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Abstract

We will look at Euler angle representation of rotations, and the even subalgebras
in Clifford algebra which form a double cover of the special orthogonal group.
Some of their properties and metrics will be compared and some suggestions
made on how they could be applied in Nordlings variable selection system for
high dimensions. This will hopefully serve as an introduction to create interest
in the subject and shed some light the difficulties that occur at different stages.
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1 Introduction

In this report we want to explore the properties of SO(n), the special or-
thogonal group in n dimensions a.k.a. n-dimensional rotations, and their
possible application on Nordlings variable selection system [Nor13].

Although rotations in (2 and) 3 dimensions have been extensively studied
due to its application in robotics[Wil05], aerodynamics[Den] and many other
fields, literature on rotations in higher dimensions quickly becomes much
more scarce. However, there are already huge differences between rotations
in 3 dimensions compared to rotations in 4 dimensions [Col90] [TPG15]
[Wil05] [Lou01]. Rotations in higher dimensions seems even less explored.

Rotations can be represented in many different ways, such as a rotation
matrix using Euler angles [Can96], or as (multiple) pairs of reflections using
Clifford algebra [Wil05] [Den] [Lou01], or quaternions in 3 and 4 dimensions
[TPG15] [Col90] [Lou01].

The Euler angle representations also have different ways of measuring the
angle of rotation. Which could be Euclidean distance [Huy09], or using the
Lie algebra of the Euler angle rotation matrix [PR97], or its Haar measure
[Not][Tay].

As for Clifford algebra, the metrics found are restricted to quaternions
in 3 dimensions [Huy09], or they apply only to vectors.

Hopefully this report will shed some light on the possibilities, difficulties
and impossibilities that occur when trying to add a rotation matrix into
Nordlings variable selection system. The subjects lifted in this report could
be tools with different advantages when applying them to Nordlings variable
selection system.

The first section of this thesis will deal with Nordlings variable selection
system, to show why this report on rotations is motivated, and to narrow
down on some more specific properties of rotations. The second section
explores the different representations and metrics of rotation matrices, and
some comparison between them. In the third section some applications
of rotation matrices on Nordlings variable selection system are suggested.
While the fourth section deals with problems that occur, and discusses how
to continue research in this area.
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2 About variable selection and linear regression

2.1 Defenitions of variable selection

Using linear regression it is possible to find relationships between data. Vari-
able selection methods can be used to improve the linear regression method
in several ways. According to Elisseeff [EG03] there are 3 types of objectives
for variable selection, each of these fulfill a different role for the results.

Improving prediction performance
Making a prediction based on all the features can lead to biasing (when
many features say the same thing), or basing output on irrelevant data.

Computational
Evidently, when decreasing the number of input variables for an algo-
rithm, the algorithm will work faster.

Understanding of data
Understanding a problem (or solution) in thousand dimensions is ba-
sically impossible. The fewer dimensions, the easier it might be to plot
or visualize the underlying data and to understand the predictions.

The two goals for feature selection are: reconstructing one’s data as
well as possible (unsupervised), or being as good as possible at predicting
(supervised).

They are often used as machine learning tecniques.

2.1.1 Optimisation versus robustness

There are two different goals of variable selection.
Optimisation: We are looking for the model which best explains the

relation between input data and output data that we have got. However,
even though we find a perfect match, this does not mean that we have
necesarily found the correct relation between the input data and the output
data.

In robust variable selection the aim is not to find the single model which
best describes the input and output, but to find the set of models which are
possible, and which are not, by looking at which properties must be consid-
ered to predict the outcome, and which properties can always be neglected.

2.1.2 Some different techniques

Before looking at a relation between the regressand and the regressor one
can start reducing computations using one of the following techniques:

Ranking can be used as a pre-selection technique. It is used to sort out
some special qualities either wanted or not wanted in further compu-
tation, e.g. one might throw all rows j (data from experiment j) with
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only 0 entries, or only choose those 20 rows j with highest value in
the first entry of the regressors. Here the number of experiments n is
reduced.

Similarly one could throw (or only choose) properties which do (not)
seem to effect the prediction. However a property which seems useless
on itself, can be very useful together with others. Here the number of
properties m is reduced.

Dimensionality reduction can also be used as a pre-selection technique,
to see whether two properties seem to depend on each other very much,
e.g. if one property denoted degrees Celsius and another degrees mea-
sured in Farenheit. Here the number of properties m is reduced. An-
other method is called clustering, in which several variables (experi-
ments), e.g. with very similar data, are merged into one. Here the
number of properties n is reduced.

It is worth noting that mathematically, clustering could seem like a
good idea, but if the data should be explanatory one might want to
use caution since it would become unclear exactly where the data
originated from.

A SVM, Support vector machine, can be used to simplify linear regres-
sion and to find out which variables are important, by trying to find a
linear function of the variables with smallest combined length to the
data. Data which is too far from the function will then be removed,
and the process repeated.

These different techniques often use stochastic theory, e.g. t-test, Paer-
sons correlation etc., to decide whether some variable should be selected or
not. This, however, might require some presumtions about the model, e.g.
whether the data is spread with a normal distribution, which is not always
desirable.

2.1.3 Validation of predictability or robustness

After computing a possible solution one usually wants to check its predictive
properties. This could be done e.g. through checking how well future data
fits ones predictions. However in most cases this might not be an option,
yet one still has to be pretty certain that any prediction is correct. One
way to solve this is to divide ones data into a set of training examples and
a validation set. Another way to solve it is to ’create’ new data using the
data one has.

Choosing what fraction to use, or even which technique to use is an
open problem. It could depend on e.g. whether some experiments have
given the same results. Examples of techniques to use are: Bootstrapping
and (leave-one-out) cross-validation.

3



2.2 Introduction to variable selection using linear regression

In variable selection using linear regression one has two sets of measured data
represented as the two matrices regressor X ∈ Rn×m, also called independent
variable or input variable, and regressand Y ∈ Rn×j , also called dependent
variable or output variable.

The data in row i of X could e.g. correspond to the m property values
measured in experiment i ∈ [1, n], and so the data in each column k of X
corresponds to the values the experiments had for property k. The matrix
X is called a regressor, and its columns are regressors.

The data in row i of Y could e.g. corresponds to the measured outcome
of some experiment i ∈ [1, n]. The matrix Y is called a regressand, and
when j = 1 the equation 1 below is said to be univariate, else, when j > 1
it is called multivariate.

Note however that the data does not need to be structured this way. It
is possible one measures all the data at once and one divides it into the sets
X and Y . These sets need not even be defined beforehand, but one can
try dividing the data into different sets and compare the results and draw
conclusions afterwards.

In linear regression one tries to find the matrix A ∈ Rm×j that solves
the following equation:

XA = Y (1)

Before using this equation one can first use the ranking technique elim-
inating those columns Xk = 0, i.e. those variables about which we don’t
know how they will effect the outcome of Y because we have no experience
to base that decision on. Unless otherwise stated, we will assume this is
done for the remainder of the text.

Hence we have selected the columns Xk 6= 0, and put them in the above
equation (1). Assuming the equation does not contain contradictions, the
following can be said about solving it: (1) If n < m, the equation can not
be uniquely solved. (2) If n = m+ i, where i ≥ 0, the equation can only be
uniquely solved if less than i rows of X are collinear, i.e. linearly dependent.
If more than i rows of X are linearly dependent, Gauss elimination would
put us case (1).

If we want to check whether columns Xk are collinear we check whether
there is a vector b = (b1, ..., bm) 6= 0 such that:

m∑

k=1

Xkbk = 0 (2)

In practice this means that one has no means of telling whether one or
the other of two (or more) collinear columns, properties, is the one that
predicts the outcome, or perhaps a combination of both.
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2.3 Linear regression and uncertainty

Next will be some basic defenitions from Nordling [Nor13] to explain what
happens when one introduces uncertainty to the linear regression system.
The theorems and results, however, are defined later individually with an
explanation of how a rotation matrix R (might) effect the results. I chose to
present Nordlings results the following way: The number is the number in
which it is found in his text or the page number of his text where the result
can be found, but, for consistency, changed notation to match my own.

A first note on the uncertainty of linear regression is that one assumes
that the regressor X and regressand Y are well defined and known. How-
ever, it is also possible one recieves a large set of data (columns) and need
to pick which columns create the regressor and which columns create the
regressand. In other words, the choice of columns for X and Y needs not
be obvious.

In the Nordling system we will usually assume that the number of columns
n is much larger than the number of rows m.

2.3.1 Properties of a rotation matrix

Recall, a rotation matrix R ∈ Rn×n is an orthogonal matrix, and so has the
following properties:

• |Rx| = |x| i.e. R preserves length.

• 〈Rx|Ry〉 = 〈x|y〉 i.e. R preserves angles.

• Columns uk of R and rows vk of R are orthonormal, e.g. ui · uj =
ui1 · uj1 + ...+ uin · ujn = 0.

• RTR = I = RRT i.e. R’s transpose is its inverse.

It will be used in the following equation

X + uA = RY + v

whose terms will be explained throughout this section.

2.3.2 Short on Nordling’s system

The basic idea is that in practice it is very unlikely that we find the exact
values of the properties of the experiments j, i.e. Xj and Yj . Hence Nordling
uses uncertainty measures to compensate for the inexactness. The technique
itself is not new, however, he noted that deterministic uncertainty measures
for the values in the regressor X had not been used before, though they are
assumed in filed studying. Uncertainty can be deterministic or stochastic
giving two slightly different answers. The stochastic version will be defined,
however, most of the report handles the deterministic case.
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Figure 1: Some different representations of Xi

Here are some different examples of how to represent and look at a regressor. For
example X1 = (1, 0, 0) (red) is a simple vector when one would disregard of any
uncertainty, X2 = (0, 1, 0) (blue) can be seen as the measured vector with a(n
m− 1-) sphere surrounding it within which all possible reallisations of X2 are

which can not be discarded. For X3 = (0, 0, 1) (yellow) two additional cones are
added representing the points which can be reached by the possible reallisations.

The uncertainty of the regressor and regressand can be described as a
ball or n-rectangle around the measured value.

The thought is to describe the uncertainty of Xi as a closed neighbour-
hood ball of radius ui, after that we can create a so called uncertainty cone,
representing all the possible points that can be explained using only Xi.

Nordling Definition. (p.99 + p.109) Given Xi ∈ Rm, row i of the regres-
sor, measured with a given uncertainty ui ∈ R, the deterministic uncertainty
set is the neighbourhood ball N (Xi, ui) of radius ui around Xi, where each
vector within the neighbourhood N (Xi, ui) is a candidate to be the true value.

I will denote a vector in N (Xi, ui) as Xi + ui, and X + u stands for a
matrix where each row i is in the neighbourhood N (Xi, ui).

Nordling Definition. Given a deterministic uncertainty set N (Xi, ui), the
uncertainty cone C(Xi) of Xi is

CXi = {tXi
′|Xi

′ ∈ N (Xi, ui), t ∈ R}

Note: The vectors on the boundary of the cone can only be represented
in one way, but a point closer to the ‘center’ of the cone is represented several
times in C(Xi).

Note: Since t can be both positive and negative C(Xi, ui) will actually
be shaped like two cones reflecting each other through the origin.

Nordling Definition. (p.101) Given a regressor X ∈ Rn×m, a significance
level α, and uncertainty values δij for Xij. Let ∆ ∈ Rnm×nm be the co-
variance matrix of X and let Γ = [u11, u12, ..., u1m, u21, ..., unm] ∈ R1×nm be
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the vector containing all the uncertainties for all rows appended after each
other. Then the stochastic uncertainty set N s is defined as

N s(Xk,uk) = {Xk + uk|uk ∈ Γ,Γ∆−1ΓT ≤ χ−2(α, nm)} (3)

When ∆ is diagonal we get the stochastic uncertainty set N s(Xi, uij)
where uij ≤ δi1χ−2(α, nm) when δi1 = δi2 = ... = δim. When ∆ is diagonal,
i.e.

∆ = diag([δ11, δ21, ..., δn1, δ21, ..., δnm]) (4)

we have Γ∆ΓT =
∑nm

j=1 u
2
jδj . And when δ1k = δ2k,= ... = δnk := ∆k we

get Γ∆ΓT =
∑m

k=1 ∆k
∑n

i=1 u
2
ik, so the neighbourhoods can be seen as m

weighted balls with weight ∆k, whose combined value is at most χ−2(α, nm).
However ∆ does not need to satisfy this condition, and generaly does

not. When it is diagonal the uncertainty will be weighted ellipsoids, and
when it is not diagonal it is much more difficult to see how the uncertainty
of the respective regressors effect each other.

In contrast to the deterministic case, the stochastic uncertainty of one
row i depends on the ’realisations’ of all other rows as well.

Here, a neighbourhood ball is created containing all the possible outcome
which can not be rejected with significance level α. However, within this ball
there are vectors which can be rejected as solution depending on the choice
of the other Xj + uj ∈ N s(Xj, uj). But the closer to Xi one gets, the higher
the probability that the vector can not be rejected. We could pick two (or
more) Xi + ui and Xj + uj which would be in their respective neighourhood,
however, combined, the uncertainty of the two (or more) regressors Xi and
Xj is too large.

Similarly to the deterministic case, we create the cone the following way
(Note: the cones are not defined ly in TN):

Nordling Definition. Given a stochastic uncertainty set N s(Xi, ui), the
stochastic uncertainty cone Cs(Xi) is

Cs(Xi) = {tXi
′|Xi

′ ∈ N (Xi, ui), t ∈ R}

In the stochastic case, the size of the cones will also depend on each
other, since the uncertainty sets depend on each other.

Nordling also provides a different way to represent uncertainty, which would
be more rectangular. We will define it mostely to illustrate the difference in
difficulty when rotating the rectangular uncertainty compared to the circular
one.

The other way to describe the uncertainty of the measured values is by
giving each value separate uncertainty, resulting in a rectangular uncertainty
space. Here too we will give an example using the regressor, however this
technique applies just as well to the regressand.
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For the regressor X, the uncertainty of Xi as a closed neighbourhood
hyperrectangle of m dimensions, with uncertainty lengths described as vec-
tor vi = 2(vi1, vi2, ..., vim). After that we can create an uncertainty cone,
representing all the possible points that can be explained using only Xi.

Nordling Definition. (p.99) Given Xi ∈ Rm, row i of the regressor, mea-
sured with a given uncertainty vi ∈ Rm, the deterministic uncertainty set is
the neighbourhood hyperrectangle N (Xi,vi) of lengths vi around Xi, where
each vector within the neighbourhood N (Xi,vi) is a possible candidate to be
the true value.

Nordling Definition. Given a deterministic uncertainty set N s(X, v), the
deterministic uncertainty cone Ci of Xi is

Ci = {tX|X ∈ N (Xi, vi), t ∈ R}

Now we have a good way to describe the uncertainty of the rows of the
regressors and regressands. Similarly one could represent the columns of
X + u and Y + v this way. We would like to find out which columns of
the regressor are necesary to describe a column in the regressand.

Given these definitions of uncertainty the definition of a valid feasible
solution is the following:

Nordling Definition. 5.5.1. A parameter matrix A , [AT1 , ..., A
T
j , ..., A

T
n ]T

is feasible if ∑

j

AjX + u = Y + v

In other words a solution A is feasible if any combination of the cones
X + u can intersect the hyperrectangle Y + v. A point Y + v in the hyper-
rectangle has a solution if there exist X + u and A such that X + uA = Y .

If a row j of A equals 0, that means column j of regressor X + u is not
needed to get the values in Y + v. In other words, property j is not needed
to explain the values in the regressand.

As for the version with rotation matrix, the definition with the unknown
c ∈ R and R ∈ Rm×m looks as follows:

Definition 1. A parameter vector A ∈ Rn and the parameters c ∈ R and
rotation matrix R ∈ Rm×m are feasible if

∑

j∈V
AjXj + uj = cRY + v for some consistent X + uj ∈ UαXj ⊆ Rm and

Y + v ∈ UαY ⊆ Rm

8



In other words a solution is feasible if there is a rotation matrix R, and
a scaling vector c, such that the regressand Y can be rotated, and scaled,
into the space of X.

Another way to describe feasible solution is by first defining the practical
span, i.e. all the possible points that can be reached by the uncertainties of
X.

Nordling Definition. (5.5.11.) The practical span of the set of uncertain
vectors in the matrix X = [X1, ..., Xn] is

pspanX , {
n∑

i=1

aiXi + ui|ai ∈ R,Xi + ui ∈ N (Xi, ui)} (5)

Giving the following definition of feasible solution:

Nordling Definition. (5.5.2) A solution practically exists if and only if
Y + v ∈ pspan X + u for X + u ∈ N (X,u) ⊆ Rm.

This definition coincides with Nordlings definition of practical unique-
ness (Defenition 5.5.12., Theorem 5.5.3.)[Nor13] when the uncertainty of
the regressand is compact. When we introduce a rotation matrix into the
system, we can easily see that we can always rotate the regressand Y into or
out of the pspace created by any set of regressors Xi. This should illustrate
the need of restrictions on the rotation matrix.

Some other of Nordlings definitions are not effected by a rotation matrix,
or only partially. We look at independence and collinearity of the rows
X + u as well as when a regressor Xi is neglectable, and how a rotation
matrix would effect it.

Nordling Definition. (5.5.13) The matrix X = [X1, ..., Xi, ..., Xn] is prac-
tically (linearly) independent ∀Xi + ui ∈ N (Xi, ui) ⊆ Rm the trivial solution
B = 0 is the only solution of

n∑

i=1

BiXi + ui = 0 (6)

Since R is a rotation matrix, it will not change the internal structure
between the regressors. For any column φk we will get a matrix with (sums
of the entries) entries Rijθkφjk for each row j. Now we can easily see that
if θ = 0 then Rijθkφjk = 0 ∀i, j, k, and similarly θ 6= 0 then there is at least
one Rij 6= 0← Rijθk 6= 0 ∀i, jk,.

For collinearity Nordling has the following definition

Nordling Definition. (5.5.14) The matrix X = [XT
1 , ...,X

T
i , ...,X

T
n ]T is

practically collinear, or practically (linearly) dependent, if ∀φ̃k ∈ Uαφk of

some row Xi with i ∈ {1, 2, ..., n} s.t. ∃A = [A1, ..., Ai, ..., An]T 6= 0 to

n∑

i=1

AiXi = 0

9



(a) collinear regressors (b) Independent regressors

Figure 2: Example of collinear and independent regressors
The cones in a) illustrate example 1 and are collinear to each other. The blue X2

and yellow X3 intersect, however X1 also lies on the y-z-plane with the same
uncertainty and is collinear with the other two, but this is harder to see. It would
be necesary to get a better knowledge of pspace, which will be explained in a later

section. In b) all the regressors are independent, X1 (yellow, (0, -cos(pi/4),
sin(pi/4)), X2(blue (0, cos(pi/4), sin(pi/4)) and X3 (red, (1,0,0)). All regressors

have an uncertainty of 0.2.

Similar reasoning can be used to conclude that collinearity remains un-
changed when the regressand is rotated. In fact the definitions of indepen-
dence and collinearity are independent of the regressand Y .

Example 1: Let X1 = (0, 1, 0), X2 = (0, 0, 1) and X3 = (0, cos(π +
0.3), sin(π+0.3)), all with uncertainty 0.2 as seen in figure 2 (a). Any point in
the uncertainty set of X3 can be written as k(A, cos θ, sin θ) for |A| ≤ |0.2|,
k ∈ R. Let s1, s2, s = ±1 such that s1sign(cos θ) = s = s2sign(sin θ) =
sign(A).

(cos(θ))(X1 + s1(0.2, 0, 0)) + (sin(θ))(X2 + s2(0.2, 0, 0)) =

((cos θ + sin θ)s0.2, cos(θ), sin(θ))

Hence we can see that the uncertainty regressor X3 is collinear with X1

and X2. However this might not be completely obvious from figure 2 (a).
In a later section we will introduce a way to visualize pspace, and in the
appendix is another visualization is suggested.

However, if u3 is suffictiently large, while the uncertainty of the other
two regressors remains the same, X3 might not be collinear with X1 and
X2, while X1 would still be collinear with X2 and X3 for example.

Example 2: Now let X1 = (1, 0, 0), X2 = (0, cos(π4 ), sin(π4 )) and
X3 = (0,− cos(π4 ), sin(π4 )), and let the regressors have uncertainty u =
(u1, u2, u3), v = (v1, v2, v3), w = (w1, w2, w3) respectively, of length ≤ 0.2.
To show that they are independent we want to show that B,C are a solution
to X1 + u+BX2 + v+CX3 + w = 0 only when B = C = 0. We get the
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equations

(1 + u1) +Bv1 + Cw1 = 0

u2 +B(cos(
π

4
) + v2) + C(− cos(

π

4
) + w2) = 0

u3 +B(sin(
π

4
) + v3) + C(sin(

π

4
) + w3) = 0

Adding the last two eqations, using that cos(π4 ) = sin(π4 ) ≈ 0.70711 with
each other gives

(u2 + u3) +B(2 · cos(
π

4
) + v2 + v3) + C(w2 + w3) = 0

However, we could have also subtracted the two equations, giving instead

(u2 − u3) +B(v2 − v3) + C(2 · cos(
π

4
) + w2 − w3) = 0

Changing B and C such that one equation is valid, will make the other
equation invalid. Using the constraints on the length of u we also have
|u2 + u3| ≤ 2

√
0.02, and similarly for v and w.

Next we take a look at Nordlings definition of neglectability, and how a
rotation of the regressand would effect it.

Nordling Definition. (p.130) A regressor Xi is neglectable if 0 ∈ N (Xi, ui),
and X∗ + u∗A = Y where X∗ + u∗ is the original regressor matrix without
row i with uncertainty.

This gives rise to the question whether there could be a case where many
regressors are separately neglegable, but at least one of them is needed to
solve the equation 2.3.2. If we would solve this by taking away one at the
time, the result could depending on indexing, which in turn could lead to
different solutions for the same set of data.

It might also effect the stochastic case in strange ways. Either we are
calculating with an uncertainty of a regressor that is neglected, or the uncer-
tainty of some other regressor could expand resulting in some contradictions,
and hence no ’ranking’.

Since the rotation matrix preserves length, the property 0 ∈ N (Xi, ui)
remains uneffected, as for the condition X∗A = Y we can divide it into
two cases 1) any Xi + ui is independent i.e. can not be covered by any set
uncertainty cones C(Xj , uj) ∀j 6= i, or 2) all Xi + ui are covered by some
uncertainty cone C(Xj , uj) j 6= i, i.e. Xi is collinear.

If any part of Xi is independent, that part Xi + ui was needed to span
a dimension within which Y was not present. However, with the rotation
matrix one can always rotate Y such that it ends up in a dimension where
Xi + ui is needed to explain it.
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In the collinear case, all Xi + ui can be expressed by the other rows/cones,
hence we can always find a version where it is not needed. However, when
0 ∈ N (Xi, ui), its uncertainty cone covers at least half of Rn×m. It is then
rather unlikely that the other cones cover the other half (unless there are
more regressors with uncertainty containing 0, in which case a solution could
depend on which regressors one chooses to neglect first).

We could create the following definition:

Definition 2. A regressor Xi is neglectable if 0 ∈ N (Xi, ui), and ∀Xi + ui ∈
Ni, ∃B 6= 0s.tX∗ + u∗B = 0, where X∗ + u∗ is the matrix X + u ∈ N with-
out row i.

If one were to optimise the rotation matrix in some way, e.g. by choosing
the rotation with shortest rotation distance, one might be able to neglect a
few more regressors. This is one reason why we will explore the properties
of rotations and spheres in the next section.

Other definitions in Nordlings system will be completely useless if one
does not put any constraint on the rotation matrix. We here mention pa-
rameter classification to further illustrate constraints on the rotation matrix
could be necessary to be able to draw certain conclusions.

Nordling Definition. (5.5.7.) For some column k of A, a parameter aj
in a solution Ak = a = [a1, ..., aj , ..., am]T , with respect to column k of the
regressand Y , is

1. practically non-zero if ∀a, aj 6= 0,

2. practically positive if ∀a, aj > 0,

3. practically negative if ∀a, aj < 0,

4. practically zero if ∃a, aj = 0.

It is easy to see that practically positive and practically negative param-
eters can never be found, since we can always rotate Y 180 degrees to its
antipod i.e. −Y .

Now we look at what it means when a parameter aj is zero. For the
column Ak = a there is at least one parameter aj that is equal to zero.
One can immediately include any k such that there exists a regressor with
uncertianty, X + u, where column k of X + u is collinear with some other
columns of X + u.

Next, looking at ‘independent’ columns of X + u. This means that
column j in the regressor matrix X is always needed to explain column Yk
of the regressand matrix.

Suppose we have a regressor matrix X such that Xij = 1 and Xsj =
Xit = 0, ∀s 6= i, t 6= j, with the accommpanying regressand matrix Y
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such that Yik = 1 and Ysk = 0, ∀s 6= i. It is easy to see that, unless the
uncertainty is very large, the parameter ajk is selectable.

However, if we rotate Y such that its basis vectors change place, e.g.

R =




0 1

. .
.

1 0 0


 (7)

ajk is no longer selectable, which means many parameters become practically
zero, or, in a similar fashion, non-zero.
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3 Rotation

The following sections provide tools for representing the Rotation matrix,
as well as computing the distance between two points on a sphere.

We begin by describing the basic properties of a rotation matrix.

Definition: 1. The special orthogonal group is defined by

SO(n) = {A|A ∈ GLn, A−1 = AT , det(A) = 1}

This might not seem like a very intuitive way to describe the rotations,
however we shall see that this is exactly the group we are looking for. We
begin by showing that it really is a group.

Theorem: 1. The special orthogonal group

SO(n) = {A|A ∈ GLn, A−1 = AT , det(A) = 1}

is a group under matrix multiplication.

Proof. We have det(E)=1, hence identity is in it, det(A)=det(AT )=1, hence
all the inverse elements are in it and also det(A)=det(B)=1 which means
det(AB)=1, hence it is closed under multiplication.

Note, it is in fact a subgroup of the orthogonal group O(n) for which
det(A) = ±1, more specifically, SO(n) is the subgroup of O(n) which does
not contain reflections, (det(A) = −1).

To convince us that a matrix A ∈ SO(n) has the properties we expect a
rotation matrix to have, we want to show that A has the following properties:

i) preserves length of vectors

ii) preserves angles between vectors

Proof. Let v, w ∈ Rn.
i) We need to show that ||vA|| = ||v||. We have that ||vA||2 = ||vA(vA)T || =

||vAAT vT || = ||v||2, hence the length is preserved.
ii) We have

cos θ =
v · w
||v|| ||w|| =

vA · wA
||vA|| ||wA|| =

wA(vA)T

||v|| ||w|| =
v · w
||v|| ||w|| (8)

This means that the rotation matrix is orthonormal, i.e. the length of the
vectors in the columns and rows equals 1.

3.1 Representation of the rotation matrix

To be able to use a rotation matrix in computations, one would want to
have a good representation of it. Different representation can have different
advantages, e.g. computational, visional etc.
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3.1.1 Euler angles

The representation most simple to understand is the use of Euler angles, i.e.
rotating in one plane at the time. For 2 dimensions, this is pretty straight
forward, since we only need to rotate around the origin (one axis).

Euler angles in SO(2)

Theorem: 2. A representation of the rotation in two dimensions is of the
form:

A =

(
cos(θ) -sin(θ)
sin(θ) cos(θ)

)
(9)

Proof. Note that, putting θ ∈ [0, 2π], and computing with modulo π/2 for
θ, will give exactly one θ for each point on the circle.

Now we wish to show that every such matrix A ∈ R2×2 is in SO(2).
We see that det(A) = cos2θ+sin2θ = 1 and that AT = A−1 since

AAT =

(
cos(θ) -sin(θ)
sin(θ) cos(θ)

)(
cos(θ) sin(θ)
-sin(θ) cos(θ)

)

=

(
cos2(θ) + sin2(θ) cos(θ)sin(θ)− cos(θ)sin(θ)

cos(θ)sin(θ)− cos(θ)sin(θ) sin2(θ) + cos2(θ)

)

(
1 0
0 1

)
(10)

Now we need to show that any matrix in SO(2) can be represented as
a rotation matrix A ∈ R2×2. We do this by finding a base for the rotation
matrix. The first vector of this base is u=(cosθ, sinθ), which parametrises
the unit circle around the origin. The vectors orthogonal to u are v1 = (-
sinθ, cosθ) and v2 = (sinθ,-cosθ), of which a A is the matrix with u and v1

as columns. We can also see that a matrix with u and v2 as columns will
have determinant -cos2θ-sin2θ=-1, which is not in SO(2).

Now we can easily compute a rotation of vector v ∈ R2 as

Av =

(
cos(θ) -sin(θ)
sin(θ) cos(θ)

)(
v1
v2

)
=

(
cos(θ)v1 − sin(θ)v2
sin(θ)v1 + cos(θ)v2

)

Plugging in v = (1, 0), and θ = π/2 it is easy (and not suprising) to see that
Av = (0, 1).

Theorem: 3. SO(2) is abelian.
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Proof. Let

A =

(
cos(θ) -sin(θ)
sin(θ) cos(θ)

)
, B =

(
cos(φ) -sin(φ)
sin(φ) cos(φ)

)

Then

AB =

(
cos(θ) -sin(θ)
sin(θ) cos(θ)

)(
cos(φ) -sin(φ)
sin(φ) cos(φ)

)

=

(
cos(θ)cos(φ)− sin(θ)sin(φ) −cos(θ)sin(φ)− sin(θ)cos(φ)
sin(θ)cos(φ) + cos(θ)sin(φ) −sin(θ)sin(φ) + cos(θ)cos(φ)

)

=

(
cos(θ + φ) -sin(θ + φ)
sin(θ + φ) cos(θ + φ)

)

=

(
cos(φ)cos(θ)− sin(φ)sin(θ) −cos(φ)sin(θ)− sin(φ)cos(θ)
sin(φ)cos(θ) + cos(φ)sin(θ) −sin(φ)sin(θ) + cos(φ)cos(θ)

)

=

(
cos(φ) -sin(φ)
sin(φ) cos(φ)

)(
cos(θ) -sin(θ)
sin(θ) cos(θ)

)
= BA

However, as we shall see, SO(2) is the only one which is abelian.

Euler angles in SO(3) One way to now represent a rotation in SO(n) is to
break it down to a concatenation of rotations in smaller (2) dimensions. For
SO(3), these would be rotations around each of the axises, keeping the axis
in question in place. Note the similarity between Euler angle representation
in 2 dimensions for each of the three rotations:

A = A1A2A3 =



1 0 0
0 cos (α) -sin (α)
0 sin (α) cos (α)






cos (β) 0 -sin (β)
0 1 0

sin (β) 0 cos (β)






cos (γ) -sin (γ) 0
sin (γ) cos (γ) 0

0 0 1




=




cos (β)sin(γ)
−sin(α)sin(β)cos(γ) + cos(α)sin(γ)
cos(α)sin(β)cos(γ) + sin(α)sin(γ)

−cos(β)sin (γ) −sin(β)
sin(α)sin(β)sin(γ) + cos(α)cos(γ) −sin(α)cos(β)
−cos(α)sin(β)cos(γ) + sin(α)cos(γ) cos(α)cos(β)




Here A1 represents a rotation around the x-axis, A2 a rotation around the
y-axis and A3 a rotation around the z-axis. In this case, given a matrix A
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with entries aij for row i and column j, we can compute β = −sin−1(a13).
Next we use a23 = −sin(α)cos(β), getting

sinα = − a23
cosβ

= − a23√
1− (sinβ)2

= − a23√
1− (−a13)2

to compute α = −sin−1(a23/
√

1− a213), and with similar computations we
get γ = −sin−1(a12/

√
1− a213).

Though for other Euler angle representations, say A = A3A2A1, this will
not be valid as we shall see in theorem 5. However the same technique can
be used to find the values for those representations.

For convenience one would like every point on the sphere to be repre-
sented in exactly one way. This can be done with the help of the following
constraints: α, γ ∈ [−π, π), β ∈ [−π/2, π/2) and computing with modulo.

Theorem: 4. An Euler angle representation A is an element of SO(3).

Proof. It is easy to see that the determinant of Ai is 1, the inverse of Ai
is ATi for i ∈ [1, 3], hence det(A)=det(A1)det(A2)det(A3)=1, and A−1 =
(A1A2A3)

−1 = AT3A
T
2A

T
1 = AT . Similarly one can show that the Euler angle

representations from a group (for each seperate Euler angle representation).
This shows that this Euler angle representation indeed are elements of SO(3).

Theorem: 5. SO(n) for n > 2 is not abelian

Proof. The proof will be shown by an example in 3 dimensions, which can
be extended to higher dimensions analogously. Let

A =




1 0 0
0 cos (α) -sin (α)
0 sin (α) cos (α)


 , B =




cos (α) 0 -sin (α)
0 1 0

sin (α) 0 cos (α)




We get

AB =




cos (α) 0 -sin (α)
−sin 2(α) cos (α) -sin (α)cos (α)

cos (α)sin (α) sin (α) cos 2(α)




While

BA =




cos (α) −sin 2(α) -sin (α)cos (α)
0 cos (α) -sin (α)

sin (α) cos (α)sin (α) cos (α)




Hence A and B do not commute, and so SO(3) is not abelian. For higher
dimensions the results will be similar, since we can have 3-dimensional ro-
tation in higher dimensions.
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This means that a representation in Euler angles is not unique. In fact,
the representations A = A1A2A3 will seldom be the same as e.g. A∗ =
A3A2A1, even though these Euler angle representation are equally valid.

Theorem: 6. Euler’s rotation theorem: If A is an element of SO(3) where
A 6= I, then A has a one-dimensional eigenspace, which is the axis of rota-
tion.

As we shall see, this axis of rotation will only exist in 3 dimensions.

Euler angles in SO(4) Like a rotation in SO(3) we can represent rotation
in SO(4) with Euler angles, consisting of a composition of rotations, one
within each plane. However, unlike in three dimensions the 2-dimensional
rotations will not occur around an axis. A rotation in SO(4) consists of the
following 6 rotations [Tri09]:




cos (α1) -sin (α1) 0 0
sin (α1) cos (α1) 0 0

0 0 1 0
0 0 0 1


 ,




cos (α2) 0 -sin (α2) 0
0 1 0 0

sin (α2) 0 cos (α2) 0
0 0 0 1







cos (α3) 0 0 -sin (α3)
0 1 0 0
0 0 1 0

sin (α3) 0 0 cos (α3)


 ,




1 0 0 0
0 cos (α4) -sin (α4) 0
0 sin (α4) cos (α4) 0
0 0 0 1







1 0 0 0
0 cos (α5) 0 -sin (α5)
0 0 1 0
0 sin (α5) 0 cos (α5)


 ,




1 0 0 0
0 1 0 0
0 0 cos (α6) -sin (α6)
0 0 sin (α6) cos (α6)




This can be seen as choosing the plane spanned by the 2 vectors ei and ej ,

with i, j ∈ [1, n]. The number of rotations for each n is then
(
n
2

)
= (n−1)n

2 ,
which gives an increase of O(n).

In order to avoid having multiple representations of the ‘same’ rotation,
i.e. those rotations which end up on the same point, we might want con-
straints on the angles α1, αn ∈ [0, 2π), α2, αn−1 ∈ [0, π).

Note, plugging in β = −π/2 to a rotation representation A ∈ SO(3), we
get:

A =




0 0 1
-sin (α− γ) cos (α− γ) 0
cos (α− γ) sin (α− γ) 0




This is called a Gimbal lock, meaning that the same rotation can be
reached whether we rotate the x-axis or the z-axis. It is easy to see that
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any similar representation for n > 3 will also result in one or more Gimbal
locks. It would be interesting to know what a Gimbal lock means for the
uncertainty. It could perhaps be compared to some kind of (collinearity),
since in both cases, we don’t know how much of one or the other is needed.
If only the overall length of the rotation is interesting, then Gimbal lock
does not mean much, however, if axises have meaning, then Gimbal lock
could mean something.

Theorem 1. In n dimensions one can have at most bn/3c Gimbal lock(
uncertainty)s in one rotation.

Proof. One Gimbal lock effects three neighbouring angles, hence without
overlapping we could have a rotation such that θi = π/2 ∀i = 2+3j, i ∈ [1, n],
which would result in bn/3c Gimbal locks. Now we need to show that no
overlapping can exist.

Suppose θi = π/2, and θi−1 + θi+1 = k. Now we choose θi−1 = θ/2.
There would not arise a new Gimbal lock around i − 1, since θi is already
set to π/2, changing its value would eliminate the first Gimbal lock.

However this might not be very relevant in this optimisation case, since
a regressor X (and regressand) will always have uncertainty, and an oposite
−X, such that we will have the smallest distance to ±X + u < π/2 at all
times for 3 dimensions.

3.1.2 Generalized Euler theorem of rotations, SO(n) and Sn−1

As we might have already guessed we can construct functions which map
rotation matrices to Euler angles and expand Eulers rotation theorem, which
only works for 3 dimensions. This will be useful both for the Haar-measure
in a later section, but also to get a better understanding of what a specific
rotation looks like.

Given an Euler angle representation matrix A ∈ Rn with angles θ =
θ1, θ2, ..., θn−1, we want to have a map σn−1(θ) : [0, 2π]× [0, π]n−2 → Sn−1 ∈
Rn.

As we know we could describe the points on the unit circle when given
an angle θ as

p =

(
sin θ
cos θ

)
∈ S1

As for the 2-sphere S2, mathematicians and physicists frequently use [wol]
(Spherical Coordinates)

p =




sin θ1 sin θ2
cos θ1 sin θ2

cos θ2


 ∈ S2
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Where, in mathematics, θ1 is usually called the azimuthal angle, here on
the y-x-plane, and θ2, often denoted φ, is called the polar angle, being the
angle from the z-axis. Though the notation can vary between and amongst
mathematical and physical litterature [wol](Spherical Coordinates).

Theorem: 7. [Can96] We can construct a map σn : [0, 2π] × [0, π]n−1 →
Sn inductively, letting σ1(θ) = (sin θ, cos θ)T , and for θn = (θ1, ...θn) =
(θn−1, θn) define

σn(θn) =

(
sin θnσ

n−1(θn−1)
cos θn

)
∈ Sn (11)

Proof. To show that σn is a indeed a map from [0, 2π] × [0, π]n−1 to Sn

we show that ||σn|| = 1 and that for every point p ∈ Sn we can find θ
such that σn(θ) = p. This will be done inductively. First, we see that
||σ1(θ)|| = cos2 θ + sin2 θ = 1. Now, suppose ||σn−1(θn−1)|| = 1. Then
||σn(θn)|| = || sin2 θn(σn−1(θn−1)) + cos2 θn|| = || sin2 θn · 1 + cos2 θn|| = 1.

Second, let p = (p1, ..., pn+1) ∈ Sn ⊂ Rn+1. We want to show that
∀p∃θn−1 such that

√
1− pn+1σ

n−1(θn−1) = (p1, ..., pn). Since p ∈ Sn we
have that −1 ≤ pn+1 ≤ 1 and hence

√
1− pn+1 ≤ 1 which means that

∃θn ∈ [0, π] such that cos θn = pn+1 and sin θn =
√

1− pn+1.
This shows that ∀p ∈ Sn ∃θ such that σn(θ) = p.

From this we can see that p ∈ Sn is independent of which point p′ ∈ Sn−1
we use as starting point.

Now we define the orthonormal base ω in which we could express the
rotation matrix later as [Can96]:

ω1(θ1) := σn−1(θ1 + π/2, π/2, ..., π/2)

ωk(θ1, ..., θk) := σn−1(θ1, ..., θk−1, θk + π/2, π/2, ..., π/2)

ωn−1(θ1, ..., θn) = σn−1(θ1, ..., θn−1, θn + π/2)

ωn(θ1, ..., θn) = σn−1(θ1, ..., θn) (12)

Let ωk(θn) = ((ωk)1, ..., (ωk)i, ..., (ωk)n). We can see that for k ≤ n1 − 2 <
n2 − 2, the ωk(θ1, ..., θk) for n1 and n2, are up to a number of π/2 at the
end. Letting ωjk be the k’th vector of the base of size j, we can also see that

ωnn−1(θ1, ..., θn−1) =

(
cos(θn−1)ω

n−1
n−1(θ1, ..., θn−2)

− sin θn−1

)
(13)

and

ωnn(θ1, ..., θn−1) =

(
sin(θn−1)ω

n−1
n−1(θ1, ..., θn−2)

cos θn−1

)
(14)

using equation (11) from the definition of σ. We will need these results to
show a later theorem.
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Theorem: 8. [Can96] Given vectors ωk k ∈ [1, n] we can create the matrix
Mn(θ) := (ω1, ...,ωn) which creates an orthonormal base in Sn−1, where
θ = (θ1, ..., θn−1).

Proof. (Sketch) To show thatMn(θ) creates an othonormal base for Sn−1 we
need to show that its columns are of length 1, and that they are orthogonal
to each other, i.e. ωk · ωj = 0 ∀k 6= j, which is shown inductively, using e.g.
equation (11). The proof that detMn = 1 is also shown inductively. For
details the reader is deferred to [Can96].

To illustrate how the proof works, we give instead two examples. The
first is the base case, two dimensions, and how to expand it to 3 dimensions.
Example: Base case For two dimensions we have ω1(θ) = σ1(θ + π/2) =
(sin(θ+π/2), cos(θ+π/2)) = (cos θ,− sin θ) and ω2(θ) = σ1(θ) = (sin θ, cos θ),
and hence ω1 = ((ω1(θ))1, (ω2(θ))1) = (cos θ, sin θ) and ω2 =
(− sin θ, cos θ). Which gives

M2(θ) =

(
ω1

ω2

)
=

(
cos θ sin θ
− sin θ cos θ

)

We have already seen in a previous section that M2(θ) is an orthonormal
basis for the rotation matrix, and by the same reasoning it is also one for
S1.
Example: 3 dimensions We have ω1(θ1, θ2) = σ2(θ1 + π/2, π/2, π/2) =
(sin(θ1+π/2) sin(π/2), cos(θ1+π/2) sin(π/2), cos(π/2)) = (cos θ1,− sin θ1, 0),
ω2(θ1, θ2) = (sin θ1 cos θ2, cos θ1 cos θ2,− sin θ2) and ω3(θ1, θ2) =
(sin θ1 sin θ2, cos θ1 sin θ2, cos θ2). Which gives

M3(θ1, θ2) =




cos θ1 sin θ1 cos θ2 sin θ1 sin θ2
− sin θ1 cos θ1 cos θ2 cos θ1 sin θ2
0 − sin θ2 cos θ2




Some basic computations will convince us that the columns are of length
one. Letting αi = θi(+π/2), we have ||σ2|| = ||(sinα2σ

1(α1), cosα2)|| =
||(sinα2 · 1, cosα2)|| = 1. Next, showing that the columns are orthogonal,
we see that

ω1 · ω2 = cos θ1 sin θ1 cos θ2 +− sin θ1 cos θ1 cos θ2 + 0(− sin θ2) =

(cos θ1 cos θ2)(sin θ1 + (− sin θ1)) + 0 = 0

Here (cos θ1 cos θ2)(sin θ1 + (− sin θ1)) can also be written as (ω2
1 ·ω2

2) cos θ2,
which shows how to inductively extend it to higher dimensions. For the
other columns a similar technique is possible.

Next we would like to know the smallest possible parametrisation of Mn,

21



i.e. how many independent angles are needed to uniquely construct a point
on the n− 1-sphere.

As it turns out, Mn can in turn be described going through one plane at
the time. We will use this to find the smallest parametrisation of Mn. We
start by showing the following theorem.

Theorem: 9. Define a rotation in SO(n) on a plane k as

Pnk (θn−1k ) :=




Ik−1 0 0

0 cos θn−1k sin θn−1k 0

− sin θn−1k cos θn−1k

0 0 In−(k+1)




Then a rotation matrix Mn can be decomposed into planar rotation such
that Mn(θ) =

∏n
k=1 P

n
k (θ).

Proof. The proof is given inductively. The base case, n = 2, is clear since
M2(θ) =

∏1
k=1 P

2
k (θ) = P 2(θ). Now assume it holds for Mn−1, we want to

show it will then hold for Mn. We get

n−1∏

k=1

Pnk (θn−1k ) =
n−2∏

k=1

(
Pnk (θn−1k ) 0

0 I1

)
· Pnn−1(θn−1n−1) =

(
Mn−1(θn−1k ) 0

0 I1

)
·




In−2 0

0 cos θn−1n−1 sin θn−1n−1
− sin θn−1n−1 cos θn−1n−1


 =

(
ωn−11 · · · ωn−1n−1 0

0 · · · 0 I1

)
·




In−2 0

0 cos θn−1n−1 sin θn−1n−1
− sin θn−1n−1 cos θn−1n−1


 =

(
ωn−11 · · · ωn−1n−2 ωn−1n−1 cos θn−1n−1 sin θn−1n−1ω

n−1
n−1

0 · · · 0 − sin θn−1n−1 cos θn−1n−1

)
= (ωn1 , · · · , ωnn)

The last equality uses equations (13) and (14) and since

(ωn1 , · · · , ωnn) = Mn(θn−1n )

we are finished.

This means that Mn is parametrised by n−1 different angles. However,
Mn is the base for the single point p ∈ Sn−1. More specifically, e.g. for 3 M3

could only express rotations of an angle θ1 around the z-axis, followed by a
rotation θ2 around the x-axis. It can only describe a subset of the rotation
matrices. Hence we need some extra rotation to express SO(3), and SO(n).

We introduce the function Ωn : [0, 2π]n−1 × [0, π](n−1)(n−2)/2 →SO(n)
such that Ωn =

∏n
k=2M

n
n−k+2[Can96], where Mn

n−k+2 = (M
n−k+2 0
0 I

). We
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want to show that for an orthonormal base x1, ...,xn ∈ Rn we have Ωn ·ek =
xk ∀k ∈ {1, n}.

Since the last column of Ωn is only effected by the last column of Mn,
we get the first (n’th) base vector from the following:

Ωn · en = Mn(θn−1)en = σn−1(θn−1) = xn = p ∈ Sn−1 (15)

In other words the last column of Ω describes a point p ∈ Sn−1. Furthermore,
since Mn is orthonormal, we have that (Mn)T · xn = en.

For the other vectors we have that (Mn)T ·xk is in the span of e1, ..., en−1,
and are therefore orthogonal to en [Can96]. We can see that we can get the
other base vectors inductively, by first computing Mn from the angles we get
from p ∈ Sn−1. then multiply Ωn with (Mn)−1 and repeating the process.
Each point pk ∈ Sk for Mn

k+1 will be of length one.
Finally we need to show that each rotation matrix R ∈SO(n) can be

expressed as Ωn(θ1,θ2, ...,θn−1). For each dimension n− k + 2 we find the
base Mn

n−k+2 inductively using that Ω is a product of matrices where at any
step k(≥ 2) the lower right quadrant is the identity matrix of size k − 2.

We can find the point p ∈ Sn corresponding to the first base vector as

p = ~σn−1(θn−1) = (σn−11 , ..., σn−1n−1)T = Rn (16)

where Rn is column n of rotation matrix R. To get the other base vectors we
first compute the angle θn = cos−1Rn,n. We use this to compute the other

Euler angles of p inductively, knowing that σn(φn) =
(
sinφnσn−1(θn−1)

cos θn

)
.

This procedure gives the parameters θn−k−1 ∈ [0, 2π] × [0, π]n−k−2 for
Mn−k. In other words, for any step we have (n − k) − 1 planar rotations,
each on a seperate plane.

From the theorem (9) we have

Ωn(θ,θ2, ...,θn−1) =
n∏

k=2

Mn
n−k+2(θ

n−k+1) =
n∏

k=2

n−k+1∏

j=1

Pnj (θn−k+1
j )

These are
(
n
2

)
planar rotations, and the rotations can occur multiple times

on the same plane. This will give a different example of Euler angle repre-
sentation for n = 3, 4 than we had in the previous section, where we had one
rotation on each plane. The order and choice of planar rotation can vary,
although there will of course never be two consecutive rotations in the same
plane.

Hence we have found a way to find the base of the rotation matrix
independently of dimensions n, and thus generalizing the Euler theorem of
rotation. Note, however, that it takes quite a lot of computations to find the
base. For each step k, one needs to compute the angles θ1, ..., θk for σk, after
which one needs to compute the other k columns in Mn, whose transpose
is then multiplied wich the matrix that is left. There are n such steps.
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3.1.3 Quaternions H, H×H and groups SO(3) and SO(4)

Let a quaternion q ∈ H = {q0 + q1i+ q2j + q3k|qi ∈ R}, with the following
properties:

(i) i2 = j2 = k2 = −1

(ii) ij = k, jk = i, ki = j

(iii) ji = −k, kj = −i, ik = −j

(iv) q = q0 − q1i− q2j − q3k
Now define q0 as the scalar pats of q and ~q = q1i+ q2k+ q3 as its vector

part. Let q,p ∈ H. It is easy to see that the set of quaternions form a group
under componentwise addition. As for multiplication we get:

qp = (q0p0 − q1p1 − q2p2 − q3p3) + (q0p1 + p1q0 + q2p3 − q3p2)i+
+ (q0p2 + q2p0 + q3p1 − q1p3)j + (q0p3 + q4 + p0 + q1p2 − q2p1)k =

(q0p0 − ~q · ~p) + (q0~p+ p0~q + ~q × ~p) (17)

and it is easy to check that e.g. (−q0p1 − q1p0 + q2p3 − q3p2) = (q0(−p1) +
(−q1)p0 + (−q2)(−p3)− (q3)(−p2) and hence (note the change in order)

qp = p q (18)

We can also see that qq = q20 + q21 + q22 + q23 = qq and hence that

|q| =
√

qq (19)

Combining equations (18) and (19) we get

|qp|2 = qpqp = q pp q = q|p|q = |p|2|q|2 (20)

Now we define the unit quaternions by letting |~q| = 1 and q0 = cos(θ),
then we can rewrite q ∈ H as

q = cos(θ) + ~q sin(θ) (21)

It is easy to see that |q| = 1 and that these unit quaternions form the
3-sphere S3 in R4. [Tay]

Theorem: 10. [Tri09] The 3-sphere S3 = {q ∈ H| |q| = 1} is a non-abelian
group under quaternion multiplication.

Proof. It is also easy to see that the unit quaternions are closed under mul-
tiplication since |qp| = |q||p| = 1 · 1 = 1, contains the identity q = 1 and
∀q ∈ S3 we have the inverse q−1 = q/|q|2 = q ∈ S3 since |q| = qq = 1.

It is easy to see that the quaternions are associative but rarely commute,
and hence the group S3 is not abelian.
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The next theorem is very useful since it is sometimes easier to slow
something in S3 than it is in SO(3), and it provides a way to move between
them.

Theorem: 11. There is a 2-1-homomorphism from S3 to SO(3).

Proof. We want to show that each unit quaternion q ∈ R4 can be mapped
to rotations in A ∈ SO(3) ∈ R3×3 such that every rotation A has exactly 2
quaternions mapped to it.

Let r = (0, x, y, z) ∈ R4, or equivalently r = (x, y, z) ∈ R3. Let q =
cos(θ) + ~q sin(θ). Define f [q](r) as multiplication of a unit quaternion with
r , i.e. f [q](r) = qrq. It is easy to see that |qrq| = |q||r||q| = |r|, hence
this multiplication with unit quaternions is length preserving, as a rotation
should be. To see that it will be in R3 we have

qrq = (cos θ + ~q sin θ)r(cos θ − ~q sin θ) =

[cos2 θx+ 2 cos θ sin θ(zq2 − yq3)−
sin2 θ(q1(−xq1 − yq2 − zq3) + q2(xq2 − yq1)− q3(zq1 − xq3))]i

[cos2 θy + 2 cos θ sin θ(xq3 − zq1)−
sin2 θ(q2(−xq1 − yq2 − zq3) + q3(yq3 − zq2)− q1(xq2 − yq1))]j

[cos2 θz + 2 cos θ sin θ(yq1 − xq2)−
sin2 θ(q3(−xq1 − yq2 − zq3) + q1(zq1 − xq3)− q2(yq3 − zq2))]k (22)

which is of the same form as r.
From (22) we can create the following matrix:

A =




cos2 θ + sin2 θ(q21 − q22 − q23) 2(− cos θ sin θq3 + sin2 θq1q2)
2(cos θ sin θq3 + sin2 θq1q2) cos2 θ + sin2 θ(q22 − q21 − q23)
−2(cos θ cos θq2 + sin2 θq1q3) 2(cos θ cos θq1 + sin2 θq2q3)

2(cos θ cos θq2 + sin2 θq1q3)
−2(cos θ cos θq1 + sin2 θq2q3)
cos2 θ + sin2 θ(q21 − q22 − q23)


 (23)

It can be shown that detA = 1 and ATA = 1, showing that f [q] ∈SO(3),
and hence that f [q] : S3 →SO(3). Given q1,q2 ∈ S3 we have:

f [q1q2](r) = q1q2rq1q2 = q1q2rq2 q1 = (f [q1] ◦ f [q2])(r) (24)

Showing that f [q] is a homomorphism. To show that it is surjective, we try
to represent a rotation around the x-axis, i.e. ~q = (1, 0, 0) = i in the matrix
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(23), and get:

A =




1 0 0
0 cos2 θ − sin2 θ −2 cos θ sin θ
0 2 cos θ sin θ cos2 θ − sin2 θ


 =




1 0 0
0 cos(2θ) − sin(2θ)
0 sin(2θ) cos(2θ)


 (25)

Which turns out to be a rotation of 2θ around the x-axis. Similar results can
be shown for rotation around the y-axis and z-axis. And since any rotation
in SO(3) is a combination of rotations around the x-axis, y-axis and z-axis,
and q1q2q3 ∈ S3, it is therefor also surjective.

To show that it is two-to-one, we show that ±1 are only two elements
in the kernel. The elements in the kernel are those unit quaternions q such
that f(r) = qrq = r ∀r = xi + yj + zk. But then qr = rq, hence q is real
and of length 1, which means the kernel is q = ±1.

One might want to think of the homomorphism as glueing the two point
q,−q ∈ S3 together.

Truly, when one computes the Rodrigues rotation formula with angle
2θ around q, one gets matrix (23). For example the first element, using
the trigonometric identities and the fact that |q| = 1, is [wol](Rodrigues’
Rotation Formula)

a11 = cos(2θ)+q1(1−cos(2θ)) = (cos2 θ−sin2 θ)+q1(1−cos2 θ+sin2 θ) =

(cos2 θ − sin2 θ(q21 + q22 + q23)) + q1(2 sin2 θ) = cos2 θ + sin2 θ(q1 − q2 − q3)
(26)

There are also a few physical experiments one can do to convince oneself
there is a difference between rotating something 360 vs. 720 degrees. For
example the Dirac string trick and the Philippine wine glass trick [Den]

Note that if we compare the spherical coordinates for a point p ∈ S3 as
being (cos θ1, sin θ1 cos θ2, sin θ1 sin θ2 cos θ3, sin θ1 sin θ2 sin θ3), with quater-
nions, we get

p = cos θ1 + sin θ1 cos θ2 + sin θ1 sin θ2 cos θ3 + sin θ1 sin θ2 sin θ3 =

cos θ1 + sin θ1(cos θ2 + sin θ2 cos θ3 + sin θ2 sin θ3) = cos θ1 + sin θ1~q (27)

since (cos θ2 + sin θ2 cos θ3 + sin θ2 sin θ3)
2 = 1.

The quaternions q = cos θ + ~q sin θ can also be expressed as q = eθ~q

shown through power series expansion [WW05]:

eθ~q =
∞∑

n=0

(θ~q)n

n!
= 1 cos θ + ~q sin θ = q (28)
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It is not possible to uniquely determine θ and ~q given only unit quaternion
q.

Since H is not commutative this will effect the operations on eθ~q, e.g.
eθ ~q1eθ ~q2 is not necesserily the same as eθ

~q1+θ ~q2 nor as eθ ~q2eθ ~q1 .
Since SO(2) is isomorphic to the unit circle, and we have previously

shown that there is a 2-1-homomorphism between SO(3) and the unit sphere,
one might think that SO(4) could be represented with some other sphere.
However it turns out to be wrong. As can be shown by investigating the
eigenvalues and eigenspaces of SO(4), it is rather two simultaneous rotations
each on a plane non-commutative to the other [Tri09].

In fact, the elements on one plane will move with an angle of say α, and
the elements on the other plane (which does not share any points with the
first) move by an angle β, then all the other points will rotate in an angle
between α and β [Col90]

Theorem: 12. [Tri09][WW05] Let q,p, r ∈ H, and let fqp : H×H→ SO(4)
such that fqp = qrp = x, then x ∈SO(4) and fqp is a two-to-one, surjective
homomorphism.

The proof can be given in a similar way as for the SO(3) case.

3.1.4 Clifford algebra, an extension of quaternions to higher di-
mensions

Since this report deals with rotation in dimensions much higher than 3 or
4, we need a way to extend the concept of quaternions into those dimen-
sions. We get the Clifford algebra, which is an extension of (amongst other
things) the real numbers, the complex numbers as well as the quaternions
and geometric algebra. We can express the rotations as multiple (pairs of)
reflections about some plane [Lou01].

As an extension of quaternions, Clifford algebra will turn out to be a way
to simplify computations for rotations in higher dimensions. These simpli-
fications are called spinors which are a double covering of SO(n). These
spinors also express some great difference between SO(n) and the way one
would think about rotations.

Clifford algebra was first developed by William Kingdon Clifford (1845-
1879), combining quaternions with the outer product of Hermann Grass-
mann. However the contemporary Vector algebra became more widely
known, and it was not untill later that Clifford algebra recieved more at-
tention as it was found to have application in both physics and computer
science [Wil05].

Definition: 2. [Wil05] Given a real vector space V, the Clifford algebra ClV
is the associative algebra freely generated as an R-algebra by V satisfying

x2 = −|x|2 , ∀x ∈ V
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where |x| is a quadratic form.

In this report we only need to care about those cases when V ∈ Rn
(denoted Cln) and |x| = (

∑n
i=1 x

2
i )

1/2, for x = (x1, x2, ..., xn).
The objects in the Clifford algebra Cln, where V ∈ Rn with basis

e1, e2, ..., en, are defined as follows:

Grade Object Products of basis elements

0 Scalar 1
1 Vector e1, e2, ..., en
2 Bivector e1e2, e1e3, ..., en−1en
3 Trivector e1e2e3, ..., en−2en−1en
...

...
...

n Blade e1e2...en

Like a vector, the bivectors, trivectors and blades have orientations. For
example, a bivector defines both a plane and an orientation on that plane.
This makes thee visualization of an n-blade quite difficult, as it will be a
piece of n-space with orientation but without any specific shape. For exam-
ple, a bivector 3e1e2 will be a part of a plane spanned by e1 and e2 with
an area of 3 units, and an orientation such that the top of vector e1 meets
the bottom of e2 if it were a rectangle. However, it might just as well be a
circular shape.

A vector v with coordinates (v1, ..., vn) in Clifford algebra will then look
like v =

∑n
i=1 viei for basis e1, ..., en. The basis for Cln, will consist of 1

element of grade zero, n elements of grade one,
(
n
k

)
elements of grade k, and

hence a total of 2n elements.
We define the addition as follows. Given objects ai, bi of grade i and

objects aj , bj of grade j we define addition ai + bi as a new element of grade
i. For example addition of scalars simply means adding reals together, and
addition of vectors can be seen as attaching two vectors tip to tail.

There are two different ways to add e.g. two bivectors, i.e. parallelo-
grams, to each other. 1) When they have at least one vector in common.
These vectors will then cancel each other out, creating a new bivector. One
could think of attaching one parallelogram to the other, where the new
bivector goes between the sides opposite to those that are attached to each
other. For example e1e2 + e1e3. 2) When they do not have any vectors in
common, they will be a pair of bivectors. This can occur in dimensions 4
and higher, e.g. where one bivector is e1e2 and the other is e3e4. We can see
that e1e2 + e3e4 = 1

2(e1 + e3)(e2 + e4) + 1
2(e1− e3)(e2− e4). This shows that,

in 4 dimensions and higher, there will be bivectors which do not represent
a plane.

In contrast to vector algebra, we can perform addition of objects of
different grade. Hence in Clifford algebra we could have an element C,
denoted clif, as C = a0 + a1 where a0 is a scalar and a1 is a vector. The
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part of C that has grade i is denoted then 〈C〉i. When it only consists of
parts of the same grade it is called homogenous.

There are various different multiplication rules defined on Clifford alge-
bra. The Clifford product AB, the dot product A ·B and the wedge product
A∧B such that AB = (A ·B) + (A∧B). They can be used to calculate the
rotations, but for readability their explanation is left in the appendix.

When V is the Euclidean space of n dimensions, the Clifford algebra Cln
is generated by the basis vectors ei such that e2i = −1 and eiej = −ejei, for
i 6= j, i, j ∈ {2, n}[wol](Clifford Algebra). Which is a result of the Clifford
quadratic form relation x2 = −|x|2, as it gives

(aei+ bej)
2 = a2e2i + b2e2j +abeiej +abejei and (aei+ bej)

2 = −(a2 + b2)

(29)

The elements in Cl2 are of the form A = a01 +a1e1 +a2e2 +a3e1e2, i.e. it is
a real, linear space, in 4 dimensions, whose basis elements are 1, e1, e2, e1e2.

A rotation in Clifford algebra will be multiple (pairs of) reflections, hence
to show how to express a rotation in Clifford algebra, we start by looking
at reflection.
Example: reflection in Cl2. Let A = a1e1 + a2e2 and B = b1e1 + b2e2 be
vectors in Cl2. To express a refleciton of A through B we first find A|| its
projection onto, and A⊥ its length from, B. Since B−1 = B/|B|, we get:

A|| = |A| cos θ
B

|B| = (A ·B)B−1

A⊥ = |A||B| sin θ = (A ∧B)B−1 (30)

We can then describe A as A = A|| +A⊥, and A’s reflection on B as

A′ = A||−A⊥ = (A·B)B−1−(A∧B)B−1 = ((A·B)−(A∧B))B−1 = BAB−1

(31)
A second reflection, through C, where the angle between B and C = φ, will
rotate A at an angle 2φ. It is worth noting that these computations only
work when A and B are both vectors, and will not work in higher dimensions
since the wedge and dot product would work differently in those dimensions.
Example: SO(2), rotation in Cl+2 . Let the even subalgebra of Cl2 be
the elements Cl+2

∼= C that are of the form A = a0s + a3e1e2, i.e. only
even products of basis elements, where eiej represents i. A rotation in 2
dimensions is then represented the following way. Let R = a + be1e2 and
R′ = a− be1e2, and a vector v = (v1, v2). We find its rotation

v′ =
(
v′1
v′2

)
=

(
a2 − b2 −2ab

2ab a2 − b2
)(

v1
v2

)
= R · v ·R′ (32)

Now letting a = cos(θ/2) and b = sin(θ/2), this becomes the familiar Euler
angle rotation matrix for 2 dimensions, see equation (9).
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The pair of reflections that is used in rotation of two dimensions is a
reflection through the plane of A followed by a reflection through the plane
of B, such that the angle between A and B is φ.
Example: quaternions and SO(3). We look at the even subalgebra Cl+3 ,
with orthogonal basis e1, e2, e3, and let i = e2e3, j = e3e1 and k = e1e2, given
by the quadratic form just as in the previous example. For example we have
i2 = (e2e3)

2 = e2e3(−e3e2) = −e2e3e3e2 = −(−1)(−1) = −1.
Let A = a1e1 + a2e2 + a3e3 be vector perpendicular to the bivector

A′ = −Ae1e2e3 = a1e2e3 +a2e3e1 +a3e1e2 through which we want to reflect
a vector v = v1e1 + v2e2 + v3e3. First we make a few observations.

• Vector v is 3-dimensional, like the one in equation 22, and consists only
of complex parts. The vector A and bivector A′ are also 3-dimensional.

• Vector A is perpendicular to bivector A′.

• The reflection of v through A is the negation of its reflection through
A′.

Similarly to the 2-dimensional case, we get the reflection of v through A as
AvA−1. Hence v’s reflection through the plane described by A′ is −AvA−1.
A second reflection, through plane described by B will give a rotation around
an axis which is perpendicular to both A and B [Lou01].

One can then get Rodrigues’ rotation formula, by expressing the axis of
rotation k as the norm of the plane of rotation spanned by A and B, [Lou01]

k =
A×B

|A| |B| sinα (33)

If we want to express a rotation of vector v = v1e1 + v2e2 + v3e3 with
quaternions, we let R = q0 + q1e2e3 + q2e3e1 + q3e1e2 and R−1 = R′ =
q0− q1e2e3− q2e3e1− q3e1e2. A rotation in 3 dimensions is then represented
as RvR−1.

Let r1 =
√

0.5 +
√

0.5e1e2 be a rotation around the z-axis and r2 =√
0.5 +

√
0.5e3e2 a rotation around the x-axis, then we get the rotation

r = r1r2 = 0.5 + 0.5e1e2 + 0.5e3e2 + 0.5e1e3 (34)

which corresponds to

(
√

0.5 +
√

0.5k)(
√

0.5 +
√

0.5(−i)) = 0.5 + 0.5k + 0.5(−i) + 0.5(−j) (35)

Geometrically the element r would consist of a point 0.5, and bivectors
0.5e1e2, 0.5e3e2 and 0.5e1e3. The bivectors are attached to each other since
they share a basis vector, and form a plane with dual vector 0.5(e1+e2−e3).

Example: quaternions in Cl+4 . If we try to do a similar rotation in 4
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dimensions the multiplication could be on two bivectors that have no basis
vectors in common. Say r1 =

√
0.5 +

√
0.5e1e2 and r2 =

√
0.5 +

√
0.5e3e4,

being rotations in two orthogonal planes, giving

r = r1r2 = 0.5 + 0.5e1e2 + 0.5e3e4 + 0.5e1e2e3e4 (36)

We see that for both 3 and 4 dimensions, multiplication of scalars and bivic-
tors gives new scalars and bivectors, and in 4 dimensions also a blade of grade
4. This blade of 4 dimensions is an element which can not be represented
by one quaternion alone, which is why we need two sequential quaternions
(on each side) to be able to do these kinds of equations.

Also, unlike for 3 dimensions we can have an element consisting of two
bivectors, e.g. e1e2 + e3e4 and is hence homogenous but not a blade since
they have no dimensions in common with which to attach the vectors to
each other.

This is a very important property of SO(4), and shows why rotation in 4
dimensions are more complicated than rotations in 3 or 2 dimensions. They
need no longer be a product of two vectors, as in 3 dimensions.

Let A = a0 + a1e1e2 + a2e2e3 + a3e3e1 and B = b0e1e2e3e4 + b1e1e4 +
b2e2e4 + b3e34e be two unit quaternions, and let v = v0 + v1e1 + v2e2 + v3e3
be a vector we wish to rotate. We can then represent a rotation as AvB−1.

A rotation matrix R rotating vector v in 4 dimensions, Rv, can be de-
composed into unit quaternions q and p which are left and right-isoclinic
respectively. Meaning that v is multiplied with q on the left, and p on the
right, giving qvp. This decomposition is called Cayley’s factorisation of 4R
rotations [TPG15].

The first effective method for computing Cayley’s factorisation was made
by van Elfrinkhof [vE97]. Unfortunately, since it was written in Dutch, it
did not gain much attention [TPG15].

For a unit quaternions q = q0 + q1i+ q2j + q3k we can get the matrix

Q =




q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q3 q2 q1


 (37)

We can construct a similar matrix P for unit quaternion p = p0 + p1 + p2 +
p3. It will turn out that the rotation matrix R = Q · P . This result was
accieved using the fact that unit quaternions have length 1, and that hence
the associate matrix Ra of R can also be expressed as:

Ra =




q0p0 q0p1 q0p2 q0p3
q1p0 q1p1 q1p2 q1p3
q2p0 q2p1 q2p2 q2p3
q3p0 q3p1 q3p2 q3p3


 =




q0
q1
q2
q3


 ·

(
p0 p1 p2 p3

)
(38)
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Rotations in 4 dimensions will require more than two pairs of reflections to
represent a rotation[Wil05]. For each pair (Ai, Bi) of reflection, the plane
A × B is the plane of rotation. This makes sence, rotations in 4 dimen-
sions are rotations in two planes simultaneously[TPG15], which can also be
seen when inspecting the eigenvalues and eigenspaces of the rotation matrix
[Tri09].
Higher dimensions The number of pairs required to represent a unique ro-
tation in n dimensions is bn/2c [Han]. The number of even clifs also quickly
become large when n grows. For example, a rotation in 5 dimensions is
represented by a clif with 1 scalar,

(
5
2

)
= 60 bivectors and 5 blades of 4

dimensions. It will also become more difficult to understand the reflection,
since we will now reflect a point through 4-dimensional space.

Embedding of Cln−1 into Cln. We want only the part of the clifford
algebra with even number of reflections to represent rotations. Hence, we
are only interested in the even subalgebra of cln. However, it turns out that
there is a close relation between Cln−1 and the even subalgebra of Cln.

This can be seen when looking at C, as we can express it both as the
Clifford algebra Cl1 where e1 = i, and as Cl+2 , as we have done for the
rotations. Similarly, Cl2 can in fact be seen as representing the quaternions
with e1 = i, e2 = j and e1e2 = k, for which we used Cl+3 before.

The reason we can not use these ‘normal’ Cl1 is that, we need to reflect
through a plane. For Cl1 we have the only reflection x → −x along a line,
since the vector in Cl1 is only one dimensional.

There is an algebra isomorphism Cln−1 → Cl+n with a function ei 7→ eien
The following table describes isomorphisms between Clifford algebras

and some other groups and was discovered 1908 by Élie Cartan [Bae01]

n 0 1 2 3 4 5 6 7 8+n
Cl+n R C H H⊕H H[2] C[4] R[8] R[8]⊗ R[8] Cl+n−8 ⊗ R[16]

The number of bi-vectors for n dimensions in the Clifford algebra is
(
n
2

)
,

i.e. the number of planar rotations for n dimensions. [Wil05].
Spinors One subsection of the field of Clifford algebra are the Spinors.
These can represent rotation in such a way that they are sensitive to the
path and magnitude of the rotation made. They can be extended to any
dimension n. However, some of the features the spinors have in 2, 3 or 4
dimensions, can be lost in higher dimensions, which could still make it quite
difficult to compute with them. However, there are many applications of
spinors, and hence many different programs which can compute with clif-
ford algebra and spinors.

Spinors are those object which have to turn 4π degrees to turn a full
turn, at 2π degrees they are their negative. We already saw this when in
the section about quaternions, and given some example that they can be
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found in every-day life. Even though they are more often used to explain
e.g. quantum physics [Wil05]

There is a surjective 2-1-homomorphism from the spin group Spin(n)→
SO(n)with kernel {±1}. [Lou01]

Spinors also have a Lie algebra, and their double covering connection to
SO(n) can be shown through their respective Lie algebra’s.

3.1.5 Final notes on representations

Eigenvalues and the different representation. There is a difference
between rotations in even compared to odd dimensions. These can be un-
derstood by looking at the Eigenvalues and Eigenspaces of the Euler angle
representations [Tri09]. The n eigenvalues, scalars, λ for a matrix A ∈ Rn×n
have the property that AX = λX for some vector X ∈ Rn, X 6= 0, called
the eigenvector. Also for all r ∈ Rn that |Ar| = |λr| = |r|, since A ∈SO(n).

This way we can create the characteristic polynomial of A as

p(λ) = det[λI −A] = λn + an−1λn−1 + · · ·+ a1λ+ a0 =
n∏

i=1

(λ− λi) (39)

Next, detA = λ1 · · ·λn = 1 since A is a rotation matrix, where each λi is
a root, with multiplicity. This means that the only real roots are λi = ±1,
also if λi = a + bi is a root, then there is a root λj = a − bi. These roots
will define the planes in clifford algebra.

In odd dimensions at least one of the roots λi = +1. For this eigenvalue
we can compute the eigenspace. This eigenspace will be of one dimension
defining the vector which will not be effected by the rotation A. For example
in 3 dimensions, the eigenspace of λi = 1 will be the axis of rotation [Eulers
rotation theorem]. When more roots are 1, they will define the space which
remains uneffected by the rotation [Tri09] [Lou01].

For the roots λi = a+ bi and λj = a− bi we can compute the eigenspace
which will define the plane and angle of rotation [Lou01]. For example for 2
dimensions the roots for the characteristic polynomial are λ = cos θ± i sin θ,
which corresponds to a rotation of θ. For 3 dimensions the roots of the
characteristic polynomial are λ1 = 1 and λ = cos θ±i sin θ. This corresponds
to a rotation of θ around the eigenspace of λ1 = 1. [Tri09]

Hence one can use eigenvalues and eigenspace of matrix A to convert
Euler angles to quaternions. Also, knowing the rotation axis and angle of
rotation one can use the Rodrigues rotation formula to create a matrix A
[wol](Rodrigues Rotation Formula).

For all rotations A in odd dimensions one can always find points p, other
than the origin, which are not effected by the rotation A. However, for even
dimensions there are rotations where the only point not effected by the ro-
tation, is the origin. Also −I ∈SO(2n), while −I /∈SO(2n+ 1).
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Advantages and disadvantages. One of the main reasons to choose
Clifford algebra before Euler angles could be that Clifford algebra is much
more coordinate independent, which is seen e.g. in the fact that bivectors
have area but no specific shape. Otherwise the choice between Euler angles
or Clifford algebra relies partially on interpretation versus speed.

The Euler angles computations are easier to interpret, as we can compute
the angle we rotate for each plane of rotation. They work the same way
independently of the number n of dimensions. It is more difficult to interpret
what the numbers in a Clifford rotation correspond to. On top of that, it
will become more and more difficult to interpret the larger n becomes.

It could be argued, that a rotation in high dimensions is difficult to
interpret independently of representation method. Even though the rotation
itself is of angle θ, to understand it, we need to break it up into multiple
rotations, in the Euler angle case it will be

(
n
2

)
. As mentioned in the first

section, interpretation is important to understand the variable selection that
is made.

On the other hand, computing rotations with Euler angles is slow [EG03].
In recent years toolboxes have been constructed to facilitate computation
with Clifford algebra [Dor01] [Den]. Note, however, that if one has to keep
in mind that a conversion between the different reprentations can be quite
expensive, and might be needed to take into consideration when it has to
be done a lot.

However, the toolbox in [Den] only works in 3 dimensions, while the
toolbox in [Dor01] claims

Programs written are magically insensitive to dimensionality of
the embedding space, or of the objects they act on.

But this toolbox seems to still be in a developing phase, since most of his
latest work does not seem to go much beyond 3 dimensions, and concern
e.g. quaterions.

The toolbox Clical seems to be able to handle higher dimensions [LMV87].
They also mention other toolboxes which work with e.g. matlab (made by
Dorst and others), which can compute with Clifford algebra but unfortu-
nately does not deal with higher dimensions.

There does seem to be research on combining clifford algebra with Neural
networks, Support (multi-)vector maschines, classification and other variable
selection techniques [LH14] [EJ01] [EN10]. However, due to lack of access I
have not been able to check how relevent they are to this paper.

Lie algebra. It turns out that SO(n) is in fact a Lie group, i.e. a group
which is also a smooth manifold. This means that it has a Lie algebra, which
can facilitate computations. The spinors also turn out to have a Lie algebra,
which will be a double cover of the Lie algebra of SO(n). See the appendix
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for more details.

Even versus odd dimensions. We would like to end this section with
some notes on the difference between rotating in even and odd dimensions.
As we have already seen before we can only find points uneffected by the
rotation when n is odd. We quickly mention some other differences and refer
the reader to some further reading.

• Difference between O(n) and SO(n) in even dimensions, maximal tori
and weyl groups.

• Wiki Orthogonal group: for odd dimensions, the lie algrebra is so(2r+1)
where r is rank. For even dimensions the rank of the lie algebra is
so(2r).

• Reflection through a point is: Orientation preserving in even dimen-
sions, orientation reversing in odd dimensions. for O(n), reflection not
for special orthogonal group.

3.2 Metrics for rotation

3.2.1 Metric properties

Recall the properties of a metric:
Let S be the space within which one has elements whose distance to each

other one wants to measure. A metric or distance function φ : S × S → R
is defined with the following properties:

• φ(x, y) = 0⇔ x = y

• φ(x, y) = φ(y, x) ∀x, y ∈ S

• φ(x, z) ≤ φ(x, y) + φ(y, z) ∀x, y, z ∈ S

Also we define a metric φ to be left invariant if

• φ(x, y) = φ(zx, zy) ∀x, y, z ∈ S

Similarly φ is right invariant if φ(x, y) = φ(xz, yz) ∀x, y, z ∈ S, and when φ
is both left and right invariant it is called bi-invariant.

3.2.2 Euclidean distance

Let the Euclidean distance from point p1 ∈ Rn to point p2 ∈ Rn be the norm
||p1−p2||i = i

√∑
n(p1 − p2)i for i = 2. However, since for a particular order

of rotation, R(π, π, 0) = R(0, 0, π), this can not be a distance function since
φ((π, π, 0), (0, 0, π)) = 0 despite (π, π, 0) 6= (0, 0, π). This could be remedied
by adding the conditions α, γ ∈ [−π, π) and β ∈ [−π/2, π/2), and we get:
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φ1 : SO(n)× SO(n)→ R s.t.

φ1 = ||p1 − p2||2 = 2

√∑

n

(p1 − p2)2 (40)

for pi = (θ1, ..., θn) ∈ Rn, i ∈ [1, 2], θ1 ∈ [0, 2π), θj ∈ [0, π), j ∈ [2, n].
Now lets see what happens in case of a Gimbal lock. Let

R(α, β, γ)



p1
p2
p3


 =




p1cosβcosγ − p2cosβsinγ + p3sinβ
p1(cosαsinγ − sinαsinβcosγ) + p2(cosαcosγ − sinαsinβsinγ)− p3sinαcosβ
p1(sinαsinγ − cosβsinβcosγ) + p2(sinαcosγ + cosαsinβsinγ) + p3cosαsinβ




(41)

φ((α1, β1, γ1), (α2, β2, γ2)) =
√

(α1 − α2)2 + (β1 − β2)2 + (γ1 − γ2)2 (42)

φ((π, π, 0), (0, 0, π)) =
√

3π2 while on the other hand we have that
R(π, π, 0) [p1, p2, p3]

T−R(0, 0, π) [p1, p2, p3]
T = [−p1 + p1,−p2 + p2, 0 + 0]T =

[0, 0, 0]T

Now we look more closely at what happens in the case of a gimbal lock,
i.e. when β = π/2 and α1 + γ1 = θ = α2 + γ2 which gives rise to the same
rotation. We get the following distance:

√
(α1 − α2)2 + (π/2− π/2)2 + ((θ − α1)− (θ − α2))2 =

√
2(α1 + 2α1α2 + α2

2) =
√

2(α1 − α2) (43)

Which is independent of the total angle θ and, moreover, when α1 6= α2,
the equation is not equal to 0, even though the rotations are the same.
This shows that the Euclidean metric can depend on the representation of
a specific point.

One might wonder why this trouble occurs. Looking at the defini-
tion of Euclidean distance, and that of Euclidean rotation, it is easy to
see that while the Euclidean distance is indifferent of the order, i.e. it
remains the same whether we compute φ((α1, β1, γ1), (α2, β2, γ2)) or say
φ((γ1, β1, α1), (γ2, β2, α2)), whilst the Euclidean rotation, with a few spe-
cific exception, depends very heavily on the order in which the rotations in
the different planes are made.

Hence, while the matrix multiplicity would give two different answers,
Euclidean measure fails to see a difference, or vice versa. This means that
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small distances can have large value and vice versa [Huy09]. Similar prob-
lems occur in higher dimensions. One might want a metric which keeps in
mind the order of multiplicity with matrices, but which somehow cancels
such things out.

This might seem rather discouraging for the use of Euclidean angles.
Fortunately there will turn out to be other ways to compute the distance for
rotations represented with Euclidean angles. First we take a look at how to
do things with quaternions and Clifford algebra.

On a final note on the defense of the Euclidean distance, if we have
established a base in which to represent all rotations and we are only inter-
ested in finding those points p which are of a specific Euclidean distance d
from a point q ∈ Sn, the Euclidean distance is a reliable tool. However, as
soon as we would like to compare distances with each other, since a twice a
Euclidean distance in e.g. 2 dimensions, does not mean that we have twice
the distance over the circle i.e. twice the angle.

3.2.3 Quaterion metrics in 3 dimensions

In three dimensions on can construct metrics using unit quaternions.
When using quaternions we measure the distance between two points

q1,q2 ∈ S3, however we would like two points opposit to each other on the
3-sphere to be equal, see 3.1.3. This gives φ2 : S3 × S3 → R+ such that
[Huy09][LaV06]:

φ2(q1,q2) = min{||q1 − q2||, ||q1 + q2||} (44)

where || · || denotes the Euclidean norm.
Note how this is not a metric of S3, and the quaternions, since for one

φ(q,−q) = 0 even though they are two different points on S3, unlike in
SO(3). That φ2 has the second metric property is clear, and to show the
third property we have:

φ2(q1,q2) + φ2(q2,q3) =

min{||q1 − q2||, ||q1 + q2||}+ min{||q2 − q3||, ||q2 + q3||}
min{||q1 − q2||+ ||q2 − q3||, ||q1 − q2||+ ||q2 + q3||,
||q1 + q2||+ ||q2 − q3||, ||q1 + q2||+ ||q2 + q3||} ≥

min{||q1 − q3||, ||q1 + q3||} (45)

Note also the similarity between this metric and the Euler distance, as we
with this metric measure the distance between the two points on S3, instead
of an angle.

Unfortunately it becomes quite difficult to see how to extend this metric
to Clifford algebra of higher dimensions in a meaningfull way. This could
be since the blades of higher grade, i.e. the parts of e.g. eiej or eiejekel
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have an area or volume, but no specific shape. This means we would need
a metric which is valid for length, area and volume.

The metric which could be applied to bivectors depends on being able to
rewrite the bivectors as simple vectors. The even subalgebra Cl2n has as or-
thogonal basis the unit bivectors ik = enek, k ∈ [1, n−1]. Since eiek = −ekei
and ekek = −1 they create a so called negative definite metric [Lou01]. For
a vector v ∈ Rn such that v = v1e1 + ... + vne1 we get the new expression
w = v1e1en + ...+ vn−1en−1en + y where y = vn is a scalar, hence w is called
a paravector.

There exists another metric for quaternions. This method measures the
angle using the geometric interpretation of the dotproduct cdot of two vec-
tors v1, v2 ∈ Rn, where θ is an angle:

v1 · v2 = ||v1|| ||v2|| cos(θ) [= cos(θ)] (46)

where the second equality is valid when we deal with unit quaternions.
Similarly to the previous metric one would need to identify q with −q

on S3 for the quaterions to represent SO(3), giving φ3 : S3×S3 → R+ such
that

φ3(q1,q2) = cos−1 |q1 · q2| (47)

where · is the dotproduct of vectors.
It is easy to see that φ3 has the properties of a metric since cos θ = 0

only when v1 = ±v2, v1 · v2 = v2 · v1 and v1 · v2 + v2 · v3 ≥ v1 · v3.
Note that this too is a metric on SO(3), but not on S3 (and can therefor

not easily be expanded to higher dimensions). It also is clear that, since
rotation preserves angles between v1 and v2, this metric is bi-invariant.

Examples for 3 dimensions: Let n = (n1, n2, n3) ∈ R3 be a unit vector
around which we will rotate, i.e. |n| = 1, and let q1 = x+ |

√
1− x2|(n1i+

n2j+n3k), q2 = y+|
√

1− y2|(n1i+n2j+n3k) ∈ H such that |q1| = |q2| = 1.
Then we get

φ2(q1,q2) = min±
(√

(x± y)2 + ((1− x2)± (1− y2))|n|
)

=

min
(√

(x+ y)2 + (2− x2 − y2),
√

(x− y)2 + (y − x)2
)

=

min
(√

2xy + 2,
√

2(x− y)
)

(48)

While, using cos(a− b) = cos a cos b+ sin a sin b,

φ3(q1,q2) = cos−1(|xy + |
√

1− x2
√

1− y2| |n| |) =

cos−1(|xy + |
√

(1− x2)(1− y2)| |) = [x = cos(θ1/2), y = cos(θ/2)] =

cos−1(| cos((θ1 − (sign(xy))θ2)/2)|) = (θ1 − (sign(xy))θ2)/2 (49)
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Which is fortunate since θ1/2 and θ2/2 are the angles of rotation for q1 and
q2.

Next, let q1 = cos(π/4) + | sin(π/4)|(1 + 0 + 0) and q2 = cos(π/4) +
| sin(π/4)|(0 + 1 + 0) be a unit quaternions with rotation of π/2 around an
axis. Then we get

φ2(q1,q2) =

min

(√
(2 cos(π/4))2 + sin2(π/4) + sin2(π/4),

√
sin2(π/4) + sin2(π/4)

)
=

min

(√
2 + 2 cos2(π/4),

√
2 sin2(π/4)

)
= min

(√
3, 1
)

= 1 (50)

While,

φ3(q1,q2) = cos−1(cos2(π/4)) = cos−1((

√
2

2
)2) = cos−1(

1

2
) = π/3 (51)

This could give a better understanding of how the two different metrics
work and why one would prefer one before the other when working with
angles and quaternions.

It can be shown that φ2 and φ3 are boundedly equivalent and that when
two metrics φi and φj are boundedly equivalent and one of them is bi-
invariant, then so is the other [Huy09]. Hence φ2 is also bi-invariant.

Though a dotproduct exists in Clifford algebra, it is only well defined
for vectors [Lou01] [Den], attempts seem to have been made to generalise
the dotproduct to clifs of higher grade in [Bak16], who points out that other
extended dot products might exist. However we might not be able to use
these in either case, since the geometric interpretation might not be the
same.

The dot product v · K = 1
2(vK + (−1)k−1Kv), for vector v and blade

K of grade k, proposed by [Bak16] can not multiply bivector with bivector.
However, we know we can rewrite quaternions as q = q0 + q1e2e3 + q2e3e1 +
q3e1e2 and perform dot-product on them.

3.2.4 Geodesics - a metric using Lie algebra

Given any surface S, with a, b ∈ S, a geodesic is the shortest path from a
to b across the surface S. This surface S can be e.g. a plane or a sphere.

In [PR97] (cited in [Huy09]) the metric is given as φ4 : SO(3)×SO(3)→
R such that

φ4(R1, R2) = ||log(R1R
t
2)|| (52)

Here we use that SO(n) are smooth manifolds, and hence Lie groups (de-
noted SO(n)). This means we can create their Lie algebra so(n) with the
exponentional map on the Lie group, i.e. for R ∈ SO(n) we can find its Lie
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algebra representative r = eR ∈ so(n). The elements r ∈ so(n) turn out to
be the skew n× n matrices.

In (52) log is the inverse of the exponential map from the Lie algebra,
which is surjective since SO(n) is compact. Since r is skew-symmetric r2 is
symmetric, meaning that ||r|| = 1

2

√
Tr(r2), where Tr denotes the trace of

a matrix.
The Lie algebra so(3) can be shown to be of the from:

[r] =




0 −r3 r2
r3 0 −r1
−r2 r1 0


 (53)

Using such notation the Lie bracket of

[r1, r2] = [r1][r2]− [r2][r1] = [r1 × r2] (54)

It can be shown that ∀R ∃r e[r] = R. Let γ be the curve such that γ(s) :
R 3 s 7→ es[r] will be a geodesic in the bi-invariant metric on SO(n) using
taylor expension. Hence it will give the shortest path between γ(0) = I and
γ(1) = e[r] = R.

To get the shortest path between R1 and R2 we just note that it is the
same as the shortest path between I and RT1R2.

A geodesic can be computed using the Riemann integral on the Lie
Algebra.

Theorem: 13. If R ∈ Lie group SO(n), r ∈ Lie algebra so(n) then
RrR−1 ∈ Lie algebra so(n).

Hence the square geodesic distance between I and R ∈SO(n) is

∫ 1

0
〈γ(t)−1rγ(t), γ(t)−1rγ(t)〉dt = 〈r, r〉 = Tr(r2) (55)

by in variance under conjugacy.
In 3 dimensions the algorithm can be shown to be as fast as φ3 when

using quaternions, i.e. φ3 and φ4 have the same computational complexity
[Huy09]. However the cross product and the logarithm will become more
complicated when n > 3.

3.3 Haar measure

3.3.1 Introduction

It is very conventient to have an invariant measure for rotations. They
can be created, for topological compact groups (such as SO(n)) and use
integration.
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Consider a box (hyperrectangle) B = ((a1, b1), (a2, b2), ..., (an, bn)) in
Rn. The length of side i can be computed with Lebesque measure we are
all familiar with bi − ai, giving the volume

V (B) =

n∑

i=0

(bi − ai) (56)

With this measure, we can move the box around in Rn as much as we like,
without the volume ever changing. Which should come as no suprise. In
other words:

V (B) = V (t+B) =

n∑

i=0

((ti + bi)− (ti + ai)), t ∈ Rn (57)

This means the Lebesque measure is invariant to a translation t. More-
over, it is both left and right invariant, i.e. bi-invariant or unimodular,
which means V (t+B) = V (B) = V (B + t).

Theorem: 14. The Haar measure µ of a compact group G, with operation
◦ is bi-invariant.

∀g ∈ G,µ(f ◦ g) = µ(f) = µ(g ◦ f)

3.3.2 Definition

Let f : SO(n)→ R be a continuous function, and let C = {f}. For all f ∈ C,
let |f | = maxx∈SO(n)|f(x)| be its norm defining a metric d(f1, f2) = |f1−f2|
on C = {f |f : SO(n) → R}. The norm is complete and defines a topology
on the space [Not].

Let µ be a measure on SO(n) such that µ : C(SO(n),R → R, where
µ(f) can also be denoted as

∫
SO(n) fdµ or

∫
SO(n) f(x)dµ(x). Let

• µ is linear: µ(a1f1 + a2f2) = a1µ(f1) + a2µ(f2).

• µ is continuous: ∀ε∃δ s.t. |f | < δ ⇒ |µ(f)| < ε.

Theorem: 15. Suppose G is a compact group. Then there exists a unique
real measure µ on G such that

• µ is invariant on G, ie
∫

G
(gf) dµ =

∫

G
f dµ

for all g ∈ G, measures f ∈ C = {f : G→ R.

• µ is normalized so that G has volume 1, ei
∫

G
1 dµ = 1
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• measure f is strictly positive, ei

f(x) ≥ 0 for all x⇒
∫
f dµ ≥ 0

with equality if f = 0, i.e. f(g) = 0 for all g.

• |
∫
G f dµ| ≤ |f |.

3.3.3 Haar measure for SO(n)

A lot of litterature on Haar measure is rather theoretical and concentrates
on the long technical proof showing that (on any smooth group) a Haar
measure always exists and is unique [Not][Tay].

One way to construct a Haar measure for SO(n) is to use its connection
to Sn−1[Bel]. Recall from 3.1.2 the following properteis of σ describing a
point on the sphere:

(i) σn(θn) = sin(θn)σn−1(θn−1) + cos θn~en+1.

(ii) ||σn(θn)|| = 1 since it is a point on the n+ 1-sphere.

To find the partial derivative of σn we first look at the case θn and θn−1:

∂σn

∂θn
=
∂ sin θn(σn−1(θn−1))

∂θn
+
∂ cos θn~en+1

∂θn
(58)

∂σn

∂θn−1
=
∂ sin θn(σn−1(θn−1))

∂θn−1
+
∂ cos θn~en+1

∂θn−1
=

sin θn

(
∂ sin θn−1(σn−1(θn−1))

∂θn−1
+
∂ cos θn−1~en

∂θn−1

)
+ 0 (59)

Hence it is easy to see that the partial derivative of σn for case θi becomes:

∂σn(θn)

∂θi
= sin θn · · · sin θi+1

∂σi(θi)

∂θi
(60)

This makes it easy to see that the length (or weight) of such a partial
derivative is

||∂σ
n(θn)

∂θi
|| = sin θn · · · sin θi+1||

∂σi(θi)

∂θi
|| =

sin θn · · · sin θi+1

√
cos2 θi||σi−1(θi−1)||+ sin2 θi = sin θn · · · sin θi+1 · 1 (61)

Hence the volume form in n dimensions, with respect to σn, is

dV = (sin θ2)(sin
2 θ3) · · · (sinn−1 θn)dθ1 · · · dθn (62)
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where θ1 ∈ [0, 2π] and θi ∈ [0, π] ∀i ∈ [2, n].
Now we would like the corresponding Haar measure for Euler angles. We

use Ω(θ1,θ2, ...,θn) from 3.1.2 to find the Haar measure for SO(n). We get

dV =


 ∏

1≤i≤j≤n−1
sini−1 θij


 dθ11...dθn−1,n−1 (63)

Where θi1 ∈ [0, 2π] and θij ∈ [0, π] for 2 ≤ j ≤ i.
Now we can compute the volume for SO(3) as

V 3 =

∫

θ1,1

∫

θ1,2

∫

θ2,2

sin θ2,2dθ1,1dθ1,2dθ2,2

= [2π − 0][2π − 0][− cos(π)− (− cos(0))] = 8π2 (64)

However, since Haar measure for a group must equal 1, we have to divide
the integration with 8π2. We can now define the Haar measure, represented
with Euler angles, in SO(n) as

1

V n

∫

θ1,1

∫

θ1,2

∫

θ2,2

· · ·
∫

θn−1,n−1


 ∏

1≤i≤j≤n−1
sini−1 θij


 dθ11...dθn−1,n−1 (65)

For SO(2) the Euclidean distance (along the circle) and the Haar measure
coincide (though Haar measure multiplicity 1/2π to get volume 1 for full
circle.) The Haar measure is unique up to multiplication by a constant.

This gives a measure of how large a neighbourhood of an element X ∈
SO(n) is in terms of Euler angles.
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4 The deterministic rotation matrix

To see what the rotation matrix in Nordlings uncertainty system could look
like, we would first need to take a closer look at pspace, the space covered
by X + u. Otherwise it will not be possible to show we have actually found
a rotation which rotates the regressand into the pspace, let alone proving
whether it is the most optimised or not.

However, this first step will already turn out to be quite a tough nut to
crack. We will start with giving a different representation of the uncertainty
cone and see how it can be used to more efficiently find distances between
the projection of two cones onto the sphere.

4.1 The uncertainty cone

4.1.1 Definition of uncertainty cone through angle

We want a definition of the uncertainty cone which would depend on some
angle θ instead of a length ui in u = (u1, u2, ..., un). Recall that, for any
measured X with uncertainty u, the elements in the uncertainty cone of X
are:

{tX : t ∈ R, X = Rθ′(X) ∈ N (X, u)} (66)

Here Ux is the uncertainty of x as described in TN. We want to describe it
such that it depends on a some angle θ instead.

Definition 3. Given a set of regressors with uncertainty, Xi + ui, their
projection on the sphere Sn−1 would consist of all rotations of X∗i of angle
at most θi from Xi on the sphere, giving the uncertainty cone:

C(Xi, θi) = {tR(θ′i,n)Xi|t ∈ R, θ′i ≤ θi,n ∈ Rm} (67)

The set of uncertainty cones is then denoted C(X, θ) where row i denotes
the uncertainty cone of regressor i.

The size of the angle is found by:

Theorem 2. Nordlings uncertainty cone defined through uncertainty length
u, can be redefined through uncertainty on angle θ such that

C(Xi, ui) = C(Xi, sin
−1(

ui
|x|)) (68)

Proof. To compute θ, we first observe that the maximum angle of rotation
is independent of the direction in which we rotate. Hence we can reduce our
problem of finding θ to being a 2-dimensional one regardless of the number
n dimensions by looking at the plane in which we are rotating. This plane
would be defined by the regressor X and the direction of the rotation, but
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Figure 3: How to find the angle θ
Let the larger, black, circle be the unit circle. The blue line is tangent to the

smaller, red, circle of radius u, and is perpendicular to the magenta line creating a
chord to the unit circle of lengt 2u. Hence the blue line is at an angle of

θ = sin−1(u) from the x-axis. Note that a rotation θ of a regressor X will then
rotate outside of its uncertainty set, even though it is still within the cone.

we would assume that is the x-y plane without loss of generality. We get
something looking like figure 3 .

First we let x lie on the unit circle, hence scaling all lengths by 1/|x|.
Then we get the uncertainty circle of radius u/|x| (red in the figure). Take
one of the two lines tangent to this circle, that also goes through the origin.
Using it as a mirror, we get a second circle, with origin at x∗ lying on the
unit circle, such that the (pink) line, called chord, between x and x∗ is 2u.
We get the following computation:

|x|chord(2θ) = 2u ⇒ chord(2θ) = 2u/|x| ⇒ θ = sin−1(u/|x|) (69)

with the chord defined as: chord(θ) = 2sin(θ/2).
This means that the uncertainty cone of Xi can be described as rotating

a degree θi ≤ 2sin(u/|Xi|) in any direction.

Now that we know the angle θ we can compute the ’distance’ d be-
tween two uncertainty cones of X1 and X2 by first computing the distance
between X1 and X2 on the unit sphere with our preferred metric φ, and
then subtracting the uncertainty angles. When d is negative, the two cones
intersect. Note that this means that d is not a metric.

d = φ(X1,X2)− θ1 − θ2 (70)
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4.1.2 The problem with two intersected uncertainty cones

One immediate problem which arises when two cones intersect (on more
than a single point) is that pspace in one instant becomes all of Rm. For
any point X1 in the intersection we can find a small enough neighbourhood
which is also completely within the intersection. Hence for any point p ∈ Rm
we can find a point X2 in that neighbourhood such that X1 + t ~X1X2 = p
for some t ∈ R.

Although mathematically correct, the resulting pspace is probably not
very interesting, or helpfull, at least not when t starts becoming very large.
One way to avoid such a situation would be to use the variable selection
technique called clustering (see 2.1.2) and merge two regressors together.
This could be done by letting the new regressor be u2/(u1+u2)X1+u1/(u1+
u2)X2, with the uncertainty being (φ5(X1,X2) + θ1 + θ2)/2.

The resulting cone C(X∗) would be much larger, and even though it
might seem strange to use a point not covered by any of the cones C(Xi)
which created it, we know we can always reach that point using some com-
bination of Xi.

It might actually be convenient to merge two cones even though they
do not intersect, but are simply very close to each other. This is because,
even though they might not cover all of Rm they could cover a very large
part of it in such a way that it is difficult to interpret any results, since the
regressand will most likely be in it.

4.2 pspace and the rotation matrix

4.2.1 3 dimensions

To better understand how the rotation matrix effects a solution, we might
first want to get a better understanding of pspace.

It might be tempting to define the pspace as rotating the space created
by the regressor X an angle θ for each regressor. However, as shown by
figure 3 this will not work. One might want to argue that the image is of a
flat surface and not on the unit sphere, however as we have already argued
before, the sphere is locally indifferent from the plane. For example, the
unit sphere could be the size of the earth. Then our pspace would be too
small.

To get the true value we are looking for we get the following theorem for
3 dimensions:

Theorem 3. Given a normalized regressor X1 = (x1, y1, z1) with uncer-
tainty cone of radius u on the unit sphere, and a normalized regressor X2

with uncertainty cone of size 0 (not intersecting?), we can find the angle 2φ
within which all uncertainty planes must lie.
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Furthermore, let R be the rotations matrix which rotates R3 such that
X2 lies on the point (1,0,0), and X1 on the x-z-plane, and let RX1 = X∗

1 =
(x∗1, y

∗
1 = 0, z∗1), then we can compute the angle as

φ = sin−1
(√

u− (1/4z∗1 ±
√

(1/16)(z∗1)2 + (u− π/2)2)

1− (x∗1z
∗
1 −
√

1− u2x∗1)z∗1 −
√

1− u2x∗1)

)
(71)

Proof. We can always rotate R3 such that the line going through X2 and
−X2 is equal to the x-axis, and X1 lies on the x−z plane, i.e. y1 = 0. Hence
without loss of generality we will assume this for the rest of the proof, to
simplify computations. (We choose a basis such that this is true).

Outline of the proof: The idea is to describe 1) the different planes
going through X2 and X1 + u, and 2) the circle created by the edge of
the uncertainty cone tX + u and the unit sphere. We do this by describ-
ing the (Euclidean) length t between the two points p1 = (px, py, pz) and
p2 = (px, py,−pz) and then maximize the angle such that it stay within the
bounderies of the circle.

First we compute the angle between the two regressors X1 and X2, and
get γ = sin−1(x1).

1) Consider the two planes Pφ and P−φ which are the x-z-plane P ro-
tated by φ respectively −φ around the x-axis. We can make the following
observations:

• P , Pφ and P−φ intersect each other on the x-axis, and hence on S3 at
the points (−1, 0, 0) and (1, 0, 0).

• The plane-sphere intersection for P are the points in the set PS =
{(x, 0, z)|x2 + z2 = 1} = {(x, 0,

√
1− x2)}, for Pφ we have the set

PSφ = {(x,
√

1− x2) sinφ,
√

1− x2cosφ)|x ∈ [−1, 1]} and for P−φ,
using that sin(−φ) = − sinφ and cos(−φ) = cosφ, we have the set
PS−φ = {(x,−

√
1− x2sinφ,

√
1− x2cosφ)|x ∈ [−1, 1]}.

• For any x ∈ [−1, 1] the distance between the two great circles Cφ and
C−φ is the distance between the y coordinates; |2

√
1− x2sinφ|. Note:

the greatest possible distance is |2 sinφ|.

This gives:
t = 2|

√
1− pxsinφ| (72)

2) Imagine we have a cone which is cut of where it intersects the unit
sphere, i.e. when the sides are of length 1. The cone-sphere-intersection is
then described by rotating a circle c = (xc,

√
u− x2c ,

√
1− u2) of radius u

around the y-axis at an angle γ − π/2, i.e. the angle between X1 and X2

and compensate since we start witht the origin of the circle at the y-axis
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instead of the x-axis. The zc-value is obtainted by using the pythagorian
theorem, z2c + u2 = 1, since the points on the circle lie on the unit sphere.




cosγ 0 −sinγ
0 1 0

sinγ 0 cosγ






xc√
u− x2c√
1− u2


 =




xccosγ −
√

1− u2sinγ√
u− x2c

xcsinγ +
√

1− u2cosγ


 (73)

Not surprisingly the length between the y-coordinates remains unchanged,
being

t = 2|
√
u− x2c | (74)

But from (72) we also have that t = 2
√

1− px sinφ which gives the equation

φ = sin−1
(

2|
√
u− x2|

2|√1− px|

)
(75)

We want to find the point p = (px, py, pz) which is tangent to the cone. We
look at the point px = xccosγ −

√
1− u2sinγ. Plugging this into (75) gives

φ = sin−1
√

u− x2c
1− xccosγ −

√
1− u2sinγ

(76)

We now have the different angles φ of planes going through any point on
the circle. However we would like to find the largest such φ. To maximise φ
we need to maximise 76, i.e. find xc such that

√
u− x2c

1− xccosγ −
√

1− u2sinγ
= π/2 (77)

which gives

x2c − u = (
π

2
)2(xccosγ +

√
1− u2sinγ − 1)

xc = π/4cosγ +

√
(π/4)2cos2γ + (u− π/2(

√
1− u2sinγ − 1)) (78)

Plugging in γ = cos−1(z1) = sin−1(x1) and 78 in 76 we get

φ = sin−1




√√√√u− (1/4z1 +
√

(1/16)z21 + (u− π/2(
√

1− u2x1 − 1)))2

1− (x1z1 −
√

1− u2x1)z1 −
√

1− u2x1




(79)
Which is what we wanted.

This means that the angle φ does not only depend on the uncertainty u
of regressor X, but also on where the regressor X is in relation to the axis
we are rotating around. However, since we know only SO(3) has an axis of
rotation, we could need to change it for higher dimensions.
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5 Results and discussion for further studies

When adding the arbitrary rotation matrix to Nordlings variable selection
system, most of the properties can not be obtained. Only those proper-
ties which are independent of the regressand Y , such as independence or
colinearity of regressor X, can be definitely obtained.

This is why one would need some constraints, e.g. an optimisation, of
the rotation matrix. However, such optimisation could be difficult to find,
since the space spanned by the regressor matrix X is difficult to explore.

The tools for exploring the space, and how the rotation matrix would
effect it. Different representation methods and their respective metrics, have
been suggested. Such as Euler angles, quaternions and Clifford algebra.

For each representation method it is clear that progress on rotation in
dimensions higher than 4 is mostely more scarce because most applications
on rotations occur in e.g. robotics (i.e. 3 dimensional space) or in space-time
in physics applications.

More general work is done on the metrics of Euler angles, with regards
to their Lie algebra and Haar measure. Metrics which apply not only to
spheres, but to many other surfaces. However, it could still be preferred to
use Clifford algebra, since that might require less swithching between rep-
resentations, especially if it is possible to encorporate the rest of Nordlings
variable selection system into Clifford algebra.

Due to lack of knowledge and time, I did not manage to accieve what
I set out to do: To find some good optimisation method for the rotation
matrix applied to Nordlings variable selection system, and then see whether
something can be said about e.g. if some parameter could be selectable or
positive etc.

I found that there are many possible paths to follow when trying to
find such optimisation. One would want to come up with an optimisation
technique for each representation technique, to be able to evaluate which
technique that would compute fastest.

5.1 Some of the questions which remained unanswered

Since the topic turned out to be much larger than I had expected, many
questions arose over time to which I have not yet been able to find an
answer. This has partially been due to the fact that this report has been
rather broad, looking in to many potential solutions. But also because the
general understanding of rotations in higher dimensions seems quite limited.

I would have liked to have a better understanding of rotation metrics
which would have worked in Clifford algebra, more precisely for Cl+n . With
the constraint of being on the unit sphere i.e. all vectors have a length of
1, and some (generalised) results from Cole [Col90] perhaps this would have
been possible. One difficulty might be that metric in Clifford algebra are
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(understandably) limited to scalars and vectors.
In [PR97] Park and Ravani raise the question of how to measure compu-

tational error with regard to rotations, since most error measures, or results
from function approximation theory, are in Hilbert space, while the math
around rotations might not be. When trying to implement the rotation into
Nordlings system, this could be relevant to look into, regardless of whether
one uses Lie algebra or Clifford algebra to solve the problem.

It would be interesting to see how one can compute when one would only
regard the projections onto the unit sphere Sm−1 for m dimensions. Where
the projection goes to/from the origin, in other words, all vectors are of
length 1. This way one might be able to represent the space spanned by the
regressor X, the pspace, as some area on the unit sphere.

Whether this is actually desirable is of course up to the user, since one
might sacrifice other visualization properties. The length of the seperate
regressors can still be expressed as simple lines pointing through the unit
sphere. However, it might still be much less intuitive if one is used to un-
certainty cones in lesser dimensions, or in all other technology one interacts
with.

I also did not have the time to explore the stochastic case to any great
extent, although that would have been interesting, since the uncertainty
of one regressor Xi can vary depending on the uncertainty of the other
regressors Xj . This means that there will be more variables to take into
account when checking when a regressor Y is in the pspace. If one wishes
to optimise in certain ways, that would mean one would need to make sure
one uses the uncertainty of the right regressors.

These could be some interesting topics for further investigation.
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A Appendix

A.1 Rodrigues’ rotation formula

[wol](Rodrigues’ rotation formula): Given a vector a = (a1, a2, a3) around
which we rotate in an angle θ, the rotation matrix is given as:

I + ã sin θ + ã2(1− cos θ) =[
cos θ + a21(1− cos θ) −a3 sin θ + a1a2(1− cos θ) a2 sin θ + a1a3(1− cos θ)

a3 sin θ + a1a2(1− cos θ) cos θ + a22(1− cos θ) −a1 sin θ + a2a3(1− cos θ)

−a2 sin θ + a1a3(1− cos θ) a1 sin θ + a2a3(1− cos θ) cos θ + a23(1− cos θ)

]
(80)

Where I denotes the identity matrix and ã is the skew symmetric matrix

ã =




0 −a3 a2
a3 0 −a1
−a2 a1 0


 (81)

Rodrigues’ rotation formula is frequently used in context with rotations in
3 dimensions.

A.2 Clifford algebra, multiplication operations

There 3 different multiplication operations for a Clifford algebra which will
be explained here, even though they might not be so relevant when looking
at rotations, but will still be mentioned.

There are various different multiplication rules defined on Clifford al-
gebra. First there is the geometric product of say A and B being ob-
ject with parts of any grade, written AB. This product is associative
(AB)C = A(BC), and distributes over addition (A + B)C = AC + BC.
It can be shown that this multiplication is usually not commutative, how-
ever, for scalar s we have that sC = Cs for any clif C consisting of parts of
any grade.

The wedge product is defined seperately for the scalars and the vectors,
and for higher grade one essentially split the blades into the vectors that
compose it, and then apply the wedge product on those vectors. (Imagine
having two lego houses, just putting one house on top of the other does not
make a bigger house, but if one breaks the houses down into individual lego
parts, one can use those parts to build a bigger house.)

For vectors P and Q we get the wedge product

P ∧Q :=
PQ−QP

2
, 〈P 〉, 〈Q〉 ≤ 1 (82)

The wedge product for vectors is antisymmetric, i.e. P ∧Q = −Q∧P , which
also means that P ∧ P = 0.

The definition of a blade wedge blade is now given by

P ∧ (Q ∧R) := P ∧Q ∧R , (P ∧Q) ∧R := P ∧Q ∧R (83)
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If the first blade has grade 〈P 〉 = p, and the second 〈Q〉 = q then we get the
new blade of grade 〈P ∧Q〉 = p+q, unless PQ = 0 in which case 〈P ∧Q〉 = 0.
We can further extend the wedge product to any clif with the rule:

V ∧ (A+B) = V ∧A+ V ∧B (84)

Also for A′ = A+ λB we get A′ ∧B = A ∧B + λB ∧B = A ∧B.
One could think of the wedge product as ’painting’ [Den], such that one

brushes with one blade along the side of another. For example, brushing
with vector A along vector B will create a paralellogram, this way one could
also imagine brushing a bivector along a vector. The analogy fails, however,
when looking at scalars, though [Den] proposes to look at s ∧ V as 1 ∧ sV ,
draging a point along a line of length |sV |, which will simply be a copy of
sV .

The dot product for vectors P and Q is defined as

P ·Q :=
PQ+QP

2
, 〈P 〉, 〈Q〉 = 1 (85)

For vectors the geometric product can also be defined as PQ = P ·Q+P∧
Q, though this will not hold for any other grade. The cross-product which
exists in normal vector algebra, can be expressed with Clifford algebra, with
the help of the wedge product. However, the wedge product does not require
a metric, which the cross product does.

A.3 Lie groups and Lie algebras

A Lie group is a way to connect geometry and polynomial equations. As
a group it can solve polynomial equations, and algebraic problems. While
its smooth manifold property gives it the rigid geometric structure as every
element of the group can be identified by a point in space. Because of the
smooth differential manifolds, a Lie group will have Euclidian properties on
a local scale.

A.3.1 Lie groups

Lie groups are groups that are differentiable manifolds, the group operation
has smooth structure i.e. infinite differentiable always exist [Tay]. Gilmore
gives the following definition of Lie groups:

Definition: 3. [Gil08] A Lie group consists of a manifold Mn that parametrizes
the group operations (g(x), x ∈ Mn) and a combinatorial operation defined
by g(x)◦g(y) = g(z) where the coordinate z ∈Mn depends on the coordinates
x ∈Mn and y ∈Mn through a function z = φ(x, y).

There are two topological axioms for a Lie group:
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(i) Smoothness of the group composition map: The group compo-
sition map z = φ(x, y), defined by g(x) ◦ g(y) = g(z), is differentiable
up to any order.

(ii) Smoothness of the group inversion map: The group inversion
map y = ψ(x), degined by g(x)−1 = g(y), is differentiable up to any
order.

Consider the 3-sphere which we know is not very flat. Locally however,
in the small enough neighbourhood of a point on that sphere, the space will
be indistinguishable from the plane in R2.

It then follows that it will be a smooth manifold. Essentially since there
will be points where it is smooth, but the group structure shows that it looks
the sama around any point.

The smoothness of the group composition map, matrix multiplication, is
inherited from the smoothness of matrix multiplication. The inversion map
is smooth, since A−1 = AT .

It is not very surprising that, at any point p ∈ Sn, it is locally differ-
entiable, as a Lie group should be. Since it locally looks like the normal
Euclidean space.

As for the group properties, we have

Closure (AB)−1 = B−1A−1 = BTAT = (AB)T .

Associativity Inherited from matrix multiplication.

Identity The matrix identity I ∈ Rn×n.

Inverse A−1 = AT by definition of matrix representation of SO(n).

Hence, the matrix representation of SO(n) is a Lie group. This means that
we can create a Lie algebra at the identity element and define a differential
function there.

A.3.2 Lie algebra

A Lie algebra has a non-associative multiplication, i.e. (ab)(cd) is not nec-
essarily equal to (a(bc)d) or a(b(cd)) etc. It is defined by its Bracket op-
eration:

• Bilinear: [ax+ by, z] = a[x, z] + b[y, z]

• Alternativity: [x, x] = 0

• Jacobi identity: [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0
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Using that we can show that

0 = [x+ y, x+ y] = [x, x+ y] + [y, x+ y] =

[x, x] + [x, y] + [y, x] + [y, y] = 0 + [x, y] + [y, x] + 0 (86)

which means that anti-commutativity: [x, y] = −[y, x].

Theorem: 16. [Tay] The Lie algebra so(n) = {A|AT = −A,A ∈ GL(n,R),
det(A) = 1} with the bracket [A,B] = AB−BA as its Lie bracket is related
to SO(n) such that if A ∈ so(n) then eA ∈ SO(n).

Here GL(n,R) stands for the linear group, in n dimensions, with real
entries.

Proof. First we show that so(n) is indeed a Lie algebra, in fact it is the
group of skew symmetric matrices. Then we show its relation to SO(n).

It is easy to check that the conditions for the bracket operation hold.
Using that [A,A] = 0 we will show that the Jacobi identity holds:

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] =

(x(yz − zy)− (yz − zy)x) + ((zxy − zyx)− (xyz − yxz))+
+ ((yzx− yxz)− (zxy − xzy)) = 0 (87)

Now suppose A,B ∈ so(n) such that [A,B] = AB − BA, then [A,B]T =
(AB − BA)T = BTAT − ATBT = −(AB − BA) = −[A,B], hence the Lie
algebra so(n) is closed under the bracket operation.

Next we wish to show that exp : so(n) → SO(n) holds, e.i. we need to
show that if A ∈ so(n) then eA ∈SO(n).

iAT = −iA is hermitian, hence eA = ei(−iA) is unitary.
Tr(A) = 0, hence det(eA) =det(e0) = 1
when A is real, so is eA.
Using the logarithm, we can get the Lie algebra from SO(3).

The Lie algebra requires we can always find an inverse.
If G is simply connected, then, for any Lie algebra homomorphism σ :

g → h, there is a unique Lie group homomorphism ρ : G → H such that
dρ = σ.

A.4 Pspace

Here follow some figures of pspace and some thoughts of how to improve the
visualisation. The first figure (5a) shows part of the pspace of example 1 in
section 2, and an expansion of figure 2. The two green planes represent part
of the outline of the pspace of X1 and X2.
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(a) Part of pspace (b) All of pspace

Figure 4: Example representation of pspace
In a) the two green planes represent part of the outline of half of the pspace of X1

and X2, and one can see that the yellow uncertainty cone of X3 lies within the
pspace. In b) part of all of pspace, however it is clear it soon becomes quite

difficult to interpret the pspace visualised like this.

The visualisation of pspace becomes quite messy this way, and it is hard
to interpret the picture even though one can move it around and look at it
from different angles in matlab.

One suggested other way to visualise this in 3 dimensions would be to
visualise the projections on the unit sphere. That way it might also be
simpler to visualise stochastic uncertainty. It might also be possible to
represent the pspace between multiple pairs of regressors and hence make it
easier to compare those to each other.

However, when using the new visualization method one might lose vital
information that would have been (more) present in the original way to
visualize the data.

Another downside of this visualisation might be that it is less intuitive
to interpret if one is used to other methods. Having many different visual-
ization methods for different systems can be confusing and it can be easier
to appreciate a visualisation method one is already familliar with.

Though in the end it might all come down to which method is the most
computationally efficient. Unfortunately I did not have the time to find this
out.
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(a) Pspace
(b) Pspace and a third (non-
colinear) regressor

Figure 5: Another example of representation of pspace
In a) the green/beige area would represent the pspace of the two incertainty

cones. Then hopefully it would be easier to see if another regressor is colinear by
checking if it is covered by the pspace or not, as in b).
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