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Abstract

A mathematical knot can be thought of as a piece of string with the
ends tied together. This piece of string might be tangled in such a way
that it cannot be untangled into a circular piece of string without cutting
it up. This is the type of object studied in knot theory.

The goal of this bachelor’s thesis is to investigate some of the famous
knot polynomials that exists. In particular, the Jones polynomial and
the HOMFLY polynomial. We begin by giving an introduction to the
field of knot theory aimed at giving the reader the necessary definitions
and concepts to fully grasp the rest of the thesis. Some basic well known
facts are also presented and proved. The reader is expected to be familiar
with basic euclidean topology and elementary abstract algebra. However,
the unacquainted reader should be able to understand the lion’s share of
this thesis. The thesis contains many visual examples to aid the readers
intuition about the concepts presented.

In Section 2 we discuss the concept of link invariants and give a short
overview. We take a closer look at the Jones Polynomial.

In Section 3 we give a short introduction to the HOMFLY polynomial
followed by an algorithm for calculating it. The algorithm is presented
as pseudocode and is based on the written explanation provided in An
Introduction to Knot Theory by W.B. Raymond Lickorish. We end Section
3 by investigating a possible generalization of the HOMFLY polynomial to
elements of a noncommutative ring. We present some new results giving
a necessary condition for the noncommutative ring and a partial answer
to the sufficiency of the condition.
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1 Introduction

In this section we define the essential concepts that we will need in the sections
to come. There are many visual examples of knots and links to give the reader
an intuition of what the strict definitions are trying to describe. At the end of
the section we touch briefly on the concept of prime knots, a knot theoretical
analogue of prime numbers.

1.1 Links and knots

Before we can indulge in the more interesting parts of knot theory, some basic
definitions are required. For example, what exactly is a knot? Knots are in fact
a special case of the more general concept of a link.

Definition 1.1.1. Let f : [0, 1] → R3 be any continuous function. Let C =
Im f ⊆ R3. Then we will call such a set, C, a curve.

Definition 1.1.2. A curve C is piecewise linear if there exists a finite parti-
tion of the curve C = L1 ∪ . . .∪Ln such that Li is a line segment for i = 1 . . . n
and Li ∩ Li+1 = {xi} i = 1 . . . n− 1.

Example 1.1.3.

= ∪ ∪ ∪

And the intersection of each consecutive pair of line segments consists of 1
point:

Definition 1.1.4. A link of n components is a subset of R3 that consists of
n disjoint simple piecewise linear closed curves[1].

A simple closed curve is a subset of R3 that is homeomorphic to S1. The
reason links are defined in this way, as piecewise linear curves, is traditionally
to simplify some calculations and to exclude so called wild knots. As long as the
curves we work with are well-behaved, and can be approximated by piecewise
linear curves, smooth curves pose no problems. We will draw links with smooth
curves.

Definition 1.1.5. A knot is a link of 1 component.
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Example 1.1.6. The trefoil knot1.

Example 1.1.7. A link of 3 components.

An intuitive way to think of a link is as a number of possibly interlinked
circular pieces of string. If we do not cut the pieces of string up we can move

1Sometimes called the left-trefoil knot. We shall call it the trefoil knot. The right-trefoil
knot shall be referred to as the mirror image of the trefoil knot
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them around in any way as long as they do not pass through each other. Doing
this kind of movement does not really change the link. We need a precise
mathematical definition to describe this.

Definition 1.1.8. Two links L andM are equivalent if there exists an orientation-
preserving homeomorphism a : R3 → R3 such that a(L) = M .2

Example 1.1.9. Consider the links L and L′ depicted below. Consider rotating
the lower component of L as seen below, followed by a slight stretching of
it. Result looks like L′. Since we have only slid around the components of
L, without letting them pass through each other, there exists an orientation-
preserving self-homeomorphism of R3 that produces the same result. Thus L
and L′ are equivalent links.

L: L′:

⇒ ⇒

⇒ ⇒ ⇒

We are only interested in the equivalence classes generated by this equiva-
lence relation3 when we talk about knots and links. For the rest of this thesis
we shall say ”a knot” or ”a link” when we in fact mean the equivalence class of
such. We will write K = L to indicate that links K and L are equivalent.

2a(L) denotes the image of L under a.
3A proof of that this is an equivalence relation is left as an exercise for the reader.
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1.2 Link diagrams

In Examples 1.1.6,1.1.7 and 1.1.9 we represented different links with a kind of
diagram. This kind of diagram is called a link diagram, or a knot diagram if the
link represented is in fact a knot.

In the definition below we mention an open neighbourhood. We shall assume
that euclidean spaces Rn are endowed with the standard topology and any
subspace has the induced subspace topology.

Definition 1.2.1. Let L be a link. A link diagram D of L is a pair (p(L), s)
where p(L) is the image of a linear map p : R3 → R2 satisfying the conditions
given below and s is a map satisfying the conditions given below.

• ∀x ∈ p(L) exactly one of the following holds.

1. p−1(x) = {y}
2. p−1(x) = {y1, y2} and ∃ an open neighbourhood4 N of x such that
∀y ∈ N \ {x}, p−1(y) = {y′} . If this is the case we call x a crossing
point.

• s : {crossing points of p(L)} → p−1(x) assigns to each crossing point x
the point in p−1(x) with greatest z-coordinate in the standard basis.

We call a crossing point x together with s(x) a crossing of the diagram.

Proposition 1.2.2. Link diagrams have a finite number of crossings.

Proof. Let L be a link of n components. Then by definition each component of
L is a simple closed piecewise linear curve. Let D = (p(L), s) be a link diagram
of L. Let A and B in the claims below be two different line segments in the
piecewise linear components of L.

Claim. Let A and B be two disjoint line segments in a partition of the
components of L. Then p(A) ∩ p(B) contains at most one point.

Proof. Assume that there exists two points x, y ∈ p(A) ∩ p(B) such that
x 6= y. Since x ∈ p(A)∩p(B) and the line segments A and B are disjoint,
x must be a crossing point. Similarly, y must also be a crossing point.
Since x and y are in p(A) there exists xA, yA ∈ A such that

p(xA) = x and p(yA) = y

A is a line segment, and thus convex, so txA + (1 − t)yA ∈ A for all
t ∈ [0, 1].

p linear =⇒
p(txA + (1− t)yA) = tp(xA) + (1− t)p(yA) = tx+ (1− t)y ∈ p(A)

4Open as a subspace of p(L)
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Similarly, since x and y are in p(B) there exists xB , yB ∈ B such that

p(xB) = x and p(yB) = y

=⇒ p(txB + (1− t)yB) = tp(xB) + (1− t)p(yB) = tx+ (1− t)y ∈ p(B)

Thus, tx + (1 − t)y ∈ p(A) ∩ p(B) for all t ∈ [0, 1]. This implies that
p−1(tx + (1 − t)y) = {txA + (1 − t)yA, txB + (1 − t)yB}. So any point
tx+ (1− t)y, t ∈ [0, 1] is a crossing point.
y is a crossing point, so by definition there exists an open neighbourhood
N of y such that every point in N \ {y} is not a crossing point. Since
N is open there exists an open neighbourhood of N ′ ⊆ R2 such that
N = N ′ ∩ p(L). And since N ′ is open and y ∈ N ′, there exist an open
ball Bε(y) ⊆ N ′ with ε such that |x− y| > ε > 0. Where |x− y| denotes
the euclidean distance between the points x and y. Note that |x− y| > 0
since x 6= y by assumption.
Let tε = ε

2|x−y| and let z = tεx+ (1− tε)y . Then tε > 0 and

tε =
ε

2|x− y| <
|x− y|
2|x− y| =

1

2
< 1

Therefore z ∈ p(A) ∩ p(B) and z is a crossing point. However,

|z − y| = |tεx+ (1− tε)y − y|
= |tεx− tεy|
= |tε(x− y)|
= tε|x− y|
=

ε

2|x− y| |x− y|

=
ε

2
< ε

So z ∈ Bε(y) ⊆ N . Note that z 6= y since |z − y| = ε/2 > 0. This implies
that z ∈ N \ {y} which is a contradiction since z is a crossing point. The
claim is proven.

We shall now consider the case where two line segments of L are not disjoint.
By the definition of piecewise linear we see that two line segments are not disjoint
if and only if their intersection contains exactly one point.

Claim. Let A and B be two line segments of L such that there exists a
point x ∈ A ∩B. Then p(A) ∩ p(B) = {p(x)}.
Proof. Assume there exists y ∈ p(A) ∩ p(B) such that y 6= p(x). Then
there exists yA ∈ A and yB ∈ B such that p(yA) = p(yB) = y. Note that
yA 6= yB since

yA = yB =⇒ yA, yB ∈ A∩B ⇐⇒ yA = yB = x =⇒ y = p(yA) = p(x)
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which cannot be the case since by assumption y 6= p(x). Therefore yA 6=
yB . This implies that p−1(y) = {yA, yB} and thus y is a crossing point.
A is a line segment, x, yA ∈ A and p linear. This implies that

p(tx+ (1− t)yA) = tp(x) + (1− t)p(yA)

= tp(x) + (1− t)y ∈ p(A), ∀t ∈ [0, 1]

Similarly, B is a line segment, x, yB ∈ B and p linear implies that

p(tx+ (1− t)yB) = tp(x) + (1− t)p(yB)

= tp(x) + (1− t)y ∈ p(B), ∀t ∈ [0, 1]

Thus, tp(x)+(1− t)y ∈ p(A)∩p(B), ∀t ∈ [0, 1]. By the same argument
as in the previous claim, every open neighbourhood N of the crossing
point y will contain a crossing point tp(x) + (1− t)y not equal to y. This
leads to a contradiction. We conclude that p(A)∩p(B) = {p(x)} and our
claim is proven.

The claims prove that for any pair of line segments (A,B) of L the intersec-
tion of the images p(A)∩ p(B) contains at most one point. By the definition of
a link, there exists a finite partition of L as a union of line segments. And since
p is linear the image p(L) can be written as a union of finitely many images
of line segments. Since there are finitely many pairs of distinct line segments
(A,B) the claims imply that there are finitely many crossings.

One link might have multiple link diagrams. And for two link diagrams it
might not be immediately clear that they represent the same link.

Example 1.2.3. Two diagrams, D1 and D2, both representing the trefoil knot.

D1: D2:

A part looking like in our link diagrams represents a crossing x. The
solid line represents the image of a neighbourhood around s(x) and is called
an overpass. The broken line represents the image of a neighbourhood around
p−1(x) \ s(x) and is called an underpass.
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Example 1.2.4. Both of the diagrams D1 and D2 in Example 1.2.3 have three
crossings.

We will sometimes talk about a strand of a link. This is usually only to
explain an idea and thus a strict definition is unnecessary.

A very common practice in knot theory is to consider local changes within a
link diagram. That is, we look at two diagrams that differ only within a small
simply connected region.

Example 1.2.5. A local change. It should be clear to the reader that these
knots are equivalent.

The local change in Example 1.2.5 is a special type of local change. It is
what is called a Reidemeister move. These moves are traditionally categorized
as three types. Below we use the symbol ∼ to indicate that two diagrams are
equivalent if they only differ by the local change indicated.

∼

Type I Moves of type I adds or removes a
simple loop in any direction.

∼

Type II Moves of type II moves a strand
over/under another. The reverse of such
moves are also considered type II.

∼

Type III Moves of type III moves a strand
from one side of a crossing to the other side.
It moves the strand either over the crossing
or under it.
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It is known that the link diagrams of any two equivalent links are related
by a finite sequence of Reidemeister moves and orientation-preserving self-
homeomorphisms of the plane R2. For a complete proof see [4, Theorem 4.1.1,
p. 50].

We will sometimes talk about ”disjoint” components of a link, but by defi-
nition the components of a link are already disjoint as sets. We formalize what
we mean by disjoint components.

Definition 1.2.6. Let L be a link. Let A,B be a partition of the components
of L. A and B are called disjoint if there exists an embedding e : D3 → R3

such that A ⊂ Im e and B ⊂ R3 \ Im e where D3 = {x ∈ R3 | |x| 6 1}.
If a link L can be partitioned into two disjoint sets of components A and B

we say that L is the disjoint union of A and B where A and B are regarded as
links in their own right. We denote this by

L = A tB.
Intuitively, one may think of parts of a link as disjoint if they are not ”linked”

with each other.

1.3 Oriented links

Up until now we have only talked about links where the strands have no defined
direction. Just as we can have undirected graphs and directed graphs, we can
define an oriented link. This is an important concept so let us make it precise.

Definition 1.3.1. An oriented link L is a link where each component has
been assigned an orientation.

Example 1.3.2. An orientation of the trefoil knot.

Equivalence between oriented links is defined analogously as for unoriented
links5. Since we have two choices of orientation for each component of a link,
there are a total of 2n possible choices of orientations for a link of n compo-
nents. In the case of the trefoil knot both orientations happen to give equivalent
oriented knots, but this is not generally the case.

5Just replace ”links” with ”oriented links” Definition 1.1.8
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1.4 Knot sum

One important knot is the one that is not knotted.

Definition 1.4.1. The knot that is equivalent to a triangle is called the un-
knot.

Unoriented unknot

=

Oriented unknot

=

For two oriented knots there is a natural way to join them. The knot formed
by joining knots K and L is denoted K + L and called the knot sum of K and
L.

Definition 1.4.2. Let K and L be oriented knots. Embed them in R3 in such
that a way that there exists a link diagram where their images are disjoint.
Extend a strand from each knot into a previously empty ball embedded in R3

and perform the local change as indicated in the figure below.

=⇒

The result is the knot sum of K and L.

13



Example 1.4.3. The knot sum of the trefoil knot and its mirror image6.

It can be realized with a little bit of careful thought that the knot sum is

6Some links are equivalent to their mirror image. The trefoil is not.
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well-defined. By well-defined we mean that the knot sum K + L of K and L is
equivalent to any other knot sum K ′ +L′ where K ′ and L′ are equivalent to K
and L. It is also easily seen that the knot sum is commutative and associative[1,
p. 6]. It is clear that the unknot acts as a neutral element.

Example 1.4.4. Let K be an oriented figure-eight knot and let e denote the
oriented unknot. Then K +e = K.

Some natural questions arise. Which knots can be written as the sum of two
other knots? Is there always such a decomposition for a given knot? Given that
we have a neutral element e, which knots have an additive inverse? To answer
these questions we need to consider the concept of prime knots.

1.5 Prime knots

Let K be an unoriented knot. There are two possible orientations we can give K.
Call the two associated oriented knots K+ and K−. If K+ can be decomposed
as K+ = K+

1 +K+
2 then clearly we can decompose K− = K−1 +K−2 where K−1

and K−2 are opposite orientations of K+
1 and K+

2 of the same two underlying
unoriented knots K1 and K2. So the decomposition of an unoriented knot into
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two unoriented knots is well-defined. We write K = K1 + K2 when K,K1 and
K2 can be given orientations such that the corresponding knot sum expression
holds.

A prime knot is not the sum of two other knots. But of course, in the same
way that the prime number 7 can be written as 7 = 7 · 1 = 7 · 1 · . . . · 1, any knot
K can be written as K = K +d = K +d+ . . .+d where d is the unoriented
unknot.

Definition 1.5.1. Let K 6= d be a knot. Then K is a prime knot if

K = K1 +K2 =⇒ K1 = d or K2 = d

So a knot is prime if it is not the unknot and the only decomposition of the
knot is the trivial decomposition into the original knot and the unknot. Now
follows a few basic results about prime knots.

Theorem 1.5.2. Let K 6= d be a knot. Then there is a decomposition

K = K1 + . . .+Km

that is unique up to the ordering of the summands where Ki is a prime knot ∀i.
Proof. See [1, Theorem 2.12, p. 21].

It follows directly from this theorem that no knot K 6= d has an additive
inverse, because if it did, then any decomposition of a knot would not be unique.
We formulate this a s a proposition for oriented knots in Proposition 1.5.3 below.
We shall use the term ”prime knot” for oriented knots as well.

Proposition 1.5.3. The only oriented knot that has an additive inverse is the
neutral element e.

Proof. Let K and L be oriented knots such that K +L = e. If K 6= e then by
Theorem 1.5.2 K can be decomposed uniquely as

K = K1 + . . .+Km

where Ki is a prime knot ∀i = 1, . . . ,m. If L = e then e = K+L = K+e = K.
But K 6= e. So K 6= e =⇒ L 6= e. Therefore L can be decomposed in the
same manner.

L = L1 + . . .+ Ln

Let M be any prime knot. Then since the knot sum is associative

M = M +e = M +K + L = M +K1 + . . .+Km + L1 + . . .+ Ln.

So the knot M + K + L 6= e has a decomposition into the sum of one prime
knot, M , and a decomposition into a sum of m+ n+ 1 prime knots. This is a
contradiction since Theorem 1.5.2 states that the decomposition of aM+K+L is
unique up to ordering of the summands. Hence we conclude that our assumption
K 6= e was false and indeed, it must be the case that K = e. A symmetric
argument for L shows that also L = e.
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This means that while the oriented knots do not form a group when equipped
with the knot sum operation, they do form what is known as a monoid. It can be
noted from the example above the this monoid is a zerosumfree monoid. Other
names for zerosumfree monoid include conical, centerless or positive monoid.

2 Link invariants

Given two knots, K and L, it is not always easy to see if they are equivalent
or not. In Example 1.2.3 we saw two representations of the trefoil knot given
as knot diagrams. Early attempts at tabulating all knots represented by knot
diagrams with a limited number of crossing famously included two diagrams
that actually represented the same knot. It took at least 89 years until this
error would be corrected by Perko in 1974[2]. It may not even be obvious that
for a knot K, K 6= d or K = d.

Example 2.0.1. A twisted version of the unknot.

Definition 2.0.2. Let T be any set. A function f : {Links} → T is called a
link invariant if for any two links L1 and L2,

L1 equivalent to L2 =⇒ f(L1) = f(L2)

If the domain of the function f is instead {Knots} we call f a knot invariant.

Note that any link invariant induces a knot invariant by a restriction of the
domain. An invariant for oriented links is called an oriented link invariant.

Link invariants tell us something ”essential” about a knot. The use of the
word essential here is motivated by the fact that if we change a link, without
letting strands pass through each other, the value of the invariant remains.
Only when we let strands pass through each other can we get a different value.
Notice that Definition 2.0.2 does not require f to be injective. Hence, if K and
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L are links for which f(K) = f(L), we can not conclude that they equal. Link
invariants generally only helps us distinguish links by identifying an essential
property that a pair of links do not share.

A description of a link can be given in many ways, but it is often possible to
translate this description into a link diagram of the link. It is therefore sensible
to try to find link invariants that can be calculated from any link diagram of a
link.

One family of link invariants are the ”minimal”-type invariants. These are
invariants whose value of a knot is the minimal value over all representations.
We provide a few examples.

Example 2.0.3. The crossing number of a link is the minimal number of cross-
ings a diagram of the link can have. Let Crossing denote this invariant.

Crossing(d) = 0

Crossing(trefoil knot) = 3

This shows that the trefoil knot is actually knotted, i.e not equivalent to the
unknot.

Example 2.0.4. The unknotting number is a knot invariant. The unknotting
number of a knot K is the minimal number of times one has to change a crossing
of a knot diagram of K from to so that the knot of the resulting knot dia-
gram is equivalent to the unknot. The unknotting number of the trefoil knot is 1.

Change one crossing
=⇒ = =

The interested reader is encouraged to read about the bridge number and
the stick number in the literature.

All these ”minimal”-type invariants share a common drawback. Since they
are the minimum over an oftentimes infinite set, it can be difficult to calculate
their value. For example, in Example 2.0.3 we stated that the crossing number
of the trefoil knot is 3, but since we cannot possibly check every knot diagram
of the trefoil knot we cannot in a straightforward manner verify that this value
is the minimum. We need to come up with some innovative proof.

It would be preferable if we could calculate the value of a knot invariant at
a knot K from any knot diagram of K, and always get the same value. This
type of knot invariant is what will be considered in the following subsections.
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2.1 The Jones Polynomial

The Jones polynomial is an oriented link invariant that assigns a Laurent poly-
nomial with coefficients in Z to each oriented link. By the restriction of the
domain to knots, the Jones polynomial is also a knot invariant. Such invariants
are often called knot polynomials.

Definition 2.1.1.
Let D denote the set of all unoriented link diagrams.

Let
−→
D denote the set of all oriented link diagrams.

Many link invariants are presented as functions from D or
−→
D to some set.

As long as the function gives the same value for any link diagram of equivalent
knots, such a function can be extended to a function that is an actual link
invariant.

To define the Jones polynomial we need to present the Kauffman bracket.
Note however that the Kauffman bracket itself is not a link invariant.

Definition 2.1.2. The Kauffman bracket is the function 〈·〉 : D→ Z[A−1, A]
defined recursively by

• 〈d〉 = 1

• 〈D td〉 = (−A−2 −A2)〈D〉

• 〈 〉 = A〈 〉+A−1〈 〉
The Kauffman bracket does not necessarily assign the same value to different

link diagrams of equivalent knots. The d in the definition needs to be the
diagram of a knot with zero crossings. The equation 〈 〉 = A〈 〉 + A−1〈 〉
should be read as 〈D1〉 = A〈D2〉 + A−1〈D3〉 where D1, D2 and D3 are link
diagrams differing only by a local change where D1 has a part similar , D2

has a part similar to and D3 has a part similar to .

Example 2.1.3.

〈 〉 = A〈 〉+A−1〈 〉

= A〈d td〉+A−1〈d〉
= A((−A−2 −A2)〈d〉) +A−1〈d〉

= (−A−1 −A3 +A−1)〈d〉
= (−A3)〈d〉 = −A3

Since the Kauffman bracket is defined recursively it is not certain that it is
well-defined or even defined for all unoriented link diagrams. From the third
equation we see that we can calculate the value of the Kauffman bracket for a
link with n crossings by calculating the value for two links with n− 1 crossings.

19



This means that if we can show that we can calculate a base case we can by
induction calculate the Kauffman bracket of any link diagram with a finite
number of crossings. From Proposition 1.2.2 we know that any link diagram
has a finite number of crossings. Now consider the base case where we have a
link diagram with zero crossings. This must clearly be the disjoint union of a
number of unknots. If we in this case have m > 1 unknots we use the second
equation to get a link diagram of m−1 disjoint unknots and recursively calculate
the value of the Kauffman brackets. We see that we will always reach the case
where all we have left is the unknot, d, from where we by the first equation
have an explicit value. Thus the Kauffman bracket is always defined for a link
diagram.

Proposition 2.1.4. The Kauffman bracket is well-defined.

Before we prove the proposition we introduce a convenient piece of notation.
Just like 〈?〉 denotes the value of the Kauffman polynomial for a link diagram
that differs only locally by ? from the other link diagrams in the same equation,
we will use the notation 〈?, ?〉 to denote a the value of a link diagram that
differs locally at two places from the other link diagrams in the same equation.
To make the equations more readable and to distinguish from parentheses
we will circle the crossing symbols in the following proof.

Proof. Let D ∈ D be a link diagram with 0 crossings. We then have, by applying
the second equation of Definition 2.1.2,

〈D〉 =

{
(−A−2 −A2)m−1, if m > 1

1, if m = 1

where m is the number of components of D. Thus, the Kauffman bracket is
well-defined for all link diagrams with 0 crossings.

Let D ∈ D be a link diagram with 1 crossing. By the third equation of
Definition 2.1.2 the value of 〈D〉 is uniquely defined by the values of two link
diagrams with 0 crossings. This implies that the Kauffman bracket is well-
defined for all link diagrams with 1 crossing.

Let D ∈ D be a link diagram with n > 2 crossings. To show that the value
of 〈D〉 is well-defined we need to show that the order in which we ”remove” the
crossings of D does not affect the calculated value. It is enough to check that
the same value is acquired when switching two adjacent ”crossing-removals”.
Since D has at least 2 crossings we may write 〈D〉 = 〈 , 〉 where we shall
refer to these indicated crossings as the first and the second crossing. Applying
the third equation of Definition 2.1.2 to the first crossing yields

〈 , 〉 = A〈 , 〉+A−1〈 , 〉 (1)

We now apply the equation to the second crossing of the new diagrams.

〈 , 〉 = A〈 , 〉+A−1〈 , 〉
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〈 , 〉 = A〈 , 〉+A−1〈 , 〉
Inserting this into equation 1 we get

〈 , 〉 = A〈 , 〉+A−1〈 , 〉
= A(A〈 , 〉+A−1〈 , 〉) +A−1(A〈 , 〉+A−1〈 , 〉)
= A2〈 , 〉+ 〈 , 〉+ 〈 , 〉+A−2〈 , 〉
= /Rearrange the terms/

= A2〈 , 〉+A−2〈 , 〉+ 〈 , 〉+ 〈 , 〉 (2)

If we instead begin by applying the equation to the second crossing we get,

〈 , 〉 = A〈 , 〉+A−1〈 , 〉 (3)

Now conversely apply the equation to the first crossing of the new diagrams.

〈 , 〉 = A〈 , 〉+A−1〈 , 〉

〈 , 〉 = A〈 , 〉+A−1〈 , 〉
Inserting this into equation 3 we get

〈 , 〉 = A〈 , 〉+A−1〈 , 〉
= A(A〈 , 〉+A−1〈 , 〉) +A−1(A〈 , 〉+A−1〈 , 〉)
= A2〈 , 〉+ 〈 , 〉+ 〈 , 〉+A−2〈 , 〉
= /Rearrange the terms/

= A2〈 , 〉+A−2〈 , 〉+ 〈 , 〉+ 〈 , 〉 (4)

Equation 2 shows the value of 〈D〉 calculated by removing the first crossing fol-
lowed by the second. Equation 4 shows the value of 〈D〉 calculated by removing
the second crossing followed by the first. Since they are equal we can conclude
that the Kauffman bracket of a link diagram with n > 2 crossings is uniquely
defined by an expression of 4 associated link diagrams with n−2 crossings each.
By induction over the number of crossings we get that the Kauffman bracket is
well-defined for all link diagrams.

For a function from D or
−→
D to be a link invariant, it is clear that it has

to be invariant under orientation-preserving self-homeomorphisms of the plane
as well as invariant under the Reidemeister moves. From Example 2.1.3 we see
that the Kauffman bracket is not invariant under a Reidemeister Type I move.
It is however invariant under orientation-preserving self-homeomorphisms of the
plane and under Reidemeister Type II and Type III moves[1]. The following is
a lemma from [1].

Lemma 2.1.5. If a link diagram is changed by a Reidemeister Type I move,
the value of the Kauffman bracket changes in the following way

〈 〉 = −A3〈 〉, 〈 〉 = −A−3〈 〉
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Proof. See [1, Lemma 3.2, p. 24].

Definition 2.1.6. Let x be a crossing of an oriented link diagram. By an
orientation-preserving self-homeomorphism of R2 a neighbourhood of x either
looks like

sgn(x) = 1

or

sgn(x) = −1

We define the sign of a crossing as the value of the function sgn : {Crossings} →
{−1, 1} where

sgn(|) = 1

sgn(y) = −1

A crossing with a sign of +1 is called a positive crossing and similarly a
crossing with a sign of −1 is called a negative crossing. By letting the strands
pass through each others we can make a crossing switch between being positive
and negative.

Definition 2.1.7. Let D ∈ −→D be an oriented link diagram. Let x be a crossing
of D. By performing a crossing switch on x we refer to the operation of
constructing a new oriented link diagram D′ where the only difference is the
sign of the crossing corresponding to x. If the crossing in D′ is labelled x′ then

sgn(x) = −sgn(x′)

Definition 2.1.8. Let D ∈ −→D be an oriented link diagram. Then

w(D) =
∑

x∈Cr(D)

sgn(x)

where Cr(D) is the set of crossings of D. The value w(D) is called the writhe
of the diagram D.

It can be easily verified that the writhe of an oriented link diagram does not
change when we change the link diagram by a Reidemeister Type II or Type
III move. However, by a Type I move we either add a new negative crossing or
add a new positive crossing. We can use this fact and combine the Kauffman
bracket with the writhe in such a way that the effects of a Type I move cancel
out.

Theorem 2.1.9. Let X :
−→
D → Z[A−1, A] be

X(D) = (−A)−3w(D)〈D〉

where w(·) is the writhe function and 〈·〉 is the Kauffman bracket. Then X is a
link invariant for oriented links.
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Proof. See [1, Theorem 3.5, p. 26].

The link invariant X defined above is called the normalized bracket polyno-
mial.

Definition 2.1.10. Let D be a link diagram for the oriented link L. Let X :−→
D → Z[A−1, A] be the normalized bracket polynomial. The Jones polynomial
V (L) is defined as

V (L) = (X(D))t1/2=A−2 ∈ Z[t−1/2, t1/2]

where (·)t1/2=A−2 denotes substitution of A−2 in X(D) ∈ Z[A−1, A], by t1/2 into
an expression in Z[t−1/2, t1/2].

The Jones polynomial distinguishes between many different links7. It also
has the nice property that for two oriented knots K1 and K2, V (K1 + K2) =
V (K1)V (K2). The Jones polynomial is thus a monoid homomorphism between
the monoid of oriented knots and the monoid of formal Laurent polynomials in
t−1/2 and t1/2 with multiplication as the monoid operation.

3 The HOMFLY polynomial

The HOMFLY polynomial is a link invariant that assigns a homogeneous Lau-
rent polynomial of degree 0 in three variables to each link[3]. A homogenous
polynomial is a polynomial where every non-zero term have the same degree.

Definition 3.0.1. The HOMFLY polynomial is the link invariant P [ · ] :−→
D → Z[x±1, y±1, z±1] defined recursively by

• P [e](x, y, z) = 1

• xP [|](x, y, z) + yP [y](x, y, z) + zP [­](x, y, z) = 0

Theorem 3.0.2. There is a unique oriented link invariant

P :
−→
D → Z[x±1, y±1, z±1]

such that
P [e](x, y, z) = 1

xP [|](x, y, z) + yP [y](x, y, z) + zP [­](x, y, z) = 0

This P is the HOMFLY polynomial.

Proof. See [1, Theorem 15.2, p. 168].

7Not all thought.
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The HOMFLY polynomial encompasses both the Jones Polynomial and the
famous Alexander-Conway polynomial in the following sense.

Proposition 3.0.3. Let L be an oriented link. Let D ∈ −→D be a diagram of L.
Then

V (D) = P [D](t,−t−1, t1/2 − t−1/2)

and
∆(D) = P [D](1,−1, t1/2 − t−1/2)

where V (D) is the Jones polynomial and ∆(D) is the Alexander-Conway poly-
nomial.

Proof. See [3, Remark 2].

This means that HOMFLY polynomial is strictly better at distinguishing
links than both the Jones polynomial and the Alexander-Conway polynomial.
Let L1 and L2 be link diagrams of two non-equivalent oriented links. It follow
directly from Proposition 3.0.3 that

P [L1] = P [L2] =⇒ V (L1) = V (L2)

which is equivalent to

V (L1) 6= V (L2) =⇒ P [L1] 6= P [L2]

⇐⇒
V (·) can distinguish links L1 and L2 =⇒ P [ · ] can distinguish L1 and L2.

The same is of course true for the Alexander-Conway polynomial.

3.1 Calculation

We will now describe how to calculate the HOMFLY polynomial from an ori-
ented link diagram using a recursive algorithm. This is the method described
in [1, Theorem 15.2, p. 168]. Before we present the algorithm, some definitions
and a proposition are required.

Proposition 3.1.1. Let D be an oriented link diagram with zero crossings and
n disjoint components. Then

P [D](x, y, z) = (−z−1(x+ y))n−1

Proof. Since the only oriented knot with zero crossings is the oriented unknot
it follows that D is a disjoint union of n oriented unknots.

We will prove the proposition by induction on the number of components n.
If n = 1, P [D] = P [e] = 1 and we are done.

Now, assume the formula holds for all diagrams of N disjoint oriented un-
knots where N > 1. Let D be an oriented link diagram of N+1 disjoint oriented
unknots. N + 1 > 2 so D has at least two components. Then there exists a
region of D that is similar to either
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Type A

or

Type B

where the strands are from different components. If D has a region similar to
type B, we can always find an equivalent diagram with a region similar to type
A by reversing the orientation of one of the components. A reversal of one of
the components can be achieved by performing two Reidemeister Type I moves
on a component of D as follows.

∼ ∼

This shows that if D has no region similar to type A there is always an
equivalent diagram D′ that does. Note that D′ also has zero crossings and
N + 1 components. And since P is an oriented link invariant P [D] = P [D′].
We can therefore assume that D has a region similar to

Consider the HOMFLY equation

xP [D+](x, y, z) + yP [D−](x, y, z) + zP [D](x, y, z) = 0

where D+ and D− is are diagrams that differ from D only at the region similar
to type A such that the equation holds. The corresponding regions in D+ and
D− look like

and

respectively. Since we assumed that the strands in the type A region were
from different components of D we have that D+ and D− are diagrams with
N disjoint components and one crossing. The two components with strands in
the region in D have been ”joined” in D+ and D−. This new joined component
look like
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and

in D+ and D− respectively. In either diagram the component is equivalent to
an oriented unknot. Therefore there exists diagrams D′+ ∼ D+ and D′− ∼ D−
that are disjoint unions of N oriented unknots. By the inductive hypothesis
P [D′+] = P [D′−] = (−z−1(x+ y))N−1 and since D′+ ∼ D+, D

′
− ∼ D− it follows

that
P [D+] = P [D−] = (−z−1(x+ y))N−1

We combine this with the HOMFLY equation and get

x(−z−1(x+ y))N−1 + y(−z−1(x+ y))N−1 + zP [D] = 0

⇐⇒
(x+ y)(−z−1(x+ y))N−1 + zP [D] = 0

⇐⇒
zP [D] = −(x+ y)(−z−1(x+ y))N−1

⇐⇒

P [D] = −z−1(x+ y)(−z−1(x+ y))N−1

= (−z−1(x+ y))N

By induction the formula holds for any number of components.

Definition 3.1.2. An ordered oriented link is an oriented link L together
with a bijective function rL : {Components of L} → {1, . . . , n} where n is the
number of components of L.

Example 3.1.3. The Hopf link with the two components numbered giving
them an order.

1 2
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Definition 3.1.4. Let D be an oriented link diagram. A base point of a
component C of D is a point b ∈ C that does not lie on a crossing of D.

Example 3.1.5. The trefoil with a base point chosen for its only component.

Base point

Definition 3.1.6. A based oriented link diagram D is an oriented link diagram
together with a base point for each component of D.

Note that an oriented, based and ordered link diagram induces an ordering
of its crossings in a natural way. Consider writing down a list of the crossings as
follows. Start at the base point of component 1 and follow along the orientation.
When we encounter a crossing we add it to the end of our list if it is not already
in the list. Anytime we arrive back at the base point of a component n we jump
to the base point in component n+ 1 and continue there. If there are no more
components we are done and our list contains each crossing exactly once. This
describes an ordering of the crossings. Note that in total every crossing will be
encountered twice, once as an underpass and once as an overpass.

Definition 3.1.7. Let D be an oriented, based and ordered link diagram. The
associated ascending diagram, αD, is an oriented link diagram derived from
D by performing crossing switches on D so that the first time any crossing
is encountered, following the method described above, it is encountered as an
underpass.

Note that each component of an ascending diagram is equivalent to the
oriented unknot and the diagram as a whole is equivalent to a disjoint union of
oriented unknots.

Example 3.1.8. Let D be an oriented, based and ordered link diagram. αD
is the associated ascending diagram. Notice that if we start at the basepoint of
component 1 of αD and follow along the orientation of the link, the first time
we encounter any crossing it is as an underpass. After following the component
a full lap, we go to the base point of the next component, component 2. Note
that as we follow the orientation of the component each crossing that we have
not encountered before is first encountered as an underpass.
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D:

Component 1

Component 2

αD:

Component 1

Component 2

We are now ready to present the algorithm as pseudocode followed by some
explanations and important observations.
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Algorithm 1 HOMFLY polynomial calculation

1: procedure calculateHOMFLY(Diagram D)
2: if D.numberOfCrossings = 0 then
3: Polynomial p := calculateHomflyNoCrossings(D) . Easy
4: return p
5: end if
6: Diagram aD := calculateAscendingDiagram(D)
7: SetOfCrossings differingCrossings := getChangedCrossings(D,aD)
8: Diagram curD := aD . Current diagram
9: Polynomial PcurD := calculateHomflyAscending(aD) . Easy

10: for each Crossing γ in differingCrossings do
11: Diagram E := copy(curD)
12: E.removeCrossing(γ) . Replaces the crossing with a ­
13: Polynomial PE := calculateHOMFLY(E) . Recursive step
14: if γ is positive crossing in curD then
15: Polynomial Pnext := solve for Pnext in

x · PcurD(x, y, z) + y · Pnext(x, y, z) + z · PE(x, y, z) = 0

16: curD.doCrossingSwitch(γ)
17: PcurD := Pnext
18: else
19: Polynomial Pnext := solve for Pnext in

x · Pnext(x, y, z) + y · PcurD(x, y, z) + z · PE(x, y, z) = 0

20: curD.doCrossingSwitch(γ)
21: PcurD := Pnext
22: end if
23: end for
24: return PcurD
25: end procedure

29



Code comments

Line 1 Let Diagram represent the data structure of an oriented, based
and ordered link diagram.

Line 3 If D has no crossings we can simply count the number of compo-
nents8 and apply Proposition 3.1.1.

Line 9 Since any ascending diagram is the diagram of a link equivalent
to a disjoint union of unkots we can again apply Proposition 3.1.1.

Line 7 We can label crossings and interpreted them as being shared by
multiple diagrams.

Line 10 We start a loop where we successively perform crossing switches
on curD until we arrive at D.

Line 12 E now has one less crossing than D.

Line 13 Since E has one less crossing than D we will eventually reach
the base case of the recursion handled on line 2.

Line 15 By solving for Pnext we get the polynomial for a diagram that
differs from curD only at the crossing γ.

Line 16 And here we transform curD into this new diagram by perform-
ing a crossing switch on γ.

Line 19 If the crossing γ is negative in curD the polynomials PcurD and
Pnext switch places in the equation.

Line 24 When we arrive here all crossings of curD differing from D have
been changed. As we have updated PcurD after each crossing switch,
the polynomial PcurD is the HOMFLY polynomial of D.

This gives us a way to calculate the HOMFLY polynomial under the assump-
tion that it is well-defined for all oriented link diagrams and is an oriented link
invariant. Proving that it is well-defined involves showing that the value calcu-
lated by the algorithm is independent of which base points we choose and what
ordering of the components we choose. One also needs to show that the value
produced by the algorithm does not depend on the order in which we handle
the crossings of differingCrossings. Finally one needs to show that oriented
link diagrams related by Reidemeister moves and orientation-preserving self-
homeomorphisms of R2 give the same value. All of this is show in the proof of
Theorem 3.0.2 which can be found in [1, p. 168].

3.2 Generalizing the HOMFLY polynomial to Z{x±1, y±1, z±1}
Z[x±1, y±1, z±1] forms what is known as a commutative ring. That this ring
is commutative is easily realized since we consider elements like x2y−1 and
y2xy−3x to be equal. If we do not recognise such elements to be equal we get

8How we do this depends heavily on the data structure chosen to represent an oriented
link diagram.
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a noncommutative ring denoted Z{x±1, y±1, z±1}. Z{x±1, y±1, z±1} consists of
elements of the form

∑n
i=1 aibi where ai ∈ Z and bi is on the form bi =

∏mi

j=1 g
eij
ij

where gij ∈ {x, y, z} and eij ∈ Z. We do not impose commutativity for the
multiplication in this ring. We do however impose the relations

g0 = 1, ∀g ∈ {x, y, z} and gngm = gn+m, ∀g ∈ {x, y, z},∀n,m ∈ Z.

Example 3.2.1. In Z{x±1, y±1, z±1},

3x3y2z−1 6= 3y2z−1x3 6= 3x3y3z3y−1z−4

but
(xy2) · (y−5z2) = xy2y−5z2 = xy−3z2

We aim to generalize the HOMFLY polynomial to a link invariant that for
each oriented link diagram assigns an element of Z{x±1, y±1, z±1}/ ∼ where ∼ is
some congruence relation on Z{x±1, y±1, z±1}. We will place some restrictions
on ∼.

Note that there is a natural way to map elements of Z{x±1, y±1, z±1} to
Z[x±1, y±1, z±1] by simplifying them.

Definition 3.2.2. Let ab : Z{x±1, y±1, z±1} → Z[x±1, y±1, z±1] be the ring
homomorphism defined by

ab(gn) = gn, ∀g ∈ {x, y, z},∀n ∈ Z

That ab is a ring homomorphism means that

ab(1) = 1

ab(p+ q) = ab(p) + ab(q), ∀p, q ∈ Z{x±1, y±1, z±1}
ab(pq) = ab(p)ab(q), ∀p, q ∈ Z{x±1, y±1, z±1}

Example 3.2.3. Let p, q ∈ Z{x±1, y±1, z±1}.

p = xyx−1

q = zx− xz + y

Neither p nor q can be further simplified. However, ab(p), ab(q) ∈ Z[x±1, y±1, z±1].
And Z[x±1, y±1, z±1] is commutative.

ab(p) = xyx−1 = xx−1y = y

ab(q) = zx− xz + y = zx− zx+ y = y

So even though p 6= q, ab(p) = ab(q).

We shall for the rest of this subsection only consider congruence relations ∼
that are compatible with ab. That is, we require that

p ∼ q =⇒ ab(p) = ab(q), ∀p, q ∈ Z{x±1, y±1, z±1}.

One way to construct ∼ so that the above holds is the following.
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Example 3.2.4. Define ∼ to be the congruence relation on Z{x±1, y±1, z±1}
generated by

p ∼ q ⇐⇒ ab(p) = ab(q)

It is easily checked that this is a congruence relation. It is also clear that in
this case we get that Z{x±1, y±1, z±1}/ ∼ ∼= Z[x±1, y±1, z±1] where ∼= denotes
that the rings are isomorphic. However, this is not a very interesting case as we
already know that the HOMFLY polynomial is well-defined.

We shall investigate the minimal constraints placed on ∼ for the HOMFLY
equations {

P [e] = 1

xP [|] + yP [y] + zP [­] = 0

to uniquely define a link invariant with Z{x±1, y±1, z±1}/ ∼ as range. But
before we do this we introduce some concepts to aid our reasoning.

Definition 3.2.5. An ordered triplet of oriented link diagrams (D+, D−, D0)
is called a skein-triplet if they only differ in a local region where D+ looks like
|, D− looks like y and D0 looks like ­.

Definition 3.2.6. A template diagram with n free crossings is a function

D : {|,y,­}n → −→D such that

(D(x1, . . . , |︸︷︷︸
i:th

, . . . , xn), D(x1, . . . , y︸︷︷︸
i:th

, . . . , xn), D(x1, . . . , ­︸︷︷︸
i:th

, . . . , xn))

is a skein-triplet for all i = 1, . . . , n.

We can interpret a template diagram with n free crossings as an incomplete
diagram with n regions where we may fill in any of {|,y,­}. If we fix m 6 n
of the arguments of a template diagram D with n free crossings we can interpret
it as a template diagram with n −m free crossings. By a template diagram of
0 free crossings we simply mean an oriented link diagram. We shall also refer
to the total number of crossings of a template diagram D as the number of
crossings in an oriented link diagram D(x1, . . . , xn) where xi ∈ {|,y,­}.
Example 3.2.7. Let D be a template diagram with two free crossings. We can
represent D as an incomplete diagram with two regions where one of {|,y,­}
can be fitted. We mark the regions with 1 and 2 representing which region
corresponds to which argument of D(·, ·).

D:

1

2
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Consider filling in region 1 with a positive crossing, |, and region 2 with a
negative crossing, y. There is only one way to do this while respecting the
orientation of the diagram. In region 1 we have to rotate | 90 degrees clockwise
to fit it in and in region 2 we have to rotate y 180 degrees. This gives us the
oriented link diagram D(|,y).

D(|,y):

Definition 3.2.8. Let Q[ · ] :
−→
D → Z{x±1, y±1, z±1}/ ∼ denote a possibly

well-defined, oriented link invariant that satisfies

• Q[e](x, y, z) = 1

• xQ[D(|)](x, y, z) + yQ[D(y)](x, y, z) + zQ[D(­)](x, y, z) = 0 for every
template diagram D with one free crossing.

where ∼ is some congruence relation on Z{x±1, y±1, z±1} satisfying

p ∼ q =⇒ ab(p) = ab(q), ∀p, q ∈ Z{x±1, y±1, z±1}

A priori it is not clear that the definition uniquely defines a link invariant
Q[ · ] for every compatible ∼. However, if it indeed is well-defined, we can infer
some constraints placed on ∼.

The condition that p ∼ q =⇒ ab(p) = ab(q) allows us to ”extend” ab :
Z{x±1, y±1, z±1} → Z[x±1, y±1, z±1] to a ring homomorphism ab∼ : Z{x±1, y±1, z±1}/ ∼→
Z[x±1, y±1, z±1].

Proposition 3.2.9. Given a congruence relation ∼ on Z{x±1, y±1, z±1} such
that

p ∼ q =⇒ ab(p) = ab(q), ∀p, q ∈ Z{x±1, y±1, z±1}
there exists a unique ring homomorphism ab∼ : Z{x±1, y±1, z±1}/ ∼ → Z[x±1, y±1, z±1]
such that

ab∼ ◦ π = ab

where π is the quotient map of ∼.
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Proof. Define ab∼([p]∼) = p where [p]∼ ∈ Z{x±1, y±1, z±1}/ ∼ is the congru-
ence class of p. We first show that ab∼ is well-defined.

Let p, q ∈ Z{x±1, y±1, z±1}, p ∼ q. Then [p]∼ = [q]∼.

ab∼([p]∼) = p ∈ Z[x±1, y±1, z±1]

ab∼([q]∼) = q ∈ Z[x±1, y±1, z±1]

But p ∼ q implies that ab(p) = ab(q) so

ab∼([p]∼) = p = ab(p) = ab(q) = q = ab∼([q]∼)

So ab∼ is well-defined.

ab∼ ◦ π(p) = ab∼([p]∼) = p = ab(p)

So ab∼ ◦ π = ab.
Finally, assume there exists a function u : Z{x±1, y±1, z±1}/ ∼→ Z[x±1, y±1, z±1]

such that u ◦ π = ab. Then

u ◦ π(p) = u([p]∼) = ab(p) = p =⇒ u([p]∼) = p =⇒ u = ab∼

Thus ab∼ is unique.

We shall denote ab∼ by ab when it is clear that we mean ab∼ by examining
the domain.

Proposition 3.2.10. If Q[ · ] is well-defined then ab ◦ Q = P where P is the
HOMFLY polynomial.

Proof.
Q satisfies

• Q[e] = 1

• xQ[D(|)] + yQ[D(y)] + zQ[D(­)] = 0 for every template diagram D
with one free crossing.

This implies that for every template diagram D with one free crossing,

ab(xQ[D(|)] + yQ[D(y)] + zQ[D(­)]) = ab(0)

⇐⇒
x ab(Q[D(|)]) + y ab(Q[D(y)]) + z ab(Q[D(­)]) = 0

⇐⇒
x(ab ◦Q[D(|)]) + y(ab ◦Q[D(y)]) + z(ab ◦Q[D(­)]) = 0

Similarly,
ab(Q[e]) = ab(1) = ab(x0) = x0 = 1

So ab ◦Q :
−→
D → Z[x±1, y±1, z±1] is an oriented link invariant that satisfies

34



• ab ◦Q[e] = 1

• x ab ◦Q[|] + y ab ◦Q[y] + z ab ◦Q[­] = 0

Theorem 3.0.2 tells us that there is only one such invariant and that is the
HOMFLY polynomial. Hence,

ab ◦Q = P

The symbols | and y can be a bit hard to distinguish and make long
computations hard to follow. We shall for the rest of this thesis use the following
symbols instead.

+ = | (A positive crossing)
− = y (A negative crossing)
0 = ­ (No crossing)

Lemma 3.2.11. If Q[ · ] is well-defined, there exists a template diagram D with
2 crossings such that Q[D(− , 0 )] 6= Q[D( 0 , − )].

Proof. Assume that no such template diagram exists. This implies that for
every template diagram D

Q[D(− , 0 )]−Q[D( 0 , − )] = 0

Apply ab : Z{x±1, y±1, z±1}/ ∼→ Z{x±1, y±1, z±1} to both sides of the equa-
tion. This gives us that for any template diagram D,

ab(Q[D(− , 0 )]−Q[D( 0 , − )]) = ab(0) = 0

⇐⇒
ab(Q[D(− , 0 )])− ab(Q[D( 0 , − )]) = 0

⇐⇒ /Proposition 3.2.10/⇐⇒
P [D(− , 0 )] = P [D( 0 , − )].

Consider the following template diagram D.

D:

1

2

D(− , 0 ):

35



D( 0 , − ):

P [D(− , 0 )] =P [e te te]

= /Proposition 3.1.1/

= (−z−1(x+ y))2

= z−2(x2 + 2xy + y2)

= z−2x2 + 2z−2xy + z−2y2

but
P [D( 0 , − )] = P [e] = 1 6= z−2x2 + 2z−2xy + z−2y2

This is a contradiction. Thus, there must exist a template diagram D such that
Q[D(− , 0 )] 6= Q[D( 0 , − )].

An important property of the HOMFLY equation

xP [ + ](x, y, z) + yP [− ](x, y, z) + zP [ 0 ](x, y, z) = 0

is that given any two of the three involved polynomials, P [ + ](x, y, z),P [− ](x, y, z)
or P [ 0 ](x, y, z), the remaining one can be explicitly found.

Example 3.2.12.

xP [ + ](x, y, z) + yP [− ](x, y, z) + zP [ 0 ](x, y, z) = 0

⇐⇒
P [ + ](x, y, z) = −x−1yP [− ](x, y, z)− x−1zP [ 0 ](x, y, z)

⇐⇒
P [− ](x, y, z) = −y−1xP [ + ](x, y, z)− y−1zP [ 0 ](x, y, z)

⇐⇒
P [ 0 ](x, y, z) = −z−1xP [ + ](x, y, z)− z−1yP [− ](x, y, z)
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Note that we have not used the commutativity of Z[x±1, y±1, z±1] to derive
these equations. In fact the corresponding equations for Q are true in the
context of Z{x±1, y±1, z±1}/ ∼. We will use this in the proof of the following
proposition which is our first new result.

Proposition 3.2.13. If Q is well-defined then

yx−1z ∼ zx−1y

Proof. Similar to the proof of Proposition 2.1.4 we shall consider how the value
of Q depend on the order in which two crossing switches are performed. We
shall refer to the equation

xQ[ + ](x, y, z) + yQ[− ](x, y, z) + zQ[ 0 ](x, y, z) = 0

as the recursive equation.
Let Q[A,B] be a shorthand for Q[D(A,B)] where D is some template dia-

gram with 2 free crossings and n > 2 total number of crossings.
The proof is quite technical and we shall use the notation x̄ = x−1 in favour

of space.
The value of Q[D] can be recursively calculated using an algorithm simi-

lar to Algorithm 1 where the datatype Polynomial is replaced by a datatype
corresponding to an element in Z{x±1, y±1, z±1}/ ∼. Since Q is well-defined
the value produced by the algorithm should always be the same. The order
of the calculations may however differ depending on the order of crossings in
differingCrossings on line 7 of the algorithm. Each time a crossing γ is han-
dled in the loop of the algorithm a crossing switch is performed on γ and curD
moves one step closer towards the ascending diagram. Like in the proof of
Proposition 2.1.4 we proceed by considering the value of Q we get by perform-
ing two crossing switches in different order. Because of the recursive step, we
can express the value Q[D] of an oriented link diagram D as an expression of

1. Q-values of oriented diagrams of fewer crossings than D.

2. The Q-value of an oriented link diagram two steps ”closer” to an ascending
diagram.

Given a template diagram D there are only five diagrams with lower number
of crossings that show up in the calculation of D(A,B).

• D( + , 0 )

• D( 0 , + )

• D(− , 0 )

• D( 0 , − )

• D( 0 , 0 )
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However, the Q-value of these five are not independent.

Q[ + , 0 ] = −x̄yQ[− , 0 ]− x̄zQ[ 0 , 0 ] (5)

Q[ 0 , + ] = −x̄yQ[ 0 , − ]− x̄zQ[ 0 , 0 ] (6)

This shows that any diagram of n − 1 crossings that show up in our calcu-
lations can be expressed in terms of Q[ 0 , − ],Q[− , 0 ] and Q[ 0 , 0 ]. We shall
use this.

Under the assumption that Q is well-defined it follows that any recursive
calculation must be independent on the order of crossing switches. Consider the
case where we have a diagram D( + , − ) and we need to switch both crossings
to get to D(− , + ), which is a diagram closer to an ascending diagram.

Our goal is to express Q[ + , − ] in terms of Q[− , + ] and polynomials of di-
agrams with lower number of crossings, such as Q[ 0 , − ],Q[− , 0 ] and Q[ 0 , 0 ].
We apply the recursion equation to the first crossing followed by an application
to the second.

Q[ + , − ] = −x̄yQ[− , − ]− x̄zQ[ 0 , − ]

Now apply the recursive equation to the second crossing of D(− , − ).

Q[− , − ] = −ȳxQ[− , + ]− ȳzQ[− , 0 ]

Combining these we get

Q[ + , − ] = −x̄yQ[− , − ]− x̄zQ[ 0 , − ]

= −x̄y(−ȳxQ[− , + ]− ȳzQ[− , 0 ])− x̄zQ[ 0 , − ]

= Q[− , + ] + x̄zQ[− , 0 ]− x̄zQ[ 0 , − ]

= Q[− , + ] + x̄z(Q[− , 0 ]−Q[ 0 , − ]) (7)

We apply the recursion equation to the second crossing followed by an applica-
tion to the first.

Q[ + , − ] = −ȳxQ[ + , + ]− ȳzQ[ + , 0 ]

Now apply the recursive equation to the first crossing of D( + , + ).

Q[ + , + ] = −x̄yQ[− , + ]− x̄zQ[ 0 , + ]

Combining these we get

Q[ + , − ] = −ȳxQ[ + , + ]− ȳzQ[ + , 0 ]

= −ȳx(−x̄yQ[− , + ]− x̄zQ[ 0 , + ])− ȳzQ[ + , 0 ]

= Q[− , + ] + ȳzQ[ 0 , + ]− ȳzQ[ + , 0 ]

= Q[− , + ] + ȳz(Q[ 0 , + ]−Q[ + , 0 ])
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We note that

Q[ 0 , + ]−Q[ + , 0 ]

= /Apply equation 5 and equation 6/

= −x̄yQ[ 0 , − ]− x̄zQ[ 0 , 0 ]− (−x̄yQ[− , 0 ]− x̄zQ[ 0 , 0 ])

= −x̄yQ[ 0 , − ]− x̄zQ[ 0 , 0 ] + x̄yQ[− , 0 ] + x̄zQ[ 0 , 0 ]

= −x̄yQ[ 0 , − ] + x̄yQ[− , 0 ]

= x̄y(Q[− , 0 ]−Q[ 0 , − ])

Combining these two equations we get

Q[ + , − ] = Q[− , + ] + ȳz(Q[ 0 , + ]−Q[ + , 0 ])

= Q[− , + ] + ȳz(x̄y(Q[− , 0 ]−Q[ 0 , − ]))

= Q[− , + ] + ȳzx̄y(Q[− , 0 ]−Q[ 0 , − ]) (8)

That the transition from D( + , − ) to D(− , + ) is independent of the order of
the crossing switches implies that the right hand sides of equations 7 and 8 must
coincide. It follows that

Q[− , + ] + x̄z(Q[− , 0 ]−Q[ 0 , − ]) = Q[− , + ] + ȳzx̄y(Q[− , 0 ]−Q[ 0 , − ])

⇐⇒
x̄z(Q[− , 0 ]−Q[ 0 , − ]) = ȳzx̄y(Q[− , 0 ]−Q[ 0 , − ])

If Q is well-defined then this equality holds for any template diagram D. Lemma
3.2.11 tells us that there exists at least one template diagram such thatQ[− , 0 ]−
Q[ 0 , − ] 6= 0. We can therefore divide by Q[− , 0 ]−Q[ 0 , − ] on both sides.

=⇒

x̄z = ȳzx̄y

⇐⇒
yx̄z = zx̄y

Since both sides of the equation are elements of Z{x±1, y±1, z±1}/ ∼ it is equiv-
alent to

yx̄z ∼ zx̄y
Which is what we wanted to show.

Note that yx−1z ∼ zx−1y is a necessary condition on the congruence relation
for Q to even have a chance to be well-defined. A natural question is whether
it is a sufficient condition. We give a partial result to this in Proposition 3.2.15
below.

39



Also note that yx−1z ∼ zx−1y is a weaker condition than commutativity.
Commutativity of Z{x±1, y±1, z±1}/ ∼ clearly implies yx−1z ∼ zx−1y but the
converse is not true.

Proposition 3.2.14. There exists a congruence relation ∼ on Z{x±1, y±1, z±1}
such that

yx−1z ∼ zx−1y
but

yz � zy

Proof.
The quaternions, denoted H, is an associative noncommutative division algebra
over R. Every element of H is a linear sum of the base elements 1,i,j and k
which have the following multiplication table.

· 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Let ∼ be generated by the relation yx−1z ∼ zx−1y. Define a ring homomor-
phism f : Z{x±1, y±1, z±1}/ ∼→ H by

f(xn) = (−i)n, ∀n ∈ Z

f(yn) = (i+ j)n, ∀n ∈ Z
f(zn) = (i− j)n, ∀n ∈ Z

Since the quaternions is an associative division algebra, q−1 is well-defined for
all q ∈ H. We first show that the ring homomorphism is well-defined. yx−1z ∼
zx−1y implies that yx−1z = zx−1y in Z{x±1, y±1, z±1}/ ∼.

f(yx−1z) = f(y)f(x−1)f(z)

= (i+ j)(−i)−1(i− j)
= (i+ j)i(i− j)
= (i2 + ji)(i− j)
= (−1− k)(i− j)
= −i+ j − ki+ kj

= −i+ j − j − i
= −2i (9)
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f(zx−1y) = f(z)f(x−1)f(y)

= (i− j)(−i)−1(i+ j)

= (i− j)i(i+ j)

= (i2 − ji)(i+ j)

= (−1 + k)(i+ j)

= −i− j + ki+ kj

= −i− j + j − i
= −2i (10)

Since the right hand sides of equations 9 and 10 are equal, the ring homomor-
phism f is well-defined.

Now, suppose that yx−1z ∼ zx−1y implies yz ∼ zy. This implies that
yz = zy in Z{x±1, y±1, z±1}/ ∼ and that

f(yz) = f(zy).

But

f(yz) = f(y)f(z)

= (i+ j)(i− j)
= i2 − ij + ji− j2
= −1− k − k − (−1)

= −2k

and

f(zy) = f(z)f(y)

= (i− j)(i+ j)

= i2 + ij − ji− j2
= −1 + k + k − (−1)

= 2k 6= −2k

We have a contradiction and we conclude that with the congruence relation
generated by yx−1z ∼ zx−1y,

yz � zy.

Proposition 3.2.15. If yx−1z ∼ zx−1y then the recursive computation of Q
by an algorithm similar to Algorithm 1 is independent of the order of crossing
switches.

Proof. We need to show that for any diagram D the Q-value that the algorithm
produces does not depend on the order in which the crossing switches are han-
dled. It is enough to show that a transposition of two crossing switches gives
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the same result. We will use the same shorthands as in the proof of Proposition
3.2.13. That is, x̄ = x−1 and Q[A,B] = Q[D(A,B)].

Assume we have a template diagram D with two free crossings. We get four
cases of possible crossing switches when changing two crossings:

D( + , + )→ D(− , − )

D(− , − )→ D( + , + )

D( + , − )→ D(− , + )

D(− , + )→ D( + , − )

Since the forth case can be seen as the third with the labels of the free crossings
of D swapped, they are symmetrical cases and we need only consider one of
them. This gives us just three cases to consider.

We restate the equations from the proof of Proposition 3.2.13.

Q[ + , 0 ] = −x̄yQ[− , 0 ]− x̄zQ[ 0 , 0 ] (5 revisited)

Q[ 0 , + ] = −x̄yQ[ 0 , − ]− x̄zQ[ 0 , 0 ] (6 revisited)

Case D( + , − )→ D(− , + ):

This case was already considered in the proof of Proposition 3.2.13. Recall
that the independency of the crossing switches for this case is equivalent to the
expressions

Q[− , + ] + x̄z(Q[− , 0 ]−Q[ 0 , − ])

and
Q[− , + ] + ȳzx̄y(Q[− , 0 ]−Q[ 0 , − ])

being equal. From the assumption of this proposition we have that in Z{x±1, y±1, z±1}/ ∼

yx̄z = zx̄y ⇐⇒ x̄z = ȳzx̄y.

=⇒ Q[− , + ]+x̄z(Q[− , 0 ]−Q[ 0 , − ]) = Q[− , + ]+ȳzx̄y(Q[− , 0 ]−Q[ 0 , − ])

We have proved that yx−1z ∼ zx−1y implies that the caseD( + , − )→ D(− , + )
is independent on the order of crossing switches.

Case D( + , + )→ D(− , − ):

Assume yx−1z ∼ zx−1y.
Our goal is to express Q[ + , + ] in terms of Q[− , − ] and Q-values of dia-

grams with lower number of crossings, such as Q[ 0 , − ],Q[− , 0 ] and Q[ 0 , 0 ].
We apply the recursion equation to the first crossing followed by an appli-

cation to the second.

Q[ + , + ] = −x̄yQ[− , + ]− x̄zQ[ 0 , + ]
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Now apply the recursive equation to the second crossing of D(− , + ).

Q[− , + ] = −x̄yQ[− , − ]− x̄zQ[− , 0 ]

Combining these we get

Q[ + , + ] = −x̄yQ[− , + ]− x̄zQ[ 0 , + ]

= −x̄y(−x̄yQ[− , − ]− x̄zQ[− , 0 ])− x̄zQ[ 0 , + ]

= x̄yx̄yQ[− , − ] + x̄yx̄zQ[− , 0 ]− x̄zQ[ 0 , + ]

= /Apply equation 6/

= x̄yx̄yQ[− , − ] + x̄yx̄zQ[− , 0 ]− x̄z(−x̄yQ[ 0 , − ]− x̄zQ[ 0 , 0 ])

= x̄yx̄yQ[− , − ] + x̄yx̄zQ[− , 0 ] + x̄zx̄yQ[ 0 , − ] + x̄zx̄zQ[ 0 , 0 ]

= x̄yx̄yQ[− , − ] + x̄(yx̄zQ[− , 0 ] + zx̄yQ[ 0 , − ]) + x̄zx̄zQ[ 0 , 0 ]
(11)

We apply the recursion equation to the second crossing followed by an applica-
tion to the first.

Q[ + , + ] = −x̄yQ[ + , − ]− x̄zQ[ + , 0 ]

Now apply the recursive equation to the first crossing of D( + , − ).

Q[ + , − ] = −x̄yQ[− , − ]− x̄zQ[ 0 , − ]

Combining these we get

Q[ + , + ] = −x̄yQ[ + , − ]− x̄zQ[ + , 0 ]

= −x̄y(−x̄yQ[− , − ]− x̄zQ[ 0 , − ])− x̄zQ[ + , 0 ]

= x̄yx̄yQ[− , − ] + x̄yx̄zQ[ 0 , − ]− x̄zQ[ + , 0 ]

= /Apply equation 5/

= x̄yx̄yQ[− , − ] + x̄yx̄zQ[ 0 , − ]− x̄z(−x̄yQ[− , 0 ]− x̄zQ[ 0 , 0 ])

= x̄yx̄yQ[− , − ] + x̄yx̄zQ[ 0 , − ] + x̄zx̄yQ[− , 0 ] + x̄zx̄zQ[ 0 , 0 ]

= x̄yx̄yQ[− , − ] + x̄(yx̄zQ[ 0 , − ] + zx̄yQ[− , 0 ]) + x̄zx̄zQ[ 0 , 0 ]
(12)

Since the terms +x̄yx̄yQ[− , − ] and +x̄zx̄zQ[ 0 , 0 ] appear in the right hand
sides of both equations 11 and 12, the right hand sides are equal if and only if
the expressions

x̄(yx̄zQ[− , 0 ] + zx̄yQ[ 0 , − ])

and
x̄(yx̄zQ[ 0 , − ] + zx̄yQ[− , 0 ])

are equal. yx̄z ∼ zx̄y implies that in Z{x±1, y±1, z±1}/ ∼

yx̄z = zx̄y
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=⇒

x̄(yx̄zQ[− , 0 ] + zx̄yQ[ 0 , − ])

=x̄(zx̄yQ[− , 0 ] + zx̄yQ[ 0 , − ])

=x̄(zx̄yQ[− , 0 ] + yx̄zQ[ 0 , − ])

=x̄(yx̄zQ[ 0 , − ] + zx̄yQ[− , 0 ])

We have proved that yx−1z ∼ zx−1y implies that the case D( + , + ) →
D(− , − ) is independent of the order of crossing switches.

Case D(− , − )→ D( + , + ):

Assume yx−1z ∼ zx−1y.
Our goal is to express Q[− , − ] in terms of Q[ + , + ] and Q-values of dia-

grams with lower number of crossings, such as Q[ 0 , − ],Q[− , 0 ] and Q[ 0 , 0 ].
We apply the recursion equation to the first crossing followed by an appli-

cation to the second.

Q[− , − ] = −ȳxQ[ + , − ]− ȳzQ[ 0 , − ]

Now apply the recursive equation to the second crossing of D( + , − ).

Q[ + , − ] = −ȳxQ[ + , + ]− ȳzQ[ + , 0 ]

Combining these we get

Q[− , − ] = −ȳxQ[ + , − ]− ȳzQ[ 0 , − ]

= −ȳx(−ȳxQ[ + , + ]− ȳzQ[ + , 0 ])− ȳzQ[ 0 , − ]

= ȳxȳxQ[ + , + ] + ȳxȳzQ[ + , 0 ]− ȳzQ[ 0 , − ]

= /Apply equation 5/

= ȳxȳxQ[ + , + ] + ȳxȳz(−x̄yQ[− , 0 ]− x̄zQ[ 0 , 0 ])− ȳzQ[ 0 , − ]

= ȳxȳxQ[ + , + ]− ȳxȳzx̄yQ[− , 0 ]− ȳxȳzx̄zQ[ 0 , 0 ]− ȳzQ[ 0 , − ]

= /zx̄y = yx̄z/

= ȳxȳxQ[ + , + ]− ȳxȳyx̄zQ[− , 0 ]− ȳxȳzx̄zQ[ 0 , 0 ]− ȳzQ[ 0 , − ]

= ȳxȳxQ[ + , + ]− ȳzQ[− , 0 ]− ȳxȳzx̄zQ[ 0 , 0 ]− ȳzQ[ 0 , − ]

= ȳxȳxQ[ + , + ]− ȳz(Q[− , 0 ] +Q[ 0 , − ])− ȳxȳzx̄zQ[ 0 , 0 ] (13)

We apply the recursion equation to the second crossing followed by an applica-
tion to the first.

Q[− , − ] = −ȳxQ[− , + ]− ȳzQ[− , 0 ]

Now apply the recursive equation to the first crossing of D(− , + ).

Q[− , + ] = −ȳxQ[ + , + ]− ȳzQ[ 0 , + ]

44



Combining these we get

Q[− , − ] = −ȳxQ[− , + ]− ȳzQ[− , 0 ]

= −ȳx(−ȳxQ[ + , + ]− ȳzQ[ 0 , + ])− ȳzQ[− , 0 ]

= ȳxȳxQ[ + , + ] + ȳxȳzQ[ 0 , + ]− ȳzQ[− , 0 ]

= /Apply equation 6/

= ȳxȳxQ[ + , + ] + ȳxȳz(−x̄yQ[ 0 , − ]− x̄zQ[ 0 , 0 ])− ȳzQ[− , 0 ]

= ȳxȳxQ[ + , + ]− ȳxȳzx̄yQ[ 0 , − ]− ȳxȳzx̄zQ[ 0 , 0 ]− ȳzQ[− , 0 ]

= /zx̄y = yx̄z/

= ȳxȳxQ[ + , + ]− ȳxȳyx̄zQ[ 0 , − ]− ȳxȳzx̄zQ[ 0 , 0 ]− ȳzQ[− , 0 ]

= ȳxȳxQ[ + , + ]− ȳzQ[ 0 , − ]− ȳxȳzx̄zQ[ 0 , 0 ]− ȳzQ[− , 0 ]

= ȳxȳxQ[ + , + ]− ȳz(Q[ 0 , − ] +Q[− , 0 ])− ȳxȳzx̄zQ[ 0 , 0 ] (14)

The right hand sides are equal since Q[ 0 , − ] +Q[− , 0 ] = Q[− , 0 ] +Q[ 0 , − ].
We have proved that yx−1z ∼ zx−1y implies that the caseD(− , − )→ D( + , + )
is independent of the order of crossing switches.

This concludes the proof.

Note that Proposition 3.2.15 is just a partial result and that further con-
straints may be placed on ∼ as necessary conditions for the computation to be
independent of which base points we choose, what ordering of components we
choose and that the computation is actually gives the same results for diagrams
related by Reidemeister moves and orientation-preserving self-homeomorphisms
of the plane.

In closing we would like to shortly discuss the relation yx−1z ∼ zx−1y. The
relation is derived from the equation

xQ[D( + )](x, y, z) + yQ[D(− )](x, y, z) + zQ[D( 0 )](x, y, z) = 0

which has some symmetry for x and y. It stands to reason that xy−1z ∼ zy−1x
should also be true. By a simple computation this is actually an equivalent
condition. In fact, the relation is true for any permutation of the symbols x,y
and z.

Proposition 3.2.16. As elements of Z{x±1, y±1, z±1}/ ∼,

yx−1z = zx−1y ⇐⇒ xy−1z = zy−1x ⇐⇒ xz−1y = yz−1x

Proof.

yx−1z = zx−1y
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⇐⇒
x−1z = y−1zx−1y

⇐⇒
z = xy−1zx−1y

⇐⇒
zy−1 = xy−1zx−1

⇐⇒
zy−1x = xy−1z

⇐⇒
y−1x = z−1xy−1z

⇐⇒
x = yz−1xy−1z

⇐⇒
xz−1 = yz−1xy−1

⇐⇒
xz−1y = yz−1x
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1996. Print.

47


