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Abstract. The GGH encryption system, which is a cryptosystem based
upon the mathematical theory of lattices, was proposed in 1997. Only two
years after it was published, great flaws were found in the scheme making it
unsecure in the dimensions proposed. With a higher dimension the scheme
would be impractical and thus it was considered to be dead. However, im-
provements have been made since then. We will explore the properties of the
GGH encryption scheme and the ones of a proposed improvement to see if it
is an encryption system that can be sufficiently secure and of practical use.
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1 Introduction

The ability to send information without the wrong people reading it has
been a highly regarded skill for a long time. But during the second world
war it was more important than ever before. Every message was sent through
an unsecure channel and the enemy was listening in on every message sent.
The security of the messages encrypted had a crucial impact on the warfare.
The ability to listen on the enemy’s conversations played a significant role in
winning the war.

Today we use cryptography in many areas of life. It is not only used to give
military orders or to have a secure conversation between people in an unsecure
channel. It is now used to a vast extent. But the cryptography today is very
different from the ones used earlier. A large part of the cryptography we
use today is less technical and more mathematical. These cryptographic
applications are based on mathematical problems that are considered to be
hard to solve. A typical, well used, cryptosystem of this type is RSA. It is
based on the hard mathematical problem of factorizing a large integer. But
what would happen if we could find a fast way to solve this kind of problem?
What if we all of a sudden could easily solve all the mathematical problems
underlying the cryptosystems of today? Then we would have no safe way to
transfer delicate information between remote parties.

This is something that may happen in an not too distant future. The quan-
tum computers are known to be able to solve integer factorization fast and
making the numbers larger will not make for a sufficiently fast encryption
method. So when quantum computers are at use, all systems used today to
secure our data will not be secure at all.

We are going to need new types of cryptosystems for transfering information
securily. There are cryptosystems that are considered to be post-quantum
cryptosytems which means that they will be secure against attacks performed
by a quantum computer. This field of cryptography is fairly young and there
have not been so many suggestions for cryptosystems of this type intended
to be used in practice. One type of post-quantum cryptography are the
lattice-based ones which are the focus of this text. Some of the lattice-based
cryptosystems seem to be resistant to both the type of attack used today and
of the attacks of quantum computers. This property would make it secure
for all types of attacks that are known.

Uptill today a few lattice-based cryptosystems have been proposed. There
are systems such as GGH, NTRU and Ring-learning with errors. In this
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text we will consider in the GGH encryption system which was proposed by
Goldreich, Goldwasser and Halevi in 1997. Only two years after, in 1999,
Nguyen showed that the scheme was not secure enough. He showed that
every ciphertext leaks information about the plaintext and that the problem
of decryption can be simplified. Does this mean that the scheme is dead? If
so, can it be revived if the right improvements are made?

Several proposed improvements have been made since 1997, all of them using
different techniques. We will look at one of them, the improvement proposed
by Micciancio in 2001. His idea is, to make the scheme easier to implement
one needs to use deterministic methods to choose keys and parameters instead
of randomized ones. But at the same time he wants it to be more secure
and tries to make a trapdoor function which includes both a higher level of
security and deterministic choices of keys and parameters.

2 Basic Definitions and Properties of Lattices

Before setting up a lattice-based cryptosystem we need some definitions and
properties. A lattice is similar to a vector space but instead of having coef-
ficients that are real numbers the coefficients are integers.

Definition: Given a set B = {b1, ..., bn} of n linearly independent vectors in
Rn, we define the lattice spanned by B as the set of all linear combinations
of the bi’s with integer coefficients.

L(B) = {
∑

i

xibi|xi ∈ Z for all i}

We call B a basis of the lattice L(B) and any set of linearly independent
vectors that spans L is basis for L. When a basis spans a lattice we also say
that it generates that lattice.

Definition: A vector that belongs to the lattice L we call a lattice point or
a lattice vector.

Definition: Let L be the lattice of n and let b1, b2, ..., bn be a basis for L. The
fundamental domain (or the fundamental parallelepiped) for L corresponding
to this basis is the following set
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P (b1, ...bn) = {a1b1 + a2b2 + ...+ anbn|0 ≤ ai < 1, i = 1, 2, ..., n}

For every vector w ∈ Rn there is a unique vector v ∈ L and a unique
vector t ∈ P (B) such that w = v + t. We also say that a orthogonalized
parallelepiped is the fundamental domain of the Gram-Schmidt reduced basis
(see section 2.3), i.e. of a basis where every vector is orthogonal to all the
other vectors. Notice that this basis, in general, will not span the lattice.

You can transform a basis of a lattice to some other basis of the same lattice
using unimodular matrices.

Definition: A unimodular matrix is a square matrix with integer coefficients
and with determinant equal to 1 or -1.

The following proposition is easy to prove.

Proposition: Two different bases for a lattice L are related by a unimodular
matrix.

This means that the absolute value of the determinant for each basis of a
lattice L is the same. And given any basis B and any unimodular matrix U,
B · U gives us a new basis for the lattice. A basis of a lattice is not unique
but a basis in Hermite normal form is uniquely determined.

Definition: A basis B, with integer coefficients, is in Hermite normal form
if it is upper triangular, the elements of the diagonal are strictly positive,
and for all other elements bi,j, we have 0 ≤ bi,j < bi,i.

Proposition: To each lattice there is a unique basis in the Hermite normal
form [6]. We denote it HNF(B).

Some properties of a lattice may effect how secure the cryposystem is. One
of these properties is the gap of a lattice because if a lattice has a large gap
the reduction algorithms (see section 2.3) will finish in less time.
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Definition: The gap of a lattice is the ratio between the length of a second
shortest vector and the length of a shortest non-zero vector.

We will talk about a ”good basis” and a ”bad basis”. A good basis is very
close to being orthogonal. We can measure how close a basis is to being
orthogonal using the following ratio.

Definition: The Hadamard ratio of the basisB isH(B) =
(

detB
||b1||||b2||...||bn||

)1/n
.

We have that 0 < H(B) ≤ 1, the closer this value is to one the more orthog-
onal is the basis. We will also call this the orthogonal defect.

2.1 Hard Lattice problems

The security of lattice-based cryptography is based on fundamental compu-
tational problems such as finding a shortest non-zero vector in the lattice
or finding a vector in the lattice that is closest to a given vector not in the
lattice. These problems are considered to be hard to compute if one is not
given a good basis.

Definition: The shortest vector problem (SVP) consists of finding a non-
zero vector v ∈ L, where L is a lattice, such that that minimizes the Euclidean
norm ||v||.

Definition: The closest vector problem (CVP) consists of finding a vector
v ∈ L, where L is a lattice, that is closest to a given vector w not in L. This
is the vector v ∈ L minimizing the Euclidean norm ||w − v||.

These are two of the most important hard computational problems regarding
lattices, and they are the ones we are interested in.

2.2 Babai’s Closest Vertex Algortihm

To solve a closest vector problem, one needs an algorithm. Babai’s algorithm
works in the case that the basis of the lattice is orthogonal enough. If we
assume that it is, the algorithm works as follows:
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Babai’s Closest Vertex Algorithm: Let L ∈ Rn be a lattice with basis
v1, ..., vn, and let w ∈ Rn be an arbitrary vector. If the vectors in the basis are
(sufficiently) orthogonal to one another, then the following algorithm solves
CVP.

Write w = t1v1 + t2v2 + ...+ tnvn with t1, ..., tn ∈ R
Set ai = btie for i = 1, ..., n
Return the vector v = a1v1 + a2v2 + ...+ anvn

Where bce means that we round c to the closest integer.

2.3 Reduction Algorithms

Say that we are given a basis B that is far from being a good basis in terms
of orthogonality. To solve one of the hard lattice problems a good basis
is needed, therefore we want to transform this basis into a better one. In
a vector space one might use the Gram-Schmidt Algorithm to transform a
basis V to an orthogonal basis V ∗. However this does not work for lattices
since the new basis V ∗, most likely, will not have integer coefficients. For
lattices this can instead be done by lattice reduction. The lattice reduction
algorithms given below are based on the Gram-Schmidt algorithm, so let us
start by recollect that algorithm.

Gram-Schmidt Algorithm: Let v1, ..., vn be a basis for a vector space
V ⊂ Rm. The algorithm below creates an orthogonal basis v∗1, ..., v

∗
n for V.

Set v∗1 = v1
Loop i=2,3,...,n.
Compute µij = vi · v∗j/||v∗j ||2 for 1 ≤ j < i

Set v∗i = vi −
∑i−1

j=1 µijv
∗
j .

End Loop

One reduction algorithm is the LLL Reduction Algorithm [5]. We say that a
basis B = {b1, ..., bn} is LLL reduced if the following conditions are satisfied.
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Size condition: |µi,j| =
|bi · b∗j |
||b∗j ||2

≤ 1

2
for all 1 ≤ j < i ≤ n

Lovász Condition: ||b∗i ||2 ≥ (
3

4
− µ2

i,i−1)||bi−1||2 for all 1 < i ≤ n

Where B∗ = {b∗1, ..., b∗n} is the associated Gram-Schmidt orthogonal basis.

The LLL Reduction Algorithm: Let {b1, ..., bn} be a basis of a lattice L
contained in Zn. The algorithm given below returns a LLL reduced basis for
L.

Input a basis {b1, ...bn} for a lattice L
Set k=2
Set b∗1 = b1
Loop while k ≤ n
Loop Down j=k-1,k-2,...,2,1
Set bk = bk − bµk,jebj
End j Loop
If ||b∗k||2 ≥ (3

4
− µ2

k,k−1)||b∗k−1||2
Set k=k+1
Else
Swap bk−1 and bk
Set k = max(k − 1, 2)
End If

End k Loop
Return LLL reduced basis {b1, ..., bn}

where {b∗1, ..., b∗n} is the Gram-Schmidt orthogonal basis.

Another lattice reduction algorithm is the BKZ reduction algorithm which
is based on KZ-reduction (or Korkin-Zolotarev reduction). First we define a
map

π : L→ Rn,

πi(b) = b−
i∑

j=1

b · b∗j
||b∗j ||2

b∗j .
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Where any B∗ = {b∗1, b∗2, ...b∗n} is the Gram-Schmidt orthogonalized vectors
of B = {b1, b2, ...}. Now we define what it means to be KZ-reduced.

Definition: A basis b1, ..., bn for a lattice L is called KZ reduced if it satisfies
the conditions:

1. b1 is the shortest non-zero vector in L.
2. For i=2,3,...,n, the vector bi is chosen such that πi−1(bi) is the shortest
non-zero vector in πi−1(L).
3. For al 1 ≤ i < j ≤ n, we have |πi−1(bi) · πi−1(bj)| ≤ 1

2
||πi−1(vi)||2.

A basis that has been reduced by KZ-reduction is in general much better
than a LLL-reduced basis. The first vector in a basis that is KZ-reduced is
a solution to the SVP.

There is also a block Korkin-Zolotarev [8] version of the LLL algorithm. It
replaces the swap step in the LLL algorithm by a block reduction step. In
BKZ you work with blocks of vectors of length β

bk, bk+1, ..., bk+β−1

and these are replaced with the KZ-reduced basis the spans that same sub-
lattice.

2.4 The Embedding Technique

The embedding technique is a way to solve the CVP by defining a new lattice
and then using LLL-reduction to find the smallest vector of that lattice [2].

We have the basis B of the lattice and a vector w ∈ Rn that is not a lattice
point. A solution to the closest vector problem is the vector of integers
{l1, l2, ..., ln} if

w ≈
n∑

i=1

libi

If we put e = w −∑n
i=1 libi then ||e|| is small. Now we define a lattice L∗

that includes both the basis B and the short vector w. We define the lattice
L∗ by the matrix
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B∗ =




b1 0
b2 0
.
.
.
bn 0
w 1




We reduce this basis and since w is e plus a linear combination of the basis
B, the reduction will result in one of the vectors being e. If e is small enough
then finding e is a shortest vector problem. Which means that we might be
able to find e by solving the SVP of the lattice L∗. Then to solve the CVP
one subtracts e from w.

As far as the vector w is close enough to a lattice point the closest vector
problem can be reduced to a shortest vector problem using the technique
described.

3 GGH Encryption Scheme

The GGH cryptosystem is the lattice-based cryptosystem introduced in 1997
by Goldreich, Goldwasser and Halevi [3] which is based on the difficulty to
reduce lattices.

Let us first set a security parameter to be (n, σ), where n is the dimension
of the lattice space and σ is the parameter determining the size of the error
vector. We will start with a lattice  L ∈ Zn which is defined by a matrix R,
which is a reduced basis i.e. a basis R where H(R) is close to one. This
basis R will be our private key, private basis. You can read about the way
to choose a matrix R in [3].

Now we want to generate a public basis B. This public basis is obtained
from the private one. The public basis will not be a reduced basis, that is
H(B) is not close to one. We can obtain B from R by using many “mixing”
steps, we take one basis vector and add a random integer linear combination
of the other vectors to it. Or R can be transformed into B by multiplying R
with some “random” unimodular matrices.

We choose a message m ∈ Zn that is encrypted into c = mB+ e. Where e is
the error vector chosen uniformly from {−σ, σ}n. Other methods to encrypt
is discussed in the article but this is the recognized encryption method.
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The larger the parameter σ is, the harder the CVP is expected to be. But
for large σ the decryption process might not succeed.

To obtain the plaintext from the ciphertext we use Babai’s closest vertex
algorithm to first find the vector v ∈ L that is closest to c. Then we compute
B−1v to find m.

4 Cryptanalysis of the GGH Cryptosystem

In 1999 Phong Nguyen claimed to have found security issues in the GGH
cryptosystem [7]. He claims that every ciphertext leaks information about
the plaintext.

4.1 Leaking Remainders

If (n, σ) are the sequrity parameter and B a public basis then the plaintext
is encrypted as

c = mB + e (1)

where m ∈ Z is the plaintext being encrypted, c ∈ Z is the ciphertext and
e ∈ {±σ} is the error vector. Nguyen claims that the equation of encryption
has a flaw. By an appropriate choice of integer and (1) modulo that integer
will make the error vector e disappear. This would give us m modulo the
chosen integer. Every entry of e is either σ or −σ so the natural choice of
integer would be σ but instead he chooses 2σ. Letting s = (σ, ..., σ) gives
e+ s ≡ 0 (mod 2σ) so that

c+ s ≡ mB (mod 2σ) (2)

Solving this system gives m modulo 2σ. The questions now are: how many
solutions are there, and how do we compute them?

The problem of solving a linear system y = xB (mod N) where the vector
y, the matrix B and the modulus N are all known, has at least one solu-
tion. Two solutions will differ by an element of the kernel of B, which equals
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{x ∈ Zn|cB ≡ 0 (mod N)}. This means that if we find one solution to the
equation then the rest can be found from the kernel of B. The number of
solutions is equal to the cardinal of the kernel. The simplest case of solving
the linear system is if B is invertible modulo N , this happens if det(B) is
coprime to N and then there is only one solution. The solution is found by
matrix inversion x = yb−1 (mod N).

Nguyen shows that with a considerable probability, the public basis B is in-
vertible modulo 2σ. This gives any plaintext modulo 2σ.

When the matrix is not invertible then Nguyen shows that the kernel is usu-
ally very small. He starts with discussing the case of a prime modulus. Then
the kernel is a Zp-vector space and if the dimension of the kernel is d, then
the number of solutions is pd. It is clear that if both p and d are small then
the number of solutions is small. He finds that with a high probability the
kernel has a dimension less than 2. This means that the solutions tho the
modular system is at most p2. And he claims that the solutions are easy to
compute.

If the modulus N is not a prime but is square-free, N = p1...ps where pi 6= pj
for i 6= j, then the solutions can be found by using the Chinese Remainders
from each solution modulo pi. The total number of solutions is found by
multiplying the number of solutions for each prime. For each prime one can
also find the proportion of a matrix with respect to its kernel using the same
argument as previously stated. He finds that only a very small part of the
matrices modulo 6 (which is two times the suggested parameter σ = 3) have
a kernel with more than 12 elements.

If N is not square-free the methods used before does not apply, but the
solutions may be obtained. But this case is not relevant for the suggested
parameters.

This means that for the suggested choice of parameters (n, σ) and for any
ciphertext c, the linear system, most likely, has very few solutions. Because
of the fact that the public basis B had a small kernel with high probability.
Even though the encryption scheme is probabilistic, one can check whether
a plaintext corresponds to a given ciphertext without knowing all of the
plaintext. One can also check whether two ciphertext correspond to the
same plaintext, with high probability.
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4.2 Simplifying the Closest Vector Problem

Say that we have found the plaintext m modulo 2σ, and denote this by m2σ.
Knowing this will simplify the decryption problem which is based on the
CVP. The encryption function is

c = mB + e.

Using the fact that we know m2σ we get that

c−m2σB = (m−m2σ)B + e

But the vector m−m2σ is on the form 2σm′, m′ ∈ Zn. Therefore,

c−m2σB

2σ
= m′B +

e

2σ
.

The left-hand side is known so the equation above is a closest vector problem
where the error vector, e

2σ
∈ {±1

2
}n which is smaller than previously. If one

can solve this new CVP then one can easily solve the former one. This means
that the problem of decryption has been reduced to an easier CVP.

From what we saw earlier, we do not always find m2σ, but with high proba-
bility one can find it.

4.3 Repairing the Scheme and Conclusion

The way we choose the error vectors, always makes them shorter than the
vectors of the lattice. This results in a gap of the embedded lattice, when
the embedding attack is used (see section 2.4). If the gap is large then it
is easier to reduce the lattice because a large gap result in a BKZ-reduction
with a lower dimension and thus a faster reduction of the public basis.

There is another problem with having the error vectors in this specific form.
We do not want an error which we know the value of modulo some inte-
ger that is chosen well, as we saw above. The most apparent way to avoid
this is to choose the entries of the error vector e at random in the interval
of
[
− σ, σ

]
. This result in a vector e with an approximate length that is
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smaller than the original choice of error vector. A larger error can be found
by choosing the entries of e randomly in {±σ,±(σ − 1)}, although this may
result in a dangerous special form of the error vector.

The conclusion is that the special form of the error in the GGH scheme is
dangerous since part of the information about the plaintext may be recovered.
And the decryption problem can be reduced to a CVP considerably easier
than the general CVP.

5 Improving GGH Using the Hermite Nor-

mal Form

In 2001 Daniele Micciancio published an improvement of the scheme of Gold-
wasser, Goldreich and Halevi [6]. His new cryptosystem is based on the public
basis being the basis of the Hermite normal form.

Let c = xB + e be the encryption function. In [3]two different encoding
methods are considered, the first one is the one we have considered above,
the message is encoded in the coefficients x, and the error vector is chosen
randomly. The second method, the one that Micciancio considers, is that
the message is encoded in the error vector, and instead we have x chosen
at random. But he writes that his methods can be adapted to suit the first
method as well.

A new trapdoor function is needed and has to be able to answer the questions:
How is the private basis R chosen? How do we obtain the public basis B
from R? How is the random vector x chosen? How do we choose the error
vector e?

As was suggested in [3] we choose R of the following form R = b√ne · I +Q,
I is the identity matrix and Q is a random perturbation matrix with entries
in {−4, ...,+4}. R will be close to orthogonal since ±4 is much smaller than√
n. The way we obtain the public basis B, the random lattice vector x and

the error vector e will be different than in the original scheme.

5.1 An Optimal GGH-like Trapdoor Function

We want to define a trapdoor function that works better than the GGH
trapdoor function. Since it is hard to obtain random vectors and bases, Mic-
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ciancio’s idea is to replace the random choices for B and x with deterministic
ones. The ones he proposes can be proven to be optimal from a security view
point. We know how to obtain R, we let ρ be a correction radius. This
means that if we use R we can correct any error that is smaller than ρ, as
an example we have ρ = 1

2
mini||r∗i ||. The message will be encoded into the

error vector, but we can only find the lattice point closest to e if it is inside
the correction radius, i.e. the length of e is less than ρ.

5.1.1 Reducing Vectors Modulo a Basis

A lattice L defines an equivalence relation over Zn in the following way:
v ≡L w if and only if v − w ∈ L. Starting with a basis B and for every
vector v ∈ Zn we have that v = xB + r ≡L yB + r where r ∈ Zn. This
can be written uniquely for any fundamental parallelepiped. We have that
v = xB + r where r ∈ P (B), x and r is uniquely determined. In particular
we have that for every point v ∈ Zn there exists a unique point w in the
orthogonalized parallelepiped P (B∗) = {∑i xib

∗
i |0 ≤ xi < 1} such that v is

congruent to w modulo L. This can be shown by induction on the dimension
where the base case is the two-dimensional lattice. The orthogonal basis
for this case is B∗ = {b1, b2 − b1·b2

||b1||2 b1}. If b1·b2
||b1||2 = 1 then the orthogonal

parallelepiped is the rectangle with corners at the origin, v1, v2 − v1 and v2,
then it is clear that there are no other lattice points in this parallelepiped and
thus there is unique point w which is congruent to v modulo L. If instead
b1·b2
||b1||2 < 1 then the orgin and b1 will still be corners but b2 will lie on the side
of the rectangle that is opposite the vector v1 and no other lattice points is
in the rectangle, then it is also clear that the point w is uniquely determined.
For the last case b1·b2

||b1||2 > 1, the origin and b1 is two of the corners and the
point b2 − b1 is on the opposite side to the vector b1 and no other point is in
the rectangle. It is therefore uniquely determined for this case as well. One
can prove, with a similar argument, that if it holds for a k − 1-dimensional
space then it also holds for a k-dimensional case.

The unique element of P (B∗) that is congruent to v modulo L we denote
with v modulo B.

The definition of the reduced vector, v mod B, depends on the basis B but
the equivalence relation v ≡L w is not dependent on the basis.

If B is in Hermite normal form then w = v mod B is an integer vector with
the property 0 ≤ wi < bi,i. One can see this in the following way: if there
would be some wk not satisfying the inequality, then wk ≥ bk,k or wk < 0 but
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0 < b∗k,k ≤ bk,k. This would mean that wk /∈ P (B∗) and hence not reduced
modulo B.

5.1.2 Choosing the Public Basis

The private basis R that we start from is a really good basis that makes it
possible to solve the closest vector in the lattice. We want to transform this
basis into the public basis without leaking too much information about the
private basis. Instead of computing B by adding randomized transformations
to R, we choose the public basis B of this new scheme to be the basis of the
Hermite normal form, B = HNF(R) of R. Note that the private basis is a
matrix with integer coefficients.

The basis of the Hermite normal form only depends on the lattice L(R)
generated by R and not on the particular basis used. This means that the
public key leaks no information about the private key.

5.1.3 Adding a “Random” Lattice Point

Now we want to add a ”random” vector xB of the lattice L to the error vector
e. The optimal way to do this would be to choose xB uniformly. However
this is not possible in practice. We will attain the same result by mapping
the error e to its equivalence class

[
e
]
L

since e is equivalent to e − xB for
some x ∈ L. We can use the reduced vector e mod B as a representative
for the class. So instead of adding a random lattice point to the error vector
we reduce e modulo B, the private basis. This will give us the ciphertext
c =

[
e
]
L
∈ P (B∗). Our trapdoor function is:

f(e) = e− xB = e mod B

remember that B = HNF(R), the Hermite normal form of the private basis
R. The form of B makes the reduction modulo B very simple, thus the
triangular form of B makes the trapdoor function simple.

5.1.4 The Trapdoor Function

Now all that is defined above is put together to a new trapdoor function.
We choose R to be a private basis such that ρ = 1

2
mini||r∗i || is relatively

large. As we have seen before the public basis is the Hermite normal form
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of the basis, B = HNF(R). The public basis defines a function with the set
of vectors with length smaller than ρ as the domain. When we apply the
function to the error vector, it results in a point f(e) in the orthogonalized
parallelepiped P (B∗) which is congruent to e modulo the lattice.

The error vector e is always close to the orgin, but the result of reducing it
modulo B is possibly closer to some other lattice vector since the encryption
function is f(e) = e−xB ≡ e mod B. Decrypting involves finding the closest
lattice point to f(e). This should not be possible using only the public basis
B. One can compute the lattice point closest to f(e) using the good private
basis R as long as the length of e is smaller than ρ.

5.2 Analysis

Micciancio discusses the difference of security, space efficiency and running
time compared to the orginal scheme. And first he proves that his new
scheme is at least as secure as the original GGH encryption system.

He estimates the key size and the size of the ciphertext of both GGH and
the modified scheme to compare them. The size of the key and ciphertext is
significantly smaller for the new scheme than for the original GGH scheme.

When it comes to running time he claims that the encryption time is mainly
dependent on the size of the public key. Since the key size is much smaller
than the key size in GGH the encryption time will be much faster. The key
generation is also much faster because Hermite normal form computations
are generally fast but the old version based on applying LLL upon a matrix
of high dimension is not. The decryption is the critical part since it is similar
to the one of the original scheme. In high dimensions, the decryption can
take several minutes. But he argues that since the decryption is strongly
based on the choice of private basis, finding a way to generate such a basis
might be more important.

5.3 Discussion and Conclusion

The trapdoor function that has been defined is at least as hard to break as
the GGH encryption system. Although the original scheme was randomized
and the new one is deterministic, it is still at least as secure. This means that
GGH cannot be semantically secure since being so requires the encryption
scheme to be probabilistic, which the new scheme is not.
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A problem that needs to be addressed further is the choice of the private
basis R. There is no specific reason to choose the basis in this way, one could
possibly choose the private basis randomly and reduce it using LLL or some
other reduction algorithm. This turns out to be good way to obtain a good
basis. If we would try using LLL on the public basis HNF(R) it would take
much longer and the correction radius would still be much smaller than the
one of R. Micciancio shows by experimental results that when the dimension
gets larger running LLL on the random matrix results in a correction radius
of size n/2 but if we run LLL on the Hermite normal form the correction
radius tends to zero.

So this new trapdoor function is at least as secure as the GGH trapdoor
function. For the same level of security, both the size efficiency and the time
efficiency is drastically improved. Thus, we can make the scheme more secure
without making it impractical.

The choice of deterministic procedures instead of randomized procedures
makes the scheme easier to implement and analyze.

In order to be able to compete with RSA, the key sizes need to be even
smaller than those achieved through this scheme. The public key size cannot
be further reduced if we do not consider lattices of special structures.

6 Computational Experiments

We want to see if there is a difference between decrypting GGH using the
method of Nguyen or trying to decrypt it without that method. Nguyen
shows theoretically that the GGH decryption problem can be simplified to a
special case of the closest vector problem where the error vector has entries
in {±1

2
}n. We are interested to know whether solving this special case is

faster or not. Using Mathematica for encryption and decryption using the
embedding technique (see section 2.4) for lattices of small dimensions (the
running time for larger dimensions is too long) we want to see if it is generally
faster. In table 1 below you can see the result.

In these dimensions one cannot see an advantage when solving this special
case of the CVP. However there might be an advantage when solving the
CVP in higher dimensions. The techniques to break the system are more
likely to work with a smaller error vector. Also in the higher dimensions,
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n Solving GGH, σ = 3 Solving GGH, error vector with entries in {±1
2
}n

10 0.984375 1.01563
15 3.40625 3.64063
20 11.0156 11
25 24.3280 24.4063
30 44.4375 44.2031
35 83.5625 81.8594
40 178.25 178.188
45 344.141 336.078
50 516.891 529.188

Table 1: Time in seconds to solve GGH

that Nguyen breaks, he uses both LLL and BKZ for it to be possible. He
stresses that it is not necessary to perform a complete BKZ reduction, one
only does so until one finds the correct solution.

Supposedly, there is an advantage of solving the shortest vector problem
using the embedding technique when the gap is large. The idea is that the
error vector is the smallest vector. If the smallest vector is decreased then the
gap will be larger and it will be easier to find the shortest vector. And then
use it to solve the closest vector problem. It is possible that this property is
not an advantage in these small dimensions, the differences between the size
of the different error vectors might be minimal.

Hence, in these small dimensions we cannot se any advantage of using Nguyens
method. His method also entails solving the problem and finding a solution
modulo 2σ before solving the special case of the closest vector problem. This
would make the method slower than than classical approach for these dimen-
sions.

7 Discussion

We have seen how the original GGH scheme is built up and how Nguyen
attacked it to simplify it. This means that the GGH, the original version,
cannot be used unless used with a lattice of a very high dimension. These
dimensions would make it too inefficient to use.

Nguyen’s attack was built on a theoretical flaw in the encryption function.
Then he showed experimentally that with high probability one finds few
solutions of the plaintext modulo 2σ, which means that the flaw he found
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theoretically can most likely be used as an advantage in practice. And then he
can use this information to solve the simplified version of the closest vector
problem which, according to him, is much faster than solving the original
CVP. He concludes that unless the lattice is of a high dimension, the scheme
is not secure. However it might be possible to make improvements making
it secure and efficient enough to use in practice.

Micciancio then improves the scheme so that it first of all leaks no information
about the private key. This improvement also makes the scheme easier to
implement since computing the public basis is now deterministic instead of
randomized as before. It is generally hard to implement random functions
which makes the deterministic approach better. Furthermore, the Hermite
normal form is also the provably hardest basis to transform into a good basis
[9]. He then encodes the message into the error vector. Then e is encrypted
to f(e) = e mod B. And decrypting means finding the closest vector to the
point e modulo B. This should not be possible using B if it is not reduced
first. For this encryption there does not seem to be a special case that
makes it the CVP easier to solve which means that the decryption cannot
be simplified. But even though all of these improvements have been made,
it is still not practical because he concludes that for the scheme to be able to
compete with RSA it needs to have an even smaller key. This is not possible
with the improvements that he has made. Further improvements must be
made if GGH is going to be of use practically when it comes to either the
efficiency of implementing the scheme or the security.

Since Micciancio published his improvements in 2001, several other propo-
sitions of improvements have been made. In 2012 Masayumi Yoshino and
Noburo Kunihiro [9] made an improvement of the original GGH cryptosys-
tem using some of the properties used by Micciancio. The use of a public
basis of the Hermite normal form is inherited to this scheme from Miccian-
cio. And the idea of this scheme is to choose the entries of the error vector
differently depending on some conditions and in this way making the error
vector larger and harder to attack. Their conclusion is that they manage to
make the scheme more secure.

8 Conclusion

The orginal GGH encryption scheme proposed in 1997 is not a secure in the
dimensions proposed and if the dimension is increased the scheme cannot be
of practical use. This version of the scheme is therefore dead.
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There have been improvements made since 1999. Micciancio’s improvements
in 2001 makes the scheme secure and the decreases the key size needed. But
it is not enough to compete with cryptosystems used today such as RSA.
This means that in practice it is not useful. There have been suggestions
for further improvements since then, making the scheme secure. But the
question is; can any be of practical use?

In the article ”GGH may not be dead after all” [1], Charles F. de Barros and
L. Menasché Schechter discuss that the scheme introduced in [9] may be of
practical use if some of the conditions are adjusted so that it will work better
when implemented.

If one keeps developing the improvements made so far and take them all into
account, then there may be a way to change this scheme so that it can be
used in practice.
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