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Abstract

In this text we lay the foundations of the theory of discrete wavelets in ZN and show its use-
fulness with practical examples. We discuss the problem of simultaneous localization in the
time and frequency domains and the uncertainty principle, which motivates the construction of
wavelets. We define and prove the validity of multiresolution analysis and give examples of its
use in signal compression.
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1 Introduction

Using the information we gather from the world around us, mankind has learned to draw the
most astonishing conclusions. For example, just analyzing the light coming from stars, we have
deduced their chemical properties and that the universe is expanding. Using a prism, Isaac
Newton found that white light is composed of all the colors of the rainbow. Building on this
idea, we would later be able to analyze the so called frequency spectrum of the light from the
stars and identify missing frequencies that are the “fingerprints” of the basic elements [12]. And
studying how the wavelengths of light from distant stars is “stretched out” by the doppler effect,
we could deduce that the farther away they are, the faster they are moving away from us. [8] [9]

In studying these rays of light, we engage in signal processing, the area of applied mathematics
where wavelets are used. But what do we mean by the word signal? In everyday language,
a signal usually means some kind of message, be it a flashing light, a sound, or waving of
hands. Here we will define a signal as any kind of event that can be measured and represented
by numbers, which certainly applies at least to light and sound, as we can break them down
in numbers representing brightness, color, loudness, frequency etc. We gather this information
and try to understand it by analyzing the numbers. Is there a rhythm to the sound, or some
kind of pattern in the flashing light? A rhythm is, more or less, a simple mathematical relation
between time and the strength of the signal. For example, if we measure the ocean waves hitting
the shore, there is an obvious pattern to the sequence 1,0,1,0,1,0,..., that is, the waves come in
every other second. But some patterns can be more subtle, like relations between the vibrations
of strings that produce harmonic sounds.

The sequence we gave above can be associated with what we call a frequency, meaning a rate of
repetition. We can say that the wave sequence has a frequency of 2; it takes two seconds to return
to the initial value. What we have done is represent a possibly infinite sequence by a single
number, its rate of repetition, so analyzing frequency can often simplify signals that behave
similarly over long periods of time. Your brain can actually do this analysis automatically; think
of how you can identify two individual notes that are played simultaneously on a piano. Even
though they are not separate in time, in some way we recognize the notes as distinct anyway,
just as clearly as this page is separated by the next in space. The mathematical formalization of
this process is called the Fourier transform, and is named after Joseph Fourier who discovered
it when he was analyzing heat flow in the early 19th century.

If frequencies are also changing over time, it becomes hard to find a “small” set of numbers
that describes the signal. On the one hand, a frequency does not exist in an instant of time,
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1 Introduction

but over a longer period. Likewise, it’s hard to describe a sudden event in time as a sum of
frequencies. Somehow, these worlds, or domains, are fundamentally separated. In fact, there
is a mathematical principle, called the uncertainty principle, which we will prove in the case of
discrete signals, that limits how small the set of numbers can be that describes a phenomena in
both domains. We say that a signal can’t be localized in time and frequency simultaneously,
roughly meaning that there is no simple representation of any signal in both domains at the same
time. If a signal has a simple representation in the time domain, it will have a complicated rep-
resentation in the frequency domain. Wavelet analysis is partly concerned with maximizing this
localization. In other words, we use it to, as efficiently as possible, represent signals that have
important properties in both domains, like a sound wave that changes over time, for example.

Another important feature of wavelet analysis is what we call multiresolution analysis, which
essentially is a way to divide a signal into different levels of detail. A good analogy to describe
this is to compare it with how a sculptor makes a sculpture. To start with, the artist only has
a block of wood, rock or clay or whatever material she is using. She starts by carving out the
main features, the rough shape of the model object. Finer and finer features are carved out until
at last, the smallest scalpel or hammer is brought out to finish the work. With multiresolution
analysis, we can do this in reverse by extracting layers of detail, one after one, until nothing is
left but the most basic remnant of the original signal. In this way we can analyze a signal at
many different scales, depending on our needs. When this decomposition is done, we can easily
reconstruct the signal perfectly, or to an extent that leaves out unnecessary details.

Nowadays, wavelets are used extensively in all kinds of fields. One notable application is in im-
age compression. For example, using wavelet analysis, the FBI together with experts developed
a new way to compress fingerprint images [2, Prologue]. Since fingerprints all have similar
structure, they were able to develop wavelets that were especially efficient in compressing the
files without losing essential information. Generally it is also a great tool for detecting certain
features in large sets of signals with similar structures, for example it has important application
in medical imaging such as X-ray and MRI. Other applications include detecting defects in tex-
tiles or integrated circuits in factories, or to analyze DNA sequences as well as satellite images.
[5]

In the context of applied mathematics, the major developments of the subject have taken place
quite recently. The first reference to it goes back to Alfred Haar (1885-1993) in 1910 and
the construction of what would eventually be called the Haar wavelet, the simplest and most
intuitive wavelet basis. It is good for finding sharp edges that exist in time or space, for example
sudden pops in a sound or sharp edges in an image. In 1946, Dennis Gabor (1900-1979) made
an effort to combine frequency analysis with time analysis, where one analyzes the frequency
spectrum over intervals of time. In the late 80’s the subject exploded, and multiresolution
analysis was invented in 1988 by Stephane Mallat and Yves Meyer. Other notable contributors
include Ingrid Daubechies, Jan-Olov Strömberg and Jean Morlet, among others [3].

The objective of this text is to lay the foundations of the theory of wavelets in ZN and motivate
its usefulness using practical examples. The main reference for the theory is Michael Frazier’s
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book [2], though we try to focus more on intuition and examples, while still respecting rigor,
and take a slightly different approach to the construction of the wavelet bases in Chapter 3.

In Chapter 2 we define the discrete Fourier transform (DFT) and discuss its key properties;
localization in frequency and connection to what we call linear translation invariant system,
like amplifiers and filters. We also describe the fast Fourier transform, an essential property of
the DFT which greatly reduces the computer power needed to calculate it. To end the chapter
we prove the discrete case of the uncertainty principle, which quantifies the profound duality
between the time domain and the frequency domain.

In Chapter 3 we construct a general wavelet basis in the space of functions of size 2p, the most
important special case due to the computational advantages it brings with it. We describe the
multiresolution analysis and synthesis algorithm that decomposes any signal with regard to its
behavior at different scales, i.e. levels of detail, and give a simple example of this process.
Finally, in Chapter 4, we go through some of the numerical computations we made, like imple-
mentation of fast Fourier transform.

Had this been a more extensive work, we would have moved on to give some more examples of
specific wavelet applications, one particularly illustrative example of multiresolution analysis
being compression of image files. Unfortunately, we were not able to contain it in this text.
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2 The Discrete Fourier Transform

2.1 Introduction

The Discrete Fourier transform is the conversion from the time domain, meaning the standard
basis, to the frequency domain, meaning the Fourier basis, which we will define in Section 2.3.
With it we will be able to express any signal in a basis of periodic functions, the coefficients of
which will be called the frequency components of the signal. We call the standard basis the time
domain since many signals are measured as a function of time. It is also often called the space
domain if the values of the signal are associated with positions, like for example in image files.

2.2 Basic Definitions

Definition 2.1. We define `2(ZN) as the set of functions f : ZN → C, and represent a function
z by z = (z(0),z(1), ...,z(N− 1)), where ZN denotes the integers modulo N. The functions are
defined over all integers, where N = 0 mod N and so on.

These functions, often called signals in applications, form a vector space, and its structure is
equivalent to CN in the sense that there exists a bijection between the functions of `2(ZN) and
the vectors of CN , in which case z is represented by the column vector [z(0),z(1), ...,z(N−1)]t .
This fact is useful when we want to calculate linear transformations by matrix multiplication.
Later we may use the words function, signal or vector interchangeably while still using the op-
posite notation. Next, we remind the reader of some features of these vector spaces.

Definition 2.2. Let z,w ∈ `2(ZN).

1. The inner product is defined by 〈z,w〉= ∑N−1
n=0 z(n)w(n).

2. The norm is defined by ||z|| =
√

∑n |z(n)|2. The quantity ||z||2 is often referred to as the
energy of z.

3. The complex conjugate of z = a+bi is written z = a−bi.

Remark 2.1. The term energy comes from an analogy with physics, where the kinetic energy of
an object given a velocity vector v(t) is equal to m

2 ||v||2.
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2 The Discrete Fourier Transform

In dealing with the complex numbers, the complex exponential is a very important function.

Definition 2.3. The complex exponential z = eiθ is a representation of a point on the unit circle
in the complex plane where θ is the positive angle to the real axis. By Euler’s formula, eiθ =
cosθ + isinθ . Since cosθ is an even function, the conjugate of eiθ is e−iθ .

For reasons we will see soon, the following set of functions play a crucial role in the subject of
Fourier transform and wavelets.

Definition 2.4. We define the set of functions {E0,E1, ...,EN−1} ∈ `2(ZN) given by

E0(n) =
1√
N
,

E1(n) =
1√
N

e2πin/N ,

E2(n) =
1√
N

e2πi2n/N ,

...

EN−1(n) =
1√
N

e2πi(N−1)n/N for n = 0,1,2, ...,N−1.

(a) E1 for N = 30 (b) E1 for N = 8

Figure 2.1

As exemplified in Figure 2.1 where we have plotted the values of these functions using python,
we get N points on the circle of radius 1√

N
centered at the origin in the complex plane (which

may or may not be distinct). For example, as n goes from 0 to N− 1, the values of E1 are N
distinct and evenly spaced points on this circle.

Remark 2.2. If we interpret n as a time variable, we can associate the functions above with
frequencies. The function E1 is “slow”, or has a low frequency, since the values at consecutive
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2.3 Defining the Discrete Fourier Transform

indices are close as measured on the unit circle in C. Note also that e2πi(N−1)/N = e−2πi/N ,
so the function EN−1 is also regarded as slow in the same sense. The functions Ek for k near
N/2 are associated with high frequencies, since the values of consecutive indices are farther
apart on the circle. We can think of the function E0 as the “zero frequency”, being a constant
function.

The following lemma establishes that the functions Ek form an orthonormal basis in `2(ZN).

Lemma 2.1. The set {E0,E1, ...,EN−1} forms an orthonormal basis on the space `2(ZN).

Proof. We need to show that each vector En is orthogonal to every other vector in the basis, i.e.
that the inner product is 0, and that the norm of each vector is 1, or that 〈En,En〉= ||En||2 = 1.

〈E j,Ek〉=
N−1

∑
n=0

E j(n)Ek(n) =
N−1

∑
n=0

1√
N

e2πi jn/N 1√
N

e2πikn/N

=
1
N

N−1

∑
n=0

e2πi jn/Ne−2πikn/N =
1
N

N−1

∑
n=0

(e2πi( j−k)/N)n.

We see that if j = k, e2πi( j−k)/N = e0 = 1, and the inner product is 1. For j 6= k, j− k is an
integer and N > 1, and we have

N−1

∑
n=0

(e2πi( j−k)/N)n =
1− (e2πi( j−k)/N)N

1− e2πi( j−k)/N
=

1− e2πi( j−k)

1− e2πi( j−k)/N
=

1−1
1− e2πi( j−k)/N

= 0,

where we use the formula ∑N−1
n=0 zn = 1−zN

1−z .

2.3 Defining the Discrete Fourier Transform

Now we are ready to define the discrete Fourier transform (DFT).

Definition 2.5. The discrete Fourier transform is a linear map ˆ : `2(ZN)→ `2(ZN) defined for
m ∈ ZN by

ẑ(m) =
√

N〈z,Em〉=
N−1

∑
n=0

z(n)e−2πimn/N .

Sometimes we will use the notation ωN = e−2πi/N for brevity, so the DFT becomes

ẑ(m) =
N−1

∑
n=0

z(n)ωmn
N .

We say that the coefficients of ẑ are the frequency components of z.
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2 The Discrete Fourier Transform

Since ˆ is a linear map in a finite dimensional space, it has an associated matrix, which is

WN =




1 1 1 1 . . . 1
1 ω1

N ω2
N ω3

N . . . ω(N−1)
N

1 ω2
N ω4

N ω6
N . . . ω2(N−1)

N

1 ω3
N ω6

N ω9
N . . . ω3(N−1)

N
...

...
...

... . . . ...
1 ω(N−1)

N ω2(N−1)
N ω3(N−1)

N . . . ω(N−1)(N−1)
N




,

that is, ẑ =WNz.

Example 2.1. We calculate the DFT of z = (1,2,1,2). From the formula for WN we get the
transformation matrix

W4 =




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


 .

Matrix multiplication yields

ẑ =W4z =




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i







1
2
1
2


=




6
0
−2
0


 ,

which is equivalent to ẑ = (6, 0, −2, 0).

Remark 2.3. This example helps justify the interpretation of the functions Ek as frequency
components. The function z in the example is a simple oscillation between 1 and 2, so we would
expect ẑ to have a simple representation. Indeed, there are only two frequency components,
namely E2 = (1,−1,1,−1), which we can see has the same rate of oscillation as z, and the
constant function E0 since the oscillation is not around 0, but 1.5.

The matrix WN is a special case of a Vandermonde matrix, meaning that the terms in each
row form geometric progressions with distinct ratios. A well known result [7] about these
matrices is that the determinant of a Vandermonde matrix V with ratios α1,α2, ..., αN (in our
case 1,ωN ,ω2

N , ...,ω
N−1
N ) is given by

det(V ) = ∏
1≤i< j≤n

(α j−αi).

Since the ratios αi,α j are distinct if i 6= j, the determinant is nonzero, and thus the matrix is
invertible, meaning that the DFT has an inverse operator.
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2.3 Defining the Discrete Fourier Transform

Lemma 2.2. The Fourier inversion formula is given by

z(n) =
1
N

N−1

∑
m=0

ẑ(m)e2πimn/N .

Proof. The formula yields the matrix

MN =
1
N




1 1 1 1 . . . 1
1 ω−1

N ω−2
N ω−3

N . . . ω−(N−1)
N

1 ω−2
N ω−4

N ω−6
N . . . ω−2(N−1)

N

1 ω−3
N ω−6

N ω−9
N . . . ω−3(N−1)

N
...

...
...

... . . . ...
1 ω−(N−1)

N ω−2(N−1)
N ω−3(N−1)

N . . . ω−(N−1)(N−1)
N




for applying the inversion. When taking the product MNWN , the elements are on the form
1
N ∑N−1

n=0 ω in
N ω− jn

N , where 0 ≤ i, j ≤ N− 1. If i = j, the sum is 1. If not, i− j = k 6= 0, and the
sum is 1

N ∑N−1
n=0 ωkn

N . We have

ωkN
N −1 = (ωk

N−1)(1+ωk
N +ω2k

N + ...+ω(N−1)k
N ),

and ωkN
N = 1, so the left hand side is 0. Since k 6= 0 and |k|<N, ωk

N 6= 1, so (1+ωk
N +ω2k

N + ...+

ω(N−1)k
N ) = 0. Therefore the product MNWN = I and MN =W−1

N (it is also the right inverse).

Definition 2.6. We define the inverse discrete Fourier transform (IDFT) as the function ˇ :
`2(ZN)→ `2(ZN) given by

w̌(n) =
1
N

N−1

∑
m=0

w(m)e2πimn/N . (2.1)

Remark 2.4. As we see in the discrete Fourier inversion formula, the matrix MN is just 1
NW N ,

and we can see the two operations are closely connected. This means that many of the lemmas
and theorems proved for the DFT have analog proofs for the IDFT.

Note that the set {Ek} is not the basis in which ẑ is expressed, since z 6=∑N−1
m=0 ẑ(m)Em. We could

have defined the Fourier coefficients as 〈z,Em〉, however this would mean that the values of the
matrix WN would be divided by

√
N, and would be very small if N was high. When calculating

with computers, this would lead to bigger errors since there would be less significant digits. Of
course, we now need to divide by N in the matrix MN instead of

√
N, but it is better to make

only one division rather than two when converting back and forth, since errors accumulate with
these divisions. So, even if we won’t use it much explicitly, we should clarify the following.

Lemma 2.3. The set {F0,F1, ...,FN−1}, called the Fourier basis, defined by

Fm =
1√
N

Em

17



2 The Discrete Fourier Transform

is an orthogonal basis in `2(ZN), and the coefficients of z in the Fourier basis are ẑ(m) for all
m ∈ ZN .

Proof. By linearity of the scalar product, the set {Fk} is an orthogonal basis since {Ek} is an
orthogonal basis by Lemma 2.1. Also, using equation (2.1),

z(m) =
1
N

N−1

∑
m=0

ẑ(m)e2πimn/N =
N−1

∑
m=0

ẑ(m)Fm,

so ẑ(m) are the coefficients of z in the Fourier basis.

2.4 Properties of The DFT

The two identities below can be interpreted as saying that the DFT preserves proportional angles
(in particular it preserves orthogonality) and energies of signals.

Lemma 2.4. Let z,w ∈ `2(ZN). Then

1. (Parseval’s relation)

〈z,w〉= 1
N

N−1

∑
m=0

ẑ(m)ŵ(m) =
1
N
〈ẑ, ŵ〉.

2. (Plancherel’s formula)

||z||2 = 1
N

N−1

∑
m=0
|ẑ(m)|2 = 1

N
||ẑ||2.

Proof. For the first relation, since, by Lemma 2.1, {Ek}N−1
k=0 is an orthonormal basis we have

z = ∑N−1
m=0〈z,Em〉Em. Then

〈z,w〉=
〈

N−1

∑
m=0
〈z,Em〉Em,w

〉
.

By linearity of the scalar product, we have
〈

N−1

∑
m=0
〈z,Em〉Em,w

〉
=

N−1

∑
m=0
〈z,Em〉〈Em,w〉=

N−1

∑
m=0
〈z,Em〉〈w,Em〉

using the conjugate symmetry of the inner product. Note that

N−1

∑
m=0
〈z,Em〉〈w,Em〉=

1
(
√

N)2

N−1

∑
m=0

ẑ(m)ŵ(m) =
1
N
〈ẑ, ŵ〉.
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2.4 Properties of The DFT

The second statement is a direct consequence of the first one.

2.4.1 Localization

As we have hinted, the Fourier basis is very convenient when it comes to dealing with pe-
riodic functions, which come up in all kinds of applications. For example, in working with
audio signals, a function that looks complicated in the standard basis can have a very simple
representation in the Fourier basis, as the following example shows.

Example 2.2. If z = (0, 1√
2
,1, 1√

2
,0,− 1√

2
,−1,− 1√

2
), then ẑ = (0,−4i,0,0,0,0,0,4i). In fact, z

is just the values of sin(πn
4 ). Since by Euler’s formula, sin(πn

4 ) = e2πin/8−e−2πin/8

2i , we can see that
E1 and E7 should be the only contributing frequencies.

What this suggests is that the Fourier basis is localized in frequency. We say that a function is
localized if the values of the function are mostly zero (or sufficiently small). In other words,
the significant values are concentrated in specific locations. We know for example that the
standard basis is localized in time; the base vectors are just the rows of the identity matrix. This
means that a specific event in time is localized to certain base vectors. For example, the signal
z = (0,0,0,1,0,0,0,0), a single spike in amplitude at n = 3, is localized by the standard basis,
while the Fourier transform looks like:

ẑ = (1,− 1√
2
− 1√

2
i, i,

1√
2
− 1√

2
i,−1,

1√
2
+

1√
2

i,−i,− 1√
2
+

1√
2

i).

Only looking at ẑ, it is very hard to see how z behaves as a function of time. However, if we
apply the DFT to the Fourier basis vectors, we notice that F̂m(n) =

√
N〈Fm,En〉 is nonzero if

and only if n = m. Thus, the Fourier basis is perfectly localized in frequency. As Example 2.2
showed, particular frequencies show up at particular indices of ẑ. This allows us to single out
and manipulate different frequency components of a signal, which is very useful.

Example 2.3. In Figure 2.2 (a) we have generated the plot using python code of the function
z ∈ `2(Z1024) such that

z(n) = sin(
2πn
1024

)+ sin(
12πn
1024

)+ sin(
32πn
1024

)+
1
5

sin(
150πn
1024

)

with added noise around n = 300 and n = 500 (the exact definition of the function in python
code is found in Chapter 4). The discrete values are connected with a line for aesthetic purposes.
From the formula we see that there are four dominant frequencies involved, which can clearly be
identified in the plot of the imaginary part of ẑ; yet another example of a signal being localized
by the Fourier basis. (Well, we actually see eight spikes in Figure 2.2 (c). We can use the same
reasoning as in Example 2.2 to conclude that these functions are E1, E6, E16 and E75 as well as
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2 The Discrete Fourier Transform

the conjugates E1024, E1019, E1009 and E950). After making the DFT of z we could easily filter
out the noise if we wanted to by thresholding, meaning we only keep the frequencies for which
the coefficients are above a certain threshold, in this case a threshold of 50 or so seems to be
enough. A plot of the filtered signal can be found in Chapter 4.

(a) z

(b) Real part of ẑ

(c) Imaginary part of ẑ

Figure 2.2: The signal from Example 2.3 and its discrete Fourier transform.

2.4.2 Translation Invariant Operators in `2(ZN)

In this section we prove a very important theorem in the subject, which states that certain oper-
ators in `2(ZN) are significantly simplified when working in the Fourier basis. In order to state
the theorem, we must first make some definitions.

Definition 2.7. Let z,w,m ∈ `2(ZN).
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2.4 Properties of The DFT

1. We define the operator Rk as having the property:

(Rkz)(n) = z(n− k) for n,k ∈ Z,

and call it the translation operator.

2. For z,w ∈ `2(ZN), the convolution z∗w is the function with values

(z∗w)(m) =
N−1

∑
n=0

z(m−n)w(n).

If a function b is fixed, the transformation Tb defined by Tb(z) = b∗ z is called a convolu-
tion operator.

3. We define the Fourier multiplier operator Tm : `2(ZN)→ `2(ZN) by

Tm(z) = (mẑ)ˇ

where mẑ is obtained by component-wise multiplication of m and ẑ. The function m is
called a multiplier, or a filter.

The translation operator permutes the coordinates of z by rotation (hence the notation), so for
example, if k = 2 and z = (1, i,−1,−i), then R2z = (−1,−i,1, i). Note that, for example,
(R2z)(1) = z(1− 2) = z(−1) = z(3) since we are working modulo N = 4. In audio signal
applications, a translate in the standard basis is a shift in time. Regarding the Fourier multiplier
operator, this operator scales each component of ẑ by a scalar m(k), and then outputs the signal
in the standard basis. This corresponds to amplifying or attenuating (reducing) frequencies in a
signal. In Section 2.5 we will give a more intuitive explanation of convolution.

Further, we define translation invariance.

Definition 2.8. A linear transformation T : `2(ZN)→ `2(ZN) is translation invariant if

T (Rkz) = RkT (z)

for all z ∈ `2(ZN) and all k ∈ Z.

Now we can state and prove the theorem, and then discuss its applications.

Theorem 2.1. Let T be a linear transformation `2(ZN)→ `2(ZN). The following are equiva-
lent.

i T is translation invariant.

ii T is a convolution operator.

iii T is a Fourier multiplier operator.
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2 The Discrete Fourier Transform

Proof. We prove i =⇒ ii as part of the discussion of linear translation-invariant systems in
Section 2.5, so here we prove ii =⇒ i and ii ⇐⇒ iii.

First, let Tb be a convolution operator.

Tb(Rkz)(m) = b∗ (Rkz)(m) =
N−1

∑
n=0

b(m−n)(Rkz)(n) =
N−1

∑
n=0

b(m−n)z(n− k).

Now make the variable substitution p = n− k. Then for all m,

Tb(Rkz)(m) =
N−1−k

∑
p=−k

b(m− k− p)z(p) =
N−1

∑
p=0

b(m− k− p)z(p)

= (b∗ z)(m− k) = Rk(b∗ z)(m) = RkTb(z)(m).

Thus Tb is translation invariant.

Next, let z,w ∈ `2(ZN) and consider (z∗w)ˆ.

(z∗w)ˆ(m) =
N−1

∑
n=0

(z∗w)(n)ωmn
N =

N−1

∑
n=0

N−1

∑
k=0

z(n− k)w(k)ωmn
N

=
N−1

∑
n=0

N−1

∑
k=0

z(n− k)w(k)ωm(n−k)
N ωmk

N

=
N−1

∑
k=0

w(k)ωmk
N

N−1

∑
n=0

z(n− k)ωm(n−k)
N .

Now, again make the substitution p = n− k in the second sum of the last row.

N−1

∑
n=0

z(n− k)ωm(n−k)
N =

N−1−k

∑
p=−k

z(p)ωmp
N =

N−1

∑
p=0

z(p)ωmp
N .

Thus

(z∗w)ˆ(m) =
N−1

∑
k=0

w(k)ωmk
N

N−1

∑
p=0

z(p)ωmp
N = ẑ(m)ŵ(m). (2.2)

Hinging on an important fact about the Fourier Transform, this theorem could prove extremely
useful in applications, as it turns the complex and important operation of convolution into
Fourier multipliers. Since convolution requires N2 multiplications (each of the N coefficients of
z ∗w is defined as the sum of N multiplications) the computer power needed to compute them
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2.4 Properties of The DFT

grows beyond our limits for large enough N. However, the DFT itself is an operation that seems
to require N2 multiplications, but as we will see in the next section, there are shortcuts. These
together with Theorem 2.1 are the most important features of the DFT.

2.4.3 The Fast Fourier Transform

For Theorem 2.1 to be effective in applications, we would need a fast algorithm to compute
the DFT. Otherwise, to avoid doing the N2 multiplications of convolution, we would need N2

multiplications to calculate the DFT. Obviously that would defeat the purpose entirely. Luckily,
there is an algorithm, appropriately named the fast Fourier transform (FFT), due in part to Gauss
and much later updated by Cooley and Tukey [4]. As we show in Chapter 4, this algorithm is
essential if we want to use the DFT on signals of greater size. We show it for the special case
when N is even.

Theorem 2.2. Suppose M ∈ N, and N = 2M. Let z ∈ `2(ZN). Define u,v ∈ `2(ZM) by

u = (z(0),z(2),z(4), ...,z(N−4),z(N−2))

and
v = (z(1),z(3),z(5), ...,z(N−3),z(N−1)).

Let ẑ =WNz, û =WMu, and v̂ =WMv. Then for m = 0,1, ...,M−1

ẑ(m) = û(m)+ e−2πim/N v̂(m) (2.3)

For m = M,M+1,M+2, ...,N−1, let l = m−M. Then

ẑ(m) = ẑ(l +M) = û(l)− e−2πil/N v̂(l). (2.4)

Proof. Remember that by definition

ẑ(m) =
N−1

∑
n=0

z(n)e−2πimn/N .
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2 The Discrete Fourier Transform

By the properties of sums

ẑ(m) =
M−1

∑
k=0

z(2k)e−2πi2km/N +
M−1

∑
k=0

z(2k+1)e−2πi(2k+1)m/N

=
M−1

∑
k=0

u(k)e−2πikm/(N/2)+ e−2πim/N
M−1

∑
k=0

v(k)e−2πikm/(N/2)

=
M−1

∑
k=0

u(k)e−2πikm/M + e−2πim/N
M−1

∑
k=0

v(k)e−2πikm/M.

For m = 0,1, ...,M−1, we now have ẑ(m) = û(m)+ e−2πim/N v̂(m). If m = M,M+1, ...,N−1,
remember m = l +M.

M−1

∑
k=0

u(k)e−2πik(l+M)/M + e−2πi(l+M)/N
M−1

∑
k=0

v(k)e−2πik(l+M)/M

=
M−1

∑
k=0

u(k)e−2πikl/M + e−2πil/Ne−2πiM/N
M−1

∑
k=0

v(k)e−2πikl/M

=
M−1

∑
k=0

u(k)e−2πikl/M− e−2πil/N
M−1

∑
k=0

v(k)e−2πikl/M,

since e−2πiM/N = e−2πiM/(2M) = e−πi =−1. Thus ẑ(m) = ẑ(l +M) = û(l)− e−2πil/N v̂(l).

Since the DFT requires N2 multiplications, using this formula once we have reduced the number
of multiplications to (N

2 )
2 +(N

2 )
2 = N2

2 plus N/2 multiplications with the constants in formula
(2.3) and (2.4). For example, if N = 104, N2 = 108 while N2

2 + N
2 = 5 · 107 + 5 · 103 ≈ 5 · 107,

which is a reduction by about a half. The real power of the method becomes apparent when we
feed u and v back into the FFT algorithm. So if N = 2p for some p > 1, we can use Theorem
2.2 again to decompose u and v, which are of size M. Using induction one can show [2, Lemma
2.9] that the FFT can reduce the number of calculations to the order of N log2 N/2. This number
makes intuitive sense, since we can break down z ∈ `2(Z2p) log2 N times until we can calculate
the DFT of N single value vectors. Half of those, corresponding to the v-vectors, are multiplied
once in every log2 N step until the calculation of ẑ is completed.

See Chapter 4 to see an implementation of the FFT algorithm using python code, where we also
compare the computation times of the FFT versus the DFT of a large vector.
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2.5 Linear Translation Invariant Systems And Convolution

2.5 Linear Translation Invariant Systems And
Convolution

Here we will derive the formula for convolution in the setting of linear translation invariant
(LTI), or time invariant, systems and give an example of such a system.

In Figure 2.3 we see a schematic diagram of what is called a system. A translation invariant
system S is a system such that S(Rkz) = RkS(z). If the system is also linear, i.e. S(z+w) =
S(z)+S(w), it is called a LTI system. Two audio-related examples of LTI systems are (idealized)
guitar amplifiers or concert halls; the sound the listener eventually receives is independent on
when the guitar is played or when a singer sings. If S is linear, then the output of a signal z is

S(z) = S(z(0)e0)+S(z(1)e1)+ ...+S(z(N−1)eN−1) =
N−1

∑
k=0

z(k)S(ek). (2.5)

Thus, in a LTI system, we could predict the system output of any signal by inputting a unit
impulse, mathematically described by (1,0,0, ...,0) = e0, and get S(e0) = b, which is called the
impulse response of the system. Since ek is just Rke0, i.e. e0 shifted in time, we can calculate
the output of any signal z using formula (2.5).

The output of the first impulse of the signal, z(0)e0, will be S(z(0)e0) = z(0)S(e0) = z(0)b. The
next impulse will be z(1)e1, and S(z(1)e1) = z(1)R1b. Depending on the impulse response,
many terms in formula (2.5) may influence the output at any given time, and we get that the
output at n = 0,1, ...,N−1 is given by

(Sz)(n) =
N−1

∑
k=0

z(k)S(ek)(n) =
N−1

∑
k=0

z(k)Rkb(n) =
N−1

∑
k=0

z(k)b(n− k),

which is defined as the n-th coefficient of the convolution z∗b. This proves i =⇒ ii in Theorem
2.1.

Example 2.4. In a certain concert hall, the sound of a voice reverberates in the room after
a singer has stopped singing. Let’s make the big simplification that the time unit is 1 second,
N = 10, and the singer stands in the same place and either sings the same note or is silent for each
second. If she sings for one second at “unit” volume, the output of the signal e0 = (1,0, ...,0),
the impulse response, is b = (1, 4

5 ,
3
5 ,

2
5 ,

1
5 ,0,0,0,0,0), i.e. the sound echoes for 5 seconds and

then stops for the rest of the period.

Now, a certain “song” is 5 seconds long and is given by z = (5,5,10,10,20,0,0,0,0,0), where
the singer starts off softly and builds up to a crescendo. The system output, i.e. the sound you
receive in a certain seat, at 5 seconds, (Sz)(4), will depend on what the singer is singing at the
moment, and the echo of previous seconds performance. The input during the first second will
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2 The Discrete Fourier Transform

Figure 2.3: In a LTI system, the output of each signal is determined by the impulse response
of the system. In this case, the impulse response seems to be some oscillating and
diminishing signal.

be echoing with amplitude 51
5 = 1, for example.

(Sz)(4) = (b∗ z)(4) =
N−1

∑
k=0

b(4− k)z(k)

= 5 · 1
5
+5 · 2

5
+10 · 3

5
+10 · 4

5
+20 ·1+0+0+0+0+0

= 1+2+6+8+20 = 37.

Even if it is rather unnecessary in this case, we can calculate the whole output signal S(z) by
using the DFT and equation (2.2). With the DFT-program shown in Chapter 4, we get the
vectors (in CN notation and rounded for readability):

b̂ =




3
1.55−1.54i
0.5−0.69i
0.65−0.36i
0.5−0.16i

0.6
0.5+0.16i

0.65+0.36i
0.5+0.69i

1.55+1.54i




ẑ =




50
−7.14−33.71i
−3.45+14.27i
9.64−12.02i
−9.05+8.82i

20
−9.05−8.82i
9.64+12.02i
−3.45−14.33i
−7.14+33.71i




,
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which, using the formula, yields

(b∗ z)ˆ =




150
−62.92−41.12i

8.09+9.51i
1.92−11.35i
−3.09+5.88i

12
−3.09−5.88i
1.92+11.35i
8.09−9.51i
−62.92+41.12i




.

Taking the inverse DFT of this vector gives us

((b∗ z)ˆ)ˇ =




5
9

17
23
37
27
18
10
4
0




,

and we can confirm that our earlier calculation of (Sz)(4) gave the same value. This signal
should then be interpreted as the output of the LTI system, where the values represent the sum
of the volume of the singer and the echo of previously sung notes. As we can see, the volume
reaches its peak in the fifth second, and as we expect the signal dies out five seconds after the
singer sings the last note.

If instead N = 2p had been large, this method, using the FFT, would cut down the number of
complex multiplications tremendously.

2.6 The Uncertainty Principle

Note that in Figure 2.2, z has a lot of nonzero values, while ẑ seems to have a lot of zero or
small values. This is no coincidence, and in fact there is a fundamental principle that says that
if a signal is localized in frequency, it cannot also be localized in time and vice versa.

The uncertainty principle is a common name for a great number of statements in different ap-
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2 The Discrete Fourier Transform

plications and contexts. The reader may have heard about Heisenberg’s uncertainty principle
[10] in quantum mechanics, which is also a collection of mathematical statements concerned
with the problem of localization. As shown by the famous double-slit experiment, elementary
particles exhibit wave-particle duality, which means that they may be described in terms of both
waves and particles. When making measurements of some quantum phenomenon, it would be
meaningless to speak of the exact position of a wave, or the momentum (related to frequency)
of a single particle. Heisenberg’s uncertainty principle states that if the location of a quantum
entity is known with accuracy, the momentum cannot be accurately determined, and vice versa.
Quite analogously, the uncertainty principle that we are concerned with in this text says that a
signal cannot be localized in time (or space, or whatever) and frequency simultaneously. For
example, if z describes a signal that is concentrated in a short interval of time, and 0 outside that
interval, it will have many different nonzero frequency components.

We prove this transcendent piece of mathematics restricted to discrete Fourier analysis, follow-
ing the ideas of Donoho & Stark [1].

Lemma 2.5. Let z ∈ `2(ZN). If Nt is the number of nonzero entries in z, then ẑ cannot have Nt
consecutive zeros. (Because of the cyclical nature of `2(ZN), ẑ(N−1) and ẑ(0) are considered
to be consecutive.)

Proof. In the following we omit the subscript N in ωN for readability.

Let {τ j} be the set of indices such that z(τ j) 6= 0, j = 1,2, ...,Nt , and let a j = z(τ j) be the
corresponding nonzero values. Now consider some interval m+ 1,m+ 2, ...,m+Nt of indices
of ẑ. We want to show that b = (ẑ(m+1), ẑ(m+2), ..., ẑ(m+Nt)) 6= 0.

When we make the multiplication WNz, since z(n) = 0 if n 6= τ j, we don’t need to multiply by
the columns in WN that only multiply with zeros. The formulas for ẑ(m+ k) are

ẑ(m+1) = a1ωτ1(m+1)+a2ωτ2(m+1)+ ...+aNt ω
τNt (m+1),

ẑ(m+2) = a1ωτ1(m+2)+a2ωτ2(m+2)+ ...+aNt ω
τNt (m+2),

...

ẑ(m+Nt) = a1ωτ1(m+Nt)+a2ωτ2(m+Nt)+ ...+aNt ω
τNt (m+Nt).

We can rewrite this as a matrix multiplication:

b =




(ωτ1)m+1 (ωτ2)m+1 . . . (ωτNt )m+1

(ωτ1)m+2 (ωτ2)m+2 . . . (ωτNt )m+2

...
... . . .

...
(ωτ1)m+Nt (ωτ2)m+Nt . . . (ωτNt )m+Nt


a.
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This matrix is a Nt by Nt square matrix, and to show that b 6= 0 is equivalent to showing that
the matrix is invertible since a is nonzero in all places. We may divide each column j by
(ωτ j)m+1 6= 0 and get the matrix




1 1 . . . 1
ωτ1 ωτ2 . . . ωτ3

ω2τ1 ω2τ2 . . . ω2τ3

...
... . . .

...
ω(Nt−1)τ1 ω(Nt−1)τ2 . . . ω(Nt−1)τNt



,

which we recognize as a transposed Vandermonde matrix. Like we observed earlier for the
matrix WN , this means the determinant is nonzero, so b 6= 0.

Theorem 2.3. (The Discrete Time Uncertainty Principle). For z ∈ `2(ZN), if Nt ,N f > 0 are the
number of nonzero entries in z and ẑ, respectively, then

Nt ·N f ≥ N,

which implies
Nt +N f ≥ 2

√
N.

Proof. Assume the negation NtN f < N. We can write N = kNt + r for some integers k and
r < Nt . Because ẑ is cyclical, imagine tying together index 0 and N − 1 to form a circle of
indices (see Figure 2.4). By Lemma 2.5, N f ≥ k since for every interval of k indices there is
at least one nonzero value of ẑ. Thus N f = k by our assumption. If r = 0, we have NtN f = N,
a contradiction. If r > 0, we must add a zero value, but this is clearly not possible since we
already proved the result for r = 0.

The second relation follows from

0≤ (Nt−N f )
2 = N2

t −2NtN f +N2
f = N2

t +2NtN f +N2
f −4NtN f =⇒ (Nt +N f )

2 ≥ 4NtN f

where NtN f ≥ N by the first relation.

The theorem says that if we have a great number of zeros in one of z or ẑ, the amount of zeros
in the other must be small. In the extreme case, if z has only one nonzero entry, ẑ has no zeros.

Example 2.5. If z = (1,0,0,0), ẑ = (1,1,1,1). In Example 2.2, Nt = 6 and N f = 2, so NtN f =
12≥ 8.

In more general terms, the uncertainty principle extends to the statement that a signal z with few
high values, relative to the rest, will transform to a function ẑ with many high values. We don’t
prove this for the DFT, but an analogy can be made with a result for the continuous Fourier
transform that involves probability [11]. Say that a function g describes a signal with a normal
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2 The Discrete Fourier Transform

Figure 2.4: The indices of a cyclic function z ∈ `(Z12). 11 and 0 are consecutive indices.

(i.e. Gaussian) probability distribution in time. That is, the probability that the values lie in
a certain time interval around the mean µt is a function of the standard deviation σt . If σt is
small, then most of the values are concentrated near µt so that the exceptional values are few,
or in other words, the values are highly localized in a certain range. The uncertainty principle
states that if σt is small, then the standard deviation of the Fourier transform of g is high, or
more precisely,

σtσ f ≥C,

for some constant C. This means that the Fourier transform of g is not localized, or that the
values are dispersed over a wider range.
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3 Wavelets on ZN

3.1 An Introductory Example

A major reason for developing wavelet theory is data compression. That is, reducing the size
of some data set, and preferably as efficiently as possible, meaning that most of the useful
information is included in the compressed set of data. A wavelet transformation is a way of
expressing a signal in two parts, one that we call the trend and one that we call the fluctuation.
As the names suggest, this split is designed so that the trend represents the basic shape of the
signal, while the energy of the fluctuation is small. We begin with an example.

Example 3.1. The Haar transform is one of the simplest examples of a wavelet transform. We
define the first-stage Haar wavelet basis as the `2(ZN) functions

X1 =

(
1√
2
,− 1√

2
,0,0, ...,0

)
,

X2 =

(
0,0,

1√
2
,− 1√

2
,0,0, ...,0

)
,

...

XN/2 =

(
0,0, ...,0,

1√
2
,− 1√

2

)
,

Y 1 =

(
1√
2
,

1√
2
,0,0, ...,0

)
,

Y 2 =

(
0,0,

1√
2
,

1√
2
,0,0, ...,0

)
,

...

Y N/2 =

(
0,0, ...,0,

1√
2
,

1√
2

)
,

for even N. Theorem 3.1 in Section 3.2.1 will show that this is an orthonormal basis in `2(ZN).
The first level Haar transform of z can be defined as the operator H1 that takes a signal z to a the
signal (x1,y1), where
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x1(m) = 〈z,Xm〉 for m = 1,2, ...,
N
2

y1(m) = 〈z,Y m〉 for m = 1,2, ...,
N
2
.

If we examine the functions x1 and y1, we see that the elements of y1 is a scaled average of
two adjacent values of z. The functions Y k are constructed to produce an approximation of z
with half the data points of z. The smaller fluctuations that are lost in the approximation are
recorded in x1. In Figure 3.1 (a) we see the graph of the function from Example 2.3 defined by
z ∈ `2(Z1024) such that

z(n) = sin(
2πn
1024

)+ sin(
12πn
1024

)+ sin(
32πn
1024

)+
1
5

sin(
150πn
1024

)

with added noise around n = 300 and n = 500 (see Chapter 4 for details). Again, we have
connected the discrete values with a line. Figure 3.1 (b) shows the first-stage Haar transform of
z, where we see that the basic shape is intact in the trend function y1, the first 512 values, while
some of the fluctuations are stored in x1, the last 512 values. In fact, roughly 99,5% of the total
energy of z (||z||2 ≈ 1580) is concentrated in y1, even though we have compressed the signal z
to half its original size. The process is then iterated on the trend function y1, and after the third
level we have a very rough approximation of z in y3. The energy of the trend of the third level
Haar transform is still about 97.1% of the total.

We show below that the Haar transform conserves the energy of any signal:

Claim 3.1. If H1 is the first-stage Haar Transform operator in `2(ZN) as defined above, then

||H1(z)||2 = ||z||2.

Proof. By definition of H1,

||H1(z)||2 =||(x1,y1)||2 =
(z(0)− z(1))2

2
+ ...+

(z(N−2)− z(N−1))2

2

+
(z(0)+ z(1))2

2
+ ...+

(z(N−2)+ z(N−1))2

2

=
1
2

N/2−1

∑
k=0

z(2k)2−2z(2k)z(2k+1)+ z(2k+1)2

+
1
2

N/2−1

∑
k=0

z(2k)2 +2z(2k)z(2k+1)+ z(2k+1)2

=
N−1

∑
j=0

z( j)2 = ||z||2.
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Another key property of the Haar transformation is that it has an inverse transformation, which
allows us to completely reconstruct z.

Claim 3.2. The inverse of H1 is given by

H−1
1 (x1,y1)(n) =

{y1(n)+x1(n)√
2

if n = 0,2,4, ...,N−2
y1(n)−x1(n)√

2
if n = 1,3,5, ...,N−1

.

Proof. For even n

y1(n)+ x1(n)√
2

=
z(n)+ z(n+1)

2
+

z(n)− z(n+1)
2

= z(n),

and odd n
y1(n)− x1(n)√

2
=

z(n−1)+ z(n)
2

− z(n−1)− z(n)
2

= z(n).

Again we see the usefulness of working with signals of size N = 2p. In this case, we can repeat
the process of taking invertible Haar transforms 10 times, since 1024 = 210, and then be able to
reconstruct z with the amount of detail we would like.

3.2 Construction of the Wavelet Bases

In this section we give the construction of a general wavelet basis for `2(Z2p), and the ultimate
goal is to find bases that can be localized in both time and frequency, at least up to the limitations
of the uncertainty principle.

3.2.1 The First-Stage Basis

The conjugate reflection operator will be important going forward.

Definition 3.1. For any z ∈ `2(ZN), define the conjugate reflection z̃ ∈ `2(ZN) by

z̃(n) = z(−n) = z(N−n)

for all n.
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3 Wavelets on ZN

(a) z

(b) 1st level Haar transform

(c) 2nd level Haar transform

(d) 3rd level Haar transform

(e) Compressed signal

Figure 3.1: A function z and some transformations using the Haar wavelet basis.

34



3.2 Construction of the Wavelet Bases

Claim 3.3. For z ∈ `2(ZN),
(z̃)ˆ(m) = ẑ(m) (3.1)

Proof. Using the definition,

(z̃)ˆ(m) =
N−1

∑
n=0

z̃(n)ωmn
N =

N−1

∑
n=0

z(−n)ωmn
N =

N−1

∑
k=0

z(k)ω−mk
N = ∑

k=0
z(k)ωmk

N = ẑ(m).

The reason for its importance is that it connects convolution with inner products in the following
way.

Lemma 3.1. Suppose z,w ∈ `2(ZN). For any k ∈ ZN ,

z∗ w̃(k) = 〈z,Rkw〉 (3.2)

and
z∗w(k) = 〈z,Rkw̃〉. (3.3)

Proof. By definition,

〈z,Rkw〉=
N−1

∑
n=0

z(n)Rkw(n) =
N−1

∑
n=0

z(n)w(n− k)

=
N−1

∑
n=0

z(n)w̃(k−n) = w̃∗ z(k).

We need to show that convolution is commutative. By definition of convolution,

x∗ y(m) = x(m)y(0)+ x(m−1)y(1)+ ...+ x(m− (N−1))y(N−1)
y∗ x(m) = y(m)x(0)+ y(m−1)x(1)+ ...+ y(m− (N−1))x(N−1).

We realize that for any m, x ∗ y(m) = y ∗ x(m), so we conclude equation (3.2). If we replace w
with w̃ and note that ˜̃w = w, we get (3.3) and we are done.

Lemma 3.1 might provide a good starting point in the search of a good basis. Since the coeffi-
cients of z in an orthonormal basis are the projections on the base vectors, i.e. scalar products,
an orthonormal basis on the form B = {Rkw}N−1

k=0 would make for simple calculations since

[z]B(m) = 〈z,Rmw〉= z∗ w̃(m),
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3 Wavelets on ZN

which as we know by now is quickly computed using the FFT. Also, such a basis, like the
standard basis, can be localized in time. But as we might suspect, the uncertainty principle will
not allow this basis to be localized in frequency whatsoever, as the following lemma proves.

Lemma 3.2. Let w ∈ `2(ZN). Then {Rkw}N−1
k=0 is an orthonormal basis for `2(ZN) if and only

if |ŵ(n)|= 1 for all n ∈ ZN .

Proof. {Rkw}N−1
k=0 is an orthonormal basis if and only if 〈w,Rkw〉= 1 for k = 0 and 0 otherwise.

By (3.2), 〈w,Rkw〉 = w∗ w̃(k). Therefore w∗ w̃(k) = e0. A simple calculation shows that ê0 =
(1,1, ...,1), so we have

1 = ê0(n) = (w∗ w̃)ˆ(n) = ŵ(n)(w̃)ˆ(n) = ŵ(n)ŵ(n) = |ŵ(n)|2,

where we used equation (3.1).

Now we know that the goal of finding a basis that is localized in time and frequency can’t
be obtained using such a basis. As we will see, the following type of basis is a much better
candidate, which we will discuss later on. This is the definition of a first-stage wavelet basis.

Definition 3.2. Suppose N = 2M, M ∈ N. An orthonormal basis for `2(ZN) of the form

{R2kv}M−1
k=0 ∪{R2kw}M−1

k=0

is called a first-stage wavelet basis for `2(ZN). We call v the scaling function and w the wavelet
function. Sometimes v and w are called the father and mother wavelet, respectively.

We need two more lemmas before we can prove a theorem that classifies all wavelet bases.

Lemma 3.3. Suppose N = 2M, M ∈ N, and z ∈ `2(ZN). Define z? ∈ `2(ZN) by

z?(n) = (−1)nz(n) for all n.

Then
(z?)ˆ(n) = ẑ(n+M) for all n. (3.4)

Proof. Using the definitions,

(z?)ˆ(n) =
N−1

∑
k=0

z?(k)e2πikn/N =
N−1

∑
k=0

(−1)kz(k)e2πikn/N

=
N−1

∑
k=0

z(k)eπike2πikn/N =
N−1

∑
k=0

z(k)eπik 2M
2M e2πikn/N

=
N−1

∑
k=0

z(k)e−2πik(n+M)/N = ẑ(n+M).
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3.2 Construction of the Wavelet Bases

Remark 3.1. The operator ? is defined so that (z+ z?) singles out the even index values of z,
since (z+ z?)(n) = 2z(n) if n is even and 0 otherwise.

Lemma 3.4. Suppose N = 2M, M ∈ N, and w ∈ `2(ZN). Then {R2kw}M−1
k=0 is an orthonormal

set with M distinct elements if and only if

|ŵ(n)|2 + |ŵ(n+M)|2 = 2 for n = 0,1,2, ...,M−1.

Proof. The condition for orthonormality is 〈w,R2kw〉=1 if k = 0 and 0 otherwise. Using equa-
tion (3.2) we need to show when:

〈w,R2kw〉= w∗ w̃(2k) =

{
1 if k = 0
0 if k = 1,2, ...,M−1.

(3.5)

By the definition of ?,

(w∗ w̃+(w∗ w̃)?)(n) =

{
2w∗ w̃(n) if n is even
0 if n is odd.

(3.6)

The cases where n is even give us a new condition for orthonormality:

(w∗ w̃+(w∗ w̃)?)(2k) = 2w∗ w̃(2k) =

{
2 if k = 0
0 if k = 1,2, ...,M−1.

By (3.6), we know that 2w∗ w̃(n) = 0 for odd n, so condition (3.5) is equivalent to

w∗ w̃+(w∗ w̃)? = 2e0.

Since ê0 = (1,1, ...,1), (3.5) is equivalent to

(w∗ w̃)ˆ(n)+((w∗ w̃)?)ˆ(n) = 2 for all n, (3.7)

by linearity of the DFT. By the equalities (3.1) and (2.2), and the fact that zz = |x|2 for z ∈ C,

(w∗ w̃)ˆ(n) = ŵ(n)(w̃)ˆ(n) = ŵ(n)ŵ(n) = |ŵ(n)|2.

The other term in (3.7) is, using the result directly above and Lemma 3.3,

((w∗ w̃)?)ˆ(n) = (w∗ w̃)ˆ(n+M) = |ŵ(n+M)|2.

Now we have (3.7) as |ŵ(n)|2 + |ŵ(n+M)|2 = 2 for all n. Since ŵ has period N = 2M and

|ŵ(n+M)|2 + |ŵ(n+M+M)|2 = |ŵ(n+M)|2 + |ŵ(n)|,
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3 Wavelets on ZN

the condition in the lemma is equivalent to (3.5).

Now we are ready to classify the first-stage wavelet bases.

Theorem 3.1. Suppose N = 2M, M ∈ N, and let v,w ∈ `2(ZN). Then

B = {R2kv}M−1
k=0 ∪{R2kw}M−1

k=0

= {v,R2v,R4v, ...,RN−2v,w,R2w,R4w, ...,RN−2w}

is an orthonormal basis if and only if

|v̂(n)|2 + |v̂(n+M)|2 = 2,

|ŵ(n)|2 + |ŵ(n+M)|2 = 2,

and
v̂(n)ŵ(n)+ v̂(n+M)ŵ(n+M) = 0,

for all n = 0,1,2, ...,M−1.

Proof. By Lemma 3.4, {R2kv}M−1
k=0 and {R2kw}M−1

k=0 are orthogonal sets if and only if the first
two equations hold. The final claim is that the last equation is equivalent to 〈R2kv,R2 jw〉 for all
k, j ∈ ZN . This expression is equivalent to

〈v,R2 jw〉= 0 for all j ∈ ZN

since all the possible combinations of terms R2kv(n)R2 jw(n) in the inner products 〈R2kv,R2 jw〉
are included in the above. This in turn is equivalent to

v∗ w̃(2k) = 0 for all k ∈ ZN

by equation (3.2). By the definition of ?, this is equivalent to

v∗ w̃+(v∗ w̃)? = 0.

Since the DFT of 0 is 0, we have the condition

(v∗ w̃)ˆ+((v∗ w̃)?)ˆ = 0

for orthonormality. By formula (2.2)

(v∗ w̃)ˆ(n) = v̂(n)w(n),

and by Lemma 3.3
((v∗ w̃)?)ˆ(n) = v̂(n+M)ŵ(n+M).
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3.2 Construction of the Wavelet Bases

Since the expression in the theorem is periodic with period M, it is true if and only if it is true
for all n, thus we have shown equivalence.

If we inspect the conditions of Theorem 3.1, we see that we might be able to get some local-
ization in frequency, since only the sums |v̂(n)|2 + |v̂(n+M)|2 and |ŵ(n)|2 + |ŵ(n+M)|2 need
to be constant, as opposed to the conditions for the basis {Rkw} in Lemma 3.2. If for example
|v̂(n)| = 2 for n = N/2, the coefficient associated with the highest frequency, the lowest fre-
quency component v̂(0) will be 0. It turns out that one is able to find many different functions
v and w that are also more or less localized in time, so wavelets are a good approach to tackling
the “problem” of the uncertainty principle, i.e. optimizing localization in time and frequency
simultaneously.

Example 3.2. One example of a well known wavelet basis is due to Ingrid Daubechies, a pi-
oneer in the subject, after whom a whole family of wavelet bases has been named. In Figure
3.2 (a) we see the scaling function v1 (translated by 13 for centering in the graph) for the ba-
sis D6 ∈ `2(Z32), and in Figure 3.2 (b) we have the wavelet function w1, also translated by
13. We see that these functions are localized in time quite well. In Figure 3.2 (c) and (d) we
show the absolute values of the discrete Fourier transforms of the same functions, which show
some localization in frequency also; the scaling function does not contain the highest frequency
components, and the wavelet function contains mainly high frequency components. This ba-
sis is named D6 since there are six nonzero values in v1 and w1, respectively. The family of
Daubechies wavelet bases also includes D10 and D20, for example, for which we add more
nonzero values in v1 and w1 to get more localization in frequency as we lose localization in
time. Thus one can tweak the level of localization depending on the problem at hand.

Remark 3.2. In terms of the uncertainty principle, we can count the number of nonzero values
in v1, w1 and their respective Fourier transforms. There are 6 nonzero values in both v1 and w1,
so we should expect at least 6 nonzero values (since 6 ·6 ≥ 32) in v̂1 and ŵ1. Obviously, there
are more than that, the reason being that the values of v1 and w1 are concentrated in a short
range of time. In Lemma 2.5 we showed that if z has 6 consecutive nonzero values, ẑ cannot
have 6 consecutive zero values. In fact we see exactly this, v̂1 and ŵ1 both have 5 consecutive
zeros. Since the IDFT is connected to the DFT by conjugation of the transformation matrix,
one can also show that Lemma 2.5 holds for the reverse direction. I.e. if we want the 6 nonzero
values of v1 and w1 to be consecutive, and thus have 26 consecutive zeros, we must have at least
27 nonzero values in v̂1 and ŵ1, respectively, which exactly matches what we have. This means
that, given the structure of v1 and w1, this basis is about as localized as possible.

3.2.2 Multiresolution Analysis

Now we have defined a first-stage wavelet basis, and in Example 3.1 we saw an example of
such a basis, the Haar basis, and what it could do. In the same example, we hinted a method of
iterating the transform to get multiple levels of fluctuations, or detail, which is the main point
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3 Wavelets on ZN

(a) Scaling function R13v1 of D6 ∈ `2(Z32). (b) Wavelet function R13w1 of D6 ∈ `2(Z32).

(c) Values of |R13v̂1|. (d) Values of |R13ŵ1|.

Figure 3.2: Daubechies D6 wavelet basis in `2(Z32).

of wavelet transformation. In this section we will give the method of iterating any wavelet
transform starting only with a first-stage basis generated by some v1 and w1.

To illustrate, we start with a simple example.

Example 3.3. Let’s say we are given the signal z = (5,7,8,6,8,10,11,11) in `2(Z8). If we start
with the first-stage Haar basis of Example 3.1 for N = 8, we get the first level Haar transform

x1 =

(
z(0)− z(1)√

2
,
z(2)− z(3)√

2
,
z(4)− z(5)√

2
,
z(6)− z(7)√

2

)
= (−

√
2,
√

2,−
√

2,0)

y1 =

(
z(0)+ z(1)√

2
,
z(2)+ z(3)√

2
,
z(4)+ z(5)√

2
,
z(6)+ z(7)√

2

)
= (6
√

2,7
√

2,9
√

2,11
√

2).

To iterate the transform a second time on the trend function x1, we need a new basis in `2(Z4)
that does the same thing. The N-the stage Haar basis is easy to obtain using the formulas in
Example 3.1; remember, the Haar transform simply approximates a signal with the averages
of two neighboring values. Thus we get the next basis using N = 4 and the second-stage Haar
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transform is

x2 =

(
−
√

2−
√

2√
2

,
−
√

2√
2

)
= (−2,−1)

y2 =

(√
2(6+7)√

2
,

√
2(9+11)√

2

)
= (13,20).

In this case we could iterate the transform one last time, which gives us

x3 =

(
− 1√

2

)

y3 =

(
13+20√

2

)
= (16.5

√
2).

What we end up with is a complete representation of z as {x1,x2,x3,y3}. By Claim 3.2, we can
perfectly reconstruct z using this representation. Note, however, that we have not yet shown that
this representation is a vector in an `2(Z8) basis, which is why we denote it as a set for now.

So what use is this to us? Well, depending on what kind of information we are looking for, we
might be able to use only part of the transformed signal. If the interest is only in whether the
signal is nonzero or zero, y3 = (16.5

√
2) will suffice. If we want to know whether the initial

value is higher or lower than the last value, y2 is enough, which is the inverse of (x3,y3) by
Claim 3.2. If we then invert (x2,y2), which gives us y1, we get a slightly better idea of the basic
shape of z, in which case the signal is compressed to half its original size.

In this way, we can choose to look at the signal z on three different scales, or resolutions. The
formalization of this method, which we give in Definition 3.4, is therefore called multiresolution
analysis (MRA). For now, we describe the method, and in Section 3.2.3 we give the justification
for using it.

Definition 3.3. Suppose N = 2M, M ∈ N. Let z ∈ `2(ZN) and w ∈ `2(ZM). The operator
D : `2(ZN)→ `2(ZM) defined by

D(z) = (z(0),z(2), ...,z(N−2))

is called the downsampling operator. The operator U : `2(ZM)→ `2(ZN) defined by

U(w) = (w(0),0,w(1),0, ...,w(N−1),0)

is called the upsampling operator.

Definition 3.4. (Multiresolution Analysis). Suppose N = 2p. A pth-stage wavelet filter sequence
is a sequence of vectors v1,w1,v2,w2, ...,vp,wp such that for each pair vk,wk ∈ `2(ZN/2k−1)
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3 Wavelets on ZN

where k = 1,2, ..., p, the conditions in Theorem 3.1 hold. For an input z ∈ `2(ZN), define

x1 = D(z∗ w̃1) ∈ `2(ZN/2)

and
y1 = D(z∗ ṽ1) ∈ `2(ZN/2).

The following vectors are then defined inductively:

xk = D(yk−1 ∗ w̃k) ∈ `2(ZN/2k)

and
yk = D(yk−1 ∗ ṽk) ∈ `2(ZN/2k)

for k = 2,3, ..., p. Then the set
{

x1,x2, ...,xp,yp
}

is called the output of the multiresolution
analysis of z.

In words, we get each new stage of the transform by operating on the vector yk. Note that
this method is exactly the one we used in Examples 3.1 and 3.3. By equation (3.2), and since
downsampling removes odd index values, this definition of x1 and y1 is equivalent to the one
we gave in Example 3.1 where we used scalar products instead.

Remark 3.3. Note that this general definition makes it clear that MRA is an efficient method,
since by Theorem 2.1 we can use the FFT to compute convolution quickly. In fact, it can be
shown that the number of complex multiplications needed to compute the output is no greater
than 4N +N log2 N [2, Lemma 3.17].

3.2.3 The pth-Stage Basis

In this section we give the justification for using the algorithm in Definition 3.4. We want to
show that the process is reversible and that the output set

{
x1,x2, ...,xp,yp

}
is in fact a represen-

tation of z in an orthonormal basis in `2(Z2p). In other words, we want to show that the MRA is
a change of basis to what we call the pth−stage wavelet basis. This will be done by formalizing
the MRA steps as operators and examining the properties of these operators.

Definition 3.5. For a wavelet filter sequence v1,w1,v2,w2, ...,vp,wp, define the subspaces of
`2(Z2p)

V1 = span{R2kv1}2p−1

k=0

and
W1 = span{R2kw1}2p−1

k=0 .

If we are given a wavelet filter sequence, then each pair v1 and w1 satisfy the conditions in
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Theorem 3.1 and generate orthogonal subspaces of `2(Z2p) so we have

`2(Z2p) =W1⊕V1.

The following lemma, concerning projections on these subspaces, will be used in proving that
MRA is invertible in general.

Lemma 3.5. Suppose N = 2p. Let PV1 and PW1 be the orthogonal projections on the spaces V1
and W1, respectively. Then for any z ∈ `2(ZN),

v1 ∗U(D(z∗ ṽ1)) = PV1z

and
w1 ∗U(D(z∗ w̃1)) = PW1z.

Proof. By the linearity of the convolution operator, U and D, respectively, we can write

v1 ∗U(D(z∗ ṽ1)) = v1 ∗U(D(
N−1

∑
k=0
〈z,Rkv1〉ek)) =

N−1

∑
k=0
〈z,Rkv1〉v1 ∗U(D(ek))

=
N/2−1

∑
j=0
〈z,R2 jv1〉(v1 ∗ e2 j) =

N/2−1

∑
j=0
〈z,R2 jv1〉R2 jv1

using equation (3.2). We recognize this as the orthogonal projection on V1. The proof for w1 is
similar.

Now we define the first level MRA operator and its inverse.

Definition 3.6. Define the operators V1 : `2(Z2p)→ `2(Z2p−1) and W1 : `2(Z2p)→ `2(Z2p−1) by

V1(z) = D(z∗ ṽ1), W1(z) = D(z∗ w̃1)

Definition 3.7. Define the operators V −1
1 : `2(Z2p−1)→V1 and W −1

1 : `2(Z2p−1)→W1 by

V −1
1 (z) = v1 ∗U(z), W −1

1 (z) = w1 ∗U(z)

Lemma 3.6. The operator T1 : W1⊕V1→ `2(Z2p−1)⊕ `2(Z2p−1) defined by

T1(z) = (W1(z),V1(z)) = (D(z∗ w̃1)|D(z∗ ṽ1)) (3.8)

is a linear isomorphism. That is, W1⊕V1 ' `2(Z2p−1)⊕ `2(Z2p−1).

Proof. By linearity of the operators involved, V1 is a linear operator. If we apply V1 to Rkw1 for
any k, we get D(Rkw1 ∗ ṽ1) = 0 since Rkw1 and v1 are orthogonal by definition of the wavelet
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filter sequence. Then by linearity, V1(x) = 0 for x ∈W1. Hence

V1(z) = V1(PV1z)+V1(PW1z) = V1(PV1z).

By Lemma 3.5, V −1
1 ◦V1(z) = PV1z. By the equality above,

V −1
1 ◦V1(z) = V −1

1 ◦V1(PV1z) = PV1z,

so V −1
1 ◦V1 restricted to V1 is the identity operator. Now we want to show that V1 ◦V −1

1 is also
the identity. By commutativity and associativity of convolution,

V1 ◦V −1
1 (z) = V1(v1 ∗U(z)) = D((v1 ∗U(z))∗ ṽ1)

= D(v1 ∗ ṽ1 ∗U(z)) = D(v1 ∗ ṽ1)∗ z.

Using equation (3.2), v1 ∗ ṽ1(k) = 〈v1,Rkv1〉, so v1 ∗ ṽ1 is equal to e0 by construction of v1.
Therefore V1◦V −1

1 (z)= e0∗z= z, so we have proved that V1 is a linear isomorphism. Similarly,
one can show that the analogous results hold for W1 and W −1

1 .

This lemma shows that we can reverse any first-stage wavelet transform. After completing the
first transform, v2 and w2 generate a new orthonormal basis of `2(Z2p−1) which allows us to
iterate the process on the signal y1 in particular and apply the same results. Thus, we can get a
reversible representation {

x1,x2, ...,xp,yp
}

for any z ∈ `2(Z2p).

However, the reason why we show this as a set instead of a vector is that we still haven’t shown
that it is given in an orthonormal basis in `2(Z2p). For example, the vectors xp and yp are one-
dimensional, since they are downsampled p times, so we can’t compute with these sets at the
moment. We would very much like to do so without going back and forth to the standard basis
vector z. The rest of the section will show that the the set

{
x1,x2, ...,xp,yp

}
is in fact a vector

with coefficients in an orthonormal basis in `2(Z2p).

Lemma 3.7. The operator T1 preserves scalar products. In particular, it preserves angles and
distance.

Proof. First we show that V1 preserves scalar products. Since {R2kv1} is an orthonormal basis
for V1 and scalar product is distributive, i.e. 〈z,x+y〉= 〈z,x〉+ 〈z,y〉, we only need to prove the
property for the basis vectors. So we want to show that

〈R2kv1,R2 jv1〉`2(Z2p) = 〈D(R2kv1 ∗ ṽ1),D(R2 jv1 ∗ ṽ1)〉`2(Z2p−1)
.

The left hand side is clearly 1 if k = j and 0 otherwise. By equation (3.2), R2kv1 ∗ ṽ1 = e2k. The
downsampling of this vector is ek. So the right hand side is equal to 〈ek,e j〉 which is 1 if k = j
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and 0 otherwise which makes the equality true. Similarly we can prove that T ′′1 preserves scalar
product.

Since we have the orthogonal spaces V1 and W1 in `2(Z2p), we can calculate 〈x,y〉 by 〈PV1x,PV1y〉+
〈PW1x,PW1y〉. The result then follows from the argument above since T1 restricted to V1 is V1
and T1 restricted to W1 is W1.

So, if we have two wavelet filters vk and wk that are orthogonal by construction, then we can
get orthogonal vectors in `2(Z2p) by taking the pullback of these vectors with the inverse MRA
operations V −1

k that are defined similarly to V −1
1 from Definition 3.7. We will now show that

this approach generates an orthonormal basis in `2(Z2p), and moreover that the coefficients of
z in this basis are exactly the output values of the MRA of z.

Now, say we have a wavelet filter sequence v1,w1,v2,w2, ...,vp,wp. The vector w j exists in
the space `2(Z2p− j+1), for example w3 is in `2(Z2p−2). The pull-back of w3 (see Figure 3.3 for
schematic) into `2(Z2p−1) with V −1

2 is

V −1
2 (w3) = v2 ∗U(w3).

Then we can apply V −1
1 to get

V −1
1 (V −1

2 (w3)) = v1 ∗U(v2 ∗U(w3)) = v1 ∗Uv2 ∗U2w3 ∈ `2(Z2p).

If we do this for “deeper” wk’s until we get all the way back to `2(Z2p), we will eventually be
able to make the following definition.

Figure 3.3: Pull-back of vectors into higher dimension spaces using the inverse MRA operators.

Definition 3.8. Given a wavelet filter sequence (as in Definition 3.4), define

fk = v1 ∗U(v2)∗U2(v3)∗ ...∗Uk−2vk−1 ∗Uk−1wk
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3 Wavelets on ZN

and
gk = v1 ∗U(v2)∗U2(v3)∗ ...∗Uk−2vk−1 ∗Uk−1vk

for k = 1,2, ..., p.

Or, equivalently, inductively define

fk = gk−1 ∗Uk−1(wk)

and
gk = gk−1 ∗Uk−1(vk)

for k = 1,2, ..., p.

The pull-back of a translation R2kw j yields

V −1
j−1(R2kw j) = v j−1 ∗U(R2kw j) = R4kv j−1 ∗U(w j)

since, quite clearly, U(Rnx) = R2nU(x). Continuing, for each orthonormal set
{

R2kw j
}

we have
an orthonormal set

{
R2 jk f j

}
in `2(Z2p) by Lemma 3.7 (since V −1

k preserves angles).

Now we define a general pth-stage wavelet basis.

Definition 3.9. Let N = 2p. An orthonormal set B on the form

{R2k f1}2p−1−1
k=0 ∪{R4k f2}2p−2−1

k=0 ∪ ...∪
{

R2p−1k fp−1
}1

k=0∪
{

fp
}
∪
{

gp
}

is called a pth-stage wavelet basis for `2(ZN). We say that f1, f2, ..., fp,gp generate B.

Lemma 3.8 and its corollary below confirms that the output of the MRA of z can be given as a
vector in the basis generated by the vectors defined in Definition 3.8.

Lemma 3.8. Suppose N = 2p. Given a wavelet filter sequence {vk,wk}p
k=1; if x1,x2, ...,xp,

y1,y2, ...,yp are defined as in Definition 3.4 and f1, f2, ..., fp,g1,g2, ...,gp as in Definition 3.8,
then

xk = Dk(z∗ f̃k),

and
yk = Dk(z∗ g̃k).

Proof. First, observe that

f̃k = (gk−1 ∗Uk−1(wk))̃ = g̃k−1 ∗ (Uk−1(wk))̃ = g̃k−1 ∗Uk−1(w̃k) (3.9)

since

(z∗w)̃(m) = (z∗w)(−m) = (z∗w)(−m) = zˆ(−m)wˆ(−m) = z̃ˆ(m)w̃ˆ(m) = (z̃∗ w̃)(m).
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3.2 Construction of the Wavelet Bases

The proof is then done on both xk and yk by induction on k. If k = 1, then f1 = w1 and g1 = v1
and the equalities are true by definition. Now suppose the result holds for k− 1. Then, by the
induction hypothesis, we get

xk = D(yk−1 ∗ w̃k) = D(Dk−1(z∗ g̃k−1)∗ w̃k)

= Dk(z∗ g̃k−1 ∗Uk−1(w̃k)) = Dk(z∗ f̃k),

by equality (3.9). The proof for yk is similar.

Corollary 3.1. The above are the coefficients of z in the basis given in Definition 3.9.

Proof. By equation (3.2),
z∗ f̃k(m) = 〈z,Rm fk〉.

The k-th level downsampling of this vector has coefficients 〈z,R2kn fk〉 for n = 0,1, ...,2p−k−1,
which is exactly the projection on the vectors of Definition 3.9.

This last theorem finally shows that the basis in question indeed is an orthonormal basis in
`2(Z2p).

Theorem 3.2. Suppose N = 2p. The set

{R2k f1}2p−1−1
k=0 ∪{R4k f2}2p−2−1

k=0 ∪ ...∪
{

R2p−1k fp−1
}1

k=0∪
{

fp
}
∪
{

gp
}

generated by the vectors f1, f2, ..., fp,gp defined as in Definition 3.8 forms a pth-stage wavelet
basis in `2(ZN).

Proof. Since the functions fk and gk are defined in terms of pull-back of the wavelet filter
sequence vectors by the functions V j and W j and their inverses, which we proved preserve
scalar products (and thus lengths of vectors and orthogonality), the sets

{
R2 jk f j

}p
j=1 and the set{

R2pkgp
}

are orthonormal sets by assumption of the wavelet filter sequence. Now, `2(ZN) is
divided into the orthogonal spaces V1 and W1. The set {R2k f1} spans W1 and is orthogonal to
all subspaces of V1 from which all the sets

{
R2k f1+ j

}
and

{
R2kg1+ j

}
are generated. The same

reasoning goes for {R4k f2}(N/4)−1
k=0 that spans W2 which is orthogonal to V2, where all the other

remaining sets live, and so on. Finally,
{

fp
}
∪
{

gp
}

is also orthonormal by Lemma 3.7; it is
the pull-back of wp∪ vp.

Now we could redefine the MRA (Definition 3.4) to output a vector instead of a set, and we
can make vector computations in this new basis since there is a one-to-one correspondence with
the standard basis. If we extend Definition 3.5 to define Wk and Vk as the subspaces of `2(Z2p)
spanned by the functions generated by fk and gk, we have the following representation:

`2(Z2p) =W1⊕W2⊕ ...⊕Wp⊕Vp. (3.10)
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3 Wavelets on ZN

We get this result by at the k-th stage operating on Vk with Tk, defined similarly to T1 in (3.8),
and on the other spaces by the identity operator.
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4 Numerical work

4.1 Examples 2.3 and 3.1

The functions plotted in Figures 2.2 and 3.1 are generated using the code for z in Figure 4.1.

z = [ ]
t = [ ]
N=1024
f o r n i n r a n g e (N ) :

z . append ( np . s i n (2∗ n∗np . p i /N)+ np . s i n (12∗ n∗np . p i /N)
+np . s i n (32∗ n∗np . p i /N) + 0 . 2∗ np . s i n (150∗ n∗np . p i /N) )
t . append ( i )
i f n<=300 and n>=290:

z [ n ]+=2∗ np . s i n (600∗ n /N)
e l i f n<=500 and n>=485:

z [ n ]+= np . cos (600∗ n /N)
e l s e :

p a s s

Figure 4.1

That is,

z(n) = sin(
2πn
1024

)+ sin(
12πn
1024

)+ sin(
32πn
1024

)+
1
5

sin(
150πn
1024

)

plus 2sin(600n/1024) if n is between 290 and 300, and plus cos(600n/1024) if n is between 485
and 500. In Figure 4.3 we see the effectiveness of filtering high frequencies using thresholding
on the DFT of z. The process is straightforward; we transform the signal using the FFT, and
if any value of ẑ is below a certain threshold, here we chose |ẑ(m)| ≤ 50, we replace it with
zero. The top image shows the imaginary part of ẑ (remember the real part contained no spikes
in frequency), and the plot below is the filtered signal using the threshold |ẑ| = 50. This filter
method perfectly removed what we labeled as “noise”, which essentially could not have been
done without knowing the DFT of z. The code for the filter is found if Figure 4.2.

49



4 Numerical work

f i l t e r e d s i g n a l = [ ]
f o r n i n r a n g e ( 1 0 2 4 ) :

i f np . l i n a l g . norm ( np . f f t . f f t ( z ) [ n ]) >=50:
f i l t e r e d s i g n a l . append ( np . f f t . f f t ( z ) [ n ] )

e l s e :
f i l t e r e d s i g n a l . append ( 0 )

Figure 4.2

In Figure 4.4 we find the implementation of the Haar transform in python code.

4.2 Implementing the FFT

The most famous algorithm using the FFT is the Cooley-Tukey FFT algorithm (named after J.W.
Cooley and John Tukey who rediscovered it it in 1965, but in fact its essence was conceived by
Gauss 160 years earlier). In Figure 4.5 we see an implementation in python code [6]. As we
can see, if the size of the input signal z in the FFT program is greater than 1, then it will be split
into two signals U and V that are fed back into the program.

When we run these programs on the 214-vector z = [1,1, ...,1], we see in Figure 4.6 that the FFT
algorithm computes ẑ in about 0.517 seconds, while the brute force DFT program takes 36.58
seconds to get (essentially) the same result. Even worse, the errors in the results of the DFT
algorithm are actually orders of magnitude bigger than the errors of the FFT algorithm. We
can conclude this since we would expect only one nonzero component; the input z is a constant
function, so the only frequency contributing should be the “zero frequency”, i.e. the function
E0, the coefficient of which is 16,384. Since the FFT requires less computations, and the natural
errors of computer calculations accumulate along the way, the FFT is faster and better.

Since the IDFT matrix MN = W N (where we define the line to mean taking the complex con-
jugate of each entry in WN) is so closely related to related to WN , one can follow the proof of
Theorem 2.2 and construct a similar algorithm to calculate the inverse FFT.
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4.2 Implementing the FFT

Figure 4.3: From top to bottom: The imaginary part of ẑ, the imaginary part of the filtered
signal, the filtered signal inverted to the standard basis, the original signal.
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4 Numerical work

d e f HaarN ( z ) :
N= i n t ( z . shape [ 0 ] )
U= [ ]
V= [ ]
s=np . s q r t ( 2 )
f o r i i n r a n g e ( i n t (N / 2 ) ) :

u = [ 0 ]∗N
v = [ 0 ]∗N
u [2∗ i ] = 1 / s
u [2∗ i +1 ]=1 / s
v [2∗ i ] = 1 / s
v [2∗ i +1]=−1/ s
U. append ( u )
V. append ( v )

H= [ ]
f o r i i n r a n g e ( i n t (N / 2 ) ) :

H. append ( np . d o t (U[ i ] , z ) )
f o r i i n r a n g e ( i n t (N / 2 ) ) :

H. append ( np . d o t (V[ i ] , z ) )
r e t u r n ( np . a s a r r a y (H) )

Figure 4.4
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4.2 Implementing the FFT

i m p o r t numpy as np
i m p o r t t ime

d e f DFT( l i s t ) :
z=np . a s a r r a y ( l i s t )
N=z . shape [ 0 ]
n=np . a r a n g e (N)
k=n . r e s h a p e (N, 1 )
W=np . exp (−2 j ∗np . p i ∗k∗n /N)
r e t u r n np . d o t (W, z )

d e f FFT ( l i s t ) :
z = np . a s a r r a y ( l i s t )
N = z . shape [ 0 ]
i f N == 1 :

r e t u r n DFT( z )
e l s e :

U = FFT ( z [ : : 2 ] )
V = FFT ( z [ 1 : : 2 ] )
c = np . exp (−2 j ∗ np . p i ∗ np . a r a n g e (N) / N)
r e t u r n np . c o n c a t e n a t e ( [U + c [ : N / 2 ] ∗ V,

U + c [N / 2 : ] ∗ V] )

Figure 4.5: Implementation of the FFT in python code.

53



4 Numerical work

d e f timeFFT ( l i s t ) :
s t a r t = t ime . c l o c k ( )
p r i n t ( FFT ( l i s t ) )
p r i n t ( ’ I t t ook ’ , t ime . c l o c k ()− s t a r t , ’ seconds ’ )

d e f timeDFT ( l i s t ) :
s t a r t = t ime . c l o c k ( )
p r i n t (DFT( l i s t ) )
p r i n t ( ’ I t t ook ’ , t ime . c l o c k ()− s t a r t , ’ seconds ’ )

>>>t imeFFT ( [ 1 ]∗2∗∗1 4 )
[ 1 .63840000 e +04 +0.00000000 e +00 j ,
−6.38676465 e−13 −1.22464680 e−16 j
−6.38676442 e−13 −2.44929360 e−16 j . . . ,
2 .12892134 e−13 −1.22464680 e−16 j

6 .38676442 e−13 −2.44929360 e−16 j
6 .38676465 e−13 −1.22464680 e−16 j ]

I t t ook 0 .51654 s e c o n d s

timeDFT ( [ 1 ]∗2∗∗1 4 )
[ 1 .63840000 e +04 +0.00000000 e +00 j ,
−5.70210545 e−13 −3.44056381 e−13 j

3 .82138765 e−12 −1.37239092 e−12 j . . . ,
2 .04739825 e−09 +2.75143276 e−11 j
−2.57208876 e−09 −1.81357195 e−11 j
2 .16681726 e−08 −3.42337799 e−11 j ]

I t t ook 36 .581999 s e c o n d s

Figure 4.6: Running the FFT program on a large vector.
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5 Conclusions

The main result we have shown is that any properly defined wavelet filter sequence (as in Def-
inition 3.4) also uniquely determines an orthonormal basis in `2(Z2p). The equivalence (3.10)
shows that there is a one-to-one correspondence between the functions of `2(Z2p) and the out-
puts of the MRA algorithm, which proves we have perfect reconstruction in the synthesis phase
of the multiresolution analysis. Thus we can operate on the output of the MRA as in `2(Z2p),
for example by scalar products, matrix multiplication etc. In other words, if T is the com-
plete MRA operator, meaning T (z) is the output of the MRA, we have for any linear operator
A : `2(Z2p)→ `2(Z2p):

T (A(z)) = A(T (z)).

We have also motivated the construction of wavelets by discussing the problem of localization
in time and frequency and the uncertainty principle. We have given examples that illustrate
how wavelets tackle this problem (Example 3.2) and the use of wavelets in compression of
signals (Examples 3.1 and 3.3). We showed the power of the fast Fourier transform together
with Theorem 2.1 that facilitate fast calculations of convolution, the main operator involved in
the wavelet transform.

The next step would have been to study two dimensional wavelet analysis and particularly give
examples of image compression using wavelets, and give more examples of specific wavelet
bases constructed to solve different kinds of problems.
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