
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

IpC2 as a Foundation of Mathematics

av

Mattias Wikström

2016 - No 8

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

IpC2 as a Foundation of Mathematics

Mattias Wikström

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Peter LeFanu Lumsdaine

2016

Abstract

This paper discusses quantified intuitionistic propositional logic (IpC2) and sug-
gests that it may be able to serve as a simple and yet powerful foundation of
mathematics. The logic is understood topologically, as a theory for reasoning
about parts of objects, and it is shown how it has the expressive power for
saying how the parts of an object with finitely many parts are structured. It
is shown how a conventional first-order theory (whose logic may be classical
logic, intuitionistic logic, or minimal logic) for reasoning about parthood can be
translated into IpC2. The paper also shows how IpC2 allows us to define a de-
scription operator, further highlighting the power of IpC2, and it is shown how
the operator in question is related to well-known definitions of conjunctions,
disjunctions, and the existential quantifier out of implication and the universal
quantifier. The paper suggests three ways in which IpC2 may be extended with
existence axioms, a topic that matters for any foundation of mathematics. The
existence axioms in question turn out to be related to three different fragments
of IpC2 which are also discussed in the paper, fragments where quantifiers are
restricted from above and/or below.

Contents

1 Introduction 4

2 Axioms for IpC2 7

3 A description operator; infima 10

4 Theories that only employ restricted quantification; the logic IpC2↾ 14

5 An example of a theory that describes the parts of an object 17

6 A ‘dual’ way of restricting formulas of IpC2; the logic IpC2≡ 17

7 Different Types of Semantics of IpC2 20

8 Algebraic Semantics: Basic Definition 22

9 Algebraic Semantics: Soundness, Completeness, and Homomorphisms 25

10 Topological Semantics 30

11 How to say that one object is not part of another 31

12 Lattice-describing formulas 37

13 A first-order theory for reasoning about parthood 38

14 Existence Schemata 43

15 Tagged objects 47

2

16 Conclusions 51

17 References 55

3

1 Introduction

Second-order intuitionistic propositional logic IpC2 extends ordinary intuitionistic propo-
sitional logic by allowing quantification over propositions. Rather remarkably, as was
noted in Prawitz (1965)1, no primitives other than universal quantifiers and implication
are needed in this system: Conjunction, disjunction, and existential quantifiers can all be
defined out of universal quantifiers and implication. This does perhaps give a hint that
IpC2 is very powerful in spite of its simplicity.

When combined with the Curry-Howard isomorphism (see (Howard, 1980) and (Girard,
1989, p. 93)), IpC2 gives rise to what is known as ‘System F,’ which was independently
introduced by Girard (1972) and Reynolds (1974). In accordance with the Curry-Howard
isomorphism, System F treats any proposition P as a type (in the type-theoretic sense).
Specifically, the proposition P is treated as the type of proofs of P . A proof of P → Q is a
function that maps any proof of P into a proof of Q while a proof of ∀X.PX is a function
which maps any type X into a proof of PX . And since the functions involved here are the
kind of functions that you can execute on a computer, System F may also be regarded as
a typed programming language.

But IpC2 remains an expressive system even when we do not distinguish between different
proofs of the same proposition but merely ask what is provable and what is not. Instead
of encoding things (truth values, numbers, lists, and so on) as proofs we may encode them
as propositions. What is the expressive power of IpC2 when used in this way? Löb (1976)
observes that ‘[s]ome syntactically simple fragments of intuitionistic logic possess consid-
erable expressive power compared with their classical counterparts’ and then goes on to
show how classical first-order logic with identity may be embedded in IpC2. Gabbay (1981)
describes IpC2 as ‘a system which is essentially as strong as HPC [the Heyting Predicate
Calculus]’ (p. 4) and demonstrates the power of IpC2 by showing how the (undecidable)
classical theory of a reflexive and symmetric relation may be faithfully interpreted in IpC2.
The reader is referred to (Sørensen and Urzyczyn, 2010) for further information on the
translations that have been set up.

But if IpC2 has passed the strength test then it would seem that it has earned the right
to further tests. Is IpC2 good or bad as a foundation of mathematics? Can it be used in
practice in place of more well-known theories (such as first-order predicate logic) for the
formalization of mathematical theories? If so, what are the pros and cons of using it in
this way? This is what the present paper aims to explore.

So how can one formalize things in IpC2? To begin with, while the objects of IpC2 are

1See also (Scott, 1979, p. 692) and (Ruitenburg, 1991, p. 18).

4

customarily called ”propositions,” we will use them for any objects whatever. For example,
a set or a natural number could end up being a ”proposition.” Along with this reinterpreta-
tion of propositions we will also use a reinterpretation of a→ b: We will often think of this
as saying that b is part of a (or that a contains b; we will use b← a as a synonym for a→ b).
While this reading of → may seem novel, it is actually well-known that intuitionistic logic
admits a topological interpretation.

Although we will consider topological models in section 10, for the most part we will not be
formal about the connection with topology. We will also be informal about the connection
with mereology2, the branch of philosophy that deals with wholes and parts, but these
connections will nevertheless play a role in motivating what we are doing as well as in
motivating the terminology we are using.

Reading a → b as saying that b is a part of a has the consequence that ⊺ is a part of
everything. The reader may find this odd: Is it not � that is conventionally part of
everything? Well, note that if we accept a ∧ b then a and b are part of what we accept3.
More generally, when we accept a proposition then all its consequences are part of what
we accept. It thus looks as if the logical consequences of a proposition – including ⊺ – are
part of the proposition.

The reader may object at this point that � plays an important role in intuitionistic logic: It
is what allows us to negate propositions. Without negations our ability to form predicates
seems severely limited. But it is possible to take a propositional constant R and agree that
by convention R is an absurd proposition so that x → R expresses the fact that x is not
true. This is precisely what is done in minimal logic4, and it will play an important role
in the present paper.

The reader may still feel, though, that the convention that � is part of everything is a
natural one that has its uses. Indeed, even with the present approach, as we ask the
question ‘Which parts x of object o satisfy the predicate φ(x)?’ we find that φ(x)↔def. ⊺
corresponds to ‘everything’ rather than ‘nothing.’ Even as we have accepted that a → b
expresses the fact that b is part of a, the fact that a→ b is equivalent to ∀x.(b→ x)→ (a→
x) means that it can sometimes seem as if what stands to the left of → is the part rather
than the whole.5

2See (Varzi, 2016).
3Note also that if a proof of a ∧ b is an ordered pair whose first component is a proof of a and whose

second component is a proof of b (in accordance with the Brouwer–Heyting–Kolmogorov interpretation of
intutionistic logic) then proofs of a and b are part of what we have when we have a proof of a ∧ b.

4See (Johansson, 1937).
5And since (a∨ b)→ x is equivalent to (a→ x)∧ (b→ x), it can sometimes seem as if it is ∧ rather than

∨ that expresses ‘the common part of a and b.’ Similarly, we have that (a ∧ b) → x is implied by (but not
in general equivalent to) (a→ x) ∨ (b→ x). We can also substitute a particular constant, say R, for x and
observe the same phenomenon: (a ∨ b) → R is equivalent to (a → R) ∧ (b → R). Above it was observed

5

Consider now the following problem: If a → b says that b is part of a, how do we say that
b is not part of a? The ‘obvious’ solution is to use (a → b) → �, but it follows from this
that b↔ �, and that is hardly what we want. Instead, in order to say that b is not part of
a we will use the formula (a→ b)→R, where R is as described above.

As it turns out, there are some limitations on how we can use R to express the fact that
one object is not part of another. In particular, we cannot use R to reason about the parts
of R. However, if for some reason we want to reason about the parts of R then we can do
so by adding another object R′ which we use just like R but which unlike R allows us to
reason about the parts of R. The bottom line is that in practice we do have a way to say
that one object is not part of another.

Suppose now that we want to say what the parts of some particular object a are. It seems
we can do so by combining three things: Formulas of the form ‘x is part of y’, formulas of
the form ‘x is not part of y,’ and universal quantification. As a simple example, we can
say that:

1) for all x, x is part of a if and only if x = a, x = ⊺, x = p1, or x = p2, and

2) a is not part of p1, a is not part of p2, p1 is not part of ⊺, and p2 is not part of ⊺.

But how can we be sure that our formulas really say what we think they say? What we will
do is to define a semantics for IpC2 in terms of Heyting algebras which possess infima of a
certain specified type (see section 7), and we will then be able to prove precise theorems
on what our formulas say for such Heyting algebras (see section 12).

There is a surprise of sorts, though, in that the parts of an object always form a Heyting
algebra. Although some philosophers have made the even stronger assumption that the
parts of any object form a Boolean algebra,6 we want to avoid making some controversial
philosophical assumption about parthood.

However, there is a connection between Heyting algebras and partially ordered sets (posets)
which makes any finite Heyting algebra correspond to a finite poset and vice versa: The
upward-closed subsets of a poset form a Heyting algebra and the meet irreducible elements
of a Heyting algebra form a poset, and in the finite case these two operations are each
other’s inverses. By only looking at meet irreducible elements we can thus get a ‘poset

that if we accept a ∧ b then a and b are part of what we accept, but with rejections it is the other way
around: If we reject a∨b (perhaps by asserting (a∨b)→R) then a and b are part of what we reject. Setting
r(x) =def. x → R we find that x1 → x2 (‘x1 contains x2’) implies r(x1) ← r(x2) (‘r(x1) is part of r(x2)’)
and that r has a ‘reversing’ effect on the arrow. To sum this up: If an acceptance of x2 is contained in an
acceptance of x1 then a rejection of x1 is contained in a rejection of x2.

6See (Varzi, 2016).

6

view’ of objects, and suddenly it seems that the parts of an object can form any poset, at
least in the finite case. This is discussed in section 13.

At this point, reasoning in IpC2 may seem rather strange and unusual: We negate formulas
using R and we look at meet irreducible elements when we want a ‘poset view’ on things.
We will, however, hide away these technical details by setting up a translation from a
certain first-order language into IpC2. The language will have a single relation symbol
that expresses parthood, and it will have one sort that gives us a ‘poset view’ of things
and another sort that gives us a ‘Heyting algebra view’ of things. See section 13 for the
details.

At this point the question arises of how we can understand mathematical structures such
as sets, vector spaces, topological spaces, Hilbert spaces, and so on in terms of our basic
theory for reasoning about objects and their parts. Can we do things in such a way that
the substructures of a mathematical structure become literal parts of it? Can we do things
in such a way that the elements of a set become parts of the set? The present paper will
stop short of actually addressing these questions. It is hoped, though, that it makes these
questions seem worth exploring.

Another question that arises is what the ‘universe’ we are quantifying over in IpC2 should
look like? We clearly do not want for ∀x.x = ⊺ to hold (which would mean that exactly one
object exists, trivializing the whole theory), but what should we assume instead concerning
what we are quantifying over?

Section 14 of this paper will propose three alternative axiom schemata, each of which seems
to ensure that lots and lots of objects exist. Informally, one may think of the schemata
as vindicating the idea that whenever an axiom system is free from contradictions then
objects of the kind described by the axioms actually exist. In fact, the axiom schemata
take this idea a step further by using conservativity rather than freedom of contradictions
as the criterion of existence. See section 14 for the details.

2 Axioms for IpC2

Some minor variations exist in the way that IpC2 is formalized, and I will use a formal-
ization where we distinguish between ‘propositional constants’ (or ‘atomic propositions’)
and ‘propositional variables.’ The distinction is meant to be analogous to that between
constants and variables in first-order predicate logic, something that seems quite appro-
priate when our goal is to use IpC2 where first-order predicate logic has traditionally been
used. Just as in first-order logic, variables may either occur free or be bound by quantifiers.
Constants, by contrast, cannot be bound by quantifiers, but a practical application may

7

instead add assumptions/axioms that limit what constants can stand for. This is exactly
analogous to the way that a first-order theory may contain not only constants but also
axioms that involve those constants. In fact, just as one speaks of theories in first-order
logic, so we will speak of theories in IpC2.

The syntax for the formation of formulas in our system is given by the following BNF
grammar7:

variable ∶= (any of the letters u, v, w, x, y, z, possibly decorated with an index or with primes)
constant ∶= (any other roman letter, possibly decorated with an index or with primes)
formula ∶= variable ∣ constant ∣ (∀variable.(formula)) ∣ (formula→ formula)

Moreover:

• We will follow the usual conventions for the omission of parentheses. In particular, in-
stead of (∀variable.(formula)) we may write (∀variable.formula) or ∀variable.formula.
Implication (‘→’) associates to the right, and a→ b→ c is thus another way of writing
a→ (b→ c).

• Instead of ∀x1.∀x2....,∀xn.φx1,x2,..,xn we may write ∀x1, x2, ..., xn.φx1,x2,..,xn .

• Uppercase and lowercase letters are both acceptable as constants (and a is not the
same constant as A).

• Greek letters will be used as metavariables to stand for formulas. For example, in
φ→ ψ we may set φ = a→ b and ψ = c to obtain (a→ b)→ c.

• In practice we use variable and constant symbols in a schematic way. For example,
we may say that for any variable x we can bind x in a formula through the universal
quantifier, and we may speak in a general way about a theory T with constants c1,
..., cn. Moreover, when using symbols in this schematic way (as we tend to do all the
time in practice) we will not always follow the above conventions on which letters
stand for constants and which letters stand for variables. Instead, as we introduce a
new symbol we make it clear what it stands for.

• Free and bound variables are defined in the usual way. φ[ψ/x] denotes the result of
substituting ψ for x in φ. Similarly, we define φ[ψ1/x1, ..., ψn/xn] to be the result of
simultaneously substituting ψ1 for x1, ..., ψn for xn in φ. Two formulas are said to
be α-equivalent if they arise from each other by the renaming of bound variables.

• We will use the following definitions (see section 3 for an explanation of how the first
three definitions actually work):

7‘BNF’ stands for ‘Backus Normal Form’ or ‘Backus Naur Form’ and is a widely used notation for the
presentation of the syntax of programming languages as well as other formal languages.

8

φ ∧ ψ is defined as ∀x.(φ → ψ → x) → x and referred to as ‘φ and ψ’ or ‘the
conjunction of φ and ψ,’ φ ∨ ψ is defined as ∀x.(φ → x) → (ψ → x) → x and
referred to as ‘φ or ψ’ or ‘the disjunction of φ and ψ,’

∃x.φ is defined as ∀y.(∀x.(φ→ y))→ y and expresses ‘existential quantification,’8

� is defined as ∀y.y and referred to as ‘bottom,’
⊺ is defined as �→ � and referred to as ‘top,’
¬φ is defined as φ→ � and referred to as ‘the negation of φ,’
φ← ψ is defined as ψ → φ,
φ↔ ψ is defined as (φ→ ψ) ∧ (ψ → φ) and read ‘φ is equivalent to ψ,’ and
φ = ψ is defined as φ↔ ψ.

• As suggested by the last of the above definitions, we regard equivalent propositions
as ‘the same’/‘identical’/‘equal.’ We have no reason to distinguish between them,
and regarding them as the same makes a difference when it comes to counting how
many objects we have.

Our rules of inference will be:

I1. From φ and φ→ ψ we may infer ψ (modus ponens).

I2. If x and y are not free in φ then φ→ ∀x.ψ may be inferred from φ→ ψ[y/x].

We will use the following axioms (note that A3.-A4. are actually schemas with infinitely
many axioms as instances):

A1. ∀x, y.x→ y → x

A2. ∀x, y, z.(x→ y → z)→ (x→ y)→ x→ z

A3. (∀x.φ)→ φ[y/x]

A4. ∃x.x↔φ (x not free in φ)

That A1. and A2. suffice to axiomatize intuitionistic implication is well-known. The rule
I2. and the axiom A3. tell us how we may introduce and eliminate universal quantifiers.
Finally, A4. is a comprehension schema which helps determine what we are quantifying
over. It plays an important role in making the system what it is. For example, without it
we cannot take for granted that ∃x.x↔φ1∧φ2 and ∃x.x↔φ1∨φ2 hold.

8When applying this definition, let y be a variable that is not free in φ.

9

(Gabbay, 1981, p. 159) considers an additional axiom which with the present notation
may be written: (∀x.φ ∨ ψ) → (φ ∨ ∀x.ψ) (x not free in φ). As the expression ‘IpC2’ is
understood here (and presumably elsewhere as well), this axiom is not included. As natural
as it may seem, one can find many topological models of IpC2 where it fails to hold.9

By a theory T in IpC2 we mean a set SigT of constants along with a set of formulas AxT
that contain no constants apart from those in SigT . SigT may be referred to as the signature
of T .

When two theories T1 and T2 are such that all the constants in SigT1 are included in SigT2
and such that all the axioms in AxT1 are included in AxT2 , then we say that T2 is an
extension of T1.

A formula φ is considered to be deducible/provable in a theory T if it can be deduced from
the axioms of IpC2 along with the axioms of T .

Note that we are not requiring theories to be deductively closed.

Theorem 1. (Deduction theorem) If a theory T with finitely many constants c1, ..., cm and
finitely many axioms χ1, ..., χn−1 proves χn and if (for each i) χi

∗ is a constant-free formula
such that χi

∗[c1/x1, ..., cm/xm] is χi then IpC2 proves ∀x1, ..., xm.(χ1
∗ → ...χn−1

∗ → χn
∗).

Proof. Omitted.

3 A description operator; infima

When reading the previous section, the reader may have been puzzled by the definitions
of ∧, ∨, and ∃ in terms of → and ∀. How do these definitions actually work? The present
section will explain this and more.

An important feature of IpC2 is that it allows us to define the following operator:
inf x s.t.φ↔def. ∀x.φ→ x (‘s.t.’ is read as ‘subject to’ or ‘such that’). As the notation

may suggest, this operator has the property that inf x s.t.φ is the infimum of all objects x
such that φ holds. To be precise:

9Topological models are discussed in section 10. Using the interpretation of intuitionistic logic in terms
of open sets in a topological space, we can get a counterexample by using the real line with the standard
topology as our topological space, by letting φ stand for {t ∈ R ∶ t ≠ 0} and by letting ψ be such that it
takes on exactly the values {t ∈ R ∶ ∣t∣ < r}, where r can be any positive real number, as x ranges over all
open sets.

10

Theorem 2. 1) For any formula ω such that φ[ω/x] holds, inf x s.t.φ implies ω, and 2)
if µ is any such formula (for any formula ω such that φ[ω/x] holds, µ implies ω) then µ
implies inf x s.t.φ.

Proof. To see that 1) is true, note that ∀x.φ → x (which is what inf x s.t.φ stands for)
implies φ[ω/x]→ ω, which implies ω under the assumption that φ[ω/x] holds. So inf x s.t.φ
implies ω under the assumptions of 1).

To see that 2) is true, assume that for any formula ω such that φ[ω/x] holds, µ implies
ω. We want to show that µ implies inf x s.t.φ, so assume that µ holds. Because of our
second assumption, our first assumption can be simplified to: For any object ω such that
φ[ω/x] holds, ω holds. But this is just another way of saying ∀x.φ→ x, which is also what
inf x s.t.φ stands for. Hence µ implies inf x s.t.φ.

It is now easy to see how the definitions of ∧, ∨, and ∃ work. The definitions we used
before are equivalent to:

x1 ∧ x2 ↔def. inf y s.t. (x1 → (x2 → y)),
x1 ∨ x2 ↔def. inf y s.t. ((x1 → y) ∧ (x2 → y)), and
∃x.φ↔def. inf y s.t.∀x.(φ→ y).

Theorem 3. 1) α ∧ β implies α as well as β,

2) α → (β → (α ∧ β)),

3) α → (α ∨ β) and β → (α ∨ β),

4) [(α → ω) ∧ (β → ω)]→ [(α ∨ β)→ ω],

5) ψ[χ/x]→ ∃x.ψ, and

6) if χ→ ψ holds and if x does not occur free in ψ then (∃x.χ)→ ψ holds.

Proof. 1) To prove that α∧β (= inf x s.t. (α → (β → x))) implies α, apply part 1) of theorem
2 with (α → (β → x)) in place of φ and with α in place of ω. This requires us to show that
α → (β → α) holds, but this is trivial.

That α ∧ β implies β can be shown analogously. This time, we are required to show that
α → (β → β) holds, which is trivial.

2) Assume that α holds. Then β is a formula such that if α → (β → ω) holds then
β implies ω (regardless of what ω is). By part 2) of theorem 2 we therefore get β →
inf x s.t. (a→ (β → x)). Without the assumption α, we end up with α → β → inf x s.t. (α → (β → x)).

11

3) Apply part 2) of theorem 2 with ((α → x) ∧ (β → x)) substituted for φ and with µ set
to α. This requires us to show that if (α → ω) ∧ (β → ω) holds then a → ω holds, which is
trivial. We end up with the conclusion that α → inf x s.t. ((α → x) ∧ (β → x)).

The proof of β → (α ∨ β) is similar. It requires us to show that if (α → ω) ∧ (β → ω) holds
then β → ω holds, which is trivial.

4) This is what part 1) of theorem 2 says when that theorem is applied with φ set to
(α → x) ∧ (β → x).

5) Apply part 2) of theorem 2 with φ set to ∀z.(ψ → x) and µ set to ψ[χ/x]. This requires
us to show that for any formula ω such that ∀z.(ψ → ω) holds, ψ[χ/x] implies ω. However,
this is a simple matter of substituting χ for z in ∀z.(ψ → ω).

6) Assume χ→ ψ. By setting φ equal to ∀z.(χ→ x) and ω equal to ψ in part 1) of theorem
2, we get that inf x s.t.∀z.(χ→ x) → ψ. This requires us to prove that ∀z.(χ → ψ) holds,
but this is a simple consequence of the assumption χ→ ψ.

Another application of the operator inf x s.t.φ is that we are able to define a description
operator ι. The defining characteristic of such an operator is that if there is exactly one
object a such that φ[a/x] holds then ιx.φ denotes that object. Here is one way that we
may define such an operator in IpC2:

ιx.φ↔def. inf x s.t.φ
As long as there is a unique x satisfying φ, this definition succeeds in picking that object
out, and this is all that is required of a description operator. But even when ∃!x.φ is not
provable we still have (∃!x.φ)→ φ[(ιx.φ)/x] (just assume ∃!x.φ and note that φ[(ιx.φ)/x]
becomes provable). Here, ∃!x.φ is defined as usual:

∃!x.φ↔def. (∃x.φ)∧∀y, z.(φ[y/x]↔ φ[z/x])→ y = z (let y nor z be two variables that
do not occur in φ).10

There is also a generalized version of the operator inf x s.t.φ that is worth mentioning11:
inf ψ[x] s.t.φ↔def. ∀x.φ→ ψ.

The notation has been chosen to suggest that inf ψ[x] s.t.φ can be seen as giving us the
solution to an optimization problem, and the following theorem confirms this:

10It is worth noticing that inf x s.t.φ implies ∃!x.φ: If we assume inf x s.t.φ then we have inf x s.t.φ = ⊺,
which means that φ only holds for ⊺, from which ∃!x.φ follows. Note also that setting ιx.φ↔def. (∃!x.φ→
inf x s.t.φ) would work as an alternative (non-equivalent) definition of ιx.φ: We would still get (∃!x.φ) →
φ[(ιx.φ)/x].

11 Russell referred to expressions of the form ∀x.φ → ψ as ‘formal implications’ and Church gave them
the notation φ ⊃x ψ (Church, 1956, p. 44). We could write this as φ →x ψ, but we will instead use φ →x ψ
to mean x ∧ (φ→ ψ). See section 6.

12

Theorem 4. 1) For any formula ω such that φ[ω/x] holds, inf ψ[x] s.t.φ implies ψ[ω/x],
and 2) if µ is any such formula (for any object ω such that φ[ω/x] holds, µ implies ψ[ω/x])
then m implies inf ψ[x] s.t.φ.

Proof. The proof is simply a generalized version of the proof of theorem 2. ∀x.φ → ψ
(=inf ψ[x] s.t.φ) implies φ[ω/x] → ψ[ω/x], which implies ψ[ω/x] under the assumption
that φ[ω/x] holds. So inf ψ[x] s.t.φ implies ψ[ω/x] under the assumptions of 1).

To prove 2), assume that for any formula ω such that φ[ω/x] holds, µ implies ψ[ω/x]. We
want to show that µ implies inf ψ[x] s.t.φ, so assume that µ holds. Because of our second
assumption, our first assumption can be simplified to: For any object ω such that φ[ω/x]
holds, ψ[ω/x] holds. But this is just another way of saying ∀x.φ → ψ, which is also what
inf ψ[x] s.t.φ stands for. Hence µ implies inf ψ[x] s.t.φ.

Note that inf ψ[x] s.t.⊺ is equivalent to ∀x.ψ and that inf ψ[x] s.t.φ is equivalent to φ→ ψ
in the case when x does not occur in φ or ψ. The two primitives of IpC2 may thus both
be defined in terms of inf ψ[x] s.t.φ (although the definition of → is somewhat impractical
in that it requires us to find a fresh variable each time we want to express →).

By the following theorem, it is also possible to define the universal quantifier out of the
infimum operator and the existential quantifier12:

Theorem 5. ∀x.φ↔ inf y s.t.∃x.y = φ
12Could we set up an alternative axiomatization of IpC2 where we use the infimum operator and the

existential quantifier as primitives and where we do not include the universal quantifier as a primitive?
There is a problem in that we used universal quantifiers to define conjunctions which were in turn used to
define ‘=.’ However, if the primitives were ‘→,’ ‘=,’ existential quantification, and the infimum operator,
then we could of course use the definition ∀x.φ↔def. inf y s.t.∃x.y = φ to define universal quantifiers (the
definition is to be understood as being valid only when y does not occur free in φ). We are clearly able
to translate formulas expressed using each set of primitives into formulas expressed using the other set of
primitives, but could we find an explicit set of axioms which employs the alternative set of primitives?
Well, we can certainly translate our usual axioms and inference rules (see section 2) so that they come to
employ the alternative set of primitives. For example, axiom A3. becomes (note that we need to add an
extra clause to the axiom about z not being free in φ):
A3#. ((inf z s.t.∃x.z = φ)→ φ[y/x] (z not free in φ).
However, this will not quite suffice since we we can only prove formulas where the infimum operator and
the existential quantifier occur together (for example, we would not be able to prove ∃x.x). Things will
work, though, if we turn our old definitions of ‘=,’ the existential quantifier, and the infimum operator
into axioms. For example, we would add the following axioms to ensure that ∃x.φ is interderivable with
∀y.(∀x.φ→ y)→ y:
A∃1. ∃x.φ→ [∀y.(∀x.φ→ y)→ y], and
A∃2. [∀y.(∀x.φ→ y)→ y]→ ∃x.φ.

13

Proof. Assume that ∀x.φ is provable. Then φ is also provable as is φ = ⊺. Hence ∃x.y = φ
can be rewritten as ∃x.y = ⊺ or just y = ⊺. inf y s.t.∃x.y = φ therefore becomes inf y s.t. y = ⊺,
which is obviously ⊺. To prove the other direction, assume instead that inf y s.t.∃x.y = φ
holds. This is by definition the same thing as ∀y.(∃x.y = φ) → y. By the law that
(∃x.χ) → ψ is equivalent to ∀x.χ → ψ (which is related to the rule that (a ∨ b) → c is
equivalent to (a→ c)∧ (b→ c)), this may be rewritten as ∀y.∀x.(y = φ)→ y. By swapping
the quantifiers we get ∀x.∀y.(y = φ)→ y, which is evidently equivalent to ∀x.φ.

Let us finally note that it is possible to define a supremum operator that is ‘dual’ to the
infimum operator (let y be a variable that does not occur free in φ or ψ):

supψ[x] s.t.φ↔def. ∃y.φ[y/x] ∧ ψ[y/x], and
supx s.t.φ↔def. supx[x] s.t.φ.

We then have:

Theorem 6. 1) For any formula ω such that φ[ω/x] holds, ψ[ω/x] implies supψ[x] s.t.φ,
and 2) if µ is any such formula (for any object ω such that φ[ω/x] holds, ψ[ω/x] implies
µ) then supψ[x] s.t.φ implies µ.

Proof. To prove 1), let ω be a formula such that φ[ω/x]. Assume ψ[ω/x]. From this we can
clearly infer ∃y.φ[y/x] ∧ ψ[y/x], which is what supψ[x] s.t.φ says. Hence ψ[ω/x] implies
supψ[x] s.t.φ.

To prove 2), let µ be such that for any formula ω such that φ[ω/x] holds, ψ[ω/x] implies
µ. Substitute y for ω to get ∀y.φ[y/x] → (ψ[y/x] → µ). Now assume supψ[x] s.t.φ. That
is, we are assuming ∃y.φ[y/x] ∧ ψ[y/x], which we may also write (using the definition of
the existential quantifier) as ∀z.[∀y.φ[y/x] → (ψ[y/x] → z)] → z. Substitute µ for z to
get [∀y.φ[y/x] → (ψ[y/x] → µ)] → µ. By Modus Ponens we get µ. Hence we have that
supψ[x] s.t.φ implies µ.

4 Theories that only employ restricted quantification; the
logic IpC2

↾

As was mentioned in the introduction, we will often think of implication as expressing
parthood. When doing so, we think of a → b (which we may equally well write b ← a)
as saying that b is part of a. This means that ⊺ is part of everything (∀x.⊺ ← x) while
� contains everything as a part (∀x.� → x). It also means that we may want to define
versions of the quantifiers which only quantify over the parts of a certain object. Let us

14

thus make the following definitions:
∀x← χ.φ is defined as ∀x.(x ← χ) → φ (where χ is an expression where x does not

occur)
∃x←χ.φ is defined as ∃x.(x← χ)∧φ (where χ is an expression where x does not occur)

Note that restricted quantification becomes equivalent to unrestricted quantification in
the special case where χ = �; by using � as our domain of quantification we are quantifying
over everything.

Let us call a formula restricted if it is built up from →, ∧, ∨, ⊺, restricted quantifiers
(∀x← χ.φ and ∃x← χ.φ), constants, and variables, or if is equivalent to such a formula
(note the exclusion of � from the list). Let us also call a theory T in IpC2 restricted if
its axioms are all restricted (or equivalent to restricted formulas). Finally, let us say that
a theory T ′ which extends a theory T is a conservative extension of T with respect to
restricted formulas if a restricted formula of T is provable in T ′ if and only if it is provable
in T .

When dealing with restricted formulas, the following theorem can be useful:

Theorem 7. If a formula φ is such that for some constant c every constant ci in φ satisfies
ci ← c then φ← c holds.

Proof. Assume c. Under this assumption we can prove c = ⊺ as well as ci = ⊺ for each of
the constants. Now use structural induction on the formula φ to see that φ = ⊺ has to be
provable. Since φ = ⊺ is provable from the assumption c, it follows that c→ φ holds.

Note that the inclusion of ∨, ⊺, and ∃x ← χ.φ in the definition of restricted formulas
is actually unnecessary since we have a ∨ b ↔ [∀x ← (a ∧ b).(a → x) → (b → x) → x],
⊺↔ (φ→ φ) (where φ is an arbitrary formula), and ∃x←χ.φ↔ [∀x←χ.(φ→ x)→ x]. We
could also dispense with ∧ at the cost of rewriting our theories (just add an extra constant
u along with the axiom u→ ci for each existing constant ci and then use ∀x←u.a→ b→ x
in place of a ∧ b).

We may go even further and define a logical system IpC2↾ (read this as ‘IpC2 with re-
stricted quantification’ or ‘IpC2 restricted’) which is like IpC2 except that no unrestricted
quantification is ever allowed.13 The expression ∀x ← χ.φ is thus no longer to be seen

13It could be argued that IpC2↾ ought to be described as a variant of ‘minimal logic’ rather than ‘intu-
itionistic logic’ since we do not have an object � such that � → φ holds regardless of what φ happens to
be. But the difference between minimal logic and intuitionistic logic is slight in any case, and the notation
IpC2↾ emphasizes the fact that the system is closely related to IpC2.

15

as an abbreviation of ∀x.(x ← χ) → φ, but restricted quantification has instead replaced
unrestricted quantification as a basic primitive.

In order to avoid unnecessary problems I will define IpC2↾ in such a way that it includes ∧
as a primitive. We saw above how it could be dispensed with in restricted theories, but the
rearranging of theories that is required in order to make this work is not very convenient.
As axioms for ∧ we may use:

(φ ∧ ψ)→ φ,
(φ ∧ ψ)→ ψ, and
φ→ ψ → (φ ∧ ψ).

I will also add ⊺ as a primitive (although one may prefer to define it as c → c for an
arbitrary constant c) along with the following axiom:

φ→ ⊺.

∨ and ∃ may be defined as suggested above:
a ∨ b↔def. [∀x←(a ∧ b).(a→ x)→ (b→ x)→ x]
∃x←χ.φ↔def. [∀x←χ.(φ→ x)→ x]

The axioms A1. and A2. that we used for IpC2 work equally well with IpC2↾. Axioms
A3.-A4. and the inference rule I2. need some changes, though (as before, a ← b is to be
understood as another way of writing b→ a):

I2'. φ→ [(y ← χ)→ ψ[y/x]] implies φ→ ∀x←χ.ψ (x and y not free in φ)

A3'. (∀x←χ.φ)→ (y ← χ)→ φ[y/x]
A4'. ∃x←χ.x↔ [(y ← χ)→ φ] (x not free in φ)

Let us also make sure we have restricted versions of the definitions of section 3:
inf ψ[x←χ] s.t.φ↔def. ∀x←χ.φ→ ψ

ιx←χ.φ↔def. inf x[x←χ] s.t.φ

Note that a theory in IpC2↾ is a restricted theory in IpC2 and that instead of saying
‘conservative extension of T with respect to restricted formulas’ we can simply say ‘con-
servative extension of T ’ as long as the logic is IpC2↾.

16

5 An example of a theory that describes the parts of an
object

Let us now look at an example of how a restricted theory may be used to describe the
parts of an object. We will consider a theory S with four constants a, b, c, and d along
with the following axioms (when reading these axioms, keep in mind that we are treating
equivalent propositions as identical; see Section 2):

b← a (‘b is part of a’)
c← b (‘c is part of b’)
d← b (‘d is part of b’)
∀x←a.(x↔ a) ∨ (x← b) (‘any part of a is either a itself or part of b’)
∀x←b.(x↔ b) ∨ (x ← c) ∨ (x ← d) (‘any part of b is either b itself, part of c, or part of

d’)
∀x←c.(x↔ c) ∨ (x↔ ⊺) (‘any part of c is either c itself or ⊺’)
∀x←d.(x↔ d) ∨ (x↔ ⊺) (‘any part of d is either d itself or ⊺’)

In spite of being a restricted theory, theory S seems able to tell us a lot about the parts of
its objects. It cannot say anything about what exists outside those constants, though (it
would no longer be a restricted theory if it did).

Note that S is consistent with a, b, c, and d all being ⊺. In fact, theorem 7 shows that any
restricted theory is consistent with all constants being ⊺.

Some other possibilities are: 1) a = �, b = c = d = ⊺, 2) a = b = �, c = d = ⊺, 3) a = b = c =
�, d = ⊺, 4) a = b = d = �, c = ⊺, and 5) a = b = c = d = �. We can get more possibilities by
not limiting ourselves to ⊺ and �, but to properly reason about such ‘possibilities’ we had
better give a formal definition of a ‘model’ of IpC2. We will look at this in section 7.

Models will also help us address doubts as to whether the axioms of S really succeed in
saying what they have here been taken to say. For example, how do we know that it is
correct to think of ∀x← a.(x ↔ a) ∨ (x ← b) as saying ‘any part of a is either a itself or
part of b’? Section 12 tries to address such doubts through some precise theorems.

6 A ‘dual’ way of restricting formulas of IpC2; the logic
IpC2

≡

In section 4 we ended up with a ‘restricted’ version of IpC2 in which � was forbidden from
appearing in any formula. We will now look at a ‘dual’ restriction where it is instead ‘⊺’

17

that is forbidden from appearing in any formula.

Since both ∃x.x and φ → φ are equivalent to ⊺, we must evidently do more than simply
forbidding ‘⊺’ from appearing in any formula. As for quantifiers, while section 4 consid-
ered quantifiers that were restricted ‘from above,’ we will now instead consider quantifiers
restricted ‘from below’:

∀ρ←x.φ↔def. ∀x.(ρ←x)→ φ, and
∃ρ←x.φ↔def. ∃x.(ρ←x) ∧ φ.

As for ‘→,’ its role will be taken by a connective that I will denote ‘→z,’ which can be
defined as follows in ordinary IpC2:

x→z y↔def. [x→ y]z, where the operation ‘[−]z’ is simply:
[x]z =def. z ∧ x.

I will also make the following, closely related definition:
x =z y↔def. [x = y]z

Note that x =z y is equivalent to (x→z y) ∧ (y →z x).

Of course, x→ y is equivalent to x→⊺ y. Thus, in the presence of ‘⊺’ and ‘∧’ we have that
the connective ‘●→− ⋆’ is interdefinable with the connective ‘●→ ⋆.’

We may now consider the fragment of IpC2 consisting of formulas which are either built
up using the following constructs or provably equivalent to such formulas14:

• →z,

• ∀ρ←x.φ,

• ∃ρ←x.φ,

• ∧,

• ∨, and

• �.

This gives us a sublanguage of our original language, and the sublanguage inherits the
entailment relation of the original language. I will denote the resulting logic ‘IpC2≡’ and I
will write entailments in the usual way using a turnstile symbol (‘⊢’).

14By structural induction on formulas one can easily prove that this subset of IpC2 is closed under
substitution: If φ is in this fragment, so is φ[ψ/x].

18

Note that with IpC2≡ we can never have ⊢ ψ for any formula ψ in IpC2≡ (as that would
make φ a synonym for ⊺). Instead, what IpC2≡ gives us are always entailments, expressions
of the form ‘φ ⊢ χ.’

In order to make IpC2≡ look more like a typical logic, we can define ‘Γ ⊢ψ χ’ to mean the
same thing as ‘Γ, ψ ⊢ χ’ (where Γ = γ1, ..., γn is a sequence of 0 or more formulas).

We then get the following rule (the verification is trivial):
Γ, φ ⊢ψ χ is equivalent to Γ ⊢ψ φ→ψ χ.

Note that this allows us to rewrite ‘γ1, ..., γn ⊢ψ’ as ‘⊢ψ γ1 → ...→ γn → φ.’
Other rules involving ‘⊢ψ’ are (the verifications are again trivial):

(i) φ1, φ2 ⊢ψ φ1 ∧ φ2,

(ii) φ→ψ χ1, φ→ψ χ2 ⊢ψ φ→ψ (χ1 ∧ χ2),

(iii) φ1 ⊢ψ φ1 ∨ φ2,

(iv) (φ1 ∨ φ2), φ1 →ψ χ,φ2 →ψ χ ⊢ψ χ, and

(v) � ⊢ψ φ.

One additional rule that may be of some interest is:
⊢ψ χ and Γ ⊢χ φ we may infer Γ ⊢ψ φ.

I will not try to give an explicit axiomatization of IpC2≡, but it looks to me as if the above
rules could serve as a starting point for such an axiomatization.

Let us next consider the problem of defining ‘theories’ in IpC2≡. I will define a theory T
in IpC2≡ to be a theory in IpC2 where all axioms have (or can be rewritten in) the form
φ→ χ, where the formulas φ and χ are formulas in IpC2≡.15 I will refer to an IpC2 formula
of this form as an ‘IpC2≡ implication.’ Since IpC2≡ implications are formulas in IpC2, we
can ask which ones follow from which (in the logic IpC2), and we may ask, in particular,
which IpC2≡ implications follow from the theory T .

In a particular application of IpC2≡, one could decide to think of some particular formula
ψ as ‘true’ even though the logic will not allow us to add ψ as an axiom of any theory.
One would then conclude from ⊢ψ χ that χ is true, and one would conclude from φ ⊢ψ χ
that if φ is true, so is χ.

15We can think of φ → χ as expressing what we expressed as ⊢φ χ above. The advantage of using →
rather than the notation Γ ⊢ψ χ is that we are able to stay within IpC2. While it seems impossible to use
formulas of IpC2≡ as axioms, at least we do not have to use anything other than formulas of IpC2.

19

In parthood terms, we may decide (in a particular application of IpC2≡) to think of some
particular formula ψ as ‘part of everything,’ even though IpC2≡ will not allow us to add ψ
as an axiom. We would then conclude from φ ⊢ψ χ that χ is part of φ.

To make this more formal, we need only remember that IpC2≡ can be seen as a fragment
of IpC2 and that the latter allows us to say that ψ is ‘true’/‘part of everything.’ In effect,
we can make sense of what we are doing in IpC2≡ by regarding our formulas as formulas
of IpC2 and by treating ψ as an axiom.

But note that as far as IpC2≡ is concerned there is nothing special about the formula ψ.
Instead, we are always free to take any formula and regard it as what is ‘true’/‘part of
everything.’ One is reminded of relativity theory and the principle that any observer who
is falling freely can be regarded as unmoving.

Let us finally note that we may look at the set of formulas of IpC2 that are included in
both IpC2↾ and IpC2≡. We may denote this logic ‘IpC2↾≡.’

7 Different Types of Semantics of IpC2

In order to better understand theories of IpC2, we may use models of one sort or another.
Since IpC2 is an extension of quantifier-free intuitionistic propositional logic, any semantics
for IpC2 must also be a semantics for intuitionistic propositional logic. On top of that, it
also needs to have a semantics for the universal quantifier.

Figure 1: A Heyting algebra model of the theory of section 5.

Let us look at the basic idea before we introduce models in full generality. In the case
of the theory S of section 5 we could model ⊺, a, b, c, and d as elements 1, A, B, C,
and D in a partially ordered set with exactly these elements. We stipulate that the order
≥ is to be the relation {(1,1), (1,C), (C,C), (1,D), (D,D), (1,B), (C,B), (D,B), (B,B),

20

(1,A), (C,A), (D,A), (B,A), (A,A)} (this is illustrated in the figure above). We formally
define a function [[−]] from the constants of S to their interpretations: [[⊺]] = 1, [[a]] = A,
[[b]] = B, [[c]] = C, and [[d]] = D. We can then extend [[−]] to arbitrary expressions of S
through rules such as [[x→ y]] = [[x]]⇒ [[y]] and [[x∨y]] = [[x]]∨[[y]] (the operations⇒ and
∨ (which make sense in posets with the right properties) will be properly introduced below).
Finally, we can verify that φ is provable in S if and only if [[φ]] = 1 holds (for example,
[[a→ a]] = ([[a]]⇒ [[a]]) = (A⇒ A) = 1 while [[⊺→ a]] = ([[⊺]]⇒ [[a]]) = (1⇒ A) = A).

Instead of modeling the objects of IpC2 as elements of a poset, we may also try other
objects. Since we are regarding IpC2 as a theory for reasoning about parts, and since one
often uses topology to reason about the parts of objects, why not try to model the objects
of IpC2 as closed sets in a topological space (using open sets is more common but does not
make a→ b say that b is part of a; see the introduction)? This turns out to work, and the
result is that we get topological models of IpC2. These will be discussed in section 10.

A third type of semantics, frame semantics, will not be considered in this paper. One way
to think of it is as a ‘dual’ of algebraic semantics. See (Blackburn, de Rijke, and Venema,
2001, section 5.4) for more on this topic.

Each of the three types of semantics that have been mentioned here may be seen as (im-
portant) specializations of semantics for modal logics. This is explained by the existence
of a faithful translation of intuitionistic logic into S4 modal logic16 given by the following
rules (we write φtr for the translation of φ):

• The translation commutes with finite conjunctions and disjunctions (and with univer-
sal and existential quantifiers when these are present). (In detail: (φ ∧ ψ)tr = φtr∧ψtr,
(φ ∨ ψ)tr = φtr ∨ ψtr, (⊺)tr = ⊺, and (�)tr = �.)

• Intuitionistic implications translate into strict implications: (φ→ ψ)tr = ◻(φtr →
ψtr). As derived rules we get (φ↔ ψ)tr = ◻(φtr ↔ ψtr), (⊺→ φ)tr = ◻(φtr), and
(φ→ �)tr = ◻(φtr → �).

• A propositional constant c gets translated into ◻c (that is, ctr = ◻c).
16The axioms of S4 are ◻(A → B) → (◻A → ◻B), ◻A → A, and ◻A → ◻◻ A, and the translation of

intuitionistic logic into S4 modal logic is known as the Gödel–McKinsey–Tarski translation. It was first
given in (Gödel, 1933) and its faithfulness was proven in (McKinsey and Tarski, 1948). The logic can actually
be taken to be S4.Grz (S4 modal logic extended with Grzegorczyk’s axiom: ◻((◻(p→ ◻p)→ p)→ p)→ ◻p)
and this observation leads to a connection with provability logic. See (Esakia, 2004) for more on this.

21

8 Algebraic Semantics: Basic Definition

Let us now look more closely at the problem of giving an algebraic semantics for IpC2.
Since IpC2 extends ordinary intuitionistic propositional logic, we may begin by looking at
the problem of how to model ordinary intuitionistic logic in a poset. Somehow the poset
needs to have counterparts of ⊺, �, ∨, ∧, and →. A poset with counterparts for the first
four of these is known as a lattice. Formally, a lattice is a poset with finite meets and finite
joins. 0 is the smallest element while 1 is the largest element, and for two elements x and
y we have that x ∧ y is maximal among elements less than x and y while x ∨ y is minimal
among elements greater than x and y.

To model → we need to require the lattice to be a Heyting algebra.17 A Heyting algebra
is a lattice which has a relative pseudo-complement (also known as an exponential) x⇒ y
for any two elements x and y. The defining property of x⇒ y is that it is maximal among
elements z such that (x∧ z) ≤ y. It follows from this that x⇒ y = 1 if and only if x ≤ y (we
can thus eliminate ≤ in favor of ⇒ and equalities of the form φ = 1).

When interpreting intuitionistic propositional logic in a Heyting algebra, one defines (note
that the symbols ‘∧’ and ‘∨’ are used here for connectives in intuitionistic logic as well as
for lattice operations):

• [[⊺]] = 1

• [[�]] = 0

• [[φ ∧ ψ]] = [[φ]] ∧ [[ψ]]

• [[φ ∨ ψ]] = [[φ]] ∨ [[ψ]]

• [[φ→ ψ]] = [[φ]]⇒ [[ψ]]

It is customary to use x⇔ y to denote the same element as (x ⇒ y) ∧ (y ⇒ x), and we
then naturally get:

• [[φ↔ ψ]] = [[φ]]⇔ [[ψ]].

A formula is considered to hold in a Heyting algebra model if and only if its interpretation
is 1. For example, ⊺ → ⊺ holds in any Heyting algebra since [[⊺ → ⊺]] = [[⊺]] ⇒ [[⊺]] =

17At least, this seems the most straightforward way of doing things. (Pavičić and Megill, 1999) showed
that classical logic can actually be modelled in lattices that need not be Heyting algebras or even distributive
lattices (a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) need not hold).

22

1 ⇒ 1 = 1. As a derived rule we get that φ → ψ holds in a Heyting algebra if and only if
[[φ]] ≤ [[ψ]]. (So while one could say that the semantics makes ‘→’ correspond to ‘⇒,’ one
could also say with some justification that it makes ‘→’ correspond to ‘≤.’)

In the case of IpC2 we do not need to explicitly state the interpretations of ⊺, �, ∧, and ∨
since these can be defined out of → and ∀.18 However, we still need a poset equipped with
the operation ⇒ (since this operation is what we use for the interpretation of →), and we
may as well assume from the start that the poset is actually a Heyting algebra.

In order to be able to handle ∀ we will assign interpretations not only to closed formu-
las of IpC2, but also to formulas with free variables. A formula with free variables will
be interpreted as a function whose arguments correspond to the free variables. If an
expression φ contains n free variables x1, ..., xn then we write [[x1, ..., xn ⊳ φ]] for its
interpretation.19 This will be a function f of n arguments such that f([[χ1]], ..., [[χn]]) =
[[φ[χ1/x1, ..., χn/xn]]]. We identify a function of 0 arguments with its value.

We will use x̄ as a shorthand notation for a sequence such as x1, ..., xk. Thus, x1, ..., xk ⊳ φ
will typically be written x̄ ⊳ φ and f(a1, ..., am) will typically be written f(ā).

I will often write functions using lambda notation. Thus, λx.φ denotes a function whose
value for the argument x is φ (in another commonly used notation: x↦ φ) and λx1, ..., xn.χ
(or λx̄.χ) denotes a function of n arguments whose value for the arguments x1, ..., xn is
χ. For example, λx.x is the identity function and λx.⊺ is the constant function of one
argument whose value is always ⊺. Since all the functions we deal with will take their
arguments in the Heyting algebra H, we will not write this out explicitly (for example, we
write λx.x rather than λx ∶H.x).

We extend Heyting algebra operations such as ∧, ∨, ⇒, 1, and 0 to functions in a pointwise
manner. For example, we have (λx̄. φ) ∧ (λȳ. χ) = λx̄. φ ∧ χ and 1 = λx̄.1. Moreover, we
understand λx̄. φ ≤ λȳ. χ to mean that we have (λx̄. φ)(ē) ≤ (λȳ. χ)(ē) for any choice of
elements ē = e1, ..., en.

To model [[x̄ ⊳ ∀xn+1.φ]] we take the infimum of [[x̄, xn+1 ⊳ φ]](ā, an+1) as an+1 ranges over
the Heyting algebra. To be precise, [[x̄ ⊳ ∀xn+1.φ]] = λē. inf{[[x̄, xn+1 ⊳ φ]](ē, en+1) ∶ en+1 ∈
H} (the letter ‘e’ will frequently be used for elements of the Heyting algebra H).

But why model ∀ as an infimum? Well, we found in section 3 that ∀x.ψ is equivalent to

18We should verify, though, that the interpretations of ⊺, �, ∧, and ∨ are as expected. The verifications for
⊺ and � will be trivial and the verification for ∧ and ∨ will be done in lemma 9 and theorem 11, respectively,
below.

19Strictly speaking, an expression with one or more free variables is assigned no interpretation at all.
Interpretations are instead assigned to constructions of the form x1, ..., xn ⊳ φ, where the order of the
variables x1, ..., xn matters and where it is not required that the variables x1, ..., xn actually occur in φ.

23

inf ψ[x] s.t.⊺ and this would seem to suggest rather strongly that ∀ can be understood
as an infimum. The formal justification lies in the fact that we get a semantics that is
sound and complete (see below), and it may be noted that it is actually possible to set up
a Heyting algebra semantics for IpC2 in which ∀ is not modeled through infima (such a
semantics is given in (Pitts, 1992)).

Note that [[∀x.φ]] = 1 if and only if [[x ⊳ φ]] is the constant function whose value is always
1. In the very special case where the Heyting algebra consists of exactly two elements 0
and 1, this property is sufficient to fix the behavior of ∀.

Note also that the functions [[x̄ ⊳ φ]] that arise in this semantics include functions in ad-
dition to those we would get with unquantified intuitionistic propositional logic (functions
that can be formed out of →, ∧, ∨, ⊺, �, constants, and variables). This reflects the fact
that IpC2 is far more expressive than unquantified intuitionistic propositional logic.20

Let us now state all rules from scratch:
By a structure S for a theory T in IpC2 we mean a tuple (H, [[−]]) consisting of a Heyting
algebra H and a function [[−]] that maps formulas of T to their interpretations. More
exactly, [[−]] is defined for constructions of the form x1, ..., xn ⊳ φ (typically written x̄ ⊳ φ),
where x1, ..., xn include all the free variables of φ. When φ lacks free variables we also use
[[φ]] as a synonym for [[⊳ φ]]. The interpretation of x̄ ⊳ φ is to be a function from Hn to
H. As was mentioned above, we identify a function of 0 arguments with its value.

[[−]] may be any function that satisfies the following rules:

• [[x̄ ⊳ φ]]([[ψ1]], ..., [[ψn]]) = [[⊳ φ[ψ1/x1, ..., ψn/xn]]],

• [[x̄ ⊳ φ→ ψ]] = λē. [[x̄ ⊳ φ]](ē)⇒ [[x̄ ⊳ ψ]](ē), and

• [[x̄ ⊳ ∀xn+1φ]] = λē. inf{[[x̄, xn+1 ⊳ φ]](ē, en+1) ∶ en+1 ∈H}.

The structure S is called a model of T if [[φ]] = 1 whenever φ is provable in T . When
[[φ]] = 1 we say that φ holds in S or that it is true in S. More generally, when φ contains
free variables x1, ..., xn we say that it holds/is true in S if [[x1, ..., xn ⊳ φ]] is a constant
function that is always 1.

20The expressive power of IpC2 was discussed in the introduction of this paper.

24

9 Algebraic Semantics: Soundness, Completeness, and Ho-
momorphisms

Theorem 8. (Soundness for the Heyting algebra semantics) If a structure S validates all
the axioms of a theory T , then it is a model of T .

Proof. (Depends on lemma 10.)

What we need to show is that S validates axioms A1.-A4. and that it is closed under the
rules of inference I1.-I2.

For our inference rule I1. (modus ponens) we find that if [[z̄ ⊳ φ]] = 1 and [[z̄ ⊳ φ → χ]] =
[[z̄ ⊳ φ]]⇒ [[z̄ ⊳ χ]] = 1 then [[z̄ ⊳ χ]] = 1.

For axiom A1. (∀x, y.x→ y → x) we get [[z̄ ⊳ ∀x, y.x→ y → x]](ē)
= inf{[[z̄, x ⊳ ∀y.x→ y → x]](ē, a) ∶ a ∈H}
= inf{inf{[[z̄, x, y ⊳ x→ y → x]](ē, a, b) ∶ b ∈H} ∶ a ∈H}
= inf{inf{[[z̄, x, y ⊳ x]](ē, a, b) ⇒ [[z̄, x, y ⊳ y]](ē, a, b) ⇒ [[z̄, x, y ⊳ x]](ē, a, b) ∶ b ∈ H} ∶ a ∈
H}
= inf{inf{[[z̄, x, y ⊳ ⊺]](ē, a, b) ∶ b ∈H} ∶ a ∈H}
= 1.

The verification for axiom A2. is similar to the verification for axiom A1.

For axiom A3. ((∀x.φ) → φ[y/x]) we get [[z̄, y ⊳ (∀x.φ)→ φ[y/x]]](c̄, b)
= [[z̄, y ⊳ (∀x.φ)]](c̄, b)⇒ [[z̄, y ⊳ φ[y/x]]](c̄, b)
= inf{[[z̄, y, x ⊳ φ]](c̄, b, a) ∶ a ∈H}⇒ [[z̄, y, x ⊳ φ]](c̄, b, b)
= 1.

For axiom A4. (∃x.x↔ φ (x not free in φ)) we get [[z̄ ⊳ ∃x.x↔φ]](ē)
= [[z̄ ⊳ ∀y. [∀x. (x↔φ)→y]→ y]](ē)
= inf{inf{([[z̄, x ⊳ x↔φ]](ē, a)⇒[[y ⊳ y]](b) ∶ a ∈H}⇒ [[y ⊳ y]](b) ∶ b ∈H}
= inf{inf{([[z̄, x ⊳ x↔φ]](ē, a)⇒b ∶ a ∈H}⇒ b ∶ b ∈H}
= inf{inf{[a⇔[[x̄ ⊳ φ]](ē)]⇒b ∶ a ∈H}⇒ b ∶ b ∈H}.
Here the last step uses lemma 10. At this point, we find that the inner infimum simplifies to
b (since the expression [a⇔[[x̄ ⊳ φ]](ē)]⇒b attains the value b when a = [[x̄ ⊳ φ]](ē)), and
since it cannot exceed b), and the whole expression therefore simplifies to inf{b⇒ b ∶ b ∈H},
which is obviously 1.

Let us finally turn to the verification of our second rule of inference:
I2. If x and y are not free in φ then φ→ ∀x.ψ may be inferred from φ→ ψ[y/x].

25

What we need to show is that if [[⊺]] = [[z̄ ⊳ φ]](ē) ⇒ [[z̄, y ⊳ ψ[y/x]]](ē, b) holds for any
choice of ē, b then [[⊺]] = [[z̄ ⊳ φ]](ē)⇒ [[z̄ ⊳ ∀x.ψ]](ē) holds (for any choice of ē). That is,
we need to show that if [[z̄ ⊳ φ]](ē) ≤ [[z̄, y ⊳ ψ[y/x]]](ē, b) holds for any choice of ē, b then
[[z̄ ⊳ φ]](ē) ≤ [[z̄ ⊳ ∀x.ψ]](ē) holds. However, this is a direct consequence of the fact that
we are modeling the universal quantifier as an infimum.

Lemma 9. [[x̄ ⊳ φ ∧ χ]] = [[x̄ ⊳ φ]] ∧ [[x̄ ⊳ χ]].

Proof. φ ∧ χ is defined to be ∀y.[φ → χ → y] → y (where y is not free in φ or χ). We
therefore have [[x̄ ⊳ φ ∧ χ]](ē)
= [[x̄ ⊳ ∀y.[φ→ χ→ y]→ y]](ē)
= inf{[[x̄, y ⊳ [φ→ χ→ y]→ y]](ē, e′) ∶ e′ ∈H}
= inf{[[[x̄ ⊳ φ]](ē)⇒ [[x̄ ⊳ χ]](ē)⇒ [[y ⊳ y]](e′)]⇒ [[y ⊳ y]](e′) ∶ e′ ∈H}
= inf{[[[x̄ ⊳ φ]](ē)⇒ [[x̄ ⊳ χ]](ē)⇒ e′]⇒ e′ ∶ e′ ∈H}.

At this point, the desired result follows once it is noticed that inf{[e1 ⇒ e2 ⇒ e3] ⇒ e3 ∶
e3 ∈H} = e1∧e2 holds in any Heyting algebra (the proof of this fact about Heyting algebras
is left out).

Lemma 10. [[x̄ ⊳ φ↔ χ]] = [[x̄ ⊳ φ]]⇔ [[x̄ ⊳ χ]].

Proof. By definition, φ ↔ χ is the same thing as (φ → χ) ∧ (χ → φ). We therefore have
[[x̄ ⊳ φ↔ χ]] = [[x̄ ⊳ (φ → χ) ∧ (χ → φ)]] = [[x̄ ⊳ (φ → χ)]] ∧ [[x̄ ⊳ (χ → φ)]], where the last
identity comes from lemma 9. This is clearly equivalent to ([[x̄ ⊳ φ]] ⇒ [[x̄ ⊳ χ]]) ∧ [[x̄ ⊳
χ]]⇒ [[x̄ ⊳ φ]]), which is by definition the same thing as [[x̄ ⊳ φ]]⇔ [[x̄ ⊳ χ]].

The preceding lemmas show that ∧ and ↔ get interpreted as expected. The following
theorem confirms that ∨ and ∃ get interpreted in the expected way. This time the proof will
use theorem 3 in combination with the soundness theorem we have just proved (although
a more direct verification might work equally well):

Theorem 11. (1) [[x̄ ⊳ φ ∨ χ]] = [[x̄ ⊳ φ]] ∨ [[x̄ ⊳ χ]]

(2) [[x̄ ⊳ ∃yφ]] = λē. sup{[[x̄, y ⊳ φ]](ē, e′) ∶ e′ ∈H}

Proof. We have from theorem 3 that φ→ (φ∨χ) holds. Thus, we have [[x̄ ⊳ ⊺]] = [[x̄ ⊳ φ→
(φ ∨ χ)]], which gives us [[x̄ ⊳ φ]] ≤ [[x̄ ⊳ φ ∨ χ]]. We similarly get [[x̄ ⊳ χ]] ≤ [[x̄ ⊳ φ ∨ χ]].

26

Theorem 3 also gives us [(α → ω)∧(β → ω)]→ [(α∨β)→ ω], from which we can get [[[x̄ ⊳
α]](ē)⇒ [[y ⊳ y]](e′)] ∧ [[[x̄ ⊳ β]](ē)⇒ [[y ⊳ y]](e′)] ≤ [[x̄ ⊳ (α ∨ β)]](ē)⇒ [[y ⊳ y]](e′). Or
more simply: [[[x̄ ⊳ α]](ē)⇒ e′] ∧ [[[x̄ ⊳ β]](ē)⇒ e′] ≤ [[x̄ ⊳ (α ∨ β)]](ē)⇒ e′.

By combining the above observations, we see that [[x̄ ⊳ φ∨χ]](ē) has to be [[x̄ ⊳ φ]](ē)∨[[x̄ ⊳
χ]](ē), from which we get [[x̄ ⊳ φ ∨ χ]] = [[x̄ ⊳ φ]] ∨ [[x̄ ⊳ χ]].

To prove 2), we first use the part of theorem 3 which says that ψ[χ/x]→ ∃x.ψ, which gives
us [[⊺]] = [[x̄, y ⊳ ψ[y/x]]](ē, e′) ⇒ [[x̄ ⊳ ∃x.ψ]](ē) if we set χ = y. We may also write this
as λē. [[x̄, x ⊳ ψ]](ē, e′) ≤ [[x̄ ⊳ ∃x.ψ]].

Theorem 3 also tells us that if χ→ ψ holds and if x does not occur free in ψ then (∃x.χ)→ ψ
holds. That is, if 1 = [[x̄, x ⊳ χ]](ē, e′) ⇒ [[x̄ ⊳ ψ]](ē) holds for any choice of ē, e′ then
1 = [[x̄ ⊳ (∃x.χ)]]⇒ [[x̄ ⊳ ψ]]. Equivalently, if λē. [[x̄, x ⊳ χ]](ē, e′) ≤ [[x̄ ⊳ ψ]] holds for any
choice of e′ then [[x̄ ⊳ (∃x.χ)]] ≤ [[x̄ ⊳ ψ]].

By combining the above observations, we see that [[x̄ ⊳ ∃x.ψ]](ē) = sup [[x̄, x ⊳ ψ]](ē, e′) ∶ e′ ∈H.

Do we have a similar theorem for the interpretation of inf ψ[x] s.t.χ? We do have the
following:

Theorem 12. [[x̄ ⊳ inf ψ[x] s.t.χ]](ā) ≤ inf{[[x̄, x ⊳ ψ]](ē, e) ∶ e ∈ H & [[x̄, x ⊳ χ]](ē, e) =
[[⊺]]}

Proof. To claim that o ≤ inf S is equivalent to claiming that for each element x of S we
have o ≤ x. Thus, what needs to be shown is that for any element e of H such that
[[x̄, x ⊳ χ]](ē, e) = [[⊺]] we have [[x̄ ⊳ inf ψ[x] s.t.χ]](ē) ≤ [[x̄, x ⊳ ψ]](ē, e).

We have that [[x̄ ⊳ inf ψ[x] s.t.χ]](ē) = [[x̄ ⊳ ∀x.χ→ψ]](ē) = inf{[[x̄, x ⊳ χ]](ē, e′)⇒ [[x ⊳
ψ]](ē, e′) ∶ e′ ∈ H} ≤ [[x̄, x ⊳ χ]](ē, e)⇒ [[x̄, x ⊳ ψ]](ē, e), which reduces to [[x̄, x ⊳ ψ]](ē, e)
whenever [[x̄, x ⊳ χ]](ē, e) = [[⊺]].

That the above inequality cannot be strengthened to an equality can be shown by a simple
counterexample. Let χ be a constant c such that [[c]] differs from [[⊺]] as well as [[�]]
(pick any model with more than two elements) and let ψ be any expression that lacks free
variables other than x and which is such that ∀x.ψ is not implied by c (for example, we can
set φ = x so that ∀x.ψ becomes �). By definition, inf ψ[x] s.t.χ will then be ∀x.c→ ψ, which
is equivalent to c → ∀x.ψ. At the same time, inf{[[x ⊳ ψ]](e) ∶ e ∈ H & [[x ⊳ χ]](e) = [[⊺]]}
will be the infimum of the empty set and hence equal to [[⊺]]. As a result, we could only

27

get an equality if [[c → ∀x.ψ]] were [[⊺]], but this will not be the case since we assumed
that ∀x.ψ was not implied by c.

Theorem 13. (Completeness for the Heyting algebra semantics) Every theory T has a
model. Moreover, the model can be taken to have the property that the only formulas that
hold in the model are such as are probable in T .

Proof. We construct a term model for T . Consider formula φ to be ‘equivalent’ to formula
ψ when T proves φ = ψ.

For a formula φ (we allow free variables to occur in φ) we define ⟨φ⟩ to be its equivalence
class. Let H be the set of all such equivalence classes.

We turn H into a Heyting algebra by setting ⟨φ⟩ ≤ ⟨ψ⟩ if and only if φ → ψ is provable
in T . It is a routine task to verify that this makes H a Heyting algebra with 1 = ⟨⊺⟩,
⟨φ⟩ ∧ ⟨ψ⟩ = ⟨φ ∧ ψ⟩, 0 = ⟨�⟩, ⟨φ⟩ ∨ ⟨ψ⟩ = ⟨φ ∨ ψ⟩, ⟨φ⟩⇒ ⟨ψ⟩ = ⟨φ→ ψ⟩.

Define [[x1, ..., xn ⊳ φ]] to be the function from Hn to H which maps ⟨ψ1⟩, ..., ⟨ψn⟩ to
⟨φ[ψ1/x1, ..., ψn/xn]⟩. This is well-defined since φ = φ′ and ψ1 = ψ′1, ..., ψn = ψ′n entail
φ[ψ1/x1, ..., ψn/xn] = φ′[ψ′1/x1, ..., ψ′n/xn]. Note that we get [[φ]] = ⟨φ⟩ in the special case
where φ lacks free variables.

We need to verify that the above rules make universal quantifiers correspond to infima.
Since T proves ∀y.φ → φ[χ/y] (which is axiom A4), we have that ⟨∀y.φ⟩ ≤ ⟨φ[χ/y]⟩. The
element ⟨∀y.φ⟩ is therefore a lower bound for elements of the form ⟨φ[χ/y]⟩.

To show that it is maximal among such lower bounds, we consider an arbitrary lower
bound ⟨ψ⟩ for the elements ⟨φ[χ/y]⟩. ⟨ψ⟩ will then, in particular, be a lower bound for
elements of the form ⟨φ[z/y]⟩, where z is a variable that does not occur free in ψ or φ.
From ⟨ψ⟩ ≤ ⟨φ[z/y]⟩ we get that ψ → φ[z/y] is provable in T. We will therefore also be
able to prove ψ → ∀y.φ. This gives us ⟨ψ⟩ ≤ ⟨∀y.φ⟩, from which we see that the element
⟨∀y.φ⟩ is maximal among lower bounds for elements of the form ⟨φ[χ/y]⟩.

As long as ε1, ..., εn do not contain y as a free variable, we have that [[x1, ..., xn ⊳
∀y.φ]](⟨ε1⟩, ..., ⟨εn⟩) = ⟨(∀y.φ)[ε1/x1, ..., εn/xn]⟩ = ⟨∀y.φ[ε1/x1, ..., εn/xn]⟩. By what we
have just shown, this is the greatest lower bound (the infimum) for elements of the
form ⟨φ[ε1/x1, ..., εn/xn][χ/y]⟩. But this element may also be written [[x1, ..., xn, y ⊳
φ]](⟨ε1⟩, ..., ⟨εn⟩, ⟨χ⟩). We thus have that [[x1, ..., xn ⊳ ∀y.φ]](⟨ε1⟩, ..., ⟨εn⟩) = inf{[[x1, ..., xn, y ⊳
φ]](⟨ε1⟩, ..., ⟨εn⟩, ⟨χ⟩) ∶ ⟨χ⟩ ∈H}.

Finally, since [[φ]] = 1 is equivalent to [[φ]] = [[⊺]] we see that the only formulas that hold
in the model are ones for which φ = ⊺ is provable. And since φ = ⊺ is equivalent to φ we

28

get the result that a formula cannot hold in the model unless it is provable.

The model constructed for a theory T in the proof of theorem 13 will be called its initial
model of T and denoted M(T).

Conversely, any Heyting algebra H gives rise to a theory T (H) which has as its constants
the elements of H and which includes φ as an axiom just in case [[φ]] = [[1]] when each
constant is interpreted by itself.

Since theories in the logics IpC2↾ (see section 4), IpC2≡, and IpC2↾≡ (see section 6) are
also theories in IpC2, in defining models for theories in IpC2 we have also defined models
for theories in these fragments of IpC2.

By contrast, when we turn a model into a theory we need to make sure we end up with
a theory in the right fragment of IpC2. Since I have not given any rigorous definition of
theories in IpC2≡ or IpC2↾≡, I will ignore these logics here. However, for IpC2↾ I will use
the notation T↾(H) to denote the theory which has the same constants as T (H) but which
only includes axioms that belong to IpC2↾. As a result, while T↾(H) will include a constant
C0 corresponding to the bottom element of the Heyting algebra H, it will not allow us to
prove C0 = �.

It remains to say something about how different models may be related to each other. A
mapping h ∶ H → H ′ between Heyting algebras will of course relate the theory T (H) to
the theory T (H ′) in some way, and we will be interested in the case where the theories get
related in a particularly ‘nice’ way.

To begin with, we may require that whenever a formula holds in T (H) then the correspond-
ing formula must hold in T (H ′). In this case I will refer to h as an ‘IpC2 homomorphism’
(or a ‘homomorphism of IpC2 structures’). We can analogously define ‘IpC2↾ homomor-
phism,’ ‘IpC2≡ homomorphism,’ and ‘IpC2↾≡ homomorphism’ by requiring formulas in the
respective fragments of IpC2 to be preserved.

Note that an IpC2 homomorphism is required to preserve � while an IpC2↾ homomorphism
is not.

Two particular types of homomorphisms seem worth singling out: Those that are injective
and those that are surjective. If the mapping h ∶ H → H ′ is injective we may write it as
h ∶H ↣H ′ and if it is surjective we may write it as h ∶H ↠H ′.

A homomorphism h ∶ S → S′ for which we can find a homomorphism k ∶ S′ → S such that h
and k are inverses of each other will be referred to an an isomorphism. We write h ∶ S ∼Ð→ S′

in this case.

29

By a substructure of a structure S, I will mean an equivalence class of injective homomor-
phisms h ∶ S′ ↣ S, where k ∶ S′′ ↣ S is equivalent to h if there is an isomorphism i ∶ S′ ∼Ð→ S′′

such that h = ki.

Dually, a quotient structure of a structure S will mean an equivalence class of surjective
homomorphisms h ∶ S ↠ S′, where k ∶ S ↠ S′′ is equivalent to h if there is an isomorphism
i ∶ S′ ∼Ð→ S′′ such that k = ih.

Note that when we extend a theory T into a theory T ′ by adding constants without adding
any axioms then we get a corresponding injection h ∶M(T) ↣M(T ′). (The equivalence
class of h will be a subobject of M(T ′).)

Note also that if we extend a theory T into a theory T ∗ by adding axioms without adding
any constants then we get a corresponding surjection k ∶M(T)↠M(T ∗). (The equiva-
lence class of k will be a quotient object of M(T ′).)

10 Topological Semantics

Let us now look at topological models. From a topological space S we get a model as
follows:

• The elements of the Heyting algebra are the open sets of S.

• We set e1 ∧ e2 =def. e1 ∩ e2, e1 ∨ e2 =def. e1 ∪ e2, 0 =def. {}, 1 =def. S.

• e1 ⇒ e2 =def. ◻(∁ e1 ∪ e2), where ◻(−) = int(−) is the interior operation on S.

With this interpretation it becomes very natural to say that e1 ∨ e2 contains e1 and e2 as
parts. How can this be reconciled with the understanding that what a → b tells us is that
b is part of a? Well, there is a dual translation that makes the elements of the Heyting
algebra correspond to closed sets and which does make a→ b say that b is part of a:

• The elements of the Heyting algebra are the closed sets of S.

• We set e1 ∧ e2 =def. e1 ∪ e2, e1 ∨ e2 =def. e1 ∩ e2, 0 =def. S, 1 =def. {}.

• e1 ⇒ e2 =def.= ◻(∁ e1 ∩ e2), where ◻(−) = cl(−) is the closure operation on S.

As the reader may have guessed, the operation ◻ that we are using here can be seen
as corresponding to the necessity operator (‘◻’) of S4 modal logic. We saw above how

30

intuitionistic logic can be translated into S4 modal logic, and this may be followed by a
topological interpretation of modal logic where the necessity operator comes to correspond
to either the interior operation (if open sets are used) or the closure operation (if closed sets
are used). Modal logic is thus very relevant to the topological interpretation of intuitionistic
logic.

Note that while it is true that the open sets of a topological space S stand in a one-to-
one correspondence with the closed sets of S, if we embed S in a larger topological space
S′ then the correspondence between open and closed sets changes: In S the closed set
{} corresponds to the open set S whereas in S′ we instead find that the closed set {}
corresponds to S′ (and we will not have S = S′ unless the embedding is trivial). This
has the consequence that when we use the interpretation in terms of open sets then the
meaning of ⊺ changes if we decide to use S′ rather than S as our topological space. With
the interpretation in terms of closed sets, it is instead the meaning of � that is sensitive to
whether the space is S or S′. This would seem to suggest that IpC2↾ (see section 4) gives
us reason for preferring the interpretation in terms of closed sets while IpC2≡ (see section
6) gives us reason for preferring the interpretation in terms of open sets.

It does not seem to be known whether the topological semantics described here is complete.

11 How to say that one object is not part of another

The theory S presented in section 5 leaves some questions open. For example, it is neither
provable nor disprovable in S that a← b. Suppose now that we want an extension S′ of S
where a← b is denied. How can we achieve this?

At first the answer seems very simple: S′ needs to include the axiom ¬(b → a) (which we
may also write as (b→ a)→ � or (b→ a)↔ �), and that is it. But (b→ a)→ � is equivalent
to ((b→ �)→ �) ∧ (a→ �), which is hardly what we wanted to say:

Theorem 14. (b→ a)→ � is equivalent to ((b→ �)→ �) ∧ (a = �).

Proof.
Set c = � in the following theorem.

Theorem 15. If c→ a holds then (b→ a)→ c is equivalent to ((b→ c)→ c) ∧ (a = c).

Proof. For the left-to-right direction, combine parts (i) and (iii) of the following lemma.
The right-to-left direction is trivial.

31

Lemma 16. (i) (b→ a)→ c implies a→ c,

(ii) if a′ → a holds then (b→ a)→ c implies (b→ a′)→ c, and

(iii) if c→ a holds then (b→ a)→ c implies (b→ c)→ c.

Proof.

(i) Use the fact that a→ (b→ a) along with the transitivity of implication.

(ii) Assume a′ → a, (b → a) → c, and b → a′. Combine the first and the last of these
implications to get b→ a and then use the second implication.

(iii) This may be seen either as a consequence of (i) (the combination of a→ c and c→ a
gives us a = c) or as a consequence of (ii) (set c = a′).

And just as ¬(b → a) has unwanted consequences, the same can easily be the case with
other formulas that seem unproblematic at first. For example, if we try to deny b → a
through (b→ a)→ b or (b→ a)→ (a∧ b) (which are equivalent), we end up asserting a→ b
(cf. part (i) of the above lemma).

So what is the solution? One thing we can do is to define theories in such a way that a
theory may not only accept certain formulas as correct but may also reject certain formulas
as incorrect. Gabbay (1981) defines theories of IpC2 in precisely this way: A theory consists
of two sets of formulas, those that are accepted by the theory and those that are rejected
(see (Gabbay, 1981, p. 160)). A theory counts as inconsistent if some formula is accepted
and rejected at the same time, and models are defined in such a way that rejected formulas
cannot hold in them. We can then ensure that b→ a does not hold by simply rejecting this
formula.

But the rejection here is not expressed inside IpC2 itself, and we could theoretically end
up with a very long list of formulas that we reject. What can we do if our goal is to do
as much as possible within IpC2 itself? Well, note that if φ → ψ holds and we want for
neither φ nor ψ to hold, then it is enough to reject ψ. By exploiting this fact we can make
sure that no more than one formula needs to be rejected outside of IpC2 (perhaps using
the method of (Gabbay, 1981)).

So if we have expressively rejected ψ then all we need to do in order to get an effective
rejection of φ is to assert φ→ ψ.

32

We should be wary, though, that in asserting φ → ψ we are really asserting that ψ is part
of φ. Our sole intention may be to reject ψ, but we are doing more than that. For example,
if ψ is � then φ→ ψ is another way of saying that φ is �.

This is not always a problem, but it is something we really want to be aware of when our
goal is to reject b→ a. In asserting (b→ a)→ ψ we are indirectly asserting a→ ψ (by part
(i) of the above lemma). We have already discussed the extreme case where ψ is �: We
wanted to deny b→ a (that b contains a) but ended up asserting a→ � (that everything is
part of a).

However, a → ψ may be more acceptable if ψ is an object that ‘contains very little’ (as
opposed to the object � that contains everything). We cannot set ψ = ⊺ (in which case
a → ψ would be absolutely harmless) since we want to reject ψ and cannot reject ⊺, but
we can set ψ equal to an object that is ‘close’ to ⊺, an object that contains little.

What we will do in practice is to set ψ =R, whereR is a constant that we introduce in order
to have a way to reject formulas. For example, to reject b→ a we assert (b→ a)→R.21

Readers familiar with minimal logic will notice that R is used much like the absurd propo-
sition in minimal logic.22 To emphasize the similarities between φ → � and φ → R, I will
introduce the following notation:

¬Rφ↔def. φ→R.

As already pointed out, in asserting (b → a) → R we are asserting that a contains R. In
fact, as soon as we assert (⊺→ a)→R (which is a way of rejecting a = ⊺) we are asserting
that a contains R. The result is that R comes to be part of every object x for which we
use R to reject x = ⊺. This gives R the character of a very ‘tiny’ object, an object much
like ⊺.

At the same time, when we use φ → R to reject φ, then we are using R in the same way
that � is traditionally used, as an absurd proposition, something we know will never be
provable. Moreover, it becomes natural to think of φ∨R as ‘saying the same thing as’ φ23,

21Note that although our motivating question has been how to say that one object is not part of another,
we can equally well think of our problem as one of saying that one proposition fails to entail another. To
say that b entails a we may assert b → a, but to deny that b entails a we would normally assert ⊭ (b → a)
rather than (b→ a)→ � (if we assert the latter then we are indirectly asserting a = �). But the ‘⊭’ notation
does not belong to the same language as ‘b→ a,’ and so we may prefer to add a constant R to the language
and use (b→ a)→R to reject b→ a.

22See (Johansson, 1937).
23If we understand φ ∨R as meaning ‘either φ or R’ and if we have rejected R then it seems that φ has

to hold whenever φ∨R holds. This informal idea can be substantiated by looking at models where φ1 ∨φ2

cannot hold unless either φ1 or φ2 holds. That we can get a complete semantics for IpC2 using only models
with this property was shown in (Gabbay, 1981).

33

and since R entails φ ∨R we see that R gets the character of a proposition that entails
every proposition: Regardless of what φ is, R entails a proposition φ ∨R which we can
think of as ‘saying the same thing as’ φ.

To sum up, R tends to be contained in the objects whose parts we are reasoning about
(such as the object a considered above), but it simultaneously contains propositions that
we use to reason about those objects. From one point of view R looks like ⊺; from another
point of view it looks like �.

In fact, when reasoning with R we may often want to compare objects using one of the
following equivalence relations, the first of which makes R equivalent to ⊺ and the second
of which makes it equivalent to �:
χ1 ∼R χ2 ↔def. χ1 ∧R = χ2 ∧R, and
χ1 ≡R χ2 ↔def. χ1 ∨R = χ2 ∨R.

Note that χ1 ∼R χ2 may be rewritten as R → (χ1 = χ2). To determine whether χ1 ∼R χ2

holds is thus a matter of determining whether χ1 = χ2 holds under the assumption that
R = ⊺. In practice we will not be able to prove R = ⊺ (after all, we are rejecting R), but
when counting how many parts an object has we will normally want to compare objects
using the relation ∼R so that R and ⊺ (and any other parts of R) count as one and the
same thing.

This makes sense if we think of R as an ‘artificial object’ that we have added in order to
be able to reason effectively about which object is part of which. If R is like a camera then
we do not want for any traces of R to remain in the final pictures.

If, for some reason, we do want to reason about the parts of R, then we can do so by
adding a second constant R′ that we use just like R (we may then assert (⊺ → R) → R′).
To reason about the parts of R′ we would use a third constant R′′. In intuitive terms, we
are using one ‘camera’ to photograph another.24

Let us now consider the question of how we can be sure that nothing bad will result if we
start rejecting things using R. The following theorem seems to be what we need:

Theorem 17.

24It is also instructive to compare what we are doing here to cases where one is using one formal language
L′ to reason about another formal language L. We can suppose that L proves the law of excluded middle –
any proposition P is equivalent to either truth or falsity – but that L′ nevertheless allows us to get a more
‘fine-grained’ view on the sentences of L according to which some sentences of L have a semantic value that
differs from 1 (truth) as well as 0 (falsity). (We could make the semantic value 1 match with ‘provable,’
make the semantic value 0 match with ‘disprovable,’ and make other semantic values match with ‘true in
some models and false in others.’) This is to be compared to the way that the equivalence relation ∼R′ may
be more ‘fine-grained’ than the equivalence relation ∼R.

34

Given a theory T which does not contain the constant R, a theory T ′ which extends T
with the constant R and with axioms of the form φi →R is a conservative extension of T .
Moreover, in any model of T ′ where [[R]] is distinct from [[⊺]], [[φi]] is distinct from [[⊺]]
for each i.

Proof.
That T ′ is a conservative extension follows since it is possible to create a further extension
T ′′ which adds ⊺ =R as an axiom (but does not otherwise add anything). It is easy to see
that the axioms of T ′ all follow from ⊺ = R and so T ′′ is essentially just T along with the
constant R and the axiom ⊺ = R. That is evidently a conservative extension of T , and so
T ′ must also be a conservative extension of T . This proves the first part of the theorem. To
prove the second part, suppose that for some i we have [[φi]] = [[⊺]] in our model. Because
of the axiom φi →R we must then also have [[R]] = [[⊺]], contrary to the assumption that
[[R]] ≠ [[⊺]].

Further reassurance that things work as we intend them to is given by the following theo-
rem:

Theorem 18. In any structure where [[R]] ≠ [[⊺]] we have

1) [[x→ y]] = [[⊺]] if and only if [[x]] ≤ [[y]],

2) [[(x→ y)→R]] = [[⊺]] implies [[x]] ≰ [[y]], and

3) if a) [[R]] ≤ v only holds for v = [[⊺]] and v = [[R]] and b) the structure satisfies the
property that when v ∨ w = [[⊺]] holds then v = [[⊺]] or w = [[⊺]], then [[(x → y) →
R]] = [[⊺]] is equivalent to [[x]] ≰ [[y]].

Proof.
1) follows directly from the definition: [[x→ y]] = [[x]]⇒ [[y]]. This will be [[⊺]] (= 1) just
in case [[x]] ≤ [[y]].

For the proof of 2), note that [[(x → y) →R]] = [[⊺]] is equivalent to [[x → y]] ≤ [[R]]. But
(since [[R]] was assumed to be distinct from [[⊺]]) this is incompatible with [[x→ y]] = [[⊺]].
Combined with 1), this establishes 2).

The left-to-right direction of 3) follows from 2), so assume [[x]] ≰ [[y]]. We want to show
[[(x→ y)→R]] = [[⊺]].

Note first that (x→ y)→R may be written as [(x→ y) ∨R]→R. It will therefore suffice
to show that [[[(x→ y) ∨R]→R]] = [[⊺]].

35

Since [[R]] ≤ [[(x→ y)∨R]], assumption a) means that we have one of [[(x→ y)∨R]] = [[⊺]]
and [[(x→ y) ∨R]] = [[R]], and since [[R]] ≠ [[⊺]] we cannot have both at the same time.

We want to exclude the case [[(x → y) ∨ R]] = [[⊺]]. This can be written as [[(x →
y)]] ∨ [[R]] = [[⊺]], and assumption b) then tells us that we either have [[(x → y)]] = [[⊺]]
or [[R]] = [[⊺]]. But the former is excluded by the assumption [[x]] ≰ [[y]] and the latter is
excluded by the assumption [[R]] ≠ [[⊺]].

We must therefore have that [[(x → y) ∨R]] = [[R]], from which [[(x → y) → R]] = [[⊺]]
follows.

One thing we may not have expected is that if we assert a → R as well as b → R then
(a ∨ b) → R follows. In a way this is as it should be: Someone who rejects a and b seems
to be implicitly rejecting a ∨ b. But if all we want to do as we ‘reject’ a and b is to make
sure neither is provable, then we may still want to embrace a ∨ b.

It seems possible to get what we want, though, by considering a formula φ to be ‘embraced’
whenever E → φ is provable (here E is a new constant that we are adding to our theories
much like R). To be more precise, for a formula φ involving neither E nor R, we consider
φ to be embraced whenever E → φ is provable. We can then use (E → a) → R and
(E → b) → R to make it clear we are embracing neither a nor b, and at the same time we
can use E → (a ∨ b) to embrace a ∨ b.25

Let me finally give two examples of how one may use R to reason about parts. Here are
two ways of saying that x is an ‘atom’26:

IsAtom1(x)↔def. [∀y←x.([y]R = [x]R) ∨ ([y]R = [⊺]R)] ∧ ¬R([x]R = [⊺]R).
IsAtom2(x)↔def. (x→R) ∧ [∀R←y←x.(y = x) ∨ (y =R)] ∧ ¬R(x =R), and

With the first definition, x can be any object whatever, but what matters is what [x]R is.
With the second definition, x is required to be such that x→R holds (which we may also
express through x = [x]R). We expect to have IsAtom1(x)↔ IsAtom2([x]R) for any x.

Note that there is a sense in which both definitions fail to ensure that x is an atom: They
are consistent with x having lots and lots of parts as long as all those parts are parts of R.
We can, however, make parts of R ‘count for nothing’ by using ∼R rather than = as our
standard for comparing objects (see above), and when we view things this way then the
definitions seem to do precisely what we want them to do.

25How do we know the axioms that we are adding involving E are not causing any problems? They all
follow from E → �, and if we extend a theory T with the constant E and the axiom E → � then the resulting
extension of T will evidently be a conservative one (since E merely functions as a synonym for �).

26The operation ‘[−]−’ was defined in section 6.

36

12 Lattice-describing formulas

Section 5 used formulas in IpC2 that seemed to describe the parts of a certain object, but it
was not clear at that point that the formulas actually said what they seemed to be saying.
We will now prove theorems that give us some reassurance that our formulas really say
what they seem to say.

The next two theorems deal with the way that H is related to the models of T (H) (see
the definition in section 9).

Theorem 19. For a Heyting algebra H which is a structure for IpC2 and any Heyting
algebra model H ′ of the theory Th(H), the mapping x ↦ [[C(x)]] is a Heyting algebra
homomorphism.

Proof. It is easy to check that this mapping indeed preserves ≤, ⇒, ∨, and ∧. For example,
from e1 ≤ e2 in H we get that Th(H) proves C(e1) → C(e2), from which we get that
[[C(e1)]] ≤ [[C(e2)]].

For a theory T , let Strict(T) be the theory which extends T by adding the constant R (if
T already contains this constant, we first rename the old one) and by adding the axiom
¬R(a = b) for any two distinct constants a and b of T .

Theorem 20. For a Heyting algebra H which is a structure for IpC2 and any Heyting
algebra model H ′ of the theory Strict(Th(H)) where [[R]] ≠ [[⊺]], the mapping x ↦
[[C(x)]] is an injective Heyting algebra homomorphism.

Proof. That the mapping x↦ [[C(x)]] is a Heyting algebra homomorphism is the content
of theorem 19. To prove injectivity, suppose e1 and e2 are two different elements of H. We
need to show that [[C(e1)]] ≠ [[C(e2)]]. From e1 ≠ e2 we get that C(e1) and C(e2) are two
different constants. By the definition of Strict(−) we therefore have ¬R(C(e1) = C(e2))
(which is an abbreviation of (C(e1) = C(e2))→R) as an axiom of Strict(Th(H)). We will
therefore have [[C(e1) = C(e2)]] ≤ [[R]] which means we cannot have [[C(e1)]] = [[C(e2)]]
unless [[R]] = [[⊺]]. But according to the assumptions we have [[R]] ≠ [[⊺]] and so we must
have [[C(e1)]] ≠ [[C(e2)]].

An important special case of the above theorems is the one where the Heyting algebra H
is finite. In this case we can also prove the following:

Theorem 21. For a Heyting algebra H with finitely many elements e1 = 1, e2, ..., en = 0 all
the axioms of Th(H) follow from those of the form C(ei) → C(ej) = C(ek), those of the
form C(ei)∧C(ej) = C(ek), and the axiom ∀x←C(en).x = C(e1)∨x = C(e2)∨...∨x = C(en).

37

Proof. Let us write Th′(H) for the subtheory of Th(H) that only includes axioms of the
form C(ei) → C(ej) = C(ek), those of the form C(ei) ∧ C(ej) = C(ek), and the axiom
∀x←C(en).x = C(e1) ∨ x = C(e2) ∨ ... ∨ x = C(en).

Let χ be an arbitrary axiom of Th(H). We will show that Th′(H) proves χ = C(ei) for
some element ei of H. The theorem then follows trivially (of course, C(ei) is provable in
Th′(H) if and only if it is provable in Th(H)).

Assuming only the axioms of Th′(H), we can transform χ into one of the constants
C(e1), ...,C(en) in a step-by-step manner as follows:

1. a formula of the form ∀x←C(ei).φ is (because of the axiom C(en)→ C(ei)) provably
equivalent to ∀x ←C(en).(x ← ei) → φ and we can therefore rewrite χ so that all
quantification is over C(en).

2. ∀x ←C(en).φ is equivalent to φ([C(e1)/x]) ∧ φ([C(e2)/x]) ∧ ... ∧ φ([C(en)/x]). By
applying this equivalence we can therefore rewrite any universal quantifiers of χ in
terms of ∧ (since we have defined ∧ in terms of universal quantifiers, it is not quite
right to say that we are eliminating universal quantifiers).

3. By the definition of ∨ in terms of universal quantifiers we can eliminate any oc-
currence of ∨, and we can thus rewrite χ in terms of ∧, →, and the constants
C(e1),C(e2), ...,C(en).

4. By using the axioms of the form C(ei)→ C(ej) = C(ek) and those of the form C(ei)∧
C(ej) = C(ek) we can simplify χ to one of the constants C(e1),C(e2), ...,C(en).

By taking the conjunction of the finite set of axioms that we get from the previous theorem
and subsequently replacing the constants C(e1),C(e2), ...,C(en) with variables x1, ..., xn
we obtain a formula which we may denote LikeHeytingAlgebraH(x1, ..., xn) which tells us
that the objects x1, ..., xn are related as the elements of the finite Heyting algebra H.

13 A first-order theory for reasoning about parthood

As we reason about the parts of objects, we are likely to find ourselves informally distin-
guishing between ‘objects’ and ‘propositions about objects.’ For example, if we use a→ b to
state that object b is a part of object a, then a→ b seems to play the role of a ‘proposition’

38

about the ‘objects’ a and b. We will now take this idea seriously by setting up a translation
from a theory in ordinary predicate logic (many-sorted first-order predicate logic with a
description operator, to be exact) into IpC2. We will set up one version that uses minimal
logic (mostly for demonstrative purposes), a second version that uses intuitionistic logic,
and a third version that uses classical logic. The theory will have a predicate for saying
that one object is part of another, and we will interpret this through the connective →
of IpC2. The theory will actually be a thin layer on top of IpC2. Its role is not only to
give IpC2 a ‘user-friendly’ surface but (more importantly) to simplify the interpretation of
traditional theories in IpC2.

In addition to getting the customary division between ‘objects’ and ‘propositions about
objects’ we will also be able to get two ‘views’ on each object. This will help us deal with
an issue we have avoided so far: The parts of an object in IpC2 form a Heyting algebra,
but we may well find ourselves wanting to describe an object whose parts do not seem to
form a Heyting algebra. As it turns out, there is a one-to-one relationship between finite
Heyting algebras and finite posets: Any finite poset occurs (up to isomorphism) as the meet
irreducible elements of a unique (up to isomophism) finite Heyting algebra (this is proved
in theorem 22 below). It is therefore not at all clear that it is a limitation of IpC2 that
parts always form Heyting algebras: By taking a different ‘view’ of things we can instead
see those Heyting algebras as posets with few constraints (in the finite case, there will be
no constraints at all on what the posets may look like). Formally, we will achieve this by
having a separate sort for ‘irreducibles’ (to be contrasted with the sort for ‘objects’).

An element x in a poset P is said to be meet irreducible if x = y ∧ z implies either x = y or
x = z.27

If we want a restricted formula in IpC2 which says this, the closest we can get would seem
to be:

Irreducible(x)↔def. ∀y←x, z←x.(x = y ∧ z)→ (x = y ∨ x = z).
In a saturated Heyting algebra model28 [[Irreducible(e)]] = [[⊺]] implies that [[e]] is meet
irreducible.

Theorem 22. Any finite Heyting algebra H is isomorphic to the lattice of upper sets of
the partial order formed by the meet irreducible elements of H.

Proof.
For an element x of H, let U(x) = {y ∈ H ∶ x ≤ y} and let I(x) = {y ∈ U(x) ∶ y is meet

27In a Heyting algebra this is equivalent to requiring the element e to be meet prime: If y ∧ z ≤ x then
either y ≤ x or z ≤ x. Dually, one may also talk about elements that are join irreducible or join prime.

28A model is said to be saturated if [[φ∨ψ]] = 1 implies that either [[φ]] = 1 or [[ψ]] = 1 and if [[∃x.φ]] = 1
implies that there is an element e in the model such that [[x ⊳ φ]](e) = 1.

39

irreducible}. It then follows from the lemma below that x = i1 ∧ ... ∧ in, where i1, ..., in
are the elements of I(x). We may also express this in the form x = ∧(I(x)), where ∧(F)
denotes the meet of all the elements of a finite set F .

Suppose next that S is an upper set of the partial order formed by the meet irreducible
elements of H (that is, the elements of S are meet irreducible elements of H and from
x ∈ S, x ≤ y we get y ∈ S). It is then trivial that I(∧(S)) = S.

Taking the above observations together, we see that the operations I and ∧ are mutually
inverse. Since they are also obviously order-preserving, we get an isomorphism of Heyting
algebras.

Lemma 23. An element e in a finite Heyting algebra H can be written as e = i1 ∧ ... ∧ in,
where i1, ..., in are the meet irreducible elements in H which are greater than or equal to
e (e ≤ i1, ..., e ≤ in).

Proof.
This can be shown by induction on the number of elements x that satisfy e < x.

Assume the theorem has been proved for all elements e′ that satisfy e < e′. We want to
show that it holds for e. If e is meet irreducible then the theorem clearly holds for e, so
assume e can be written as j ∧ k, where e < j and e < k. By the inductive assumption
we can write j = j1 ∧ ... ∧ jm and that k = k1 ∧ ... ∧ kn, where j1...jm and k1...kn are meet
irreducible. we then have i = j1 ∧ ... ∧ jm ∧ k1 ∧ ... ∧ kn. The theorem thus holds for e.

Since the theorem holds when no element x satisfies e < x (that is, when e = 1), the theorem
holds for all elements e of H.

To see why it is false that an arbitrary Heyting algebra is determined by the poset of its
meet irreducible elements, it is enough to consider a free Heyting algebra with a single
generator a. Such a Heyting algebra lacks meet irreducible elements. For example, a is
the meet of a∨¬a and ¬¬a, and a∨¬a is the meet of (a∨¬a)∨¬(a∨¬a) and ¬¬(a∨¬a).
In terms of parthood, a has infinitely many parts, all of which can be written as meets of
two of their proper parts.

So let us now set up a two-sorted theory in predicate logic where we have two sorts: Irre-
ducible and Object. We will use order-sorted logic so that we can make the sort Irreducible
a subsort of the sort Object (in symbols we may write this as Irreducible ⊆ Object).

The one relation we really need is the parthood relation, which we will write P . This
relation is defined between arbitrary objects (including irreducibles), something that is

40

customarily written P ∶ Object ×Object (the notation is merely meant to be suggestive; we
are not actually forming ‘product types’ through an operator ×). We also have the equality
relation = ∶Object ×Object. To say that a variable or a constant is of a particular sort we use
the colon notation as in x∶Irreducible and x∶Object. We also use this notation in combination
with the quantifiers (for example, it will be the case that ∃x∶Irreducible.∀y∶Object.yPx).

The expression ιx ∶Object. φ will stand for the unique object x such that φ holds and it may
stand for any object whatever if no such object exists. We also use ιx ∶ Irreducible. φ to
stand for the unique Irreducible such that φ holds, but the result need not be an Irreducible
in the case when the requirement of unique existence fails.

Let us now turn to the problem of interpreting this language inside IpC2. We will begin by
setting up the version of the system that uses minimal logic29. The connectives ∧, →, and ∨
are then all translated in the most straight-forward way possible: (φ∧ψ)tr = (φ)tr ∧ (ψ)tr,
(φ→ ψ)tr = (φ)tr → (ψ)tr, and (φ ∨ ψ)tr = (φ)tr ∨ (ψ)tr.

For the interpretation of negation we use a constant R (as in section 11): (¬φ)tr = (φ)tr →
R. The symbol R is to be understood in a schematic way: The actual constant used will
vary from one application to another. In one application we may have R =R1, in another
R =R2, and so on.

We will interpret objects in such a way that objects are parts of a certain domain D (we
treat D as a constant alongside R) and so that they contain R as a part. Having a domain
D is in accordance with the standard practice in predicate logic and requiring R ← x to
hold for anything that interprets an Object makes ∼R (defined in section 11) coincide with =
for Objects and additionally provides some separation between objects and propositions30.
In accordance with this, we make the following definition:

Object(x)↔def. (R← x) ∧ (x←D).

When x∶Object and x∶Irreducible are used apart from the quantifiers and descriptions, they
function just like predicates and must therefore be handled as such. We set (x∶Object)tr =
Object((x)tr) and (x∶Irreducible)tr = Object((x)tr) ∧ Irreducible((x)tr). With these re-
quirements on objects, we can interpret P using ← and = using =. That is: (xPy)tr =
(x)tr ← (y)tr and (x = y)tr = [(x)tr = (y)tr].

29By ‘minimal logic’ is meant the logic described in (Johansson, 1937). As in intuitionistic logic we have
(¬a) = (a→ �), but � is no longer a neutral element with respect to ∨ (that is, we do not have (� ∨φ) = φ)
and may instead be introduced as a propositional constant like any other. Since an object is a neutral
element with respect to ∨ if and only if it implies everything, we may equivalently say that we do not
have the rule � → φ. In place of the rule (� ∨ φ) → φ we can use the weaker (� ∨ φ) → ¬¬φ and we may
(depending on the circumstances) also be able to reason at the metalevel that if � ∨ φ if provable then φ
must be provable. In place of the rule �→ φ we may use the weaker �→ ¬φ.

30To be exact, this ensures ⊺ is not an Object, and except in the version of the system that uses minimal
logic it ensures that no proposition is an object.

41

We set (∀x∶Object. φ)tr = ∀x←D.x∶Object → (φ)tr. For the existential quantifier we simi-
larly get (recall that we are as yet only considering the minimal logic version) (∃x∶Object. φ)tr =
∃x←D.x∶Object ∧ (φ)tr. For the expression (ιx ∶ Object)φ we use ιx. x∶Object ∧ φ.

To handle quantification and description in connection with the subsort Irreducible we
apply an extra translation prior to all other translations: ∀x∶Irreducible. φ translates into
∀x∶Object.x∶Irreducible→ φ, ∃x∶Irreducible. φ translates into ∃x∶Object.x∶Irreducible∧φ, and

ιx∶Irreducible. φ translates into ιx∶Object. x∶Irreducible ∧ φ.

For the classical case, we apply the double-negation translation before applying the trans-
lation described above.31 This translates φ ∨ ψ into the classically equivalent ¬(¬φ ∧ ¬ψ),
which will then translate into ¬R(¬Rφ ∧ ¬Rψ). For ∃x ∶ Object.φ we likewise end up with
¬R¬R[∃x←D.(R ← x) ∧ (φ)tr], and double negations will appear in front of all predicates
as well as the claim x ∶ Irreducible (the translation mentioned in the previous paragraph is
to be applied before the double-negation translation).

The intuitionistic case is similarly handled by a translation. Unlike in the classical case,
disjunctions and existential quantifiers are left as they are, but we still need to apply a
translation to predicates and to the claim x ∶ Irreducible. This time we do not replace
φ by ¬¬φ, but instead we replace φ with � ∨ φ. For example, x ∶ Irreducible becomes
� ∨ (x ∶ Irreducible).

Note that (xPy)tr and (x = y)tr will differ depending on what logic we are using. One might
have naively thought that the formula ‘x = y’ had the same meaning in any logic, namely
that x is identical to y, but neither with classical nor intuitionistic logic will the truth of
‘x = y’ quite succeed in ensuring that x really is identical to y in any model. In the classical
case the problem is that IpC2 will not allow us to infer x = y from [(x = y) → R] → R; in
the intuitionistic case the problem is that we cannot infer x = y from R ∨ (x = y).

It looks to me as if all that can be said in the case of classical logic is that if we succeed in
proving ‘x = y’ then x and y will be indistinguishable from the viewpoint of the logic that
we are using. In the intuitionistic case we can do better by only looking at models which
satisfy the following requirements:

1) [[R]] ≠ [[⊺]] and

2) if [[φ1 ∨ φ2]] = [[⊺]] then either [[φ1]] = [[⊺]] or [[φ2]] = [[⊺]].

With these assumptions we can infer [[x = y]] = [[⊺]] from [[R ∨ (x = y)]] = [[⊺]], which is

31Alternatively, we can assume that R satisfies ∀x ← R.x ∨ (x → R) and then use the same translation
as for intuitionistic logic.

42

precisely what is needed.32

14 Existence Schemata

The axioms of IpC2 give us few guarantees on what exists. As far as they are concerned,
∀x.[x = ⊺ ∨ x = �] or ∀x.x = ⊺ might hold.

Things look a bit different, though, when we turn to the ‘restricted’ fragments of IpC2 that
have been defined elsewhere in this paper (the fragments IpC2↾, IpC2≡, and IpC2↾≡; see
sections 4 and 6). After all, neither of the aforementioned formulas (∀x.[x = ⊺∨x = �] and
∀x.x = ⊺) can be expressed in any of those fragments.

The difference becomes apparent when we consider a theory T with infinitely many con-
stants and no axioms. With IpC2, adding the formula ∀x.x = ⊺ as an axiom to T will
ensure that all the constants of T are equal, but with the fragments IpC2↾, IpC2≡, and
IpC2↾≡ there can be no finite set of axioms which ensures that all the constants of T are
equal.

In intuitive terms, it is as if IpC2 is a more ‘dangerous’ environment than IpC2↾, IpC2≡,
and IpC2↾≡: The truth of a single formula such as ∀x.[x = ⊺∨x = �] or ∀x.x = ⊺ can cause
the whole universe to collapse. We may, however, look for a way to ensure that no such
collapse can occur in practice.

In fact, if we add ∀x.x = ⊺ as an axiom then we get what is standardly considered an
‘inconsistent’ theory, and we may ignore such theories for many purposes. A theory would
not normally be considered inconsistent, though, just because it proves ∀x.[x = ⊺ ∨ x = �],
and so it will not be enough for us to restrict our attention to (what we ordinarily count
as) consistent theories.

The remedy? We will look at three different ‘existence schemata,’ all meant to ensure that
we are quantifying over lots and lots of objects and not just the two objects suggested
by ∀x.[x = ⊺ ∨ x = �]. Each existence schema will be an axiom schema with infinitely
many axioms expressed in IpC2 extended with one extra predicate/connective (more on
this below). Moreover, each schema will be closely related to a specific fragment of IpC2:
We will get an existence schema for each of the three fragments IpC2↾, IpC2≡, and IpC2↾≡.

But if we extend IpC2 with an extra predicate/connective, are we not moving into a stronger
logic? Technically yes, but section 15 will discuss how the extra predicates/connectives can

32That we can get a complete semantics of IpC2 using only models that satisfy 2) is proved in (Gabbay,
1981).

43

be defined in IpC2 itself (all we need are ordinary constants).

In order to make the presentation of the existence schemata look neater, I will state them
using quantifiers restricted to objects satisfying a particular predicate:

∀Px.φ↔def. ∀x.P (x)→ φ, and
∃Px.φ↔def. ∃x.P (x) ∧ φ.

Let me now give the existence schema corresponding to IpC2↾. Each axiom of the schema
will take the following form:

∀Smallx1, ..., xm.φ→ ∃Smally1, ..., yn.χ.

Here the formula ∀Smallx1, ..., xm.φ→ ∃Smally1, ..., yn.χ must include no constants33 or free
variables.

Small is the extra connective/predicate that we are adding to IpC2 (see above), and it is
required to satisfy the following axioms34:

∀x, y.[Small(x) ∧ (x→ y)]→ Small(y),
∀x, y.[Small(x) ∧ Small(y)]→ Small(x ∧ y), and
∀x, y.[Small(x) ∧ Small(y)]→ Small(x ∨ y).

To see whether the formula ∀Smallx1, ..., xm.φ → ∃Smally1, ..., yn.χ is actually an axiom,
we form two theories T and T ′. The theory T is to have m constants c1, ..., cm while
the theory T ′ is to extend the theory T with n constants d1, ..., dn. The sole axiom
of T is to be φ[c1/x1, ..., cm/xm] and theory T ′ is to additionally include the axiom
χ[c1/x1, ..., cm/xm, d1/y1, ..., dn/yn]. At this point we ask ourselves whether the theories
T and T ′ are theories in the logic IpC2↾ and whether T ′ is a conservative extension of T
in IpC2↾. When the answer to both questions is yes, ∀Smallx1, ..., xm.φ → ∃Smally1, ..., yn.χ
is to be included as an axiom of the existence schema.35

33An exception to this rule must be made if constants are used to define the predicate Small; see section
15.

34In section 15 both axioms will be turned into provable theorems. The reason for the redundancy among
the axioms will become clear below when we consider the other two existence schemata.

35 Note also that the existence schema here described involves an infinite set S of axioms which is not
a recursively enumerable set. To see that S is not recursively enumerable it is enough to consider the set
S′ of axioms of the form ∀Smallx1. [∀x2 ← x1. x2 = x1 ∨ x2 = ⊺] → ∃Smally.ψ. It easy to see that if S were
recursively enumerable then S′ would also be recursively enumerable, so it suffices to show that S′ is not
recursively enumerable. But the axiom ∀Smallx1. [∀x2 ← x1. x2 = x1 ∨ x2 = ⊺] → ∃Smally.ψ is in S′ if and
only if it is impossible to derive x1 = ⊺ from ψ.

From (Löb, 1976) we know that classical predicate logic can be faithfully embedded in IpC2, and the
question of which axioms are in S′ can therefore be turned into the question of which theories in classical
predicate logic are consistent and which ones are not (although the formula ψ is limited to the fragment
IpC2↾ and cannot refer to �, this is no real problem here since we can use the variable y in place of � as
‘the object that contains everything’). But it is well-known that the set of consistent theories in classical
predicate logic is not recursively enumerable (if it were, that would give us a computer program that solves

44

This completes the specification of the existence schema corresponding to IpC2↾, but what
does it amount to? We may begin by considering the case where m = 0. The theory T
will then lack constants, and φ will have to be ⊺ (after all, it can involve no constants or
variables and it has to be a formula in IpC2↾). An axiom with m = 0 can thus be expressed
as follows:

∃Smally1, ..., yn.χ.

Here χ must involve no constants and no variables other than y1, ..., yn, but apart from this
it can be any formula that is expressible in IpC2↾ (since T is the empty theory, we need
not worry that T ′ may fail to be a conservative extension of T). For example, it might be
⊺, in which case we are simply told (in the axiom ∃Smally1, ..., yn.χ) of the existence of n
(small) objects y1, ..., yn, or it might be (y1 → y1) ∧ (y1 → y2) ∧ ... ∧ (y1 → yn), in which we
are told of the existence of n (small) objects y1, ..., yn such that one of the objects (namely
y1) contains the others.

Let us now turn to the case where m is not 0 and where φ says something non-trivial about
x1, ..., xm. χ must then be such that T ′ becomes a conservative extension of T in the logic
IpC2↾. For example, if m = 2 and φ = ⊺ then χ must not say that x1 = x2 as T ′ would then
come to say that c1 = c2, violating conservativity. Nor can it say, for example, that x1 → x2
or x1 ∨ x2 holds; this would again lead to a violation of conservativity.

Note, though, that the conservativity requirement applies to the logic IpC2↾. It is not
required for T ′ to be a conservative extension of T in the logic IpC2. This seems to
allow the existence schema to tell us something non-trivial about the parts of �, an ob-
ject which we are unable to refer to in the logic IpC2↾. For example, from the axiom
∀Smallx1, x2.∃Smally1.(y1 → x1)∧ (y1 → x2) we learn that for any two small parts x1 and x2
of � we can find a small part y1 of � which contains x1 as well as x2.

So what distinguishes a ‘small’ object from an arbitrary object? The existence schema is
meant to be such that � cannot be proved to be ‘small.’ In set theory it is common to
distinguish between small and large sets36 and we are here making a somewhat analogous
distinction in IpC2. With the existence schema any small object seems to be such that one
can find a larger object that is still small, but with � we can prove that any object which
includes it as a part must be equal to it.

To ensure that the objects guaranteed to exist through the existence schema are actually
different (rather than one and the same object), we may use the methods of section 11.
This may at first seem to require us to relax the requirement that φ and χ contain no
constants – we want to be able to refer to the constant R – but we can easily work around

the halting problem, but it is well-known that no such computer program exists).
36This distinction is important in category theory, where a category is called ‘small’ if it has a small set

of objects as well as a small set of morphisms. See (Mac Lane, 1998).

45

this restriction by using a variable (say x1) in place of R in the formulas φ and χ. When
time comes to apply the axiom involving φ and χ, we substitute R for this variable, and
everything will be as if the axiom had been able to refer directly to R.37

So far we have only considered the existence schema that is based on the logic IpC2↾, but
the remaining existence schemata are to a large extent analogous.

With the existence schema corresponding to IpC2≡, an axiom will take the following form:
∀Largex1, ..., xm.φ→ ∃Largey1, ..., yn.χ.

As before, this formula must include no constants38 or free variables.

This time, the primitive that we are adding to IpC2 is called Large, and it is required to
satisfy the following axioms:

∀x, y.[Large(x) ∧ (x← y)]→ Large(y),
∀x, y.[Large(x) ∧ Large(y)]→ Large(x ∧ y), and
∀x, y.[Large(x) ∧ Large(y)]→ Large(x ∨ y).

To check whether ∀Largex1, ..., xm.φ → ∃Largey1, ..., yn.χ is indeed an axiom, we again con-
sider a theory T with constants c1, ..., cm and a theory T ′ which adds the constants d1, ..., dn.
T is to include φ[c1/x1, ..., cm/xm] as its sole axiom and T ′ is to additionally include the
axiom χ[c1/x1, ..., cm/xm, d1/y1, ..., dn/yn]. What has changed is that T and T ′ now need
to be theories in the logic IpC2≡ (so they are allowed to mention � but must not mention
⊺; see section 6 for the exact definition), and that T ′ is to be a conservative extension of
T in IpC2≡ (rather than IpC2↾).

For the existence schema corresponding to IpC2↾≡, an axiom will take the following form:
∀MiddleSizedx1, ..., xm.φ→ ∃MiddleSizedy1, ..., yn.χ.

Once again, there are to be no constants39 or free variables.

For the predicate/connective MiddleSized we have the following axioms:
∀x, y, z.[MiddleSized(x) ∧MiddleSized(y) ∧ (z → x) ∧ (z ← y)]→MiddleSized(z)],
∀x, y.[MiddleSized(x) ∧MiddleSized(y)]→MiddleSized(x ∧ y), and
∀x, y.[MiddleSized(x) ∧MiddleSized(y)]→MiddleSized(x ∨ y).

We form theories T and T ′ as before, the only difference being that they are now to be
theories in the logic IpC2↾≡ (where neither ⊺ nor � can be referred to) and that T ′ must

37Note that this method requires us to assume that R is a small object.
38Again, an exception to this rule must be made if constants are used to define the predicate Large; see

section 15.
39Once again, an exception needs to be made when constants are used in the definition of MiddleSized

itself.

46

be a conservative extension of T in this logic.

This time there will be no axiom of the form ∃MiddleSizedy1, ..., yn.χ (no axiom that uncon-
ditionally asserts the existence of an object), since there is nothing φ could be in that case
(without constants, variables, ⊺ and �, there is nothing left for φ to be).

An important question that has not been considered in this section is whether the axiom
schemata here described are non-trivial. Could it not be that all small/large/middle-sized
objects are provably equal?

This paper will leave the non-triviality of the existence schemata as an unproved conjecture.

The question of which existence schema to prefer will be discussed in the concluding section
of this paper.

15 Tagged objects

The axiom schemata presented in the previous section all made use of a predicate/connective
which we did nothing to define (the predicates in question were called Small, Large, and
MiddleSized, respectively). Instead, we thought of the predicate as an undefined primitive
that we added to the primitives of IpC2.

We will now look at how predicates satisfying the required axioms can be defined in IpC2

itself. In fact, we will only look in detail at the predicate Small, but definitions for the other
two predicates will be given, and the proofs needed for these predicates will be sketched.

So what exactly is a small object? Well, one thing we do not want is for � to come out
small, and we also do not want for a small object to be the same thing as a part of some
particular object o. After all, the existence schema of the previous section seemed to tell
us that for any small object one could find a larger object which was itself small.

Our definition of Small(x) will be as follows:
Small(x)↔def. o1 ∨ (o2 → x).

For the predicates Large and MiddleSized we may instead use the following defintions40:
Large(x)↔def. o1 ∨ (x→ o3).

40Note that the definitions are not meant to be used together. In that case one would want to rename
Small as NotLarge and Large as NotSmall . It seems odd to say that an object is middle-sized if it is large
and small at the same time, but reasonable to say that an object is middle-sized if it satisfies NotLarge as
well as NotSmall .

47

MiddleSized(x)↔def. o1 ∨ [(o2 → x) ∧ (x→ o3)].

The definition of Small(x) depends on two constants o1 and o2, which need to be in theories
that employ the predicate Small(x).

Note that if we were to add the axiom o1 = ⊺ ∧ o2 = � then Small(x) would hold for any
object x. Thus, if we start from a theory T without the constants o1 and o2 and then
extend it into a theory T ′ which is like T except that it adds the constants o1 and o2 and
axioms of the form Small(φ), then we have that the theory T ′ is a conservative extension
of T .

Two basic properties of Small are as follows:

Theorem 24. [Small(x) ∧ (x→ y)]→ Small(y)

Proof.
Assume Small(x) and x → y. By definition, Small(x) means o1 ∨ (o2 → x). It easy to see
that Small(y) follows from o1 as well as well as o2 → x, and so it has to hold.

Theorem 25. [Small(x) ∧ Small(y)]↔ Small(x ∧ y)

Proof. The right-to-left direction is a consequence of theorem 24.

In order to prove the left-to-right direction, assume Small(x) and Small(y). That is, we
have o1 ∨ (o2 → x) and o1 ∨ (o2 → y). Through reasoning by cases we obtain o1 ∨ [(o2 →
x) ∧ (o2 → y)]. But (o2 → x) ∧ (o2 → y) is equivalent to o2 → (x ∧ y). Thus, we get
o1 ∨ [o2 → (x ∧ y)], which is precisely what Small(x ∧ y) says.

To get a rough idea of how Small works we may note that o1 = � gives us Small(x) ↔
(o2 → x) while o1 = ⊺ instead gives us Small(x)↔ ⊺ (which we can also think of as �→ x).
From this we may expect that before we have added one of o1 = � and o1 = ⊺, the objects
that are provably small can include objects that are not part of o2 while failing to include
any object whatever. Theorem 30 below confirms this.

Theorem 26. Small(o2)

Proof. Trivial.

Lemma 27. Small(inf x s.t. Small(x)) is equivalent to o1 ∨ ∀x.[Small(x)↔ (o2 → x)].

48

Proof. By definition, Small(inf x s.t. Small(x)) is equivalent to o1∨(o2 → inf x s.t. Small(x)).
It therefore suffices to prove that o2 → inf x s.t. Small(x) is equivalent to ∀x.[Small(x)↔
(o2 → x)].

Assume o2 → inf x s.t. Small(x). Then theorem 2 gives us Small(x) → (o2 → x). But since
we have Small(o2) (by theorem 26), we get ∀x.[Small(x)↔ (o2 → x)].

Assume instead that ∀x.[Small(x)↔ (o2 → x)] holds. If, additionally, we assume o2 then
we clearly have Small(x) ↔ x from which we get that inf x s.t. Small(x) is equivalent to
inf x s.t.x, which is simply ⊺. Thus, o2 → inf x s.t. Small(x).

Lemma 28. ∀x.[Small(x)↔ (o2 → x)] is equivalent to ¬(o1 ∧ o2).

Proof. It is easily seen that ∀x.[Small(x) ↔ (o2 → x)] is equivalent to ∀x.[Small(x) →
(o2 → x)] (use theorem 26 and theorem 24).

Using the definition of Small we get that ∀x.[Small(x) → (o2 → x)] is equivalent to
∀x.[(o1 ∨ (o2 → x)) → (o2 → x)]. This can clearly be rewritten as ∀x.[o1 → (o2 →
x)] ∧ [(o2 → x) → (o2 → x)], which simplifies to ∀x.[(o1 ∧ o2) → x]. This in turn is easily
seen to be equivalent to (o1 ∧ o2)→ ∀x.x, which we may also write as ¬(o1 ∧ o2).

Theorem 29. Small(inf x s.t. Small(x)) is equivalent to o1 ∨ ¬(o1 ∧ o2).

Proof. Combine lemma 27 with lemma 28.

Theorem 30. If a theory T of IpC2↾ that lacks the constants o1 and o2 is extended into
a theory T ′ that adds the constants o1 and o2 and axioms of the form Small(φ), then the
object (inf x s.t. Small(x)) is not provably small in T ′.

Proof. Suppose on the contrary that the formula Small(inf x s.t. Small(x)) could be proved
in T ′.

The proof can only use a finite subset of the axioms of T ′. Thus, only finitely many of
the axioms of the form o1 ∨ (o2 → e) could be involved in the proof. We may write these
axioms as Small(e1), ..., Small(en).

But these axioms are obviously all consequences of o2 → (e1 ∧ ... ∧ en) (first derive o2 → ek
and then Small(ek)), and so Small(inf x s.t. Small(x)) would have to be provable in the
theory T ∗ which combines the axiom o2 → (e1 ∧ ... ∧ en) with the axioms of T .

Now note that if Small(inf x s.t. Small(x)) were provable in T ∗ then it would also be
provable in the theory T ∗∗ which adds the axiom ⊺ → o2. But theorem 29 tells us that

49

Small(inf x s.t. Small(x)) is equivalent to o1 ∨ ¬(o1 ∧ o2), which is provably equivalent to
o1 ∨ ¬o1 in T ∗∗.

Thus, if Small(inf x s.t. Small(x)) were provable in T ∗ then o1 ∨ ¬o1 would be provable in
T ∗∗. But T ∗∗ is a theory in the logic IpC2↾ in which no axiom mentions o1, and so there
is obviously no way that o1 ∨ ¬o1 could be provable in it (use induction on the length of
the proof). Contradiction.

Let us finally consider how things differ when we use one of the predicates Large or
MiddleSized instead of the predicate Small . For Large we have:

Theorem 31. 1) [Large(x) ∧ (y → x)]→ Large(y),

2) [Large(x) ∧ Large(y)]↔ [Large(x ∨ y)],

3) Large(o3),

4) ∀x.[Large(x)↔ (x→ o3)] is equivalent to o1 → o3,

5) Large(supx s.t. Large(x)) is equivalent to o1 ∨ ∀x.[Large(x)↔ (x→ o3)],

6) Large(supx s.t. Large(x)) is equivalent to o1 ∨ (o1 → o3),

7) If a theory T of IpC2≡ that lacks the constants o1 and o3 is extended into a theory T ′

that adds the constants o1 and o3 and axioms of the form Large(φ), then the object
(supx s.t. Large(x)) is not provably large in T ′.

Proof. 1) Analogous to the proof of theorem 24.

2) Analogous to the proof of theorem 25.

3) Trivial.

4) Like the proof of lemma 28. However, while ∀x.[o1 → (o2 → x)] simplifies to ¬(o1∧o2),
∀x.[o1 → (x→ o3)] instead simplifies to o1 → o3.

5) Use theorem 6 along with 3).

6) Combine 4) with 5).

7) We can use the proof of theorem 30 with a few changes:

• Note that only finitely many axioms of the form Large(φ) could be involved in
a proof of Large(supx s.t. Large(x)) and that Large(e1), ..., Large(en) are all
consequences of (e1 ∨ ... ∨ en)→ o3,

50

• let T ∗ extend T with the axiom (e1 ∨ ... ∨ en)→ o3,

• let T ∗∗ be the theory that extends T ∗ with the axiom o3 → �,

• note that Large(supx s.t. Large(x)) simplifies to o1 ∨ ¬o1 with the theory T ∗∗,
and

• note that if Large(supx s.t. Large(x)) were provable in T ∗ then it would be
provable in T ∗∗, which is absurd since T ∗∗ is a theory in IpC2≡ in which no
axiom mentions o1.

Since MiddleSized(x) is just the conjunction of Small(x) and Large(x), we can apply all
of the preceding theorems to middle-sized objects. In particular, by combining theorem 24
with part 1) of theorem 31 we get:

∀x, y, z.[MiddleSized(x) ∧MiddleSized(y) ∧ (z → x) ∧ (z ← y)]→MiddleSized(z)].

Similarly, we need only combine our results for Small and Large to get:
∀x, y.[MiddleSized(x) ∧MiddleSized(y)]→MiddleSized(x ∧ y), and
∀x, y.[MiddleSized(x) ∧MiddleSized(y)]→MiddleSized(x ∨ y).

16 Conclusions

This paper has discussed IpC2 from a number of viewpoints:

1. Syntax (section 2) and semantics (sections 7-10),

2. the infimum/description operator (defined in section 3 and used in sections 13 and
15),

3. fragments of IpC2 where � and/or ⊺ cannot be referred to (introduced in sections 4
and 6, further discussed in section 9, and of central importance in section 14),

4. the question of what exists (sections 14 and 15), and

5. how it can be used to reason about the parts of objects (sections 5, 11, 12, and 13).

However, the main goal of the paper has been to explore IpC2 as a potential foundation
for mathematics. Let us therefore now try to assess the merits and demerits of using IpC2

as a foundation of mathematics.

51

With any foundation of mathematics we can ask what basic concepts it starts from. As
axiomatized in this paper, IpC2 is based on two primitives: → and ∀. Throughout the
paper we have regarded → as expressing parthood, and we have encountered no problems
at all when doing so. That we have sometimes read → as ‘implies’ does in no way contradict
this, but merely means that proposition a implies proposition b if and only if b is part of
a, an idea that seems to work excellently.

It thus looks as if IpC2 is a theory which has parthood as one of its primitives. The reader
who finds this hard to believe should note that it is well-known that intuitionistic logic can
be given a topological interpretation (see section 10) and that it is natural to see topology
as a subject that helps us reason about parthood.

The parthood relation would seem to be a very natural relation to put at the bottom of
ones theorizing about mathematics. It may be thought to underlie not only the idea of
logical consequence, but also the idea of a collection (it seems a natural thought that the
elements and subsets of a set are parts of the set). It may be noted in this connection that
Bertrand Russell tried to give the parthood relation a fundamental role in the foundations
of mathematics before he learned how to do without it.41

The parthood relation by itself is not enough, though, if we want to say what the parts of
an object are. For this we also need the other primitive of IpC2, the universal quantifier
(∀). We have seen in this paper how these two primitives are enough to say what exactly
the parts of an object are (see sections 12 and 13, for example).

Perhaps it would be more natural to replace the single primitive → with the pair of primi-
tives = and ∧ (are these not simpler?).42 But → has the nice feature that it helps us express
at the object level what ⊢ expresses at the metalevel, and it is also nice in that it can be
seen as expressing ‘the parthood relation.’

The reader may prefer, though, to replace ∀ and → with the construction inf ψ[x] s.t.φ that
was defined in section 3. The construction inf ψ[x] s.t.φ seems fairly simple and natural
(to some extent, if only that, it would seem to be grasped by anyone who knows how to
solve optimization problems) and regarding it as basic seems in line with the idea that

41Russell’s 1899-1900 draft of The Principles of Mathematics consists of seven parts, the second of which
is entitled ‘Whole and Part’ (see (Russell, 1993)). That Russell considered ‘the theory of whole and part’
to be fundamental is shown by the following passage: ‘The theory of elementary arithmetical addition and
ratio [...] is not prior to the elementary theory of whole and part, but coordinate with it.’ (ibid., p. 35).
In a revealing note from October 1900 Russell writes that ‘Peano’s distinction of ⊃ and ε shows whole and
part to be different from implication. The former is primarily implication, the latter gives the relation
of simple part to whole.’ (ibid., p. 10). The word ‘primarily’ here is perhaps explained by the fact that
Russell recognized not only ‘material implications’ but also ‘formal implications’; formal implications were
encountered in section 3 of the present paper (see footnote 11).

42In the setting of higher order logic, a proposal of this kind is considered in (Scott, 1979, pp. 692-693).

52

adjoints/Galois connections play a basic role in logic and mathematics.43

In any case, out of our basic primitives we are able to define ∧, ∨, ∃, and = (which we might
also write ↔) as well as a description operator (see section 3).44 IpC2 is also economical
in its use of a single type where other systems have one sort for propositions and another
sort for ‘ordinary objects.’ A consequence of this is that there is no difference between
functions and relations in IpC2 (except, perhaps, a change in point of view), and so we are
again able to keep down the number of basic concepts.

So much for the question of basic concepts. Another important question to ask about a
foundation of mathematics is whether it is based on classical logic, intuitionistic logic, or
some other logic. We saw in section 13 that as we reason about parts of objects in IpC2

we can get either classical logic or intuitionistic logic depending on how we do things. Of
course, ‘IpC2’ is an abbreviation for ‘second-order intuitionistic propositional logic,’ but
this paper has stayed away from the assumption that all objects quantified over in IpC2 are
to be thought of as ‘propositions’ as well as the (closely related) assumption that � is to
be understood as an absurd proposition (instead, � has been understood as an object that
‘contains everything’). Sections 11 and 13 used a perfectly ordinary constant R (rather
than �) where an ‘absurd proposition’ was needed, and depending on how we choose R we
may or may not get the law ∀x←R. (x = ⊺)∨ (x =R) (which we can think of as a version
of ‘the law of excluded middle’ (which holds in classical logic but which need not hold in
intuitionistic logic)).

So as understood here, IpC2 is agnostic on whether we should perform our reasoning using
classical logic or intuitionistic logic. How about the fact that IpC2 is a ‘second-order’
system? Do we really want to use second-order logic in our foundation of mathematics? I
believe the naming of IpC2 as ‘second-order’ is misleading since we are not able to quantify
over functions or relations. Section 13 showed how we can approach IpC2 using the syntax
of ordinary first-order logic, and it seems arguable that IpC2 is more ‘first-order’ than
‘second-order’ in nature.

This leads us to a different question: Is it not an important limitation of IpC2 that we are
unable to quantify over functions and relations? Perhaps, but it may be possible to find
reasonable replacements in practice. For example, an idea that seems worth exploring is
what can be done in IpC2 using objects of the form inf x s.t. Small(x) ∧ φ(x) (in words:
‘the smallest object that contains all small objects satisfying property φ’; see section 15 for
the definition of Small), where φ can be any property. Unlike the property φ, this object
can be quantified over in IpC2, and it could sometimes be a useable replacement for the

43Cf. (Lawvere, 1969).
44One thing that will not work is to try to use ∃ instead of ∀ as a basic primitive of IpC2. (Zdanowski,

2009) contains a proof that the system one gets with ∃ in place of ∀ is strictly weaker than IpC2.

53

property φ.

Let us now turn from the logic we use to reason about objects to those objects themselves.
Can we represent objects encountered in mathematics in a natural way using IpC2? As
mentioned in the introduction, this paper will stop short of addressing this question. It
may be hoped, though, that the ‘topological’ nature of IpC2 (see section 10) in combination
with the fact that topology has lots of applications throughout mathematics can help make
IpC2 a very natural system for the formalization of mathematics.

One aspect of IpC2 that may be a strength and a weakness at the same time is that all
objects have their parts arranged as the elements of a Heyting algebra. This does not
always seem to match actual mathematical objects very well. For example, the subspaces
of a vector space do not form a Heyting algebra but a non-distributive lattice.

However, one can find ways to work around the restriction to Heyting algebras (see section
13), and the fact that a ⇒ b is defined regardless of what a and b are makes Heyting
algebras much easier to work with than non-distributive lattices.

By itself, IpC2 may be considered too weak to serve as a foundation of mathematics. Far
from guaranteeing the existence of a ‘mathematical universe,’ IpC2 is consistent with only
two objects existing (just add ∀x.(x = ⊺) ∨ (x = �) as an axiom). However, section 14
showed how one may extend IpC2 with existence schemata that seem to give us universes
of the kind one may want from a foundation of mathematics.

I think any reader will agree with me after a careful read of section 14 that each existence
schema arises in a very natural way from a fragment of IpC2 (fragments where ⊺ and/or �
cannot be referred to).45 There would seem to be nothing at all ‘arbitrary’ about them.

But how can we make sense of the fact that we are getting three existence schemata rather
than one? The difference between the schemata can be seen as lying in the question
of whether objects should be infinitely extensible, infinitely divisible, or both. With the
existence schema corresponding to the logic IpC2↾, objects are infinitely extensible, but it is
possible for an object to be an indivisible atom. By contrast, with the other two schemata
there is no such thing as an atom. I personally believe the most useful and basic of the
existence schemata to be the one where objects are always extensible as well as divisible
(the one corresponding to the logic IpC2↾≡).

45We can perhaps informally think of the existence schema corresponding to IpC2↾ as being what we
get if we start with IpC2↾ and then add � in a ‘non-destructive’ way. Similarly, we could think of the
existence schema corresponding to IpC2≡ as being what we get when we start with IpC2≡ and then add
⊺ in a non-destructive way, and we could think of the existence schema corresponding to IpC2↾≡ as being
what we get when we start with IpC2↾≡ and add ⊺ as well as � in a non-destructive way.

Note that it remains to be proved that the existence schemata are actually non-trivial.

54

An area where IpC2 may score poorly is in ‘user-friendliness.’ However, as illustrated in
section 13, one need not reason in IpC2 directly but can use another language on top of it.
In this way, one can hopefully get the best of two worlds.

IpC2 may also score poorly when it comes to ‘constructivity.’ The axiom schemata dis-
cussed in section 14 are not recursively enumerable (see footnote 35), and (at least as I
have done things in this paper) we do not have the existence property: The fact that we
can prove ∃x.φ does not mean that we are able to refer to a specific object χ such that
φ[χ/x] holds.

17 References

Blackburn, P, de Rijke, M., and Venema, Y. (2001), Modal Logic, vol. 53 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press.

Church, A. (1956). Introduction to Mathematical Logic. Princeton University Press, New
Jersey.

Esakia, L. (2004). Intuitionistic logic and modality via topology. Annals of Pure and
Applied Logic, 127, 155–170.

Gabbay, D. M. (1981). Semantical investigations in Heyting’s intuitionistic logic. Synthese
Library, 148. Reidel, Dordrecht.

Gaifman, H. (1964). Infinite Boolean polynomials. I. Fund. Math., 54, 230-250.

Girard, J.-Y. (1972). Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur (Ph.D. thesis) (in French). Université Paris 7.

Girard, J.-Y., Lafont, Y., and Taylor, P. (1989). Proofs and Types. Cambridge University
Press.

Gödel, K. (1933). Eine Interpretation des intuitionischen Aussagenkalküls. Ergebnisse
Math. Colloq., 4, 39–40.

Hindley, J. and Seldon, J. (eds) (1980). To H.B. Curry: Essays on Combinatorial Logic,
Lambda Calculus and Formalism. Academic Press, London.

Howard, W. (1980). The formulae-as-types notion of construction, in J. Hindley and J.
Seldin (eds), (Hindley and Seldon, 1980), 479–491.

55

Johansson, I. (1937). Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus.
Compositio mathematica 4, 119-136.

Johnstone, P. T. (2002). Sketches of an Elephant: A Topos Theory Compendium. Oxford
University Press.

Lawvere, F. W. (1969). Adjointness in Foundations. Dialectica, 23 (3-4), 281-296.

Löb, H. M. (1976). Embedding first order predicate logic in fragments of intuitionistic
logic. Journal of Symbolic Logic, 41, 705–18.

Mac Lane, S. (1998). Categories for the Working Mathematician. Graduate Texts in
Mathematics 5 (second ed.). Springer.

McKinsey, J., Tarski, A. (1948). Some theorems about the sentential calculi of Lewis and
Heyting. Journal of Symbolic Logic, 13, 1–15.

Pavičić, M., Megill, N. D. (1999). Non-Orthomodular Models for Both Quantum Logic
and Standard Classical Logic: Repercussions for Quantum Computers, Helv. Phys. Acta,
72, 189-210.

Pitts, A. M. (1992). On an Interpretation of Second Order Quantification in First Order
Intuitionistic Propositional Logic. Journal of Symbolic Logic. 57(1), 33-52.

Prawitz, D. (1965). Natural deduction. Almqvist & Wiksell, Stockholm.

Reynolds, J. (1974). Towards a Theory of Type Structure. Programming Symposium,
Proceedings Colloque sur la Programmation, 408-423.

Ruitenburg, W. (1991). The unintended interpretations of intuitionistic logic. Perspectives
on the History of Mathematical Logic. Birkhäuser, Boston. 134-160.

Russell, B. (1993). The Collected Papers of Bertrand Russell, Volume 3: Toward the
“Principles of Mathematics,” 1900–02, ed. G. H. Moore. Routledge, London and New
York.

Scott, D. S. (1979). Identity and existence in intuitionistic logic, in M. P. Fourman, C. J.
Mulvey, D. S. Scott (eds.), Applications of Sheaves, Lecture Notes in Mathematics 753,
Springer, 660–696.

Scott, D. S. (2008). The Algebraic Interpretation of Quantifiers: Intuitionistic and Clas-
sical. Andrzej Mostowski and Foundational Studies, ed. Ehrenfeucht, A., Mostowski, A.,
Marek, V. W., and Srebrny, M., 289-312.

56

Solovay, R. (1966). New proof of a theorem of Gaifman and Hales. Bull. Amer. Math.
Soc., 72(2), 282-284.

Sørensen, M. H. and Urzyczyn, P. (2010). A Syntactic Embedding of Predicate Logic into
Second-Order Propositional Logic. Notre Dame Journal of Formal Logic, 51(4), 457-473.

Varzi, A. (2016). Mereology, in The Stanford Encyclopedia of Philosophy (Spring 2016 Edi-
tion), ed. E. N. Zalta, URL = http://plato.stanford.edu/archives/spring2016/entries/mereology/.

Zdanowski, K. (2009). On second order intuitionistic propositional logic without a universal
quantifier. The Journal of Symbolic Logic, 74, 157–67.

57

