.

Furthermore, in the modular curve case (dimension 1) the point counting
polynomials f; are linear. For H2[N] (dimension 3) we instead expect deg f; = 3.

A slightly different moduli space

Unfortunately, the techniques presented later will not allow us to compute
#H2[N|(Fyn) easily. The main machinery only works with hyperelliptic curves
with a marked FF,»-rational Weierstrass point (equivalently has a Weierstrass
equation of degree 5). So we will only be able to count pairs (H, P) where H
is in this specific subclass of hyperelliptic curves. Because of this limitation, we
will consider the moduli space H$ [N] (defined later) where every hyperelliptic
curve comes with marked IFg»-rational Weierstrass point.
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Note that 7$'[N] is not a subset of Hs[N] since for H4[N] we will define the
equivalence relation on pairs (H, P) differently. However, there is a map

¢: H5 [N] — Ha[N]

(H, P)/ ~yginy = (H, P)/ ~34,[n7 - (1.13)

For g = 2 the Weierstrass points of a hyperelliptic curve are the 6 ramification
points. In other words, if the hyperelliptic curve is given by y? = f(z) where
deg f = 6 then the Weierstrass points are the roots of f(z). Similarly, if y? =
f(x) for deg f = 5 then the Weierstrass points are the 5 roots and co. This
implies that the map ¢ has degree 6.

However, heuristically, it seems likely there are point counting polynomials
for 1y [N] iff there are point counting polynomials for Ha[N].

Experimental results

By explicit computer calculations we have determined #H¢$'[N]|(IF,) for N =
3,5,7 and some odd prime powers ¢ (see Table 1.1). For N = 3,5 these data
points do lie on appropriate point counting polynomials (see Conjectures 1 and
2). However, for N = 7 we can’t interpolate the data with appropriate poly-
nomials. This suggests (assuming Langlands conjecture) that there exists a
non-zero automorphic form for N = 7.

q | g(mod3) [HF[B](Fy)| | g (mod5) [HF[5](F,)| | g (mod7) [HF[7](E,)|
3 0 - 3 24 3 18
5 2 82 0 . 5 108
7 1 256 2 340 0 -

9 0 - 4 746 2 708
11 2 1108 1 1356 4 1302
13 1 1882 3 2194 6 2142
17 2 4366 2 4910 3 4860
19 1 6172 4 6916 5 6810
23 2 11152 3 12164 2 12114
27 0 - 2 19680 6 9765
29 2 22762 4 24486 1 ?
31 1 27928 1 29896 3 ?

Table 1.1: Number of IF,-rational points on H4[N] for N = 3,5,7.

In the table, the ‘-’ symbol means there is no good reduction since p|N. The
“?” symbol denotes a value that is theoretically possible to compute with the
techniques/implementation given later, but it has not been computed because
of time constrains.

The conjectured point counting polynomials looks like this:

Conjecture 1. For ¢ = p” where p # 3 we have

115 [B](Fy)| = ¢* — 2¢° +2¢ - 3. (1.14)



1.3. OVERVIEW 1. Introduction

Conjecture 2. For ¢ = p” where p # 5 we have

@ +4g9—19 ¢=1,4 (mod 5)

1.15
@ -3 q=2,3 (mod 5) (1.15)

[Hs [BI(Fq)| = {

1.3 Overview

Our main goal will be to find an algorithm to compute |H$'[N](IFy)|. We will
not enumerate pairs [H, P| directly. Instead our first logical step is the following
formula (proved later in Chapter 4, Theorem 10),

HEINIE = 3 e (1.16)
(H]k

where ¢(H) denotes the number of points P € J(H)(IF,) with ord(P) = N.
To calculate the sum (1.16) we will find,

(i) an algorithm to compute ¢(H), and,

(ii) a way to rewrite the sum (1.16) into an expression not involving the auto-
morphism groups.

To find an algorithm for computing c¢(H) we will consider N-division points in
J(H)(F,). These are points P such that NP = 0, or equivalently, ord(P)|N.
In Chapter 3, we will give two algorithms for finding the N-division points.
First a naive algorithm, based on a brute-force approach and, secondly, a more
sophisticated algorithm utilizing the Cantor division polynomials. In practice,
the first algorithm ended up faster than the second.

In Chapter 4 we will rewrite (1.16) using the Orbit-Stabilizer theorem. From
this we will finally obtain an algorithm (Algorithm 13) to compute |Hg [N](F,)|.



2 Preliminaries

2.1 Division polynomials for elliptic curves

Later we will see a generalization of the classical division polynomials to hy-
perelliptic curves. Therefore, we begin by giving an overview of the classical
division polynomials for elliptic curves. For details see [19].

Let k be a field with char(k) # 2,3. Then an elliptic curve over k is given
by a Weierstrass equation of the form

y* =2 + Az + B, (2.1)

where the discriminant A = —16(4A43 + 27B?) is non-zero (this is equivalent
with the curve being non-singular).

The point P = (a, b) lies on the elliptic curve E if a,b € k and (a, b) satisfies
the equation (2.1). We use the notation E(k) to denote points (a,b) € E with
a,bek.

The most interesting property of an elliptic curve E is that there is a geo-
metric group structure on the points of E (usually called the group law). In fact
this group is abelian. So for points P,Q € E we denote the group operation by
P + @ € E. The neutral element in the group is the point at infinity which
we denote 0.

For a positive integer n there is a endomorphim [n]: E — E given by
P—nP=P+P+---+P.

A n-torsion point is a point P = (z,y) € E in the kernel of [n], i.e. nP =0
in the group law. We let E[n] C E denote the subset of n-torsion points on E.

We will see that we can characterize E[n] as the roots of the so called division
polynomials defined over k.

The integer division polynomials v, € Z[A, B, z,y] are defined induc-
tively.

o =10
P =1
o = 2y

3 = 3zt + 6A2% + 12Bx — A?
Yy = 4y(x® + 5Ax* +20Bx® — 54%2? — 8B% — A3)

And,
Vomi1 = Umpat, — Pm_100, 1, for m > 2
Ym (2.2)
me, = E( %L—1w77l+2 - 1/)m—21/131+1), for m 2 3.
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Furthermore define two more families of polynomials ¢,, and w,.

¢m = xwfn — ¢m+17/)m—1 for m > 1,
w1 =Y,
1 9 0
Wm = 7(wm—1wm+2 - /I,Z]m—Q’l,ZJ,,n_;'_l) for m 2 2.

24Py
The key property is that we can obtain the division polynomials for E: 3% =
3+ Az+ B defined over k from the integer division polynomials 1,, € Z[A, B, z,y|
defined by the formulas above. Indeed, let 7: Z[A, B, x,y] — k[z,y] by the lin-
ear extension of the natural map Z[A, B] — k, given by
A— A
B~ B (2.3)
n € Zw+— nly.

Then 7(¢,,) € k[z,y] is the division polynomial for E defined over k.
To save space let ¥y, ¢, w, denote 7(¢,,), 7(¢dn), T(wy) respectively.

Theorem 1. Let P = (z,y) be a point on the elliptic curve E defined over k.
Then

_ Pn(T,y) walz,y)
P = (i) vt n))

Proof. This is usually proved analytically by properties of the Weierstrass P-
functions. See [19, Section 9.5]. O

From this, we can characterize the n-torsion points.

Proposition 2. Let P = (z,y) be a point on an elliptic curve E defined over
k. Then nP = 0 iff ¢, (z,y) = 0.

Proof. By Theorem 1, nP = 0 is equivalent to

Pn(z,y) walz,y)
(it i)

) represents the point at infinity iff the denominators are

Pn(z,y) wnl(z,y)
But (54, 5364
zero. That is, ¥y (z,y) = 0. O

Furthermore, it turns out that if n is odd then ¢, (x,y) can be reduced by
the equation y> = f(z) to a polynomial in only z. If n is even then 1, =
o Py (z) where P, is a polynomial in only x. We define univariate division
polynomials P, € Z[A, B, z] by

~Un if n odd
Py(z) = {wn/% £ 1 oven (2.4)

A similar recursion as for the 1, holds for the univariate P,.
Let E be an elliptic curve defined over a finite field F, i.e , A, B € IF,. Then
as before we consider P, as a polynomial in IF[z]. If (a,b) € E is a n-torsion

point with b # 0 then P,(a,b) = 0 by Proposition 2. Further, if a,b € F, we
get the following proposition by the polynomial remainder theorem.

10
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Proposition 3. Let P = (a,b) € E(F,) with b # 0. Then nP = 0 iff
P,(z) =0 (mod (z — a)) in FF,[z].

Note that (a,0) € E(IF,) has order 2. But these are exactly the IF,-rational
zeroes of x3 + Az + B. It is pretty clear these are the only solutions we discard
when going from ), to P,. From this observation we can devise a simple
algorithm to finding all IF ;-rational n-torsion points: E[n|(IF,).

Algorithm 1. Given an elliptic curve E defined over [, with equation y? =
z3 + Az + B and n > 0 the following algorithm will find E[n](TF,,).

1. Record 0 = oo as a n-torsion point.
2. If n is even, record all IFj-rational zeros of 23 + Az + B.

3. Compute the polynomial P,(z) by computing the integer polynomial and
reducing modulo p.

4. Factor P,(z) into irreducible factors fi, fa,... fi over IFy.
5. For each factor f;:

(a) If f; is linear then the zero « of f; is the x-coordinate of a n-torsion
point.

(b) Lift o to E by finding the corresponding y-values {3;} in the Weier-
strass equation such that §; € I,

(c) Record {(a, B;)};.

Proof. Note that for each zero o € Iy we have either (i) 8 = 0 or (ii) § =
+va3 + Aa + B. However, the square root does not need to lie in IF,, (it can
also lie in IF2).

Further, we prove that if («, 81), 81 # 0, is a n-torsion point then (o, 32) =
(o, — 1) is also a n-torsion point. Recall that the inverse operation in the group
law is given by P = (z,y) — —P = (z,—y). So, if («, ) is a n-torsion point,
i.e. n(a,B) =0, then

77,(04, 75) = n(—(a, ﬂ)) = 7”(043 B) =—-0=0.
Thus (o, —f) is a n-torsion point. This proves correctness. O

We will generalize the above algorithm to hyperelliptic curves.

2.2 Jacobian of hyperelliptic curves
To every hyperelliptic curve H we will associate a group structure J(H) called

the Jacobian of H. If H is an elliptic curve then J(H) is isomorphic to the
geometric group law on H. We follow the exposition in [19].

11
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2.2.1 Divisors

Assume k is a field with char k # 2. From this point forward, a hyperelliptic
curve H will be assumed to have a rational Weierstrass point. Or equivalently,
we assume a hyperelliptic curve is given as the of the vanishing locus of a
Weierstrass equation of the form

y* = f(x),
where f € k[z] is a polynomial of degree 2g + 1.

Definition 4. For a point P = (z,y) on H, P’ = (x,—y) is also on H since
(—y)? = y?> = f(x). The map w: H — H given by

is called the hyperelliptic involution.

Definition 5. Let H be a hyperelliptic curve. Then the divisor D is a finite

formal sum

where n; € Z and P; € H. Let div(H) denote the group of divisors of H.
For a divisor D, we define the degree of D as deg D = ), n;. The subgroup
of divisors of degree 0 is denoted divo(H).

Remark. Note that div(H) is the free group generated by the set of points on
H. In particular, div(H) is abelian.

Since every point P; in a divisor D either has positive or negative coefficient,
we can decompose D as

D = divy(D) + divee (D), (2.6)
where,
divo(D) = > ni[P], (2.7)
n; >0
diveo(D) = > ni[P]. (2.8)
n; <0

We also let degy(D) = degdivy(D).

Now recall that the function field of an algebraic variety k(1) is the rational
functions on V. To every rational function f € k(H) we associate a divisor
D e div(H) representing the ‘zeroes’ and ‘poles’ of f.

Recall that for any meromorphic function f: C — C we talk about poles
and zeroes. For example f(z) = z has a pole of order 1 at infinity and a zero of
order 1 at z = 0. We say that f(z) has order 1 at z = 0 and order —1 at z = cc.

Interestingly, it is possible to define an algebraic analogue: For f € k(H)
and P € H we denote the order of vanishing of f at P by ordp(f). We will
not prove this here, cf. [18, I1.3]).

12
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Example 1. Let k = Q and consider the elliptic curve C : 4% = 2% +1. Consider
the rational function x on C. Plugging in = = 0 gives y?> = 1 i.e. y = +1. So
the function z vanishes exactly at the points (0,1), (0, —1). Since z/x = 1 has
no zeroes, the zeros at (0,1) and (0, —1) are simple, i.e. the order is 1.

What happens at infinity? Note that,

x3_:z:3+171_y2—1
x2 x2 o2

Switching to projective coordinates we get

(Y/Z)2 -1 Y2 - 272
(X/2? —  X?

Hence z has a pole of order 2 at (0:1:0) =0.

Definition 6. The principal divisor associated with f is

div(f) = 3 ordp(f)[P), (2.9)

where the sum is taking over all points on P.
Denote the subgroup of principal divisors with Princ(H). That is,

Princ(H) = {D € div(H) | div(f) = D for some rational function f }.

Remark. Note that the definition only makes sense if finitely many ordp(f) is
non-zero. This is true but we will not prove this here. See [18, Proposition
I1.1.2].

Example 2. Continuing Example 1 we see that

Recall that meromorphic functions has the same number of poles as zeroes
(counting multiplicity). Analogously:

Theorem 2. Principal divisors have degree 0. That is, degdiv(f) = 0 for all
f € k(H).

Proof. See [18, Proposition 11.3.1(b)]. O
Theorem 2 implies that Princ(H) C divo(H ). Then define:

Definition 7. Let H be a hyperelliptic curve. Then the Jacobian of H, de-
noted J(H), is the quotient group divo(H)/ Princ(H).

Equivalently, the elements of the Jacobian are divisor classes under the

equivalence relation D ~ D’ iff D — D’ € Princ(H).

2.2.2 Mumford representation

Definition 8. A divisor D = ), ¢;([P;] — [oc]) where P; = (a;,b;) is called
semi-reduced if, for all 7,

1. C; ZO,

13
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2. if b; =0 then ¢; =1,
3. only one of P;, w(F;) = [(a;, —b;)] appears in D.
If further, degy(D) < g, then D is called reduced.

Definition 9. For any two divisors D =}, d;[P;] and E' =}, e;[P;] we define
the greatest common denominator of D, F as

ged(D, E) =Y ;[P
where ¢; = max(d;, ;).

Theorem 3. There is a bijection between semi-reduced divisors D and poly-
nomial pairs (U(z), V(z)) such that,

1. U is monic,
2. deg(U) = >, ¢; and deg(V) < deg(U),
3. U|(V2 — f).
The bijection is given by,
(U, V) = ged(div(U), div(y — V)).

Furthermore, the above bijection maps reduced divisors D to (U, V) such
that degV < degU < g.

Proof. See [19, Theorem 13.5]. O

Given an arbitrary divisor D with degree 0 there is a semi-reduced divisor
D' representing the same divisor class, i.e. D’ ~ D. The following example
illustrates the general technique.
Example 3. Let P = (a,b) be a point on the hyperelliptic curve C': y? = 25 + 1
with b # 0. Then consider the divisor D = —1[(a, b)] + 2[(a, —b)] — [0c]. Note
that D is not semi-reduced since (i) it contains a negative coefficient and (ii) it
contains both [(a,b)] and [(a, —b)]. However,

D ~ —1[(a,b)] + 2[(
—1[(a, b)] + 2[(

a,—b)] — [oo] + div(z — a)
—b
~ 3[(a, =b)] = 3[oq]

a, =b)] — [oo] + [(a, b)] + [(a, =b)] — 2[o0]

Hence [D] is represented by the semi-reduced divisor D’ ~ 3[(a, —b)] — 3[o0].
Moreover, since C' has genus 2 and degy(D’) = 3 > 2, D’ is not reduced.

Using the technique in the example, it is not hard to believe:

Proposition 4. Every divisor class can be represented by a semi-reduced divi-
sor.

The next problem is going from a semi-reduced divisor to a reduced divisor
in the same divisor class. In the next section we will give an algorithm that
solves this problem.

14
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Proposition 5. Every divisor class is uniquely represented by a reduced divisor.

Proof. Existence follows from the algorithm in the next section. Uniqueness is
more complicated, requiring the Riemann-Roch theorem. See [19, Proposition
13.6] for proof. O

Combining Theorem 3 and Proposition 5, it follows that every divisor class
corresponds to a polynomial pair (U(z), V(z)).

Corollary 1. Every divisor class [D] is uniquely represented by a pair of poly-
nomials (U, V') such that

1. U is monic
2. deg(V) < deg(U) <g
3. UV~ f)

The pair (U(z), V(z)) is called the Mumford representation of the class [D].

Furthermore, there is a there is a natural way to view points P € H as
divisors in J(H).

Proposition 6. For a point P = (z,y) consider the map i: H — J(H) given
by P — [P] — [00]. The claim is that i is injective.

To save space we will write (z,y) € J(H) for the image of P = (x,y) € H
under 3.

Proof. For any P, D = [P] — [o0] is a reduced divisor with degree 1 < g. Hence
the class is uniquely represented by D. This proves i is injective. O

2.2.3 Reduction algorithm

In this section we will compute the unique Mumford representation for a given
semi-reduced divisor D.

Lemma 1. (a) Let

(x —a;)%,

-
O
!
—.

where a; € k and ¢; € Z, i.e. U(x) is rational function. Then
div(U(2)) = Y ci([P] + [w(P;)] - 2[ec]),
i=1
where P; = (a;,\/f(a;)) and w(P;) = (a;, —+/ f(ai)).

(b) Let V(z) be a polynomial. Then div(y — V(z)) = D is a semi-reduced
divisor and div(y + V(z)) = w(D).

(c) Let A(z), B(x) be polynomials. Then div(A(z) — B(z)y) = D is a semi-
reduced divisor and div(A(z) + B(z)y) = w(D).

15
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Proof. For (a),(b), see [19, Proposition 13.2].
(c) Let D = div(A(z) — B(x)y). Then since,

A(x) = B(x)y = B(z)(A(z)/B(z) — y), (2.10)
we have,
D =div(A(z) — B(z)y) = div(B(z)) + div(A(z)/B(z) — y) (2.11)

Note that A(z)/B(x) — y will have finite poles (a;, ++/f(a;)) where a; are the

zeroes of B(z). So every finite pole of div(A(x)/B(z) — y) will cancel out one

of the zeros (a;, ++/f(a;)) in div(B(z)). Hence D is semi-reduced.
Furthermore, since A(z) + B(z)y = B(z)(A(z)/B(z)) +y),

div(A(z) + B(z)y) = div(B(x)) + div(A(z)/B(x) + y). (2.12)

The finite poles (a;, £+/f(a;)) in div(A(x)/B(z)+y) have opposite signs on the
y-coordinate. Moreover by (b),

divo(A(z)/B(x) +y) = w(dive(A(z)/B(z) — y)). (2.13)

Hence,
div(A(z) + B(z)y) = w(D). (2.14)
O

Algorithm 2. Let D be a semi-reduced divisor and let (U, V') be the polynomial
pair corresponding to D by Theorem 3. Then the following algorithm computes
the Mumford representation of the unique reduced divisor D’ such that D ~ D’.

1. Let U' = (f — V2)/U and V' = —V (mod U").
2. Multiply U’ with a constant to make U’ monic.

3. If degU’ < g then output (U’, V') otherwise let U = U’ and V =V’ and
goto step 1.

Proof. Since (U, V) is a semi-reduced divisor, U | (f —V?2) so U’ is a polynomial.
Because V' is the remainder when dividing with U’ it follows that degV’ <
deg U’. Further,

f=(VYVY=f-(-V) = f-V? (mod U").

But since U’ | f — V? we have f — (V')2 = 0 (mod U’). Hence (U’,V’) is a
semi-reduced divisor.

Next, we need to prove (i) that the divisor (U’, V') is equivalent to the divisor
(U,V) in step 1, and (ii) that the loop terminates.

Let

D = (U, V) = ged(div(U(x)), div(y — V(2))).

Then div(U(z)) = D + w(D). Further, take E = D — div(y — V(z)), then,
div(y — V(z)) =D+ E.

Suppose to get a contradiction that [(a,b)] is a common divisor of w(D)
and E. If (i) b = 0 then (a,b) is a zero of both y — V(z) and y + V(z) and

16
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therefore also a zero of U(z). Then D contains both [(a,b)] and [(a, —b)] which
contradicts that D is a semi-reduced divisor.

If (ii) b # 0 then D + E contains both [(a,b)] and [(a, —b)]. This contradicts
that D + F = div(y — V(x)) is a semi-reduced divisor by Lemma 1(b). Thus
ged(E,w(D)) = 1.

Now, by Lemma 1(b),

diviy + V(z)) =w(D + E) = w(D) + w(E). (2.15)
A similar argument as above shows that ged(E,w(E)) = 1.
But since,
UU' = f-V?=(y—V(2)(y+ V() (2.16)
we have,
div(U) +div(U") =D+ E+w(D + E). (2.17)

By subtracting div(U) = D + w(D) from both sides we get,
div(U') = E + w(B). (2.18)
Further, by definition,
ged(div(U' (z)), div(y — V'(z))) = ged(div(U'(z)),div(y + V(z))).  (2.19)

Recall that ged(E,w(F)) = 1 and ged(E,w(D)) = 1. Thus combining Equa-
tions (2.19), (2.18) and (2.15) yields,
(U, V") = ged(div(U'(z)),div(y + V(2))) = w(E) (2.20)
But
D —div(y — V(z)) = —E = w(E) — div(U"). (2.21)
Hence D ~ w(E). This proves (i).

To prove that the algorithm terminates we show that the degree of U de-
creases in every iteration of the loop. Suppose that degU > g+1. Then because
deg f =2¢g+1,

deg f < 2degU.

Further since deg V' < degU,
deg(V?) =2degV < 2degU.
Now (2.16) gives,
degU + deg U’ = deg(f — V?) < 2degU.

Hence deg U’ < deg U. This concludes the proof. O

2.2.4 Cantor’s algorithm

The Mumford representation gives a very concrete and computational realiza-
tion of the elements of J(H). We present an algorithm by David Cantor [4] for
efficiently computing D1+ Dy when D1, D are given in Mumford representation.

17
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Algorithm 3. Let Dy = (U1, V1), D2 = (Us, Va) be given points of J(H). The
following algorithm computes the Mumford representation of the sum D3 =
D1+ Ds.

1. Let d = ged(Uy, Us, Vi + V3). Use the Extended Euclidean Algorithm to
find polynomials hq, ho, h3 such that

d=Uh1 +Ushy + (Vl + Vz)hg (2.22)
Let
‘/0 = (U1V2h1 + U2V1h2 + (V1V2 + f)hg)/d, (223)
and U U
U= %, V = Vo(mod U). (2.24)

Then D’ = (U, V) is semi-reduced and D’ ~ Dy + Ds.

2. Reduce D’ = (U,V) to Mumford representation D3 by the reduction al-
gorithm. Then Dj is the unique Mumford representation of the divisor
class Dy + Ds.

Proof. We only prove correctness here. Refer to [4] for time complexity.
Note that d|U; and d|U,. Further, since d|U; and Up|(f — V{?) we have
d|(f — V;2). Hence,

ViVo+ f=Vi(Vi + Vo) + (f — V),

is divisible by d. This shows (2.23) is well-defined.

First we prove that D’ = (U, V) is semi-reduced. It is clear U is a monic
polynomial and degV < degU. Furthermore, tedious but routine calculations
show, V2 — f =0 (mod U). Thus D’ = (U,V) is a semi-reduced divisor.

Now it remains to show D’ ~ Dy + Ds. We do this by showing:

There is a D" ~ Dy + D5 such that ordp(D") = ordp(D’) for all P (2.25)

Let P = (a,b) be an arbitrary point. Assume r; is the order of vanishing of P
in D; and s; the order of vanishing of w(P). That is,

Dy = (U, W) = r1([P] = [00]) + s1([w(P)] = [oo]) + ... (2.26)
Dy = (Us, Va) = r3([P] — [00]) + s2([w(P)] — [00]) + . .. (2.27)

We begin by showing:
Lemma 2. ordp((y — Vp)d) > r1 + ra.
Proof. The following functions
UrUsz, (y = V1)Uz, (y = V2)Ur, (y = Vi)(y = Va2) = f+ ViVa — (Vi + Va)y,

have order of vanishing at least r; 4+ r2 at P by (2.26) and (2.27).
Then the lemma follows from,

(y—=Vo)Uihy + (y = V1)Ushy + (Vi + Vo) — f = ViVa)hz = dy — dVy = d(y — Vo).
O
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Back to the proof of Algorithm 3. There are several cases.
Case A. s1 =s5=0o0r b=0.

If b =0 then P = w(P) = (a,0). But since Dy, Dy are semi-reduced, we can
assume with loss of generality that s; = sy = 0.

We will prove,

1. ordp(U) =7
2. ordp(y — Vo) > r

where

. 1+ 79 1fb7é0
C\ri+re(mod2) ifb=0"

When b # 0 this implies that ordp(D") = ordp(U, V) = r1 + 73 since
(U7 V) = ng(diV(U)7 div(y - V)) = ng(diV(U)7 diV(y - Vb))? (228)

where the last equality follows from V' = V4 (mod U). Hence (1), (2) implies
that ordp(D’) = ordp(Dy + D3).

Moreover, when b = 0, we have P = w(P) = (a,0). Then for some k,
r1 4+ 19 =r+ 2k and

Dy + Dy = (r+ 2k)([P] — [00]) + . .-,

where the dots represent remaining terms without P and w(P). But since
2k([P] — [o0]) = Kk(2[P] — 2[o0]) is principal, we can let D" = r([P] — [o0]) + . ..
represent the divisor class D1 + Do. Then ordp(D”) = r. Therefore (1) and (2)
implies ordp(D’) = ordp(D").
Subcase 1. 11 =r3 =0

In this case U;(P) # 0, so U(P) # 0 and d(P) # 0. Then neither P nor
w(P) appears in (U, V). So ordp(U,V) = 0 =11 + re. Since d(P) # 0, Lemma
2 implies that ordp(y — Vo) > r1 + ra.
Subcase 2. At least one r; > 0 and b # 0. If both r; > 0 then (V; + V2)(P) =
Vi(a) + Va(a) = 2b # 0. On the other hand, assume exactly one r; > 0, say
r1 > 0. Then Vi(a) = b. Suppose that Va(a) = —b. Then y — V5 vanishes
at P. But by assumption 7, = 0 so U; does not vanish at P by (2.27). In
either case d(P) # 0. But since U = U;Usy/d?, this implies that ordp(U) =
ordp(Uy) + ordp(Usz) = r1 + ro. (ii) follows from d(P) # 0, as in the previous
case.

Subcase 3. Both r1,79 > 0 and b = 0 Since Dy, D2 are reduced by assumption,
ry = ro = 1. On the other hand, Uy, Us has simple zeros at x = a. Further
since Vi (a) = 0 and Va(a) = 0 it follows that V; + V3 has at least a simple zero
at P. Hence d has a simple zero at P. This implies that U = U Us/ d? does not
vanish at x = a. Moreover, since d(y — V) vanishes of order at least 71 +ry = 2,
but d only has a simple zero, we have ordp(y — Vp) > 1. Hence (1), (2) holds
with r = 0.

Subcase 4. Exactly one r; > 0 and b = 0 Assume r; = 1 and ro = 0. Suppose
that (V3 + V2)(P) = 0. Then Va(a) = 0 so y — V2 has a zero at P. But since
rg = 0 this implies that Us does not vanish at P. In either case, d(P) # 0.
Hence as in subcase (2), ordp(U) = r and ordp(y — Vo) > 1 with r = 1.
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Case B. 11 >0, so >0 and b # 0.

Because Dy, Dy are semi-reduced this implies that ro = 0 and s; = 0.

Since s2 > 0 it follows Va(a) = —b. Then (y — Va2)(P) = 2b # 0. But since
(y+Va)(y = Vo) = f = V&, Ua|(f = V') and ordp(Uz) > s,

ordp(y + Va) > so.
Then because Vi + Vo = (y + Va) — (y — V1),
ordp(Vi + V3) > min(ry, s2)

But since d is the ged,
ordp(d) = min(ry, s2).

Now, assume without loss of generality that r; > so. Then
ordp(U) = r1 + so — 2min(ry, s2) =11 — Sa. (2.29)
Furthermore because ordp((y — Vo)d) > r1 + 19 = 11,
ordp(y — Vo) = ordp((y — Vo)d) — ordp(d) > r1 — sa.

Hence ordp(D’) = ordp(U,V) =r1 — ss.
If r{ = sy then

Dy + Dy = r1([P] = [o]) + s2([w(P)] — [o0]) + D"
= r1([P] + [w(P)] = 2[o0]) + D",

where D" denotes the rest of the terms. Then since ([P] + [w(P)] — 2[o0]) is
principal, D" ~ D; + Ds. Further, (2.29) implies that U(P) # 0 so D’ does not
contain P or w(P). Hence D’ and D" agree on the points P, w(P).

Assume that 71 —so > 0. Then since D’ is semi-reduced, D’ does not contain
[w(P)] — [00]. Consider D" = Dy + Dy — s2([P] + [w(P)] — 2[c0]). Because
([P] + [w(P)] — 2[o0]) is principal, D" ~ Dj + D5. On the other hand D" agrees
with D’ on P and w(P). That is, ordp(D") = r1 — s2 and ord,,p)(D") = 0.

The cases (C) 1y = r9 =0, and (D) s; > 0 and ry > 0 follows by letting P
and w(P) switch places.

O

Remark. Cantor’s algorithm requires concrete elements in k for the coefficients
of (U,V). This means we can’t let the coefficients of U(X) be polynomials
themselves in some indeterminate. More precisely, the algorithm needs to de-
termine the degree of the polynomial which is impossible if the coefficients are
indeterminate. This is a crucial difference from the special case of elliptic curves
where we have an addition map.

Remark. We further note here that for different applications it might be useful to
consider some of the explicit special cases of Cantor’s algorithm in [6]. However
these also only operates on concrete coefficients.

To motivate the next section, we note that the above discussion does suggest
a naive algorithm for calculating torsion points over finite fields. Since we are
working with finite fields, we can just check for every z,y € IFy if n(z,y) =0 in
the Jacobian using Cantor’s algorithm.
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Algorithm 4. Let H be a hyperelliptic curve over the finite field IF,. Then the
following algorithm algorithm will find all IF -rational n-torsion points.

1. For each x in IF;:

(a) Find the y € Iy such that (x,y) € H. Le. plug in the z-value and
solve the curve’s equation for y over IFy.

(b) Calculate n(x,y) using Cantor’s algorithm (Algorithm 3).

(c) If n(z,y) = 0 record (z,y) as a torsion point. Otherwise continue.

One obvious drawback with Algorithm 4 is that the run-time will increase
(at least) linearly with ¢ since we are looping over all the elements of IF;. In the
next chapter we will present a more sophisticated approach that will not have
this heavy dependence on q.

2.2.5 Jacobians defined over a finite field

We shall now consider certain subgroups of the Jacobian J(H), similar to the
subgroup E(IF,) of points on the elliptic curve E defined over IF,.

Let 0 € Gal(IF,/IF,). For any zero-degree divisor D = >, n;([(xi,y:)] — [00])
we extend the action of o to J(H) by letting o(D) = Y. ni([ox;, oy;] — [0]).

Definition 10. Let F; be a finite field. Then the divisor D € Divy(H) is
defined over I, if D is fixed by the Galois group, i.e.

o(D)=D
for all o € Gal(F,/F,,).
Similarly, for a divisor class [D] € J(H) with unique reduced representative
D, we say [D] is defined over F, if D = o(D) for all o € Gal(IF,/F,). Let
J(H)(F,) denote the divisor classes defined over IFy.

Remark. Let D = [(zo,%0)] + [(x1,71)] — 2[00] defined over IF,. Note that it is
not necessarily true that zg,z1,y0,y1 € Fy. Instead the coordinates might lie
in some field extension of IF,.

A priori J(H)(IF,) is not a group. We need to check that if Dq, Dy are two
divisors defined over IF,, then Dq + Dy is also defined over F,,. Since J(H)(F,) is
by definition a subset of J(H) it then follows that J(H)(FF,) inherits an addition
from J(H).

Theorem 4. A divisor class in J(H ) with Mumford representation (U (X), V(X))
is defined over Fy iff U(X),V(X) € Fy[X].

Proof. First assume that U(X),V(X) in IF,. Then the automorphisms o €
Gal(F,/F,) permute the zeroes of U(X) and V(X). This implies o fixes the
divisor (U(X),V (X)) = ged(div(U),div(y — V). Hence (U, V) is defined over
F,.

Conversely, let D = (U(X),V(X)) and assume [D] = [o(D)] for all o €
Gal(F,/FF,). Let R be the unique reduced divisor representing D. Then consider
o(R). Since [R] = [D] there exists some f such that D — R = div(f). But then
o(D) —o(R) = div(o(f)). Hence [o0(R)] = [0(D)]. Further by considering the
definition of reduced divisor, o(R) is reduced.
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Next, let o(R) be represented by (U’,V’). The claim is that U’ = o(U),
V' = o(V) where o acts on the coefficients of U respective V. By definition,

o(R) = Zm([aﬂ%o’yi] — [00]).

Then since ¢ is an automorphism,
U(X)=(X —ox0)(X —ox1) ... (X —ox) = X' —oe1 X' 4o 4 (1) oey,

where e; are the elementary symmetric polynomials in zg,1,...,Ts, i.e. the
coefficients of U. Thus U’ = o(U).
Recall that V’ is uniquely determined by the condition V'(cx;) = oy;. But,

o(V)(ox;) = cas(ox;)® + cas_1(ox;) 4+ -+ + oag

= oasoxr] + Uas_lamfl + -+ oag

=o(asz; + -+ ap) = oy;.

Hence V' = o(V).
Now, since both R and o(R) are reduced, R = o(R). So (U, V') = (U, V).
That is, the coefficients of U,V are fixed by all o. Then since the fixed field of

Gal(IF,/F,) is IF, it follows that the coefficients of U,V lies in IFy. O

Proposition 7. The set J(H)(IF,) is a well-defined group and a subgroup of
J(H).

Proof. By the discussion above it is enough to show J(H)(FF,) is closed under di-
visor addition. Take Dq = (Uy, V1), Do = (Us, V2) € J(H)(IF,). Then Cantor’s
algorithm let us compute Dy + Dy = (U, V). Since every step in the algorithm is
polynomial arithmetic it follows U,V € F; and hence D1+ D, € J(H)(F,). O
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3 Division points

3.1 Torsion points and division points
We will in this chapter find two algorithms for computing so called division
points.

Let H be a hyperelliptic curve of genus g defined over a finite field IF,.
For any integer n > 0 there is an endomorphism [n]: J(H) — J(H) given by
D—nD=D+D+---+D. If n <0 we take [n](D) = —[—n|(D).

It turns out the kernel of [n] has an easy description [16, pp. 4].

Theorem 5. Assume that ged(n,p) = 1. Then, over the algebraic closure Fq,
ker[n] = (Z/n7)?9,
where the right-hand expression is a direct sum of 2¢g copies of Z/nZ.

Definition 11. A point P = (z,y) € H(Fy) such that i(z,y) € ker[n] is called
a n-torsion point. Alternatively, we write this as n(x,y) =0 in J(H). We let
H[n|(IF,) denote the set of n-torsion points.

Remark. We require as part of the definition that a torsion point is IFy-rational.

Problem 1. Assume we are given a hyperelliptic curve H defined over IF, and
integer n > 1. How do we find all n-torsion points?

Using the terminology in [5], we define:

Definition 12. Let H be a hyperelliptic curve defined over IF,. A divisor D in
J(H)(F,) is called a n-divisor point for H if D € ker[n]. We let J(H)[n](IF,)
denote the set of n-division points.

Remark. Note that n-torsion points are (rational) points on the curve. In con-
trast, division points are divisors in the Jacobian.

Clearly if P = (z,y) € H is a n-torsion point then i(z,y) € J(H) is a n-
division point. In other words, finding n-torsion points is a subproblem of the
more general problem:

Problem 2. Assume we are given a hyperelliptic curve H defined over IF, and
integer n > 1. How do we find all n-division points?

Next, we will see that we can solve Problem 1 by a direct analogue of Algo-
rithm 1 using a generalization of division polynomials to hyperelliptic curves.

3.2 Cantor’s division polynomials

In [5] Cantor generalizes the classical division polynomials for elliptic curves to
hyperelliptic curves. We will give an outline of the construction here but leave
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Un

0

1

dagx® + dasz* + dasz® + dasz® + da1x + 4ag

10a3z!2 + 24a4a22'1 + 16a3a52'0 + 26a3ax'0 + 40azasasz® + 20azaiz®
+30a3asz® + 40aza4a52° — 10a;a2z® + 80asasasz’ — 80a0a§x7 — 2a3z"
+8agazasx® — 16a1a2x® + 64a2as2° + 68ayazas2® — 112apasa52° — 4a2a§x5
+16a§a4x5 — 8ajasasx® — 64a0aim5 + 152a1a2a52° — 8agasasz® — 10a1a§x4
+40aqasasz* — 80agasasz* + 110a%a5x4 + 120agasasz* — 4Oa0a§x3
+4Oa%a4x3 + 240a¢aqasz® + 1Oa%a3x2 — 40agasasz?® + 80agalasz?
—|—16Oa(2)a5m2 + 4a%a2m — 16a0a§z + 8agaiazx + 64(1%(141: + Qai”

—8agaias + 16a8a3

5 4(baiz'® + 16a4adx'® + 16a3aiz!* + 20aza3z' + 56azasalz'® + 70a%ata’?
+56a2a4a§x12 — 140a1a§x12 + 280a2a3a§x11 — 224a1a4a§m11 — 560a0a§’$11
—28a§a5x10 + 112asasaqa5x™0 — 224a1aia5x10 + 336(13(1%1‘10 + 252a1a3a§x10
—1232a0a4a§x10 — 8a§a4x9 + 32a2a3a§x9 — 64a1a‘2’x9 — 80a2a§a5x9
+256a§a4a59§9 — 48aqasasa52° — 1088a0aia5x9 + 1040a1a2a§z9
—360agazazz?® — 3a3z® — 8agalasx® + 80a3aix® — 64ajazaiz® — 320apalz®
—64a§a3a5x8 — 148a1a§a5x8 + 880aazasa52® — 1248agasasasz®
+99Oa%a§m8 + 1000a0a2a§x8 — 8a2a§x7 + 32a§a3a4x7 — 80a1a§a4337
—|—256a1a2aix7 — 640a0a3a?1x7 — 64a§a5x7 — 48aqasaza53" — 640a0a§a5x
—|—1O40a%a4a5x7 + 512apasaqasz” + 2720aoa1a§x7 — 28a1a§x6
+112ajazaza425 — 560aga3asz® + 336a3a3x5 — 224a;a3as2°
+252a%a3a5x6 — 560agazasasx® + 2912apa;aqa52° + 2240a3a§x6
—168a0a§m5 + 280a%a3a4:135 — 448agagasasz® + 896a0a1aﬁx5 — 224a%a2a5x5
—448a0a§a5x5 + 784apaiasasz® + 2688@%@4@51‘5 + 70a%a§x4 — 280a0a2a§w4
—|—56a%a2a4x4 — 224a0a§a4x4 + 672ap01a3a4x* + 896agaim4 — 14Oa‘r{’a5x4
—560agaiasasz® + 1120a3a3a5x4 + 56@%(12&3:173 — 224(10(1%(13:173
+112a0a1a§m3 + 896a%a3a4x3 = 560a0a%a5x3 + 16a%a§x2 — 64a0a§x2
+2Oaz{’a3x2 — 48apaasasx® + 240a%a§x2 — 80a0a%a4x2 + 256&3@2(14:3
—64Oa8a1a5x2 + 16a§’a2:v — 64a0a1a§m — 8a0a%a3x + 160a(2)a2a333
—64aZajasr — 320a3asx + Sai — 24apalas + 16a2a3 + 32a2aia3 — 64aday)
(a52® + agz® + a3z + asx® 4+ a2 + ap)

=W N =3

7

2

Table 3.1: First generic division polynomials for the genus 2 hyperelliptic curve
y2 = a5x5 + a4x4 + a3x3 + ang + a1x + ag.
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3.2. CANTOR’S DIVISION POLYNOMIALS 3. Division points

out the technical proofs. See Table 3.1 and Appendix A for examples of division
polynomials.

Let H be a hyperelliptic curve with Weierstrass equation y? = Zfi?l a;x’

with aggy1 # 0. Let R be the ring Z[ao,...,a,]. Cantor finds polynomials
Yn(x,y) € Rlz,y] such that the following characterization of torsion points
holds. This is a generalization of the characterization in Proposition 2 for elliptic
curves.

Proposition 8. Let P € H be a point on the curve and n > g+1 be an integer.
Then nP =0 in J(H), if and only if,

1. p_g(P) #0, and

2. Ypypi(P)=0for —g+1<i<g-—1.

Let K = R[z,y]. We will find polynomials ,(X),e,(X) € K[X] (i.e. the
coefficients are polynomials in R[z,y|) such that the following theorem holds.

Theorem 6 (8.35 in [5]). Let r > g+ 1 and let (z,y) be a generic point on H.
Then x X
T — T —
n(a,y) = (0n(“g ) o (T ) (3.1)

where the RHS is a pair corresponding to the Mumford representation of the
divisor n(z,y) € J(H).

Remark. We remark that 6, (%) is not necessarily a monic polynomial so we

need to divide by the leading coefficient to obtain the Mumford representation.

Remark. The caveat ‘generic point’ avoids some degenerate cases where the
formula does not hold. For our purposes, this limitation will not be important.

Remark. For g =1 (elliptic curves) this reduces to the formula in Theorem 1.

We will prove Theorem 6 later in this section and Proposition 8 at the end
of Section 3.3.

The torsion points will be shown to be characterized by the vanishing of
certain coefficients of §,.(X). These coefficients will be proved to be the division
polynomials 1,,+; in Proposition 8.

However, to be able to use the Cantor’s division polynomials we need an
efficient way to compute them. Fortunately, Cantor derived a recursion general-
izing the simple recursion (2.2) for classical division polynomials. The derivation
is laborious and technical but the recursion formula itself is relatively simple and
easy to implement.

3.2.1 The Padé problem

The first step is to reduce the problem of finding n-torsion points to the well-
known problem of finding Padé approximants.

Recall that the Taylor series is the best approximation of a function by a
polynomial P(z). Analogously, the Padé approximant R(z) is the best approx-
imation by rational function R(x) = A(z)/B(x).
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Definition 13. Let f be a function with power series expansion

S(z) = Z st
i=0
and m < 0,n < 1 integers. The Padé approximation of order (m,n) is
R(x) = A(x)/B(z) where A(z), B(z) are polynomials with deg A < m and
deg B < n. Further we require that the power series expansion of R(z) agree
with S up to order m 4+ n. More explicitly,

R(0) = f(0)=so
RO) = [0)=s

(3.2)
R(m+n) (0) = f(ern)(O) = Sm+n

Let H(x) be the power series expansion of R(x). Then the condition (3.2)

is the same as
S(x) — H(z) = O(zm+n+b),

Then since A(x)/B(x) = H(x),

(z) — B(x)H(z) + B(z)O(xm+n+1)))

(£)O ) = Ot )).

A
B

So condition (3.2) is equivalent to A(2) — B(z)S(z) being divisible by z(m+n+1),

3.2.2 Reduction to the Padé problem

Let H be a hyperelliptic curve of genus g given by ¥ = F(X). We want to
compute the reduced representative of r(x,y) for some integer r > g + 1 and
point (z,y) € H.

First we make a variable change such that the point (z,y) becomes

Py = (0,(=1)**y).

The sign on y is chosen such that the division polynomials 1, gets positive
leading coefficients.

Let z,Y’ be the new variables. Set X =z — z, and E(z) = F(xz — z). Then
H':Y'"? = E(z) is a hyperelliptic curve of genus g such that Py € H'.
Let

E(z) = Zsz (3.3)

be the formal Taylor series expansion of \/E(z) with constant term s, =
(=1)9+ty.
Assume for the moment that we have polynomials A,.(z), B,.(z) such that,

(a) 2" divides A, (2) — B-(2)\/ E(2)
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(b) 2deg A, <r+gand 2degB, +2g+1<7r+g.

We will prove that finding such A,, B, is an instance of the Padé problem in
Proposition 10. A general solution to the Padé approximation problem is given
in the next section.

The next theorem is a stepping stone towards the central formula (3.1).

Theorem 7. Let r > g+ 1. Then the reduced divisor representing r(0, sp) has
z-coordinates given by the zeroes of the polynomial

Dy(2) = —(A,(2)? = Bo(2)2E(2))/2"- (3.4)

Before the proof, we need two lemmas.
Lemma 3. If r > g + 1 then D,(z) is a polynomial and deg D,.(z) = g.
Proof. See [5, Lemma 7.1 pp. 129]. O

Lemma 4. The function A,(z) — B-(2)Y”’ has exactly r + g zeros. Further,
div(A,(2) — Br(2)Y') =r[Po] + D' — (r + g)[oc], (3.5)

where D’ is a positive divisor of degree g such that D’ —g[co] is a reduced divisor
of degree 0.

Proof. By Lemma 1(c), div(A4,(2) — B-(2)Y’) is semi-reduced. It only remains
to show (i) A,(2) — B,(2)Y” has exactly r + g zeroes and (ii) A,(z) — B,(2)Y’
has a zero of order r at Pp.

Assume A, (z) — B, (2)Y”’ has a zeroes. By Equation (2.14), A,(z) — B, (2)Y’
and A, (z) + B,(2)Y’ has the same number of zeroes. Then

Ap(2)? = Br(2)’Y"? = (A (2) = Br(2)Y")(Ar(2) + Br(2)Y")
has exactly 2a zeroes. But
An(2)? = Br(2)*Y"? = A.(2)® — B.(2)*E(2) = —2"D,(2)

is a polynomial in z of degree r + g by Lemma 3. For every zero zy of the
polynomial either (i) E(zp) # 0 and we have two zeroes (2, ++/E(29)) on H’,
or (i) E(z9) = 0 in which case (z0,0) is a double root on H’. Therefore the
number of zeroes of A,.(2)? — B,(2)?Y"? is 2(r + g). Hence a =1 + g.
Moreover, condition (a) implies that A,(z) — B,(2)Y”’ has a zero of at least
order r at Py. This proves (3.5). O

Proof of Theorem 7. Consider A, (z) — B,(2)Y’ as an element in the function
field of H'.

Note that div(A,(z)— B;(2)Y’) ~ 0. Then rewriting (3.5) using the notation
(0, s0) = 1(0, s0) = [(0, s0)] — [c0] gives

D' +r[Py] = (r + g)[oc] = D’ — g[oc] +1(0, s0) ~ 0
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Therefore,
D' — g[oo] ~ —r(0, s0).

So D" — g[e] is the reduced divisor representing —r (0, sg).
Furthermore, since —D ~ w(D) for any divisor D,

r(0,50) = =(=7(0,50)) ~ w(=7(0,50)) ~ w(D" = g[oo]) = w(D') — gloc]. (3.6)

Hence the reduced divisor representing (0, sg) is w(D’) — h[c0].

By definition of the w-map, D’ and w(D’) have the same z-coordinates.
Therefore, to prove the theorem it is enough to show the z-coordinates of D’
are the zeroes of D,(z).

Now by definition, D’ is given by the zeroes of A,.(z) — B,(2)Y’ except the
order r zero at Pp.

On the other hand, by Lemma 1(c),

div(A,(2) + By (2)Y') = w(D) — (r + h)[oc] = —1(0, s0) + w(D’") — h[oc]. (3.7)

Hence w(D’) is given by the zeroes of A,.(z) + B, (2)Y’ except the order r zero
at Py. Thus the g (with multiplicity) z-coordinates of D’ are among the zeroes
of

Dy (2) = =(Ar(2) = Br(2)VE(2))(Ar(2) + Br(2)V E(2)) /2"
= —(4:(2)* = Br(2)*E(2))/~".
But by Lemma 3, deg D,.(z) = g so the zeroes are exactly the z-coordinates
in D',
O
After a ‘normalization’, D,.(z) will become the §, in (3.1). Finding r-torsion

points will then amount to finding which P = (x,y) makes certain coefficients
in 0,.(X) vanish.

3.2.3 General solution to the Padé problem

Fist we give the classical solution to the Padé approximant problem in terms
of determinants and then we prove that the conditions (a), (b) on A,., B, is an
instance of the Padé problem.

Let S(z) = >272, s;27 be a formal power series and consider the nx n-matrix,

Sm—n+1 Sm-n+4+2 Sm
Sm—n+2 Sm-n+3 Sm+1
Sm—1 Sm Tt Sm+4n—2
Sm Sm+1 ot Sm4n—1

Let hpyy = det Hy, p for m > 0,m > 1. For n = 0 let hy,,, = 1 and for
n < —1let hy, =0. _
Further let S; = >"7s;2¢, and consider the (n + 1) x (n + 1)-matrix
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3m7n+1 3m7n+2 e sm+1
Sm—n+2 Sm—n+3 et Sm+2
Umon(2) = (3.9)
Sm—1 Sm e strnfl
Sm Sm+1 e Sm+n

Z"Sm,n Zn_lsmfnJrl o Sm

Define wp, n(2) = detUp, n(2). Note that wuy,, is a polynomial in z with
degree less than m. Next let

Sm—n+1 Sm—n+2 tee Sm+1
Sm—n+2 Sm-n+3 Sm+2
Vien = : : E : . (3.10)
Sm—1 Sm e Sm4n—1
Sm Sm+1 ce Sm+n
Zn Z'H’*l PN 1

And let vy, (2) = det Vy, 5, (2). Then vy, , is a polynomial in z with degree
less than n.
For Wy n = Um,n — Um.nS(2) we have,

Sm—n+1 Sm—n+2 e Sm+1
Sm—n+2 Sm-n+3 Sm+4-2
Wi = — Z ZMANHITL et : : - : . (3.11)
=0 Sm—1 Sm te Sm+4n—1
Sm Sm+1 e Sm+n
Sm+1+j  Sm4245 " SmAntl4j

Proposition 9. The coefficient of 2"

of 2™ in vy, n(2) 18 (—1)" At n-

in Uy, pn(2) is (—1)" Ay, ny1. The coefficient

Proof. The coefficient in 2™ in z"7S,,_,, is Sm—n+j- S0 the coefficient of 2™
in upm n(2) is

Sm—n+1 Sm—n+2 e Sm+1 Sm—n Sm—n+1 et Sm
Sm—n+2 Sm—n+3 e Sm+2 Sm—n+1 Sm—n+2 Tt Sm+1
Sm—n+2 Sm-n+3 Sm+4-2
= (="
Sm—1 Sm t Sm4n—1
Sm Sm+1 tee Sm+n Sm—1 Sm et Sm4n—1
Sm—n Sm—n+1 e Sm Sm Sm+1 Tt Sm+n
== (—1)nhm’n+1.

Now consider (3.10). By the cofactor expansion of the last row, the terms
containing z" are
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Sm—n+2 Tt Sm+1
Sm—n+3 " Sm+2
2 . . .
Cinp1 = ()" Mipp = (1) | .. b =) g
Sm ot Sm4n—1
Sm+1 T Sm+n

The following classical theorem by Jacobi solves the Padé problem [1].

Theorem 8. The Padé approximant of order (m, n) is equal to (tm, n(2), Vm,n(2))
up to a constant.

The A,, B, are given as certain Padé approximations of 1/ FE(z). Let
—g-—1
. — V +9J = VQJ ’ (3.12)

2 2

Proposition 10. Finding polynomials A,., B, such that (a), (b) are satisfied are
an instance of the Padé approximation problem.

Proof. The claim is that A,., B, is the Padé approximant of order (m,,n,) to
First note that 2deg A, < r + g is equivalent to deg A, < LT;gJ = m, and
similarly 2deg B+ 2¢g + 1 < r + ¢ is equivalent to deg B < n,..
If r + g is even then r — 29 = r 4+ g — 2g is also even. Then

r+g9g r—g-—2

my + n, = > + > =r—1.
On the other hand if r + g is odd then
o r+g-—1 o r—g-—1
mr*#a”r*Ta

som, +n, =r—1.
Then (a) states, 2" = z™ 7 +1 divides A, (z) — B.(z)y/E(z). But this is
equivalent to condition (3.2) in the definition of Padé approximant. O

3.2.4 Formulas for A,, B,

Now we get formulas for A,., B, in terms of the determinants defined above.
Let

A(zy=17  0srsg (3.13)
e Umpm, 1Hg+1<r '

Bu(2) = 0 ifo<r<g (3.14)
" N Umpon, HLg+1<r '

Co(z) = 1 if0<r<yg (3.15)
e —Wpm, o, /20 Hg+1<r '

- 0 if —1<r<g-1 (3.16)
" hmr+17’rL/y~+1 if g S r .
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From Theorem 8 and Proposition 10 the above formulas for A,(z), B,(2)
satisfies the conditions (a), (b).

The C,(z) is an error term representing how far R(z) = A,(z)/B,(z) is from
approximating +/F(z). Moreover, f, is an expression (not necessarily a poly-
nomial) which becomes the division polynomial ¢, (z,y) after a normalization
and switching back to x, y-coordinates.

From Proposition 9 this essential proposition follows.

Proposition 11. The leading coefficient of D,.(z) is —f2 if r + g is even and
—a2g+1fT2 if r + g is odd.

Proof. For r < g it follows trivially from the definition, so assume r > g + 1.
Recall that
Dy(2) = ~(A(2)? - By(2)2E(2))/+" (3.17)

is a polynomial of degree g. Let d4 be the coefficient of 29.

Also, A,(z), B.(z) are polynomials of degree m,. and n,. Let a,, and b,,
denote the leading coefficients of A,., B,..

If r+giseven then deg A, = m, = (r+g)/2 and deg B, = n,, = (r—g—2)/2.
Since deg E,. = 2g + 1, the term B,.(2)?E(z) has degree

(r—g—2)+29g+1=r4+g—-1<r+g

so B,.(2)?E(z) can not contribute to the leading coefficient of D,.. But deg A4,.(2)?
r4+g,s0dg = —a?m. By Proposition 9, ap,, = hm, n,+1-
But since r + ¢ is even, m,4+1 = m, and n,y1 = n, + 1. Then
2 2 2
hm,.,n,.+1 = hm7.+1,n,,.+1 = fr .
Thus d, = — f?.
On the other hand if r 4+ ¢ is odd then m, = (r+¢9—1)/2,n, = (r—g—1)/2.
Then
deg Ap(2)  =r+g—1<r+g

but
deg B, (2)’E(z) =r—g—1+29+1=7r+g.

Since E(z) has leading coefficient —ag4.+1, Equation (3.17) yields dy = _a29+1b%‘7..
By Proposition 9 again, b%r = hfm_ﬂ}m. Because 7 + g is odd my41 = m, + 1
and n,4+1 = n,. Then

2 2 2
h =h =1

m,+1,n, Mypg1,N

Thus dg = _a2g+1f,3. O

3.2.5 Normalization

A priori f; is not a polynomial since we need square roots in the Taylor series
(3.3). We need to multiply by a normalizing factor to finally get the division
polynomials.
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Ezample 4. Consider the curve C: 2 = 2°+1. Then f5 contains roots v/z% + 1.
Factorizing f5 yields,

f= 5 (20 — 10825 +16) (2° — 4)x
’ 128 (a + 1)%

which still isn’t a polynomial, but the square roots disappeared since g = 2 is
even.

We need to multiply f, by a factor (2y)’" (v, defined below) to get a poly-
nomial.

Ezample 5. Let’s try (rabbit out of hat) to multiply last example with (2y)°.
Then using the curve’s equation,

¥s = (2)° fs = 2°(2® + 1)7/2 f5
=20 (2'% - 1082° + 16) (2° — 4) (2* — 2® +2° —2 + 1) (2 + 1)z

Furthermore,
¥s/(2y)? =5 (z'° — 108 2° + 16) (2° — 4) .

This is analogous with elliptic curve division polynomials being divisible by 2y if
r is odd and this will allow us to generalize the univariate division polynomials
in (2.4).

Before continuing we need notation for truncating polynomials and formal
power series.

Definition 14. Let

be a formal power series with n < oo and r > 0 be an integer. Then denote the
truncated formal power series of degree r with

F{L} =D aa’, (3.18)
=0

Similarly let f(z)[1,] denote the sequence
AQy A1y ...y Qp.

Remark. Note that Cantor’s definition allows us to ‘splice’ the polynomial. That
is, select coefficients from a given index set. The notation here is chosen to be
consistent with [5].

Now we can define the normalized division polynomials.
Let
= () ()= eo
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and define,
Ur = (29)"" fr, (3.19)
ar(z) = 2(2y)" T A (dy"2) {1, ), (3.20)
Br(2) = (2y)" ' B (4y°2){1,}, (3.21)
7 (2) = (29)"7 1 Cr(dy®2) {14}, (3.22)
5.(2) = (29)*" D, (4y°2). (3.23)

Let R be the ring Z[ag, . ..a,] where a; are the coefficients in the curve’s
equation. Then, the following analogue of the elliptic curve case holds.

Theorem 9 (Theorem 8.15 in [5]). If n — g is even then 1, € R[z]. Further, if
n — g is odd then ¢, € (2y)IR[z].

Moreover, Proposition 11 carries over to the normalized division polynomials.

Proposition 12. Let r > g + 1. Then the leading coefficient of 4,(z) is
—(4y*)992 if r + g is even and —agg11(4y*)992 if r + ¢ is odd.

Proof. If © + g is even then the leading coefficient of 6,.(z) = (2y)?*~D,.(4y%z)
is, by Proposition 11,

—F24Y)7 (29)% = —(£r(2y)"")? (4y°)7 = — 2 (4y*)".

The case when r + ¢ is odd follows similarly. O

Next we state a formula (without proof) that allows us to compute ¢, from
the previously defined normalized division polynomials.

Proposition 13 (Equation (8.15) in [5]). When r > g+ 1,

_ yz(q[zf_l&ﬂ(z) - 7/]7%—&-157’—1(2))
wr—lwg¢r+l

e-(2) (mod 6,(2)). (3.24)

3.2.6 Recursion

Similar to the elliptic curve case g = 1, the v, can be recursively computed.
For g = 2 and s > r, it holds [5, Equation (1.8)],

ws—Q ws— 1 ¢7~+ ws¢7'+2
wswrwsjtrwsfr = 'l/)s—ﬂ[}r—l 1/)1“7/}3 ws+1wr+1 (325)
stwer werlwrfl ws+2wr

If g > 2 the recursion formula becomes more complicated.

We define a (g + 1) x (g + 1) matrix below. The last column is written on
block matrix notation so the sequence v,_g417s+1[1g—2] should be expanded to
g — 2 entries.

'(/)r—gws ’(/)T—g+1¢s+l 7T—g+1’75+1[1g—2]

¢,_g+.1ws_1 «/)r_gws %-—g+2_%[19—2] (3.26)

wrwsfg ’(/}TJrle*ngl 7T+1’78*g+1[19*2]

33



3.3. TORSION ALGORITHM 3. Division points

Then the following formula [5, Equation (8.26)] holds for 29 — 1 < r < s,

g

det %s,r = ¢s—r¢s+7‘ H(¢7‘—g+k¢s—g+k>~ (327)

k=2

Note that this formula expresses 1,15 in previous 1;, so we can use it to
recursively compute 1,,.

Since ¥, = 0 for r < g the left hand side is 0 if s — r < g. So we assume
s—7r>g. Then s > 39— 1 and hence r+ s > 59 — 2. So for n > 5g — 2 we can
write n = s + 7 and use (3.27) to compute ¥, recursively.

Algorithm 5. The following algorithm computes the division polynomial ,,
for n > 0.

1. If n < 5g — 2 then compute %, from the determinant definition (3.16).

2. Otherwise, if n — g is even let

syl

and if r — g is odd, let

n—g n+g
= - 1.
= )

3. Then compute v, recursively for n = r + s using (3.27).

Proof. Let n > 5g — 2. Then

_9_
QLWJ_QQ_L

so the condition 2g — 1 < r < s holds.
It remains to show r+s = n in both cases. If n—g is even, soisn—g+2g =
n + g. Then
r+s=(n-g)/2+n+g)/2=n

On the other hand if both are odd then

r+s=mnm—-g—-1)/2+Mn+g—-1)/2+1=n.

3.3 Torsion algorithm

We define the univariate division polynomials analogously to the elliptic

curve case:
P - U, n — g even (3.28)
Un/(2y)9 n—godd.

Then similar to Proposition 8.
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Proposition 14. Let H be a hyperelliptic curve and let P = (z,y) € H.
Assuming that ord(P) # 2, then n(z,y) =0 in J(H) iff for all

n—g+1l1<i<n+g-1
we have P;(z) = 0.

Proof. We show that this follows from Proposition 8. Note that the only zeroes
of 1, we lose going to P, are the zeroes of (2y)9, i.e. points with y-coordinate
0. Moreover a point P = (x,y) has y-coordinate 0 iff ord(P) = 2. O

Fix a finite field IF, with characteristic p # 2 and let H be a curve defined
over IFy. The latter assumption means a; € IF;. Then let P, be the result of
reducing the coefficients of P,, modulo p. More precisely, if

Py =po+pix+ -+ ppat,
with p; € Z, then o
P, =6 +pie + -+ prat,
where p; = p;(mod p). Thus while P, € R[z] we have in contrast P, € F[z].
The key proposition is the following.

Proposition 15. Let H be an hyperelliptic curve and let P = (z,y) € H
with z,y € Fy. Assuming that ord(P) # 2, then n(z,y) = 0 in J(H)(F,) iff
P(z)=0forn—g+1<i<n+g-—1.

Proof. The construction of the Cantor division polynomials P, goes through
working in IF, instead of R. O

Now we can state the aforementioned algorithm.

Algorithm 6. Let H be an hyperelliptic curve given by a Weierstrass equation

y? = fo{l a;x* where a; € IF, and let n > g + 1 be an integer. Then the

following algorithm computes H[n](IF,), i.e. the n-torsion points.
1. If n is even, record the points with order 2.

2. Compute the 2g — 1 polynomials FP,_g4+1, Pr—g42, ... Pyyg—1 using the
recursion.

3. Reduce the coefficients of P; modulo p to get P; for n—g+1 <i < n+g—1.

4. Let g(x) = ng(Pnfg+1a Pogio,..., PnJrgfl)-
5. Factor g(z) into irreducible factors over FF,.
6. For each linear irreducible factor z — a in g(z):

(a) Find the y-values 8 such that (o, 8) € H(IF,).

(b) Record («, 8) as a n-torsion point.

The correctness of the algorithm follows from Proposition 14. We will now
prove Proposition 8.
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Lemma 5. Let r > g and assume we have f. # 0, fr4; =0fori=1,2,...2h—1.
Then (i) h < g and (ii) 2"|C,..

Proof. See [5] Lemma 3.29. O

Let © denote the set of divisors with reduced representative D with deg,(D) <
g, i.e. the finite part of D contain less that g points with multiplicity.

Lemma 6. Let P = (z,y) with y # 0. Then ¢, (z,y) =0 < n(z,y) € O.

Proof. Let (U(X),V (X)) be the Mumford representation of D. Then since
U(z) = 0 iff the point (z,y) or (x,—y) appear in D, degy(D) < g is equivalent
to degU(X) < g. By Theorem 6, U(X) = §,. But the leading coefficient of 4,
is either —42 (4y%)9 or —az,+192(4y?)? by Proposition 12. This completes the
proof. O

Lemma 7. Let h be an integer and let P = (x,y) € H with y # 0. Assume
wr($7y) 7é 0, ¢r+i(9573/) =0for1 <:<2h—1and wr+2h(xay) 7é 0. Then

rP ~ h(xz,—y)+ D — (g — h)[oc0],

where D is a divisor with positive coefficients and exactly g — h finite points
(with multiplicity) and no infinite points.

Proof. Let E be the reduced representative of nP (i.e. the unique reduced
divisor E such that nP ~ E). By Lemma 5, h < g and 2"|C,(2). Since
Un(z,y) # 0 by assumption, nP ¢ © by Lemma 6. Therefore, by definition, F
contains exactly ¢ finite points.
Since
Cr(2) = (A, — B.VE(2))/2"
and 2"|C, we have that A,(z) — B,.(2)\/E(z) is divisible by z"*". Since the

formal series \/E(z) is taken so that the constant coefficient is (—1)91y, we

have
Py = (0,(=1)9*1y)

as a zero of A.(z) — B,(2)Y’ with order r + h. Furthermore recall that the
number of zeroes of A, (z) — B-(2)Y"’ is r+g. Hence

0~ div(A,(z) — By (2)Y') ~ (r + h)[Py] + D — (r + g)[o<], (3.29)
where D is a positive divisor with g — h finite points. Then
r(@,y) ~ =h(z,y) + D = (g = h)[oc] ~ h(z, —y) + D — (g — h)[oc],  (3.30)
since —h(x,y) ~ h(z, —y). O
Finally, we are ready to prove Proposition 8.

Proof of Proposition 8. Let ¢,_4 # 0 and 9,,1; =0 for —g+1 < i < g—1 then
Yntg 7 0 by Lemma 5. Next by Lemma 7 with g = h we have

(n—g)P ~ glw(P)] — g[oc]. (3.31)
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Adding gP = n[P] — g[oc] to both sides gives,
nP ~ glw(P)] + g[P] — 2g[oo] ~ 0, (3.32)
since g[P] 4 glw(P)] — 2g[oo] = div(X — x) is principal.
Conversely, assume nP =0 in J(H). Then
(n—=g)P ~ —gP = —g[P| + g[oo] ~ g[w(P)] = g, (3.33)

where the last relation comes from adding g[P] + g[w(P)] — 2g[oo] ~ 0.

Note that the right hand side of (3.33) is a reduced divisor with deg, = g.
So since the reduced representative is unique, (n — g)P ¢ ©. Hence ¢, # 0.
Furthermore, adding jP, where 1 < j < 2¢g — 1, to both sides in (3.33) gives

(n—g+7)P ~ glw(P)] — g[oo] + j[P] — j[oo]. (3.34)
If j > g then
(n—g+ )P~ (G—9)P—(j—g)eal. (3.35)
Since j —g<29—g<g,(n—g+j)Pe€O.
When j < g,
(n—g+ )P~ (g— )P —(g—j)loc], (3.36)

and so (n — g+ j) € ©. This proves ¢,,.; =0 forall —g+1<i<g-—1. O

3.4 Naive division point algorithm

Algorithm 6 gives an efficient way to solve the torsion problem (Problem 1).
We next attempt the division point problem (Problem 2). First we give a naive
algorithm based on an exhaustive enumeration.

Recall that by Theorem 4 the Mumford pair (U,V) is defined over F, iff
U(X),V(X) € Fy[X]. Since there are only a finite number of polynomials in
IF,[X], the theorem gives us a way to enumerate all divisor classes in J(H)(IFy).

Algorithm 7. Let H be a hyperelliptic curve defined over IF, with genus g.
The following algorithm finds all n-division points J(H)[n](F,).

1. Enumerate all Mumford pairs (U, V) with U,V € IF,.
2. For each Mumford pair (U,V):

(a) Compute n(U, V) using Cantor’s algorithm (Algorithm 3).
(b) If n(U,V) =0 in J(H) then record (U, V).

Proof. By Theorem 4 looping over the polynomials (U, V) such that U,V €
F,[X] gives all divisors [D] € J(H)(F,). Since we simply check if nD = 0 this
gives the kernel.

For time complexity the essential part is how we implement Step 1. O

The naive way to implement Step 1 is to loop over all pairs X,Y (not nec-
essarily Mumford) and check if (X,Y) is a valid Mumford pair. Choosing this
implementation, the conditions in Corollary 1 implies that Step 1 is given by:
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1. For all polynomial U,V € IFy[X] with degU < g and degV < degU,
(a) If U | f — V2 then record (U, V) as a Mumford pair.

(b) Otherwise, continue.

Since we have g choices for each coefficient, the number of possible U is
0O(g9™). Since degV < degU, for a given U, the number of possible V is
O(q7). So the above implementation has a time complexity of O(g?9+1!).

In the next section we will derive a faster algorithm for finding valid Mumford
pairs (U,V) given a fixed U. However, even with this implementation we still
need to enumerate all U in Step 1. This means that Algorithm 7 is O(g91!).

3.4.1 Finding V from U

Given a polynomial U(X) € IF,[X] we seek the polynomials V(X) € F,[X] such
that (U(X), V(X)) is a Mumford pair. This is an essential step in the naive
algorithm. Furthermore, in the next section we will present a more sophisticated
algorithm, based on Cantor’s division polynomials, that gives a candidate list
of U-values (without corresponding V' values).

Consider the general case g > 1 for the moment. Let

k
UX)=J](X - ), (3.37)
i=1
where k& < g and ¢; > 1. Suppose that (U,V) is a Mumford pair. Then
the pair (U,V) represents the divisor Zle ¢i([(ei, Bi)] — [o¢]), where B; =
V(e;). In other words, U determines the z-coordinates and V' determines the
y-coordinates.

Now consider a fixed U. Then by Theorem 3 there is a 1-1 correspondence
between polynomials V' corresponding to U and reduced divisors of the form

D= Zci([(ai,yi)] — [oa)) (3.38)

where y; are such that (a;,y;) € H. Tt is easy to enumerate the divisors D with
z-coordinates a;. Indeed since we must have y; = ++/f(«;), we only need to
chose a sign for each y;.

It remains to give an algorithm to compute the inverse to the bijection in
Theorem 3. That is, for a given reduced D find the corresponding pair (U, V).
The algorithm is based on the proof of Theorem 13.5 in [19].

Equation (3.37) uniquely determines U from the z-values «;. Next we
need to construct a corresponding V' such that (i) degV < degU and (ii)
f—V2=0 (mod U).

Assume that we have a sequence of polynomials V;(X) such that

(i) Vi(ei) = Bi, and
(i) V2= f (mod (z — a;)%).

?
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Consider the system of congruences
V =V; (mod (X — ;)%) (3.39)

for 1 <4 < k. Then since the polynomials (X — ;)% are mutually relatively
prime for 1 <1 < k, the Chinese Remainder Theorem tells us that there exists
and unique solution V' modulo (X — aq)® ... (X — ax)® = U. Then since the
solution is defined modulo U, we have degV < degU. Furthermore

V=V; (mod (X — a;)“), (3.40)
implies that,
1. V(o) = B, and,
2. f=VZ=f-V2=0 (mod (X — a;)).
Then (2) with (ii) implies that for 1 <i <k,
f=V?=0 (mod (z — a;)“). (3.41)

Thus f — V2 =0 (mod U). Hence (U, V) is the Mumford pair representing D.

It remains to show how to construct the sequence {V;} such that (i), (ii)
holds.

To simplify notation, let W =V, « = oy, 8 = B; and ¢ = ¢;. If =0 then
by the assumption that D is reduced, we must have ¢ = 1. Let W(X) = 0, then
since W2(a) = f(a) =0, we have f —W? =f—-0= f =0 (mod (X — a)).

Assume that f # 0. We will inductively construct W(X). For 1 < j < ¢,
we will construct W;(X) such that f — W? = 0 (mod (z — a)?). Then clearly
W =W..

Definition 15. Define sequences {W;}5_;, {k;}5_o, and {P;}$_, inductively
by

Wi(X) =B, (3.42)
Wj+1(X) = W](X) + kj+1(X — Oé)j, for 1 <j<ec, (343)
where
(f =W2)
Pji1(X) (X —ay’ (3.44)
kjv1 = Pjy1(a)/(28). (3.45)

Proposition 16. Then for 1 < j <,
f- Wj2 =0 (mod (z — a)7). (3.46)

And P;(X) is a polynomial for 2 < j <ec.
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Proof. Induction on j. Note that Wi (X) = 3 implies Wi(a) = 82 = f(a)
which yields f — W? = 0 (mod (x — )’). By definition it follows that P is a
polynomial.

Assume the statement holds for W;(X). Then it follows from (3.46) that
Pj11 is a polynomial. Further, Pjy;(a) = 2k; 418 = 2k;+1W,(c) implies that

Pj+1(X) — 2]€j+1Wj =0 (Il’lOd (X - Oé)) (347)
Multiplying (3.47) with (X — «)7 yields
f=W?2 =2k 1 W;(X —a)) =0 (mod (X —a)/th). (3.48)

But this means,

f=W2iy=f—W2=2kW;(X —a) —k*(X — )% (3.49)
=f—-W}—2kW;(X — )’ =0 (mod (z — o)’ ™). (3.50)
O

Algorithm 8. Let D = Zle c¢i([(aq, Bi)] = [00]) be a reduced divisor. Then
the following algorithm finds the corresponding Mumford pair (U, V).

1. Let U(X) =TT (X — ).
2. For each 1 < i < k, compute V; recursively using Definition 15.

3. Solve the system of congruences (3.39) using the Chinese Remainder The-
orem. Let V be the solution.

By permuting the signs of 3;, this give us a way to generate the set of valid
V given a fixed U. For simplicity we will now only consider g = 2 and make the
idea more explicitly.

Recall that (U, V) € J(H)(IF,) is equivalent to U,V € IF,[X]. Further since
g = 2 we have deg U < 2. Based on the possible degrees of U we can classify U
in the following categories.

A UX)=1

B. UX)=X —a,

C. U(X) = (X — a1)(X — a) for a; # as,
D. U(X)= (X —o)?

We describe an algorithm based on the above cases that takes as input a
U(X) € F,[X] and output the set of V such that (U(X), V(X)) is a Mumford
pair.

A

Since deg V' < deg U, the only possibility is V(X) = 0. Note that (1,0) repre-
sents the neutral element.
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B

Note that ¥V must be a constant since degV < degU = 1. If f(«1) is a square
in F, then let f1 = £4/f(aq) € Fy. Then we have two (or one if 8; = 0)
possibilities, either V(X) = 1 or V(X) = —p1. If f(ou) is a non-square in F,,
we can still get a square root 1 € 2, but then D = [(ay, 81)] — [o0] is not
defined over IF;. Hence in this case there are no V.

C

The divisor D = [(a1,51)] + [(az2, 82)] — 2[oc], for a1 # a9, is defined over
I, iff the Froby(D) = D, where Frob is the Frobenius map. There are two
cases: (i) either Froby([an, 1)) = (a1, 81) and Frobgy([ag, 52]) = (aq, f2), or,
(ii) Froby([aa, £1]) = (a2, B2) and Frob,([ag, B2]) = (a1, B1).

Assume U(X) splits over F, i.e. aj,as € F,. Recall that z € F, iff
Froby(z) = z. From this we see that case (i) is equivalent to a1, a2 € F,. But
case (i) also implies that Frob,(81) = 81 and Froby(82) = B2. Hence (1,82 €
F,. In other words, when U(X) splits over IF, we only need to look for 3; =
+./f(a;) € Fy. In this case we take K =TF,.

On the other hand if IF, is irreducible over F; then a;,as € Fgp. Then
we are in case (ii) and 1, B2 € IFp2 since Frobg:(f;) = Frobg(Frob,(3;)) = B;.
Hence we only need to look for 8; = 4/ f(a;) € Fp2. We take K = IF.

Let 81 = £4/f(a1) € K and By = ++/f(as2) € K. Here we have 2 choices
of sign. For a given choice let V1(X) = 81 and V5(X) = 2. Then we need to
solve the system

V=V =74 (mod (X —ay)) (3.51)
V =Vs = (mod (X — an)). (3.52)

Note that this is system over IK[X] so a solution V' might not lie in F,[X].
However, if the solution V' does lie in IF,[X], then (U(X), V(X)) is Mumford
pair representing a divisor defined over IF,.

D

Let D = [(a1,41)] + [(a1,y2)] — 2[oc]. Then ys = +y; but since the divisor is
reduced we must have y; = yo, i.e. we can assume without loss of generality
that D = 2([(a1,$1)] — 2[o0]). Further note we can assume that (i) a; € F,,
and (ii) B1 # 0 since y; = 0 implies that D ~ 0.

If f(aq) is not a square in IF, there is no V. If f(a1) is a square, we have
one choice of sign: 1 = £/ f(c1). Then by making Algorithm 8 explicit using
Definition 15,

VI(X) = Wa(X) = Wi(X) + k2 (X — o) = B1 + k(X — o), (3.53)
where Py(X) = (f — 82)/(X — 1) and kg = Py(a1)/(281).

Hence we get two V' corresponding the choice of sign.

Algorithm 9. Let H a hyperelliptic curve of genus 2 over IF,. Given a poly-
nomial U(X) € F,[X] the above algorithm finds all V(X) € Fy[X] such that
(U(X),V(X)) is a Mumford pair representing a divisor D € J(H)(F,).
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3.5 Cantor’s division point algorithm

Since division points and torsion points coincide when g = 1 we assume that
g=>2.

3.5.1 Necessary condition

Let k < g. We will derive a necessary condition for

D= (Ila yl) + (l‘Qa y2) +ee (xkayk)a
being a division point. In general this will be k equations in two unknown
polynomials a(X),b(X) that must be satisfiable. When g = 2 this will turn
out to imply that two 2 x 2 determinants vanish. From this we can compute a
candidate list of possible U. For each U we then compute all corresponding V'

and then use Cantor’s algorithm to check if n(U(X), V(X)) = 0.
Note that since [n] is an homomorphism,

nD = n((xl,yl) + o A (xg, yk)) = (n(xl,y1) +- n($k7yk)>- (3.54)

Substituting = x; in Theorem 6, we get that n(z;,y;) is represented by the
pair
() ()
B R
So nD =0 in J(H) implies that the sum
k
i — XN i —X
a(Zgr) e (Fhr)) ~o
; ( NPT A A NE !

This holds iff there is a function f € F,(H) such that

k
div(f) = ; (5,1(374;2)()%(”54;2)()) (3.55)

By clearing denominators and using the relation Y2 = F(X) we can assume
that f is on the form f = a(X) + b(X)Y, where a(X), b(X) are polynomials.
Assume we have such a(X),b(X). Then by Lemma 1(c),

(a(X) +b(X)Y)(a(X) = b(X)Y) = a(X)? = b(X)*Y? = a(X)* - b(X)*F(X)

has roots exactly the z-coordinates of (3.55). If a; is a zero of §% then by
assumption a; is a z-coordinate in (3.55) and therefore a zero of a(X)+b(X)Y.
Thus,

a(X)? = b(X)?F(z) =0 (mod (X — a;)).

for all zeroes a; of 5;. Hence, for 1 <i <k,

a(X)? — b(X)2F(z) = 0 (mod 5(“41/2)()) (3.56)
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If this system is solvable then, by the Chinese Reminder Theorem, it has an

unique solution modulo
rri— X
6= lem (0, (% 57)):
1<i<k 4y;

Since deg 6!, < g, we have degd < kg < g. So we can assume without loss of
generality that the solution to the system satisfies deg(a(X)?—b(X)?F(z)) < ¢°.
This implies that 2dega(X) < g% and 2degb(X) < g% — 29 — 1.

But since (0%, €!,) is a Mumford pair, Y = ¢!, for all zeroes of 6. This proves
the following proposition.

Proposition 17. For k < glet D = Zle(zi, y;). If nD = 0in J(H) then there
are polynomials a(X), b(X), not both identically zero, with 2dega(X) < g2 and
2degb(X) < g2 — 2g — 1 that satisfies

$17X>

a(X) +b(X)e; (Vo

=0 (mod 5(%)) (3.57)

for1 <i<k.

Now consider the special case ¢ = 2. Let D be a n-divison point. Then
either (i) k =1, i.e. D = (x1,31) is a n-torsion point or (i) k = g = 2. Case (i)
is dealt with in Algorithm 6. We will now deal with case (ii).

The degree condition on b implies that b(X) = 0. Hence (3.57) implies that

(P elx),

for ¢ = 1,2. Thus there are polynomials ki, ks such that

That is,

5L (”“4;;( ) ky = 62 (””2 4;;( ) ks. (3.58)

In other words, §} and 62 are proportional.
By assumption,
(Ons €) + (87, €5) ~ 0. (3.59)

Then since for any Mumford pair (U, V),
(U, V) ~w(U,V)) =(U,-V),
it follows, since the Mumford representation is unique,
(571w 6711) ~ _(67217 Gi) ~ (57217 _631)' (3'60)

This implies that €. and €2 are proportional.
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Let (AL, El) and (A2, E?) be pairs corresponding to (6%,¢€l), (62,€2) such
that AL, A2 are monic (see remark in Theorem 6). Then

Ail:XQ—FalX—i-bl

and
A2 = X? 4 4o X + by,

where a;, b; are polynomials in z;,y;. Let

b1 by

o (3.61)

f1(331,$271117y2)=

The requirement that 6}, 2 are proportional is then equivalent to f; = 0. Sim-
ilarly let

E,=cX +d,
F? = ;X + do,
and,
f2(@1, 22,91, 92) = 2 22 . (3.62)

2

Similarly the requirement that €}, e2

are proportional is equivalent to fo = 0.

Proposition 18. In summary,

fi(@1, 22,91,92) = fa(x1, 22, y1,52) =0, (3.63)
is a necessary condition for n((z1,y1) + (2,y2)) ~ 0.

We will show that the condition (3.63) can reformulated as a polynomial
condition in the coefficients of U.

Proposition 19. Using the relations y? = F(z1) and y3 = F(z2) we can rewrite

Ji(w1,22,91,92), fo(21, %2, Y1, y2) as polynomials hy (w1, z2), ha(z1, 22) in 21, 22
only.

Proof. 1t is enough to show f;(21, 22, —y1,y2) = fi(21, 22, y1,y2) and fi(z1, 22,41, —y2) =
fi($1’$27y1,y2) fori=1,2
Let D' = (ml, _yl) + (l‘z,yg). Then

0 () o)) (5 ()

Let f{(x1,22,y1,Y2), fo(x1,22,y1,y2) denote the polynomials corresponding to
D'. Then f{(z1,72,y1,92) = fi(T1, %2, Y1, Y2)-

Because (—y1)? = y?, Equation (3.64) implies that D and D’ have the same
corresponding A, E. This means f; = f/. Hence

fi($17$27—y1,y2) = fi($1,$27y1,292) (3-65)

for i =1,2.
The proof of f;(x1,22,y1,—y2) = fi(x1, 22, Y1, y2) is exactly the same.
O
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Proposition 20. The polynomials hq(x1,x2), he(x1,x2) are anti-symmetric.

Proof. We need to show h;(x2,x1) = —h;(z1,22) for i = 1,2.

Let D' = (z2,y2) + (z1,y1) (opposite order) and let h}(x1,z2), h(x1,T2)
be the h-polynomials corresponding to D’. Then h}(z1,z2) = hi(x2,21) by
definition (3.62). Further since switching two rows in matrix changes the sign,

co ¢ ¢ c
hl(l‘g,ﬂil) = hll($1,$2) = dz di = — di dz = —h1($1,1‘2) (366)
A similar argument shows, ha(22,21) = —ha(21,z2). O

Since hi,hs are anti-symmetric we can divide them by the Vandemonde
determinant (z7 — x2). Let

g1(x1,22) = ha (21, 22) /(21 — 22),
g2(x1,22) = ho(x1,®2) /(21 — 2).

Then g1, g2 are symmetric polynomials in z1, zo.

We need to deal with any solutions we lose when dividing by x; — x».

Proposition 21. If D = (z1,y1) + (x2,y2) is an n-division point with zy = x5
then D is a 2n-torsion point.

Proof. The only possibilities when x1 = z9 is (i) D = (z1,11) + (21,91) =
2(z1,y1) or (ii) D = (x1,y1) + (1, —y1) = 0. Clearly, we don’t lose any solution
in (ii). In (i) we have D = 2(x1,y1). Hence nD = 2n(z1,y1) = 0. O

So our dichotomy splits into a trichotomy.
Proposition 22. Let D be a non-trivial n-division point. Then either
1. D = (x1,y1) is an n-torsion point,
2. D = 2(x1,y1) is a 2n-torsion point, or,
3. D= (x1,y1) + (x2,y2) with z1 # xo.

We have already found an efficient algorithm for the torsion problem so it
only remains to find an algorithm for Case 3.

Recall that a symmetric polynomial can be rewritten in terms of elementary
symmetric polynomials. Let so(z1,z2), s1(x1, z2) be the elementary symmetric
polynomials in x1, z5. Then write g1 (to, 1), g2(to, 1) for polynomials such that
gi1(so(z1,72), 51(x1,72)) = g1(w1, 22) and gGa(so(z1,2), 51(21,22)) = ga(w1, 72).

Let (U(X), V(X)) be the Mumford representation of D = (1, y1) + (22, y2)-
Then by definition

UX)=(X —21)(X —22) = X% — 50X + 51.

So §1(s0,81) = G2(s0,81) = 0 are necessary conditions on the coefficients of
U(X). This means we can generate a candidate list of possible U(X) by finding
all elements ag, a1 € Iy such that g1 (ag,a1) = g2(ag,a1) = 0.
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Algorithm 10. Let H be a hyperelliptic curve of genus 2 defined over IF,. The
following algorithm finds a complete candidate list of n-divisors.

1. Calculate X ¥
s L ps —
(") e (G
for i = 1,2 using the formulas (3.23) and (3.24).
2. Calculate A%, E! for i = 1,2.

3. Compute fi (1,2, Y1, Y2), f2(x1, T2, Y1, y2) by evaluating the determinants
in (3.61), (3.62).

4. Substitute the relation y? = F(z1) and y3 = F(x3) to obtain hy(z1,z2)
and hao(z1,22).
5. Compute g1(x1,22), g2(21,x2) by dividing with z1 — x5.
6. Determine ¢ (to,t1), g2(to,t1) using Gauss’ Algorithm [7].
7. For each i,j € I,
(a) If g1(i,§) = go(i,5) = 0 record X? — jX +i as a candidate.

For every U(X),V(X) in the candidate list, it is then a simple (and fast)
matter of testing if n(U(X),V (X)) = 0 using Cantor’s Algorithm (Algorithm
3). Since the candidate list is complete this gives us an algorithm for finding
the n-division points J(H)[n](F,).

Computations suggest the following:

Conjecture 3. Let L be the candidate list generated in Algorithm 10. Then
|L| grows, on average, linearly with ¢q. Also, for all curves,

IL| <gq+1.

We summarize Cantor’s algorithm for finding n-divison points.

Algorithm 11. Let H be a hyperelliptic curve of genus 2 defined over IF,.
Then the following algorithm computes the n-division points J(H)[n](Fy).
1. Compute and record all n-torsion points using Algorithm 6.
2. Compute all 2n-torsion points (x1,y1). Record D = 2(z1,y1) as an n-
division point.
3. Compute a candidate list L of possible U(X) using Algorithm 10.
4. For each U(X) € L:
(a) Compute all V(X)) such that (U(X), V(X)) is a Mumford pair using
Algorithm 9.
(b) For each pair (U(X),V(X)):
i. Compute n(U(X), V(X)) using Cantor’s Algorithm (Algorithm
3). If
n(U(X), V(X)) =0,
record the divisor (U(X), V(X)) as an n-division point.



4 Calculating #H$|N|(F,)

4.1 The moduli space H5[N]

We will now consider the moduli space H5[N] where every hyperelliptic curve
comes with a marked k-rational Weierstrass point.

Definition 16. Let C be a hyperelliptic curve (Definition 2) of genus g defined
over k and let w € C(k) be a Weierstrass point. We call the pair (C,w) a
hyperelliptic curve defined over k£ with Weierstrass point.

Remark. Recall that an elliptic curve is defined as a pair (F,O) where E is a
projective, smooth genus 1 curve defined over k and O € C(k) is a point fixed
to be the origin. So even though hyperelliptic curves with Weierstrass point is a
special class of general hyperelliptic curves, the definition is somewhat natural.

We want morphism between hyperelliptic curves with Weierstrass point to
preserve the Weierstrass point.

Definition 17. Let R, denote the category of H = (C,w) hyperelliptic curves
of genus g defined over k with Weierstrass point. The morphisms ¢: (C,w) —
(C’,w") are morphisms ¢: C — C’ with the additional requirement that ¢(w) =
W'

Definition 18. For N > 1 let H{[N] be the moduli space of pairs (H, D)
where H = (C,w) € Ry and D € J(H) is a divisor with ord(D) = N. And the
isomorphisms between (H, D) and (H’, D’) are given by isomorphisms ¢: H —
H’ such that the induced isomorphism

é: J(H) — J(H')

4.1
D— D, (41)

The k-rational points H [N](k) are pairs (H, D) such that H is defined over
k and D € J(H)(k).

Remark. Note that H'[N] consists of equivalence classes [H, D] where the k

subscript denotes that the isomorphisms ¢ are defined over k.
For further use we introduce the notation [H, D]; for the equivalence classes
of pairs (H, D) where the isomorphisms ¢ are defined over k.

Definition 19. With N fixed, define for a H € R4 defined over £,

E(H)={D € J(H)/k | ord(D) = N} (4.2)
c(H) =|E(H)]. (4.3)

Now, for k = IF; and g = 2, we will use the aforementioned algorithm to
count the number of points in Ho[N|(F,).

First, note that if N is odd then the division point algorithms allows us to
compute F(H),c(H) in the following way:
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Algorithm 12. For odd N = pi'p5*...ps*, the following algorithm computes
E(H) and ¢(H).

1. Compute the set of N-division points J(H)[N](IFF,) using Algorithm 11.
2. For each D € J(H)[N]|(F,),

(a) Loop over 1 <i < k.
For each 4, compute (N/p;)D using Cantor’s Algorithm (Algorithm 3).
If (N/p;)D = 0 we discard D and continue the outer loop, otherwise
continue the inner loop.

(b) At this point we know D € E(H).

Proof. Since ord(D) = N implies that nD = 0 the set of N-division points are
a complete candidate set. Further, if nD = 0 but ord(D) # N then ord(D) =
N’ for some divisor N’ = N of N. Since N’ # N there exists a p; in the
prime decomposition of N such that p; { N. Hence N’ | (N/p;) and therefore
(N/p)D = 0. 0

Remark. If N is odd prime then c¢(H) = |J(H)[N|(TF,)|.

Definition 20. Let
2 =R/ =p, .

In other words, $2 denotes the IF-isomorphism classes of Rs.

Our starting point for computing the number of IF;-rational points on ' [N]
is the following theorem, based on a technique in [2].

Theorem 10. "
PENE) = 3 (4.9

[H]eH2

Proof. To save space let k = F, and k = F,. Further let R denote the set of
H € Ry defined over k.

Take a fixed pair Y = (H,P) € R. Then the following identity holds.
See [10] or [12] for proof.

1
> )]~ 1. (4.5)

[X]eR/=,
XY

Then, (4.5) implies that,

1
HINE)= 3 1= 3 Y mmeer (49

[H, Py [H, Py [C.Q]k
(H,P)~;(C,Q)
oyt ()
A
> mecar
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It remains to prove

H)
2 |Autk( Z |Autk ()| (48)

(H, Pl

Note that G = Aut,(H) acts on pairs (H,Q) € R. It is clear (H,Q),(H, P)
lies in the same G-orbit iff [H, Q] = [H, Pli. Further the stabilizer Gp is all the
k-automorphisms fixing P, i.e. Gp = Auty(H, P). Then by the Orbit-Stabilizer
theorem, |Auty(H)| = |G.P||Gp|. Hence,

> it =2 T =SS wne

H], PEE(H)] w PCE(H
=2 |G1 = Z Aut <1H Pl (4.10)
[E!P]k P [E!P]k k ’

O

Our next step is to rewrite (4.4) so we don’t need to explicitly compute the
automorphism groups.

Remark. We mention as a side note that it might be possible to calculate (4.4)
directly. For small genus there are (slow) algorithms based on certain invariants
that calculate the automorphism group. Moreover, for determining isomor-
phism classes when g = 2 there is a fast algorithm [13]. This functionality is
implemented in the software package Magma [3].

4.2 Representative polynomials

Definition 21. Let S = {f(x) € F,[z] | deg f = 2¢9 + 1, f(x) square-free}.

Intuitively, we will find a complete set of representatives for S while control-
ling how much of the automorphism group ‘remains’.

Proposition 23. Let k be a field with char(k) # 2. For every f(x) € S there
is a corresponding hyperelliptic curve Hy = (Cy, 00) of genus g defined over k
with Weierstrass point. The curve is defined by the equation, Cy: y* = f(z).

On the other hand, we have already stated that a hyperelliptic curve H =
(C,w) with Weierstrass point admits a Weierstrass equation y? = f(x) with
deg f = 2g+1. We also need to determine much choice there are when choosing
the Weierstrass equation. Compare with [14, Corollary 4.33] and [15, Proposi-
tion 1.2].

Proposition 24 (Proposition 1.2 in [15]). Let k be a field with char(k) # 2.
Let (C,w) be a hyperelliptic curve with Weierstrass point defined over a field
k. Then there exists non-constant functions z,y € k(C) sending w to oo and
satisfying a Weierstrass equation
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where the polynomial f € k[z] and deg f(z) = 29+ 1. Further, such an equation
is unique up to variable change of the form,

Y=y

T ax + B. (4.11)

where v, € k* and § € k.

Thus every hyperelliptic curve H = (C,w) defined over k with Weierstrass
point is equal to Hy for some non-square polynomial f € k[z] with deg f =
29 + 1.

For v,a, B € IFy with o,y # 0, let G denote the group of transformations

Y=Yy

T ax + B. (4.12)

Proposition 25. For the group G we have, |G| = q(q — 1)%.

Proof. There are g choices for 8 € F, and (g — 1)? choices for v,a € Fy. O

For f € S consider the equation y?> = f(z) and let the above G act on the
equation resulting in v2y? = f(ax + B). That is, y? = W This motivates
the following definition.

Proposition 26. For S and G as above the following holds.

(a) The group G acts on the set S. The action of g € G on S is given by

flox +B)

gf: (a7ﬂ77)'f: 72 .

(b) For constant k € F, and f € S we have k(g.f) = g.(kf).

Proof. Clearly, (1,0,1).f = M = f. Further, let ¢1 = (a1,61,71),92 =
(a2, B2,72). Then the transformation g;gs is given by

TV asz + Bo v as(a1z + B1) + B2 = arasz + (B2 + ) (4.13)
Y Ny S 172y (4.14)
Then,
flaraor + B1 + a1 )
= . 4.15
(9192)-f (71722 ( )
But on the other hand,
Qo + o1 + +
01.(g0.F) :gl_f( 2% + [32) _ flag(arz + B1) + B2 (4.16)

V3 i3

Hence (g192).f = g1.(g2.f). This proves G is an action on S.
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For (b) we have by definition,

asgi1(az)® + -+ + a1 (azx) + ag

k(g-f) =k 2
 kaggq(ax)® + - -+ kay (ax) + kag
- e
=g.(kf).

O

Proposition 27. Fix a Hy with f € S. Then g = (o, 3,7) € G induces an
isomorphism g.: Hf — H, ;. defined over IF,,.

Proof. There exists a field isomorphism between the function fields F,(H ), F,(H,. f)
given by

11,
T ax + f,
Y =Y.

But recall that there is an equivalence of categories between smooth, projec-
tive curves and functions fields. Hence there is a corresponding isomorphism
g« Hy = Hg . O

Proposition 28. Hy =g Hy, it G.f1 =G.fa.

Proof. Proposition 24 proves the ‘if” part.
Conversely, assume that G.f; = G.fs. Then there is a ¢ € G such that
g-f1 = f2. Thus by Proposition 27 there is an isomorphism Hy, =p_Hy,.
O

Definition 22. Fix H; € Ry and let
T(Hy)={y:H = Hy | Hy € Ry}
Then there is a bijection ¥: G — T(Hy) given by g — g..
Proposition 29. Let ®: $, — S/G be the function given by
[Hy] — G.f
Then @ is well-defined and a bijection.

Proof. Proposition 28 implies that ® is well-defined and injective and Proposi-
tion 23 implies that ® is surjective. O

Proposition 30. Let G; denote the stabilizer of the action of G on S. Then
|G| = [Aut(H})].

Proof. By definition, Gy = {9 € G | g.f = f}. C G. For any g € Gy, the
induced isomorphism g, € Aut Hy. Hence ¥(Gy) C Aut Hy. Conversely, take
¢ € Aut Hy. Then by Definition 22 ¢ = g. for an element g € G such that
g.f = f. Thus g € G¢. This proves that U(Gy) = Aut(Hy). O
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In conclusion, orbits of G corresponds to isomorphism classes and stabilizers
correspond to automorphism groups. This allows us to rewrite the sum (4.4)
using the Orbit-Stabilizer theorem.

c(H c(Hy c(Hy)|G.f
DU JEUATS ST R

[H]€9H2 fes/a | f| fes/Gc ]

But since ¢(H) only depends on the isomorphism class, this is equal to,

3 C(gf ) (4.18)

s

Equation (4.18) gives us a way to compute the original sum (4.4) without
knowing the automorphism groups. However, ideally, we don’t want to use
(4.18) directly since we need to invoke the division point algorithm for each
f e S. We will study the effect of the action and subdivide S into different
classes to minimize the number of terms in the sum (i.e. calls to the division
point algorithm).

Proposition 31. Assume that I, has characteristic different from 5. Let
f=asz® + asz® + asz® + asx® + a1z +ag € S.
Then there is a representative
[ = bsaz® + bgx® + baa® + bz + by € S,

i.e. without 2* term, such that f' € G.f.
Furthermore, for a given f’ € S with by = 0 there are exactly ¢ number of
f € S such that f is represented by f’.

Proof. If charIF, # 5, the Tschirnhaus transformation T: z — = — a4/(5as5)
makes the coefficient of x% vanish. But this transformation is on the form given
in Proposition 24. Let t = (1,a4/4,1) € G be the group element corresponding
to T. Then f’ = t.f has no z* term, so f' = t.f is the representative we seek.

For the second part of the proposition let f € S be such that by = 0. Then
let g € G be the transformation 2’ = z + 8,y’ =y for § € [F,. Then, for each
B e, g.f €8 is represented by f’. Conversely, if f € S is represented by f’
then t.f = f’. Taking go = (1, —a4/4,1) € G we see that

g0-f" = go-(t-f) = (got).f = f.
Hence
{gf/ | 9= (Lﬂa 1)7ﬂ € Fq}

are exactly the polynomials in S that is represented by f’. Since there are ¢

choices for (3, there are a total of ¢ polynomials f € S such that f is represented
by f. O

Using Proposition 31 we can simplify the sum (4.18).

c(Hy) qc(Hyr) qc(Hyr) c(Hy)
Z — Z = Sl AP E — (4.19)
—1)2 EERY:
fes 16l i 6L fmale—1)? 0 =g
ba=0 ba=0 bs=0

Intuitively, we rigidify part of the group action G by requiring a4 = 0 for
the representatives. We make this statement more precise.
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Definition 23. Let
S ={f = asx® + asaz® + azax® + apx® + ayx +ao € S | ag = 0},

and
G ={(,7) ] (a,0,7) € G} C G.

Proposition 32. Then,
(a) G’ acts on the set S’.
(b) If g € G such that ¢.5" = S’ then g € G.

Proof. Let f] = asx® + azx® + ax® + ayx +ag € S’ and let ¢ € G be a
transformation with 8 = 0. Then

g.f1 = %(05((1%)5 + az(ax)® + as(ax)?ar (ax) + ag).

That is g.f; € S’. This proves (a).
Next let f} € S’. Then any g € G with 8 # 0 gives a non-zero coefficient of

2% in g.f{. Hence for any g € G such that g.f] = f} we have 3 = 0. This proves
G’ is exactly the set fixing S’. O

Now by Proposition 32(b), using Proposition 28 for the right equivalence,
And further, by Proposition 32(b) and Proposition 30,

|Aut Hf{

|
= ‘Gf{ '

Moreover, the requirement that § = 0 implies that
G| = (¢ - 1)*

Roadmap. The idea is to divide S’ into different classes for which better
representatives can be found and hence minimize the number of terms in the
sum (4.19).

Proposition 33. Let

f=asx® + azx® + asx® + a1z +ag € S’ (4.20)

such that two consecutive coefficients a4, aq_1 in f are non-zero.
Let Ay = a% | /a%'. Then if A; is a quadratic residue in T, the following
holds.

(a) There is an unique representative f’ € S’ with ag = ag—1 = 1 such that
feG.f and,

(b) for such f' € ', we have |G.f'| = (¢ — 1)?/2.
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Proof. We make the Ansatz g = («,v) € G" and solve for a,y € IF;.
Letting g act on an arbitrary f € S’ gives

g.f= %(a5a5w5 + aza’z® + asa®2® + ajax + ap) (4.21)

We want
ai‘;‘d —1 (4.22)
ad‘fgd_l =1 (4.23)

Dividing (4.22) with (4.23) yields

9 h=1 e a= 241 (4.24)
Ad—1 ad
Hence we have solved for «.
Plugging this in (4.22), (4.23) we get
d
ag_
=7 (4.25)

By assumption Ay = ag_l / aifl is a quadratic residue in IF,. Hence we get two
solutions for v (characteristic is not 2)

y =4, 2d=t (4.26)

But since for g1 = («,7),92 = (o, —) we have g1.f = go.f for all f € 5, it
follows that there is an unique f’ € S” with by_1 = by = 1 such that f € G'.f".
Since we have no choice anywhere, f’ is unique. This proves (a).

For (b) assume g = («, ) € G’ such that g.f' = f’. This holds iff
al=1/42 = 1
ad/yt =1.
This system holds iff @« = 1 and 7 = +1. Thus g = (1,41). Hence the stabilizer

’Gf .| = 2. Hence by the Orbit-Stabilizer Theorem, |G’.f'| = %.

O
Proposition 34. Let d be an integer, 1 < d < 3. Take
f= asz® + azx® + asx® + a1z + ag

in S’ such that a4, aq—1 # 0. Let r denote a fixed quadratic non-residue in IF,.
Then there exists an unique

f/:b51'5+~~+xd+xd71+~~ES/

such that either
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(i) fed.f' or,
(i) fe@.(rf").

Furthermore, as we go through all polynomials f € S’ with ag,aq_1 # 0, half
will fall in case (i) and half in case (ii).

Proof. Either Ay = aELI / ag_l is a quadratic residue or a non-residue in IF,,.
The first implies (i) by Proposition 33. We show that A; being non-residue
implies (ii).

Let r € F; be a quadratic non-residue and consider rf € S’. Then

Note that r and a3—1 / agfl are non-residues by assumption. Then by quadratic

reciprocity, 1"(1371 / ag_l is a quadratic residue. Hence by Proposition 33, there
exists f/ € S’ with bg_1 = bg = 1 such that rf € G'.f’. We need to show

fed.(rf.
Let g = (co,70) € G’ be such that g.f = rf. Then using Proposition 26(b),

r?f=rrf=r(g.f)=g.(f")
But by letting ¢’ = (L,7) we see ¢'.(r2f) = f. Hence f € G'.(r/").
Now it remains to prove that exactly half of
{ag_1/ag™" | ag-1,aa € F}} (4.27)

are residues.

Note that a?_,/a%"" is a residue iff both a?_,,a%""

are residues. Assume

first that d even. Then a? . is always a residue, so a%_ a1 is a residue iff
d—1 Y ) d—1/08q

agfl is a residue. But since d — 1 is odd, agfl is a residue iff a4 is a residue.

Hence half of (4.27) are residues.
The case when d is odd follows similarly.
O

Proposition 35. Let r € F be a fixed quadratic non-residue. Let
f=asx® + azz® + asx® + a1z +ag € S’

with ap 75 0.
Then, (a) there exists a non-unique

fl=bsa® +bga® + bz + bz +1€ 5
such that either
(i) feG.f or,
(ii) feG.(rf").
Furthermore:

(a) For each f there are ¢ — 1 choices for f’.
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(b) As we go through f € S" with ag # 0 half will fall in case (i) and the other
half in case (ii).

(c) For each f’ € S’ with by = 1 we have |G'.f'| = (¢ — 1)?/2.

Proof. (a) Either ag is a quadratic residue or not. First assume that ag is a
residue and take ¢ € I} such that ¢ = ag. Then for g = (1,¢) € &/,

1
-2

g.f:c (as5x® 4+ -4 ag) = as/agx’® + --- + 1.

Hence we take f' = g.f.

On the other hand if ag is a non-residue then rag is a residue by Quadratic
Reciprocity. So then rf = rasa®+-- - +rag satisfies part (a) of the proposition.
Let f’ be such that rf € G’.f’. Then by Proposition 26(b), r2f € G'.(rf’).
Since r? is a residue, this implies that f € G'.(rf").

(b) Let f' € S" with by = 1 be in the orbit of either f or rf. Then for each
a € I, consider g = (a, 1) € G'. Then ,

g.f =bs(az)® + -+ (az) + 1

is another representative for f. Conversely, let fi, f} be representatives with
constant term 1. Then the transformation between them must preserve the
constant term. Then, f; = g.f] where g = (e, 1) for some o € F,,. Hence there
are exactly ¢ — 1 representatives f’ for each f.

(c) By Quadratic Reciprocity exactly half of ag € IF; are residues.

(d) Let f" € S’ with by = 1. We show that |G| = 1. For g = (o,7) € G’
assume ¢g.f" = f’. This holds iff @« =1 and v = +1, i.e. g =e. O

Proposition 36. Let
f=asz® +asz® +ax e s
with a; # 0. Then there exists a
f =bsa® + b3z +x €8

such that f € G'.f".
Let Dy denote the number of representatives f’ for f. Then for all f,

B (¢g—1)/4 ifg=1(4)
Df_{(q—1)/2 if ¢ = 3(4) (4.28)

Furthermore, for each f' € S’ with by =1 and by = by = 0 we have

’opr (q_1)2/4 if g=1(4)
Ic:.fl—{(q_l)z/2 it g = 3(4) (4.29)
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Proof. Since a; # 0 we can take « = 1/a;. Then for g = (a, 1) we have,
g.f =a5a°2® + -+ ajax = aza’z® + - + .

Hence we take f' = f.g.

Recall that if ¢ = 1(4) then (i) —1 is a residue, and (ii) —« is a residue for
every residue a € IF}. On the other hand if ¢ = 3(4) then (i) —1 is a non-residue,
and (ii) —a is a non-residue for every residue o € IFy.

We prove (4.28). Consider f/ € S’ with b, = 1,bp = 0. For quadratic
residues a € IF there is a v € F such that 4% = a. For the transformation
9= (a,7),

5 3 5 3
o o e ! o
g.f = —2a5x5 + —2a3w3 + Sz = 7a5m5 + 7(13373 + .
v v Y Y Y
So g.f’ is another representative for f. Conversely, any map between represen-
tatives must preserve the linear coefficient, i.e. we require that a/7%2 =1 <=
7% = a. Thus {g.f'} are exactly the representatives of f. Hence

Dy = |{9-f’ | a € F;,a residue}| .

First assume that ¢ = 1(4). Then —a € [} is a residue. Let § € F; such
that 62 = —a and let ¢’ = (—a, ). Then

5 3
—o —o
!opl 5
qg.f = 52 05T +—62 + x.
But
—aP —a? 4 a®
_— = — = (X = —_—
52 — ~2’
and ) ) )
—a? —a? 9 ol
—_— = =Y = —.
52 —a ~2

Hence ¢'.f" = g.f’. So we are counting the representatives twice by counting
residues a € IF;. Hence Dy = (¢ —1)/4.

On the other hand for ¢ = 3(4), let o, o’ € F; be residues such that at =
(a')* and a? = (a’)?. Then since —a is not a residue, the only solution is a = /.
This proves that g.f’ are distinct for each residue « € Fy. Thus Dy = (¢g—1)/2.

Let f/ € 8" with by = 1 ad by = by = 0 and consider the stabilizer G},.
Clearly, g = (1,1) = e € G’ fixes f’. Assume that g.f" = f’. Then equating
coeflicients yields

o

«
3
«
=1 (4.31)
«
=1 (4.32)

Dividing (4.31) with (4.32) gives a? = 1. So a = £1. For a = 1 Equation
(4.32) implies that v = 1. Hence this solution corresponds to g = (1,+£1).
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Setting o = —1 in (4.32) gives 42 = —1. This equation is solvable iff —1 is a
quadratic residue. Hence for ¢ = 1(4) the transformations g = (—1, +7) fixes f’.

Thus in this case ’G},‘ = 4. On the other hand if ¢ = 3(4) then g = (1, £1) are

the only transformations fixing f’ so |G’.f’| = 2. This proves Equation (4.29).
O

Definition 24. Let W be the union of the sets of in Table 4.1. We call W the
set of representatives.

Set Polynomials

Wa f=a5a:5—|—m3+x2+a1m+a0;a5EIF;,a,l,a,OGIFq
Wgi f=as2°+2° +2+aop;a5 € F,ay €T,

Wgo f=as2®+ax®+ 1;a5,a0 € i

Wei1  f=asz®+asx® +z+1;a5, a3 eIy

Weo f=asz® +azx®+1;as,a3 € Fy

Wes  f =asz® 4+ asx® + 505,03 € i

Wpa f=asz® +a+1a5 €F;

Wpa f=asz®+1;a5¢€ i

Wps f=asx®+2;a5 € Fy

Table 4.1: Representative sets

We will prove the following theorem later.
Theorem 11. Let r» € IF, be a fixed quadratic non-residue. Then for each
f € 5 there is a f’ € W such that either (i) f € G'.f" or (i) f € G'.rf’.
However in the case f' € We 3 or f° € Wp.3 we always have (i). More precisely,
for f' € S define

a0 = {f’ if ' € Wos UWps

f',rf" otherwise.

The claim is that {d(f") | f' € W} is a complete set of representatives for S’
w.r.t the action of G'.

asz,a2 #0 | a3 =0,a2 #0 | a3 #0,a2 =0 | a3 =a2 =0
Class A Class B Class C Class D

Table 4.2: A first classification into cases

We classify S’ into cases fixing as much of G’ as possible using Proposition
34, Proposition 35, and Proposition 36. Our first division into classes is as in
Table 4.2. Further we split the sum

c(Hy)
2 o1y

fes 4T 1)?

in subsums corresponding to the classes. For I € {A, B,C, D}, let

c(H
U,:Z(q(_fl‘;.

fer
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We will split the cases and subsums further.

First, we need to make sure that G’ respects a division into classes based on
non-zero conditions on the coefficients.

Proposition 37. Take an arbitrary f = asz® + a3z® + asx® + ajx +ag € 5.
Further, let N(f) = {i € N | a; # 0} be the index of the non-zero coeflicients of
fand let Z(f) ={0,1,3,5} — N(f) be the index of the zero coefficients. Then

for g € G', N(g.f) = N(f) and Z(g.f) = Z(f)
Proof. Tt is enough to prove N(g.f) = N(f).
Let g = (,y) € G’ then
a® a? a? o 1
g.f = —2a5x5 + —2a3x3 + —2a2x2 + S az + —ao.
v v v v v

Since a'/y2%a; # 0 <= a; # 0 the proposition follows. O

Class A

Let f € A then Proposition 34 implies that there exists an unique f’ € Wy such
that either (i) f € G'.f" or (ii) f € G'.rf’. From this Theorem 11 is proved for
f € A. Further, for a representative f' € Wy the f € G'.f" C A are exactly the
/ € A having normal form f’. So by uniqueness of the representative,

va=Y S _ 5 (G SeHy) g G ey

PR V< VR P VR Ve

But by Proposition 33, 34 we have |G’.f'| = |G'.rf'| = (¢ — 1)?/2. Hence,

feEWa feEWa
Class B
Class B
az = 0, az 7£ 0
Class B.1 Class B.2
aq # 0 a1 = 0

Figure 4.1: Further classification of Class B

If f € B.1 then using a similar argument as for the Class A case proves
Theorem 11 for f € B.1 and yields,

c(H c(H,
Upi= Y. <2f)+ > (2’”). (4.34)
fEWB.1 fEWB.1
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On the other hand assume f € B.2, i.e. f = asz® + az2? + ap. Then since
f is by assumption separable we can assume without loss of generality that
ag # 0. Then by Proposition 35 there exists a normal form f/ € Wy 5 such that
either (i) f € G'.f’ or (ii) f € G'.f’. This proves Theorem 11 for f € B.2. For
f € Wgo the f € G'.f' C B.2 are exactly the f € B.2 with normal form f’.
But since every f € B.2 has g — 1 representatives on normal form, we need to
divide the sum with ¢ — 1. Hence,

Usa= 3 c(Hy) _ > (Gflc(Hﬂ+ > |G f' | e(Hry)

g -0 gy (a-Dle-1)? " 4e (a-1)(g-1)*

Then since |G'.f'| = (¢ — 1)?/2,

c(Hy) c(Hyy)
U = _— —_— 4.35
P27 2 oD 2 -] (4.35)
B.2 B.2
Class C
Class C
as 7£ 0, as =0
Class C.1 Class C.2 Class C.3
al,ao;«éo a1:0,a07é0 a17£0,a0:0

Figure 4.2: Further classification of Class C

If f € C.1 then two consecutive coefficients are non-zero. So we can use the
same argument as in Class A to prove Theorem 11 and,

c(Hy) c(Hry)
Uci = — —_, 4.
S DN v 20
feWea feWea
If f € C.2 then we can use Proposition 35 similar to Class B.2 to prove,
c(Hy) c(Hry)
Uco = + — 4.37
PR e AP D7y (457
c.2 feWe.2

Let f € C.3, i.e. f = asz® + asx® + ayx. Note that since f is assumed
separable, we can assume without loss of generality that a; # 0. Hence f is
of the form required by Proposition 36. So there exists a f’ € W¢ 3 such that
f € G'.f'". Further each f’ € W¢ 3 corresponds exactly to the f € G'.f' c C.3.

First assume that ¢ = 1(4). Then |G’.f’| = (¢—1)?/4 and there are (¢—1)/4
choices for normal form of f € W 3. Hence,

Uos= Y LD _ 5 (G eliy) 4

s le-)r a0 (@=1)? g1
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On the other hand if ¢ = 3(4) then |G’.f'| = (¢—1)?/2 and there are (¢—1)/2
choices for normal form of f € W 3. Hence,

Ucs = Z clHy) _ Z 2|G" [ e(Hyr) _ Z C(Hf/)-

_ 2 _ 2 _ _
feC.3(q 1) FreWes (¢=1)*(g—1) prawe, 171

Thus, in both cases,

c(Hy)
Ucs = . 4.
ca= ¥ 97 (4.38)
feWe.s
Class D
Class D
a3 = ag = 0
Class D.1 Class D.2 Class D.3
al,ao#o ale,ao;«éO Cl17éo,a0:0

Figure 4.3: Further classification of Class D

For D.1 we have two consecutive coefficients non-zero. Then a similar argu-
ment as in the Class A case proves,

c(H c(H,
Upi= Y. (zf)+ > (2f). (4.39)
fEWD 1 fEWD.1

For D.2 an argument similar to the B.2 case proves,

Upa= Y. Hy) 3 c(Hry) (4.40)

fEWD.2 2(q B 1) fEWD. 2 2((] B 1)

Finally, the D.3 case is proved in the same way as the C.3 case. Thus,

c(Hy)
U = . 4.41
pa= > M (1.41)
fEWD.3
4.3 The algorithm
Let
U=Us+Up1+Up2+Uci+Uca2+Ucs+Upi+Upa+Ups,

where the subsums U; are given by the equations (4.33) - (4.41).

Proposition 38. For the set W of representatives we have

W| < ¢+ 4¢° — 6q + 1.
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q  #terms  Q(q)
3 67 86

7 831 954
11 3193 3390
13 5043 5436
17 10979 11664
19 15231 16038
23 26579 27786
29 52475 54348

Table 4.3: Number of terms in U depending on ¢

Furthermore, let u denote the number of terms in the sum U and let
Qg) = 2¢° +7¢° — 11q +2.

Then,
u < Q(q).

Proof. Consider Table 4.1. We give an upper bound by considering all polyno-
mials (including non-separable) of the form in column two. However note that
the set W does not contain non-singular polynomials.

For Class A we have ¢*(¢ — 1) choices for the coefficients. For B.1 we have
q(q — 1) choices and for B.2 we have (¢ — 1)? choices. For any subclass of C, D
we have (¢ — 1)? and (g — 1) respectively. Hence,

Wl <q®(a—1) +qlg—1)+(g—1)*+3(¢—1)* +3(¢ - 1)
=¢34+ 4¢* — 6q + 1.
Consider the subsums U;. Note that for Classes A, B.1,B.2,C.1,C.2,D.1,D.2
we have two terms for each representative f’ and for Classes C.3, D.3 only a
single term for each representative. Hence,
u<2¢*(¢—1)+2¢(q— 1) +2(q — 1)* +5(¢ = 1)* + 5(g — 1)
=2¢° +7¢* — 11q + 2

O

Remark. Table 4.3 shows the true number of terms in U versus the polynomial
Q(q). The difference comes from non-separable polynomials counted by @ but
not included in W. But since the majority of polynomials will be separable, the
polynomial @ gives a pretty tight bound.

Finally, we state the algorithm for counting rational points on the moduli
space Hg [N].

Algorithm 13. Let r be a fixed quadratic non-residue in IF,. The following
algorithm will generate a set L of tuples (f,b,w) such that

HEINI(Fg)l = D> t(f.bw), (4.42)

(f,by,w)eEL

62



4.3. THE ALGORITHM 4. Calculating #H4 [N](F,)

where t is the function

L c(Hy) if b False

(/b w) ={ ’

L(c(Hy) +c(H,y)) if b True (4.43)

Note that f denotes a representative polynomial, b is a flag signifying if we have
the non-residue case in the sum and w is a weight.

The following steps will generate L where each step corresponds to a class
in Table 4.1.

A. For all (a5,a1,a9) € F; x Fy x Fy, let
f=asx®+2* + 2% + a1z + ao,
and return (f, True, 1/2) if disc(f) # 0.
B. (1) For all (as,ao) € Fy x Iy, let
f=as2® +2° + 2 + ao,
and return (f, True, 1/2) if disc(f) # 0.
(2) For all (as,az) € Fy x 7, let
f=asz’ + asx® +1,
and return (f, True,1/2(q — 1)) if disc(f) # 0.
C. (1) For all (as,a3) € Iy x I, let
f=asx® +asx® +x+1,
and return (f, True, 1) if disc(f) # 0.
(2) For all (as,a3) € Iy x 7, let
f=asx® +aszx® +1,
and return (f, True,1/2(q — 1)) if disc(f) # 0.
(3) For all (as,a3) € Iy x I, let
f=asx® +asa® +z,
and return (f, False, 1/(¢ — 1)) if disc(f) # 0.

D. (1) For all a5 € Iy, let
f=asz® +2+1,
and return (f, True, 1/2) if disc(f) # 0.
(2) For all a5 € IF}, let
f=asz®+1,
and return (f, True, 1/2(q — 1)) if disc(f) # 0.
(3) For all a5 € Iy, let
f=asa® +u,

and return (f, False, 1/(¢ — 1)) if disc(f) # 0.

See Appendix B for an example of the output of this algorithm.
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4.4 Notes about the implementation

As part of this project, Algorithm 13 for calculating #H%[N](IF,) was imple-
mented in Sage/Python. The author’s implementation of the algorithms in this
paper is available as a GitHub repository.!

The results of the computations are presented in Tables 1.1. The computa-
tions took weeks on a computer with Intel(R) Core(TM) i7 950 CPU and 19,6
GB of RAM.

Naive division point algorithm vs Cantor’s division point algorithm

When calculating |H$'[N](IFy)| using Algorithm 13 we have two options for
determining c(H): either, Cantor’s division point algorithm or the naive algo-
rithm. In practice, it turns out that the naive algorithm is actually faster than
Cantor’s division point algorithm. However, the torsion algorithm (Algorithm
6) can be useful in application where we are interested in torsion points rather
than division points.

Another property detrimental to Cantor’s division algorithm is that it’s time
complexity with respect to IV grows fast. The naive algorithm seem to have nicer
asymptotic behavior with respect to N. This is not surprising since the number
of Mumford pairs (U, V) only depends on ¢ (and the genus).

Overall, when computing |H$'[N](IF,)|, the biggest hurdle is the sheer num-
ber of curves (i.e. number of terms in the sum U, c.f. Proposition 38 and Table
4.3). So we require significant speed-ups to be able to continue calculations for
bigger ¢ in a reasonable amount of time.

Possible improvements of Cantor’s division point algorithm

The performance of Cantor’s division algorithm can probably be improved with
a better implementation. Our implementation follows the presentation in Chap-
ter 3 closely. It uses symbolic manipulations and then reduces modulo p to get
a polynomial in IFy[x]. Instead of working with symbolic expressions in char-
acteristic 0, it would be preferable to work with multivariate polynomials in
characteristic p.

The most time intensive part of Cantor’s division algorithm is Case 3 (Propo-
sition 22). Instead of deriving necessary conditions on the coefficients on U(X)
it might be faster to solve the polynomial equation system in Proposition 17
directly using Grobner basis algorithms.

Thttps://github.com/neural99/cantor-division-polynomials/
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A Examples of division polynomials v,

n

T W N~ OB

(4
0
0
0

1

8 (7 4 2% + 1)%

35224 + 280 219 + 1624 217 — 1920 2* — 6888 212 — 8176 20 + 960 2 + 3552 &7
+3808 2° + 2240 2% + 64 2% — 16

16 (7229 + 378 224 + 4536 222 — 9408 219 — 43064 217 — 58464 215 4 11328 214
+49392 212 4 72576 219 — 768 22 + 51968 z® — 2880 27 — 7056 2° — 4032 23
+128 2% — 26882 — 96) (a7 + 2% + 1) P2

294 259 4+ 90552 5% 4 1558200 %3 — 4540368 2°0 — 22618792 248 — 43267392 246
—7182336 z*° — 72610944 z*3 — 311235456 z*! + 11630080 240 — 389252864 z3°
+147399168 z3® + 382940096 236 — 66241536 23> + 212583168 234 — 546846720 233
+104579328 232 — 2056006400 z3* 4 17170432 230 — 4765603584 2°
4209044480 28 — 5715598336 227 4 1084823040 226 — 2783271936 22°
42202520320 24 — 386629632 223 4 1851745280 222 — 1428774912 22!
+612577280 220 — 2979809280 219 + 176885760 '8 — 4193064960 217
—115286016 216 — 4034752512 15 — 226443264 14 — 2274148352 213
—229859840 212 — 569589760 211 — 174354432 210 + 3309568 22 — 127045632 28
—2476032 27 — 67436544 25 — 3999744 x° — 12861440 2* — 1261568 z° — 4096 22
—114688 2 — 2048

32 (2127 + 27720 257 + 657888 2%° — 2873640 22 — 18505760 2°° — 63264768 °8
—23339520 57 — 275413600 55 — 2044149184 53 — 72934400 z52 — 4222556800 251
4915071520 50 + 4867721936 %8 — 1750325248 247 + 3055555328 246
—17304698880 z*° + 1501491712 z** — 73235185408 z*3 4 980305920 z:*2
—181840834560 z*! + 12279156736 240 — 236482598912 3 + 65364463360 38
—125828702208 z°7 + 158301513216 236 — 25741660160 23> + 192538157056 234
—112900702208 232 + 135594432512 232 — 286863768576 231 + 58792357888 230
—486940805120 229 — 5483782144 x28 — 541795065856 227 — 9612180480 226
—348065693696 25 — 12762579200 224 — 106924556288 23 — 27868442624 122
—13720092672 22! — 38019153920 220 — 24301426688 21 — 22792749056 =18
—30488944640 217 — 2526363648 16 — 30466670592 2'° — 243156992 214
—23103406080 '3 — 778846208 12 — 10448994304 z'* — 529858560 10
—2161246208 27 — 167247872 28 4 19013632 27 — 54198272 25 + 8142848 x.°

42205184 2 — 220376 2% — 7364608 22 — 262144 — 4096) (27 + 2% + 1) 2

Table A.1: Division polynomials 1, for the curve y? = 27 + 22 + 1
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A. Examples of division polynomials 1.,

Un

N O Ok W OB

oo

10

11

12

0

0

1

4zt =P+t —a+1)(z+1)

10 (2 — 4) %22

20 (219 —1082° +16) (2° — 4) (z* — 2 + 22 —z + 1) (z + 1)z

5 (722 — 487225 — 7408210 — 126722° — 768) (2 — 4) 2>

8 (7240 — 22344 2% 1 224896 2%° — 9451008 22 + 170240 220 — 57028608 215
3272704 210 — 4767744 2 — 32768) (1 — 2% + 22 — 2 + 1) (v + 1)

84 259 — 981792 2°° — 8072256 259 — 5136395520 245 — 9367057920 2:4°
—90223337472 35 — 114657705984 230 — 117268611072 2%° — 155547729920 22°
—229528043520 15 — 38803603456 219 + 1686110208 2° — 16777216

120 (290 — 36688 27 — 4458384 250 — 1658593280 245 — 18198906880 240
—157336670208 23° — 345653886976 230 — 471787716608 225 — 137167994880 2°

—3177185280 2® + 20634402816 20 + 956301312 2% — 25165824) (2° — 4)”

(2* —2® + 22 — x4+ 1)(z + 1)2?

5 (33299 — 3375036 235 — 1711423536 280 — 1004715154752 27>
—16454837809920 270 + 107245196473344 255 + 8625335817756672 2.5
+45127976765325312 z°° + 129275034097025024 2°° 4 177878883340124160 4
+112684530311102464 210 — 21097774263042048 2°° — 120707800543264768 2
—113963990249373696 x> — 31192453658705920 22° — 1612226569961472 z'°
—294252504416256 2'° + 13761075216384 2° — 137438953472) (2° — 4)x

20 (112190 — 2849880 295 — 4687088560 270 — 4736403754560 2*°
—228260548980480 20 + 8318978192722944 2™ + 539433596351938560 2.7°
+4633662928140779520 %% + 19543192767179653120 %
+44163514993394319360 2°° 4 105048907680124502016 >
+192921432429963509760 x5 + 215770750752883998720 2:*°
+104480531283884113920 % + 24139882138079068160 23
+6825760756013727744 22° + 4975917911056056320 220

+581389708311920640 '° — 9399793625333760 10 + 2585226714808320 °
+12094627905536) (2° — 4)2(354 -3+ 22—z +1)(z+1)2?

286 2140 — 173476592 2135 — 783432002592 2130 — 1386703609201664 22
—178473610832230400 120 + 19420141440911278080 215
+1337537876751441264640 10 4 5775492980719979069440 2
—70211475056340534558720 #1%° + 570541603890434827878400 2%
+12214411860600600615976960 z° + 31700306704971426410004480 2%
+71336210739921187168583680 250 + 342110600164855061948661760 7
+1182057089086649162897817600 2™ + 2075789928293154565138677760 5
+2009314878073796352991559680 250 + 1241067977133844114943508480 2°°
+883346574302886168058920960 2°° + 1010816491486338401855078400 245
+835729572546537590127329280 20 + 318007660009052542798397440
+46576321773027950476656640 0 + 2481806824910507558830080 2:2°
—386086108820092118630400 22° + 108841941951977342631936 21
+2288945503411799851008 0 + 139827761230599159808 2° + 72057594037927936

Table A.2: Division polynomials 1, for the curve y? = z° + 1
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B Example output of Algorithm 13

Polynomial ¢ Class w Polynomial ¢ Class w
o5+ a3+ 2t +2 2 A 12 [2°+1 0 B2 1/4
22° + 223 + 222 + 1 0 A 1/2 | 22°+2 0 B2 1/4
P+ttt 0 A 1/2 | 2P+2%+1 2 B2 1/4
225 + 223 + 222 + 2z 0 A 1/2 | 225 +222 42 0 B2 1/4
43+t +r+1 0 A 1/2 |25 +22%+1 0 B2 1/4
22° + 223 + 222 +22x4+2 0 A 1/2 | 220+ 2?42 2 B2 1/4
43+t +a+2 0 A 1/2 | 22°+1 0 B2 1/4
22° + 223 + 222+ 22 4+1 0 A 1/2 | 25 +2 0 B2 1/4
2+ 23 + 2 + 22 0 A 1/2 | 22°+2%+1 2 B2 1/4
225 4 223 4+ 222 + o 2 A 1/2 | 254227 +2 0 B2 1/4
o4+ 2+ 20 +2 0 A 1/2 | 22°+222+1 0 B2 1/4
22° + 22 + 222 +x+1 2 A 1/2 | 2° +2%+2 2 B2 1/4
225 + 2% + 22 + 1 2 A 12 | 2 +23+z+1 2 C1 1/)2
x5+ 223 + 227 + 2 0 A 12 |285+223+4224+2 2 C1 1/2
205 + 23+ +x+1 0 A  1/2 | 22°+23+ax+1 0 C1 1/2
254+ 223+ 222+ 20 +2 2 A 1/2 |25 +223+22+2 0 C1  1/2
22° + 23 + 2% + 2+ 2 0 A 1/2 |2P+a3+1 0 C2 1/4
4228+ 222 +20+1 2 A 1/2 | 225 + 22342 0 C2 1/4
225 + 2% + 2% + 22 0 A  1/2 | 25+223+1 0 C2 1/4
5+ 223 + 227 + o 0 A 1/2 | 225 +2%+2 0 C2 1/4
205 + 28 + 22 + 22+ 1 0 A 1/2 |22°+2%+1 0 C2 1/4
x5 4223 + 227 + 2 + 2 0 A 1/2 | 254223 +2 0 C2 1/4
22° + 23 + 22 + 22 + 2 0 A 1/2 | 22°+223+1 0 C2 1/4
2+ 223+ 222 +x+ 1 0 A  1/2 | 2°+a3+2 0 C2 1/4
P+’ +a 0 Bl 1/2 |22°+2%+x 0 C3 1/2
22° + 222 + 2z 0 Bl 1/2 | 22°+223+2 0 C3 1/2
4+ +r+1 0 Bl 1/2 |225+z+1 0 D1 1/2
2% 4+ 222 + 20 + 2 0 Bl 1/2 | 2°+2x+2 0 D1 1/2
P+t +r+2 0 Bl 1/2 |2°+1 0 D2 1/4
22° + 222 + 2 + 1 0 Bl 1/2 | 22°+2 0 D2 1/4
225 + 2 + 0 Bl 1/2 | 22°+1 0 D2 1/4
2% + 222 + 2z 2 Bl 1/2 | 2°+2 0 D2 1/4
22° + 22+ +1 0 Bl 1/2 |a%+= 2 D3 1/2
20+ 222 4+ 22 + 2 2 Bl 1/2 | 22°+x 0 D3 1/2

Table B.1: Output of algorithm 13 for N =3,¢ =3
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