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Abstract

In this thesis, we extend first extend logic language to infinitary languages, where
we allow for con- and disjunctions of infinite sets of formulas, and quantifiers
can bind infinite sets of variables. The cardinalities of those sets are bounded
however, and based on those bounds we investigate the existence of quantifier
elimination and decision methods for infinitary theories on the ordered field of
reals. With analytic sets from descriptive set theory as a counterexample we
prove the main result: The countably infinite theory of the ordered field of reals
does not have quantifier elimination.

Sammanfattning

I denna uppsats börjar vi med att utöka ändlig logik till oändlig logik, där vi tillå-
ter kon- och disjunktioner av oändliga mängder av formler, och där kvantorer kan
binda oändliga mängder av variabler. Dessa mängders kardinalitet är begränsad,
och beroende på de begränsningarna undersöker vi huruvida existensen av kvan-
torelimination och avgörbarhetsmetoder hos de reella talen som ordnad kropp.
Vi använder analytiska mängder från den deskriptiva mängdläran som motex-
empel för att bevisa uppsatsens huvudresultat: Den uppräkneligt oändliga teorin
om de reella talen som ordnad kropp har inte kvantorelimination
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1. Introduction

In 1931, Gödel [1] with his incompleteness theorems put an end to the great
formalist project, championed by Hilbert [2, problem 2], to show that all mathe-
matics could be algorithmically proved using only syntactic manipulation of logic
notation. The theorems were not, however, the death of the concept of pure syn-
tactic manipulation, or even proofs by algorithms. The scope was merely reduced,
from everything to classes of mathematical structures where such algorithms are
possible, and to the specific kinds of proofs that are amenable to such syntactic
games.

Tarski [8] showed in 1951 that one such structure is the ordered field of reals,
i.e. R described by the symbols (+,−, ·, <, 0, 1, ) and variables. He showed that
every (finite) logical statement, without free variables, about equalities and in-
equalities of polynomials with integer coefficients, can be algorithmically decided
upon (see section 4.1). Further, he also proved that all such statements, even
those with free variables, can be reduced to statements without quantifiers (∀
and ∃), in a sense simplifying them.

This thesis expands slightly on this matter. In chapter 2 it introduces infini-
tary languages, which allow for logical statements of "infinite length", and proves
some propositions about these languages analogous to well-known theorems of
finitary logic. Chapter 3 introduces some notions of topology, paving the way
for the next chapter. In chapter 4 we give some examples of theorems which
can be generalised from finitary logic to infinitary logic. There we also reach
the main points: That contrary to in finitary languages, in infinitary languages
the statements about R can not in general be expressed without quantifiers, and
there is not an algorithm for deciding infinitary sentences about R.
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1.1 Model Theory

The subject area is model theory. As always, whenever one tries to provide a
compact definition of any given branch of mathematics, there will be instances
when something which undoubtedly belongs to that branch still falls outside of
that definition. One can try to remedy this by giving vaguer and vaguer def-
initions, until the definition is so ambiguous that nothing can be gained from
reading it. Therefore, we shall not try to give an all-encompassing definition of
model theory, but rather a concise and eloquent definition, which covers at least
the core of the subject:

Model theory is the classification and study of algebraic universal structures,
by defining the structures in terms of logical formulas which are true on the un-
derlying domain, and the subsequent study of such formulas. Or, in the words
of Keisler and Chang [5]:

universal algebra + logic = model theory.

The subject is characterised by the dichotomy between syntax and semantics, or
as we shall call them, language and model. Facts and properties which can be
regarded as true or false belong to the model. The language in turn is the precise
systematisation of how we make statements about those facts and properties, in
the form of strings of logical symbols. We can talk and prove things about the
model, and the language is the grammar, sterile but giving a strict structure to
our thoughts.

Separating the language of statements from the meaning of those statements
is a powerful thing. It is a form of abstraction, and like every other form of ab-
straction, it shows us how objects we previously held as separate can be unified.
When we consider the structure of the statements separate from their meaning
we can identify models which share languages, and consider them as equiva-
lent (technically we say that they are logically equivalent.) Thus model theory
provides us with a way of classifying models based on similarities between the
syntactic structure of statements about them. It follows that we can share proofs
and theorems freely between equivalent models, so long as those proofs and the-
orems have the correct structure.

This, in the author’s opinion, is at the heart of model theory.
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2. Logic or Talking about Structures

2.1 Universal algebra

Model theory uses logic as a tool and is therefore regarded as a branch of logic,
but the objects of study are those of universal algebra: Structures.

Structures in universal algebra are generalisations of algebraic structures such
as groups, fields, graphs, ordered sets, etc. Recognising that there are similarities
in how such objects are constructed and studied, a general framework is given in
which all such structures fit:

Definition. Following Hodges [3], a structure A is an object consisting
of four parts:

• An underlying set called the domain of A, written domA. By the
elements of A we mean the elements of domA. A and domA are
oftentimes used interchangeably.

• A subset of domA whose elements are called the constants of A.

• For each positive integer n, a set of subsets of (domA)n, called n-ary
relations of A.

• For each positive integer n, a set of n-ary functions on domA.

Sometimes the constants are omitted and replaced by 0-ary functions.
Structures are sometimes called models.
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2.2 The words

The promise of model theory is to translate algebra into logic, and the goal of
this section is to develop a logical language Lαβ, where α and β are ordinals, for
this purpose. Every structure will have its own language, and the first step is to
abstract the symbols of the structure, so that we can use the logician’s symbolic
manipulation powers without directly assigning any meaning to the symbols.

Definition. The signature L of a structure A is the collection of

• The constant symbols of A.

• For each n ≥ 1, the symbols of n-ary relations of A.

• For each n ≥ 1, the symbols of n-ary functions of A.

In this definition, we regard signatures as being generated from structures. But
we can also regard signatures as the basic objects, and let these generate struc-
tures. A structure would then be a triple containing a domain A, a signature σ,
and an interpretation function ι. ι tells us how to interpret σ in terms of A, so
takes the constants of σ to elements of A, functions of σ to functions on A, and
n-ary relations of σ to subsets of An.

Note that the signature does not contain any symbols representing the domain
of the structure. To be able to talk about elements of a structure, we introduce
variables, to be used with a given signature. A variable can be any symbol
(often x, y or z, or v0, v1, v2, . . .) which is not already in use in the signature,
and they pertain to the language. One can think of them as place holders in the
language, for elements of the structure we wish to talk about.

But talking generally about elements of A is not enough. We want to be able
to talk about the functional and relational structure of the elements in it, to talk
about elements that as function values, and relations between them. To this end
we introduce symbols representing elements not only in the form of variables and
constants, but also in the form of function values of A.

Definition. The terms of a signature L are the symbols generated by
variables, the constants of L and the functions of L:

• Every constant of L is a term.
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• Every variable is a term.

• For every n ≥ 1, if ~t is an n-tuple of terms and F is an n-ary function
symbol of L, then F (~t) is a term.

We will use the notation t(~x) to denote a term t which contains no other variables
than those in ~x. t(~s) then, where t is of the form t(~x) for some n-tuple of variables
~x and ~s is a tuple of at least length n, means the string t, with all instances of
xi ∈ ~x replaced by si ∈ ~s. If X is a set of variables, t(X) means that t contains
no other variables than those in X.

Next, we wish to be able to make to make statements about the terms of A.
The basic building blocks for these statements will be identities and the relation
symbols inherited from A.

Definition. An atomic formula of a signature L is a string of symbols
of one of the forms

• s = t, where s and t are terms of L

• R
(
~t
)
, where R is an n-ary relation symbol of L, and ~t is an n-tuple

of terms of L.

Note that we assume that the symbol = is not already in use in L.

By a negated atomic formula, we mean a string of the form ¬φ, were φ is an
atomic formula. A literal is an atomic formula or a negated atomic formula.

2.3 The sentences

From the atoms we build formulas. They are the last step in creating the language
and they represent declarative sentences, or statements, about the structure.

Definition 1. A formula of the language Lαβ, where L is a signature
and α and β are ordinals, is a string of symbols generated by atomic for-
mulas and the characters

∧
,
∨
, ¬, >, ⊥, ∀ and ∃ in the following way:

• Every atomic formula is a formula.

• > and ⊥ are formulas.
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• If φ is a formula then ¬φ is a formula.

• If Φ is a set of formulas, of cardinality < α, then
∧

Φ and
∨

Φ are
formulas.

• If X is a set of variables of cardinality < β, and φ is a formula, then
∀Xφ and ∃Xφ are formulas.

• Nothing else is a formula.

Note that the formulas of Lαβ is the smallest set which contains the atomic
formulas and > and ⊥, and is closed under the concatenations of symbols
described above.

A word on notation: Throughout this thesis we shall need to refer to long
formulas by short abbreviations. In these cases we will use the symbol ≡. For
instance, φ ≡ ∧{x = y, y = z} means that φ is shorthand for what we actually
mean, which is

∧{x = y, y = z}. Moreover we will use the notations XI or
{xi}i∈I to denote indexed sets X with index set I. If the symbol for the index
is clear from context we shall often omit it like so: {xi}I instead of {xi}i∈I .

If Φ = {φi}i∈I is a set of formulas, then ¬Φ = {¬φi}i∈I . Similarly we will
take other operations on elements, applied to a set of those elements, to mean
that set with the operation applied to every element in it. It should be clear
from context when this is the case. If Φ is the finite set Φ = {φ0, . . . , φn},
then

∧
Φ and

∨
Φ are usually written with infix notation φ0 ∧ φ1 ∧ . . . ∧ φn and

φ0∨φ1∨ . . .∨φn respectively.
∧
i∈I φi means

∧{φi}i∈I , and similarly for
∨
i∈I φi,

and also for
∧n
i=m φi, and

∨n
i=m φi and other similar notations. If y is a single

variable, and ~y = (y1, . . . , yn) is an n-tuple of variables, then ∃y means ∃{y} and
∃~y means ∃{y1, . . . , yn}, and similarly for ∀y and ∀~y. These variations in nota-
tion are used to make the text flow easier, and their meaning should be obvious
when encountered.

We have not yet given these symbols semantic meaning, but the intended in-
terpretation is clear: Atomic formulas are first-order finitary statements, and

∧
,∨

, ¬, >, ⊥, ∀ and ∃ represent the usual connectives, negation and quantifiers.
Some of these operators are redundant, since they can be constructed from each
other. Therefore we could have made another choice of symbols to generate the
formulas, without inducing anything other than cosmetic changes to the theory
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and the expressive power the formulas will have once we give them meaning. For
example, in propositional logic

⊥ ←→
∨

∅

> ←→ ¬⊥
¬ψ ∨ φ←→ ψ → φ.

This means we could restrict the language to the symbols
∧
,
∨
, ¬, ∀ and ∃.

In fact, this is how it is done in Hodges [3]. We could also have added the
implication symbol ’→’. If we wish to restrict the set of symbols even further,
an even smaller set of symbols is

∧̄
(“nand”) and ∃, where ∧̄Φ↔ ¬∧Φ, since

¬φ←→
∧̄
{φ}

∧
Φ←→ ¬

∧̄
Φ

∨
Φ←→

∧̄
¬Φ

∀xφ←→ ¬∃x¬φ

in propositional logic.

For a set of formulas Φ, we say that φ is a boolean combination of the formulas
in Φ, if it is generated (in a finite number of steps) by ¬, ∧ and

∨
acting on the

elements and subsets of Φ ∪ {>,⊥}, as per the rules in Definition 1 above. 〈Φ〉
means the set of all boolean combinations of the formulas in Φ. If we need to
distinguish between boolean combinations in Lαβ where α > ω, and Lωβ, we may
call the former infinite boolean combinations and the latter finite boolean
combinations.

As is evident from the definition, formulas of Lωω are just strings of symbols,
built from atomic formulas and > and ⊥, and concatenated with the connectives
and quantifiers of Definition 1 into ever more complex strings. Many theorems
and arguments use recursive manipulation of these strings, and to facilitate this
we shall define the complexity of a formula, which may intuitively be taken as
a measure of the number of “steps” taken when creating a formula from atomic
formulas.

Sometimes it will suffice to consider the number of steps taken not from the
atomic formulas, but from some other given set of formulas which acts as the
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base case. This happens for example in Theorem 2, and for this reason we will
define not complexity, but complexity above (relative to) a set of formulas.

Also, since we will be dealing with infinitary languages, the complexity will
be allowed to be be any ordinal. This will allow us to do transfinite induction
(see Jech [4, Chapter 2]).

Definition 2. The following formulas have complexity α above Φ, where
α is an ordinal:

• Every atomic formula, >, ⊥ and every formula in Φ, has complexity
0 above Φ.

• If ψ is a formula with complexity α above Φ, then ¬ψ and ∃Y ψ and
∀Y ψ have complexities α + 1 above Φ.

• If Ψ is a set of formulas, let A be the set of complexities of the
elements in Ψ. Then

∧
Ψ and

∨
Ψ have complexities sup(A + 1)

above Φ. Note that this new complexity exists, and is strictly greater
than any in A (Jech [4]).

If ψ has complexity α above the empty set, we simply say that ψ has
complexity α. The set of formulas that have complexity contains the
atomic formulas, > and ⊥ and is closed under under the logical operators
of Definition 1, and since the set of formulas is the smallest such set, every
formula has complexity. Complexity implies complexity above any set of
formulas, and therefore every formula has complexity above every set of
formulas.

We can now define the language:

Definition 3. The language Lαβ, where L is a signature and α and β are
ordinals, is the set of all formulas of Lαβ (see Definition 1). If α and β are
both at most ω, so that any formula contains only a finite number of atomic
formulas and variables, then Lαβ is a finitary language. Otherwise it is
an infinitary language.

Finally we shall need the notion of free and bound variables. For this we need to
define occurrences of variables:

8



Definition. A variable x occurs in a formula if it is used as a symbol in
the formula. To be more specific, we define

• If t is the term consisting only of x, then x occurs in t.

• If F is an n-ary function symbol of L and ~t is an n-tuple of terms,
then x occurs in F (~t) if x occurs in any one of the terms in ~t.

• If s and t are terms, and x occurs in s or t, then x occurs in the
atomic formula s = t.

• If ~t is an n-tuple of terms, at least one in which x occurs, and R is
an n-ary relation, then x occurs in the atomic formula R(~t).

• If Φ is a formula in which x occurs, φ ∈ Φ and ψ is a formula, then
x occurs in ¬φ, ∧Φ and

∨
Φ.

• If x occurs in Φ, then x occurs in ∀XΦ and ∃XΦ. Furthermore, if x ∈
X, then all occurrences of x in Φ are said to be bound occurrences.

A variable x is free in a formula Φ if it occurs not bound somewhere in
Φ. Note that x can both occur bounded in Φ and be free in Φ, as in for
example ψ ≡ y = x ∧ ∀x y = x. x occurs bound in ψ, but also unbound,
and is therefore free in ψ. In a sense, the bound x and the free x are
different variables.

We shall use the notation φ(X), where φ is a formula and X is a set of variables,
to specify that φ is a formula where no other free variables than those in X occur.
For formulas with a finite number of free variables, denoted here as an n-tuple
~x, a common notation is also φ(~x). With our notation using sets, this means
φ(XI), where XI is any indexed set of variables such that every coordinate xi of
~x is an element of XI and I = {1, . . . , n}.

We shall frequently abuse this notation to in the following way: If φ(XI) is a
formula with precisely XI as free variables, then φ(TI), where TI is an I-indexed
set of terms, means the formula constructed in the same way as φ, but with every
occurrence of xi recursively replaced by the term ti. The reader will probably not
even notice this, since it is just the same convention we use to denote function
composition, for example defining f(x) = x2 and then letting f(−x) mean (−x)2.
We call this substitution, and we say that we substitute Xi for Ti.

In the language Lαβ, the index set I must always be of cardinality < β (and
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therefore so must XI be.)

2.4 What the words mean

We have talked figuratively about formulas as “sentences,” but formally, a sen-
tence is a formula with no free variables, i.e. a formula with what can be con-
sidered a well defined semantic meaning with no “meaningless” words (i.e. free
variables). A theory is a set of sentences of a language (we shall allow only
sets, not proper classes.) The idea behind this name is of course that a theory
contains a set of statements which accurately describes some structure.

Having constructed a language using the symbols of a structure but inde-
pendently from it, we will now turn back to our its intended purpose and give
meaning to the language. All structures that have the same number of constants,
and n-ary functions and relations for every n (i.e. have the same signature) share
the same languages, but the languages have different meanings for different struc-
tures. We introduce anew the interpretation function ιA : σ r X 7→ A (where
σrX is every symbol of the signature except the variables). Let L be a language
of a signature σ. For every structure A with signature σ we let ιA be a the func-
tion which takes every symbol s of σ, except variables, to the respective constant,
function or relation in A named by s in σ. Sometimes we denote ιA(s) by sA,
as in Hodges [3]. There may of course be more than one interpretation function
σrX 7→ A, if there is more than one constant, one n-ary function for some n, or
one n-ary relation for some n. In this case, the particular interpretation function
sA uses is considered canonical. It will usually be clear from the context which
particular interpretation function is in use.

We cannot extend ιA in any natural way to all terms of σ, since a variable
does not represent a unique element in domA, but rather any of them. If we
specify which element a variable represents however, we can. Let XI be a set
variables, and SI ⊂ domA. We can then let ιA,SI extend the domain of ιA to
include XI , by letting ιA,SI take xi ∈ XI to si ∈ SI .

We can now extend ιA to a function on all closed terms of σ recursively:

Definition 4. The interpretation functions ιA and ιA,SI are defined
recursively as follows:

• For every constant and function s of σ, ιA(s) = sA as above.

• ιA(F (t1, t2, . . . , tn)) = FA(ιAt1, ιAt2, . . . , ιAtn).
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This has only extended ιA to closed terms. If we choose an indexed subset
SI ⊆ domA, then we extend ιA to every term of the form t(XJ) where
J ⊆ I:

• ιA,SI (xj) = sj.

t[SI ] means ιA,SI (t(XI)). If ~a is an n-tuple and t is of the form t(XI), where
{1, . . . , n} ⊆ I, then t[~a] means t[S{1,...,n}] where S{1,...,n} is the indexed set {sj ∈
domA|sj is the j:th coordinate of ~a}.

In one fell swoop, we can now give meaning to all sentences of L in terms of
A:

Definition. In all of the following, φ must be of the form φ(XJ), where
XJ is a set of variables with index set J , and J ⊆ I which is used as index
set for SI , a subset of domA with index set I. This is necessary so that
we do not mistakenly try to give meaning in a structure A to formulas
with free variables (for example, in the field R, 4 = 5 and 5 = 5 means
something in the sense we use here, but x = 5 does not.)

Given a language L, for a sentence φ, A � φ is read ’A is a model
of φ’ or ’φ is true in A’, and:

• If φ(XJ) is the atomic formula t(XJ) = s(XJ) then A � φ[SI ] iff
t[SI ] = s[SI ].

• If φ(XJ) is the atomic formula R(XJ), then A � φ[SI ] iff R[SI ] ∈ A.

• A � > is always true, and A � ⊥ is never true.

• A � ¬φ[SI ] is true iff A � φ[SI ] is not true.

• If Φ is a set of formulas, then A �
∧

Φ[SI ] iff A � φ[SI ] for every
φ ∈ Φ, and A �

∨
Φ[SI ] iff there is a φ ∈ Φ such that A � φ[SI ].

Furthermore, let XJ be a set of variables with index set J and SI a subset
of domA with index set I. Then

• A � (∀XJφ)[SI ] iff for every subset S ′J ⊆ domA with index set J , A �
φ[ŜI∪J ], where ŜI∪J = {ŝk|ŝk = s′k if k ∈ J, and ŝk = sk otherwise.}.
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• A � (∃XJφ)[SI ] iff for some subset S ′J ⊆ domA with index set J , A �
φ[ŜI∪J ], where ŜI∪J = {ŝk|ŝk = s′k if k ∈ J, and ŝk = sk otherwise.}.

For a theory Φ, A � Φ (read ’A is a model of Φ’) if A is a model of every
sentence in Φ.

The theory of a structure A, ThLA, is the set (or family) of all sentences φ
of the language L that are true in A. ThA, without specifying the language,
means ThLA where L is the first-order language of A.

The models of a theory Φ, Mod Φ, is the set (or collection) of all models
of Φ. If T is a theory in Lαβ and K is a class of L-structures, we say that T
axiomatises K if ModT = K. If A is a structure, we say that T axiomatises
A if ModT = Mod ThA. The formulas of T are called axioms of K and A,
respectively.

Two formulas φ and ψ are equivalent modulo a theory T if for every structure
A ∈ ModT , and admissible subset S ⊆ domA, A � φ[S] ⇐⇒ A � ψ[S]. We
write φ↔ ψ (mod T ).

Two formulas φ(X) and ψ(X) of a language Lαβ, where X is finite, are
logically equivalent, or simply equivalent, if they are equivalent modulo the
empty theory, and we write φ↔ ψ. If the language is Lωω they are elementarily
equivalent. Well-known examples of logically equivalent sentences are ∀Y φ ↔
¬∃¬φ, ¬¬φ ↔ φ and

∧
Φ ↔ ¬∨¬Φ. It is easy to see that these hold in

infinitary languages.
A formula φ(x) defines the subset S of the structure A if A � φ[s]⇔ s ∈ S.

A subset S ⊆ A is definable in the language Lαβ if there is a formula in Lαβ
which defines S.

It may not be as easy to see that the distributive laws hold in infinitary lan-
guages however. These will be needed for example in Theorem 2, so we shall
prove them.

Theorem 1 (Distributivity). In a language Lαβ, if
∣∣J I
∣∣ ≤ |α|,
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∧

I

∨

J

φij ↔
∨

f∈JI

∧

I

φif(i)

and
∨

I

∧

J

φij ↔
∧

f∈JI

∨

I

φif(i).

(2.1)

Note that this holds for all formulas if the language is Lωβ or L∞β where
β is any ordinal.

Proof. We prove the first equivalence: The LHS is true when for every i ∈ I
there is a j ∈ J such that φij is true, i.e. there is a function h : I 7→ J
such that φif(i) is true for every i. But then for this specific h,

∧
I φih(i) is

true, so the RHS is true. The LHS is false when there is an i such that
φij is false for every j. But then every conjunction

∧
I φif(i) is false since

φif(i) will fail for the one i. So the RHS is also false. So the RHS and LHS
are both true or both false. The second equivalence is proved in a similar
manner.

Two logical equivalences that hold for finite languages but not necessarily for in-
finitary languages are the disjunctive and conjunctive normal forms. A formula
φ is in conjunctive normal form over a set of formulas Φ if φ ≡ ∧ {∨Ψi}I ,
where Ψ ⊆ Φ∪¬Φ. φ is in disjunctive normal form over Φ if φ ≡ ∨ {∧Ψi}I .
If we need to distinguish between normal forms in Lαβ where α > ω and Lωβ, we
may call the former finitary conjunctive normal forms and the latter infini-
tary conjunctive normal forms, and similarly for disjunctive normal forms.
Any finite boolean combination of Φ is equivalent to a formula on finitary dis-
junctive normal form, and a formula on finitary conjunctive normal form, over Φ.
If we relax our limits on the cardinalities of connectives, we make corresponding
claims for infinitary languages:

Theorem 2. If φ(X) is an infinite boolean combination of Φ of a language
Lωβ or L∞β, then there is a formula µ(X) on infinitary conjunctive normal
form over Φ, and a formula π(X) on infinitary disjunctive normal form
over Φ, such that φ, µ and π are logically equivalent.

Proof. By induction on complexity. Every formula with complexity 0 above
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Φ is trivially equivalent to both a disjunctive and a conjunctive normal
form over Φ. Let φ(X) be an infinite boolean combination of Φ, with
complexity α > 0 above Φ, and assume that the theorem holds for all
boolean combinations of Φ with complexity < α above Φ. φ is on one of the
forms ¬θ, ∨Θ or

∧
Θ, where θ and every formula in Θ have complexities

< α above Φ. By the induction hypothesis, and for the last equivalence
Theorem 1,

¬θ ←→ ¬
∧

I

∨
Ψi ←→

∨

I

∧
¬Ψi

∨
Θ←→

∨

J

∨

I

∧
Ψij ←→

∨

I×J

∧
Ψij

∧
Θ←→

∧

J

∧

I

∨
Ψij ←→

∧

I×J

∨

K

ψijk ←→
∨

f∈KI×J

∧

I×J
ψijf(ij)

where every Ψij ⊆ 〈Φ〉. Similarly we can reduce φ to conjunctive normal
form over Φ, so by induction the theorem holds.
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3. Topology

A topology on a set Ω is a collection of subsets of Ω that is closed under finite
intersections and arbitrary unions, and includes the empty set and Ω itself. These
subsets are called open sets, and a set together with a topology on it is called
a topological space. The complement of an open set is called a closed set.

A collection B of open sets in a topology T such that every open set in T is a
(possibly empty) union of elements in B, is called a base for T , and B is said to
generate T . The elements of a base are called basic open sets. A collection
S of open sets of T such that T is the smallest topology containing S, is called
a subbase of T .

If X1, . . . , Xn are topological spaces, the projection πi :
∏n

i=1Xi → Xi is
the function (x1, . . . , xi, . . . , xn) 7→ xi. The product topology on the Cartesian
product

∏n
i=1Xi is the topology where the preimages of open sets in X1, . . . , Xn

under the projections π1, . . . , πn are the subbase. This is equivalent to the small-
est topology such that the projections are continuous.

The subspace topology of a subset Ω′ of a topological space Ω is the topol-
ogy of all open subsets of Ω intersected with Ω′.

A continuous function is a function between two topological spaces such that
the preimage of every open set is an open set. A homeomorphism is a contin-
uous function with a continuous inverse. Two topological spaces are said to be
homeomorphic if there is a homeomorphism between them.

Proposition 3. A function f : Y →∏n
i=0Xi, where the codomain has the

product topology, is continuous iff every composition πi f is continuous.

Proof. If f is continuous then πi f is continuous since compositions of con-
tinuous functions are continuous. For the other opposite implication, note
that the collection of all sets of the form

∏m
i=0Ai, where each Ai is open

15



Xi, forms a subbase in
∏n

i=0Xi. For any such set,

f−1

(
m∏

i=0

Ai

)
= f−1

(
m⋂

i=0

π−1
i Ai

)
=

m⋂

i=0

(πi f)−1Ai,

which is open since πi f is continuous. So the preimage of every open set
in the subbase is open, and thus the preimage of every open set is open.
Therefore f is continuous.

A sequence {ai}N in a topological space Ω converges to a ∈ Ω if for every open
set A which contains a there is an N ∈ N such that N < i⇒ ai ∈ A. We write
limi→∞ ai = a. A sequence that converges to a point is said to be convergent.

Proposition 4. Continuous functions between topological spaces preserve
limits. I.e. If f : X → Y is a continuous function and {si}N is convergent,
then

lim
i→∞

f(si) = f
(

lim
i→∞

(si)
)
.

Proof. Let limi→∞(si) = s. Let A be any open set containing f(s). Let
B = f−1(A). B is open since f is continuous, and s ∈ B. Since {si}N
converges to s there is an N such that N < i ⇒ si ∈ B. But this means
that N < i⇒ f(si) ∈ f(B) = A. So {f(si)}N converges to f(s).

A metric, or distance function, d on a set Ω is a function Ω2 → R such that
for all x, y, z ∈ Ω

(i) d(x, y) ≥ 0,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) = 0⇔ x = y,
(iv) d(x, z) ≤ d(x, y) + d(y, z).

A set together with a metric on that space is called a metric space. An open
ball of radius r > 0 around a point a ∈ Ω, denoted Br(a), is the set of all
points x ∈ Ω such that d(a, x) < r. The open balls are the basis of a topology
(see Waldmann [9]). A topological space with topology T such that there is a
metric which generates T in the above sense, is called metrisable.

A Cauchy sequence is a sequence {ai}N in a metric space with metric d,
such that for every ε > 0 there is an N ∈ N such that i, j > N ⇒ d(ai, aj) < ε.
A metric space is complete if every Cauchy sequence is convergent.
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3.1 Descriptive set theory

The Baire space N = NN is the space of all infinite sequences of natural num-
bers, with the following topology: Define Seq as the set of all finite sequences of
natural numbers (note that Seq is countable since countable unions of countable
sets are countable). For every sequence s ∈ Seq, let O(s) be the subset of N
consisting of all sequences starting with s. I.e.

O(s) =
{
r ∈ N | r = s � n

}
. (3.1)

Where s � n means the subsequence of s consisting of its n first elements. Let Ô
be the set of all such sets,

Ô = {O(s) | s ∈ Seq} . (3.2)

We let Ô be the subbase for N . We give N 2 the product topology.
It turns out that Ô is in fact a base for N . This can be proved with induction:

Consider an intersection between two elementsO(s) andO(t) of Ô. If s = t � n or
t = s � n then O(s)∩O(t) = O(s) or = O(t) respectively. If not, O(s)∩O(t) = ∅.
So any finite intersection of unions of elements in Ô is still a union of elements
in Ô. And obviously the same holds for unions, so by induction Ô generates the
topology. And since Seq is countable, every such union is equal to an at most
countable union. This gives us:

Proposition 5. Every open subset of N is a countable union of elements in Ô.
A subset A of a topological space Ω is dense in Ω if every non-empty open set
intersects A. A space is separable if it has a countable dense subset. A Polish
space is a topological space which is homeomorphic to a complete separable
metric space.

A σ-algebra over a set X is a non-empty family of subsets of X which is
closed under complementation and countable unions. Note that a σ-algebra will
also be closed under countable intersections. In a Polish space P , the Borel
sets, denoted B , are the σ-algebra generated by the open sets of P .

Proposition 6. There exists an open set U ⊂ N 2 such for every open set
O ⊂ N there is some sequence s ∈ N such that

O = {x | (s, x) ∈ U} .
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We call U a universal open N -set.

Proof. Let O1,O2,O3, . . . be an enumeration of the elements in Ô, and
O0 = ∅. We let U ⊂ N 2 be defined by

(s, x) ∈ U iff x ∈ On for some n ∈ s.

U is universal since by Proposition 5, for any open set A there is a se-
quence N = {ni}N of natural numbers such that A =

⋃
N Oni . Then

A = {x | (N, x) ∈ U}.
To see that U is open, we note that we can divide U into a union of subsets
of the form Hn = {(s, x) | x ∈ Osn}. Every Hn can be further divided into
a union of sets of the form Gn,i = {(s, x) | sn = i ∧ x ∈ Oi}. The subset
An,i = {s ∈ N | sn = i} of N is a union of basic open sets and therefore
open. But Gn,i = π−1

1 An,i ∩ π−1
2 Oi and thus is also open. Therefore U ,

which is a union of sets Gn,i, is open.

An analytic set is a subset A of a Polish space P such that A is the image of a
continuous function f : N → P .

Lemma 7. For every n ≥ 1, N n is homeomorphic to N .

Proof. Let h : N 2 → N riffle the sequences:

h : ({si}N, {ti}N) 7→ {s0, t0, s1, t1, s2, t2, . . .}

Clearly h is a bijection. Now let A ⊂ N be open so that for some subset S ⊂ Seq,

h−1A = h−1

(⋃

s∈S
O(s)

)
=
⋃

S

h−1O(s).

If s has an odd number of entries, s = {n0, n1, . . . , n2j}, then O(s) is the set of
all s̄ ∈ N starting with s. By “de-riffling”,

h−1(O(s)) = {(s̄, t̄) | s̄ ∈ O{n0, n2, . . . , n2j} ∧ t̄ ∈ O{n1, n3, . . . , n2j−1}}
= π−1

1 (O{n0, n2, . . . , n2j}) ∩ π−1
2 (O{n1, n3, . . . , n2j−1})

which is a finite intersection of open sets and thus open. Similarly we can prove
that h−1(O(s)) is open if s has length one, or another odd number of entries.
Thus h−1A is open, since it is a union of open sets, and h is continuous.
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By Proposition 3, to show that h−1 is continuous it is enough to show that
π1 h

−1 and π2 h
−1 are continuous. Once again let A ∈ N be open. Then

(
π1 h

−1
)−1

A =
⋃

s∈S
hπ−1

1 O(s)

for some subset S ⊂ Seq. Let s = {si}ni=0 and denote by O(k, i) the subset of N
of all sequences such that their k:th entry is i. O(k, i) is open since it is a union
of basic open sets. We note that

hπ−1
1 O(s) = {{s0, x0, s1, x1, . . . , sn, xn, xn+1, xn+2, . . .} | xiN ∈ N}

= O(0, s0) ∩ O(2, s1) ∩ O(4, s2) ∩ . . . ∩ O(2n, sn)

which is a finite intersection of open sets and therefore open. So π1 h
−1 is con-

tinuous, and the continuity of π2 h
−1 is proved in the same way. Thus h is a

homeomorphism N → N 2.

Assume that there is a homeomorphism hn : N n → N n−1, for some n ≥ 2.
Then the function

hn+1 :N n+1→N n

(y, ~x) 7→ (y, hn(~x))

is bijective, and a homeomorphism by Proposition 3. Thus by induction there is
a homeomorphism from every N n to N .

We shall subsequently need the following lemma, due to Jech [4, Lemma 11.6],
which states

Lemma 8 (Jech). The following are equivalent, for any set A in a Polish space
X:

(i) A is the continuous image of N .
(ii) A is the continuous image of a Borel set B (in some Polish space Y ).
(iii) A is the projection of a Borel set in X × Y , for some Polish space Y .
(iv) A is the projection of a closed set in X ×N .

Theorem 9. There exists a universal analytic N -set. I.e. an analytic set
U ∈ N 2 such that for every analytic space A ⊆ N there is an s ∈ N such
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that
A = {x | (s, x) ∈ U}.

Proof. By Lemma 7 there is a homeomorphism h : N 2 → N . Let V be
a universal open set in N . We construct our universal analytic set U by
defining

(s, x) ∈ U iff ∃a ∈ N such that (s, h(a, x)) ∈ V {.

First we need to show that U is analytic. Consider the function

f : N 3→N 2

(s, a, x) 7→ (s, h(a, x)).

π1 f = π1 and π2 f = hπ2,3, both of which are continuous. Hence, by
Proposition 3 f is continuous.
Since V { is closed and f is continuous the preimage

f−1(V {) = {(s, a, x) | (s, h(a, x)) ∈ V {}

is closed, and by Lemma 8 the projection π1,3 f
−1(V {) = U is analytic.

Secondly we need to show that U is universal. Let A be an analytic N -set.
Once again, by Lemma 8, A is the projection of a closed set B in N 2, so
that

x ∈ A ⇐⇒ (s, x) ∈ B for some s ∈ N .
Let C = h(B){. C is open since h(B) is closed. Therefore we can use the
universal open set V and say that there is an element u ∈ N such that
C = {v | (u, v) ∈ V }. Then, with this u:

x ∈ A⇔ ∃s ∈ N (s, x) ∈ B ⇔ ∃s ∈ N h(s, x) ∈ h(B)

⇔ ∃s ∈ N h(s, x) /∈ C ⇔ ∃s ∈ N (u, h(s, x)) /∈ V ⇔ (u, x) ∈ U.

I.e. U is a universal analytic N -set in N 2.

Lemma 10. For every Cartesian product N n the diagonal diag(N n) =
{(x, . . . , x) ∈ N n | x ∈ N} is closed.

Proof. If n = 1 the diagonal is the entire space and therefore closed. If
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n > 2 then for every point p = (x1, . . . , xn) ∈ N n not on the diagonal, let
k be the first index at which the coordinates of p do not all have the same
integer. For 1 ≤ i ≤ n let si be the partial sequence of xi consisting of its
first k entries.
O(si) is an open set inN , and therefore in the product topology the cylinder
π−1
i O(si) ∈ N n is open. Hence the “k-cell”

Cp =
n⋂

i=1

π−1
i O(si)

is open. Note that every point in Cp has a pair of coordinates that differ
on their k:th entry; therefore Cp does not intersect the diagonal. Also note
that p ∈ Cp.
Now consider the union ⋃

p∈(diagNn){

Cp.

It is a union of open sets and therefore open, and it contains every point of
N n except the diagonal. Thus its complement, the diagonal, is closed.

Lemma 11. There is a subset A ⊂ N which is analytic, but not the com-
plement of an analytic set.

Proof. Let U ⊂ N 2 be a universal analytic N -set, and let

A = {x | (x, x) ∈ U}.
Since U is analytic, by Lemma 8 it is the projection of a closed set X ⊂ N 3.
diag(N 2) is closed by Lemma 10 and therefore the cylinder Y = diag(N 2)×
N is closed. Thus X ∩ Y is closed, which means that the projection

π1,2(X ∩ Y ) = U ∩ diag(N 2) = A

is analytic.
To see that A is not the complement of an analytic set, suppose it was;
A = B{ where B is analytic. Then there is an s ∈ N such that B =
{x | (s, x) ∈ U}. If s ∈ B then (s, s) ∈ U meaning that s ∈ A = B{. If
s /∈ B then s ∈ A which means that (s, s) ∈ U and thus u ∈ B. In both
cases we get a contradiction. Therefore A cannot be the complement of an
analytic set.

21



Proposition 12. There is a subset A ⊂ N which is analytic but not Borel.

Proof. By Lemma 8 every Borel subset of N is analytic, since the iden-
tity function is continuous. Therefore, if every analytic subset of N was
Borel, the Borel and the analytic subsets of N would be precisely the same
sets. But the Borel sets are closed under complementation, so this would
contradict Lemma 11.

Proposition 13. If X and Y are topological spaces and f : X → Y is
continuous, then the preimage of every Borel set in Y is Borel.

Proof. Let S = {S ∈ Y | f−1(S) ∈ B}. Since f is continuous S contains
every open set. If S ∈ S then f−1(S{) = f−1(S){ ∈ B, and if {Si}I is a
countable sequence of elements in S then f−1

⋃
I Si =

⋃
I f
−1(Si) ∈ B. So

S contains the open sets of Y , and is closed under complementation and
countable unions, which means that it contains the Borel sets of Y .

N is homeomorphic to the irrationals P, and a well-known example of a home-
omorphism is the function mapping the sequence {si}N of natural numbers to
continued fractions:

h : N → (0, 1)
{si}N 7→ 1

s0+ 1
s1+ ...

(3.3)

This can then be composed with a homeomorphism to all of R, and homeomorphy
of N and P follows. However, to avoid having to dig into the theory of continued
fractions we shall prove the existence of another homeomorphism, due to Miller
[7, Theorem 1.1]. The construction is repeated here, only in more detail.

Lemma 14. If {In}N is a sequence of non-empty intervals in R such that their
lengths converge to 0 and for every closure Īn+1 ⊂ In, then

⋂
N In is a singleton.

Proof. Let each In = (an, bn). Let A be the set of all an. A is non-empty and
bounded above by every bn. Therefore, if we let x = supA then x ≤ bn for every
n. So an ≤ x ≤ bn for every n. So x is in every closure Īn. But Īn ⊂ In+1 so
x ∈ In for every n. Hence their intersection is non-empty.

There cannot be two points in the intersection, since for every pair of distinct
points there is an In shorter than the distance between them.
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Theorem 15 (Miller). N is homeomorphic to the irrationals P (under the
subspace topology).

Proof. For the purpose of this proof, let a semi-partitioning of an open
interval (a, b) be a sequence of intervals {(ai, bi)}Z such that for every i,
bi = ai+1 and the closure of the union the sequence is the closed interval
[a, b]. I.e. a semi-partitioning of (a, b) is a division of (a, b) into countably
infinitely many disjoint open subintervals that lie shoulder to shoulder, and
except for their endpoints cover all of (a, b). A semi-partitioning of a union
of open intervals is a union of semi-partitionings of every interval.
If s is a finite sequence, let sˆn denote the sequence of s with n appended
to it. The set of all finite sequences can be considered an infinite tree (with
∅ as its root), where each sˆn branches off from s. Each infinite branch
then corresponds to an element of N .
The idea is to construct a sequence of successive semi-partitionings of
the real line such that the lengths of the intervals tend to zero, and
every rational is the end point of some interval. Each infinite sequence of
subintervals will correspond to an element of s̄ ∈ N , and the intersections
of each such sequence will be a singleton whose element will be the
homeomorphisms value at s̄.

Now for the details. Let {zi}N be an enumeration of the integers,
{qi}N an enumeration of the rationals, and let Seqn ⊂ Seq be the sequences
of length n. Let I∅ = R. For each s ∈ Seq1 let Is = (zs0 , zs0 + 1). This
semi-partitions R into unit intervals with integer endpoints. From here,
recursively define intervals Is for each Seqn as follows:

1. Semi-partition every Is, s ∈ Seqn, in the following way: Let I ′ ⊂ Is be
the open interval with centre in the middle of Is and half the radius.
To the left of I ′, define a new open interval stretching from I ′ to half
to the remaining length of Is. To the left of that new interval, define
a new open interval of half the remaining length. Etc. ad infinitum.
Do the same thing to the right of I ′. All these open subintervals form
a semi-partitioning of Is. Note that all end points are rational.

2. qn is either an endpoint of a previously constructed interval, or it sits
in the interior of exactly one of the semi-partitions constructed above.
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In the latter case, let qn divide the corresponding semi-partition into
two new open subintervals.

3. Now every Is, s ∈ Seqn, has been semi-partitioned, and every rational
up to and including qn is the end point of one these semi-partitions,
or a semi-partition earlier in the process. For each s ∈ Seqn let {I ′i}N
be an enumeration of the semi-partitioning of Is, and let Isˆi = I ′i.
(Note that sˆi ∈ Seqn+1. This is how the recursion continues.)

By construction, at every step the diameters of the intervals are at least
halved. Also, since every created interval has non-zero distances to the
endpoints of its superset, the closure Īsˆi ⊂ Is for every i and s. Thus by
Lemma 14, for every s̄ ∈ N ⋂

n∈N
Is̄�n (3.4)

is a singleton {x}. Let h be the function s̄ 7→ x. x must be irrational since
every rational is the end point of some open interval Is̄�n, and so cannot be
in any of the unions (3.4).
h is a bijection onto the irrationals since every irrational p is in I∅, and if
p ∈ Is then p is in exactly one of the subsets Isˆi. h is continuous since if
A ⊂ P is open, A = A′ ∩P, where A′ is open in R. This means that A′ is a
union of open intervals with rational endpoints. A′ is semi-partitioned by
a set of intervals {Is}s∈S, S ⊂ Seq, so that

h−1(A) = h−1

(
P ∩

⋃

s∈S
Is

)
=
⋃

s∈S
h−1Is =

⋃

s∈S
O(s)

which is open. Similarly we can show that h is open: If B ⊂ N is open
then by Proposition 5, B =

⋃
SOs for some subset S ⊂ Seq. And then

h(B) = h

(⋃

S

O(s)

)
=
⋃

S

h (O(s)) =
⋃

S

P ∩ Is = P ∩
⋃

S

Is

which is open in the subspace topology of P.
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Proposition 16. There is a subset of R which is analytic but not Borel.

Proof. By Theorem 15 there is a homeomorphism h : N → P, and by
Proposition 12 there is an analytic non-Borel subset A ⊂ N . Note that a
homeomorphism X → Y ⊂ Z is a continuous function X → Z. Therefore
h is a continuous function N → R and thus, by Proposition 13 the image
C = h(A) is not Borel in R.
To see that C is analytic, we note that since A is analytic there is a contin-
uous function f : N → N whose image is A, and that thus the composition
h ◦ f : N → R is a continuous function with image C
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4. Quantifier elimination and deci-
sion methods

Having introduced the necessary topology, we have now reached the point where
we are ready to investigate decidability and quantifier elimination of R. We start
with two examples of how theorems about quantifier elimination in Hodges [3]
may be generalised to infinitary languages.

Lemma 17. Let T be a theory of Lαβ, and let Φ be a set formulas of Lαβ
such that:

(a) Every atomic formula of L is in Φ.

(b) Φ is closed under boolean combinations.

(c) For every formula φ(X ∪ Y ) ∈ Φ, X and Y disjoint, ∃Y φ(X ∪ Y ) is
equivalent modulo T to a formula ψ(X) ∈ Φ.

Then every formula is equivalent modulo T to a formula in Φ.

Proof. By induction on complexity. If φ is a formula with complexity 0
then either φ is atomic, or it is > or ⊥. In either case, by (a) and (b) it is
in Φ.
Now let α > 0 and assume that all formulas of complexity < α are ↔
(modT ) to formulas in Φ. A formula φ of complexity α is either a boolean
combination of formulas of lower complexity and thus ↔ (modT ) to a
formula in φ by (b), or of the form ∃Y ψ or ∀Y ψ, where ψ has < α. ψ is
↔ (modT ) some formula π ∈ Φ, so ∃Y φ↔ ∃Y π ↔ (modT ) some formula
in Φ by (c), and ∀Y φ ↔ ∀Y π ↔ ¬∃¬π ↔ (modT ) some formula in Φ by
(b) and (c).
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Given a language Lαβ and its signature L, an elimination set for a class K of
L-structures is a set Φ of Lαβ-formulas such that every formula φ(X) is equivalent
in every structure in K to a boolean combination φ∗(X) of formulas in Φ. Since a
boolean combination of some set of formulas Φ cannot have any other quantifiers
than those already in the formulas of Φ, the process of finding the equivalent
formula φ∗ in the elimination set is called quantifier elimination. We say
that a theory T has quantifier elimination if ModT has a quantifier free
elimination set. See Hodges [3, section 2.7].

Usually K will be some well-known class of structures such as the class of
linear orderings, or the class of real-closed fields. Of course every class K always
has the trivial elimination set consisting of every formula of Lαβ, but often the
aim is to find elimination sets consisting of only very few formulas, or elimination
sets consisting of particularly simple formulas. Such a “simple” elimination set
tells us that when we work with some specific structure A in K we can, at least in
principle, restrict ourselves the formulas of Φ. The truth of every Lαβ-statement
we make about A depends only on the truth of the formulas in Φ.

Of particular interest are elimination sets without quantifiers (i.e. the for-
mulas in the elimination sets are themselves boolean combinations of atomic
formulas.) They are important because they tell us that for every Lαβ-formula
φ(XI), L-structure A and SI ⊆ domA, our ability to determine the veracity of
the statement φ[SI ] depends solely on our ability to determine the veracity of
atomic formulas.

Since ∀Xφ ↔ ¬∃X¬φ, Lemma 17 already hints at elimination sets for K,
namely any set of generators (under boolean combinations) for Φ, with T =
ThK. We shall now refine this idea lemma to arrive at very specific conditions
that can tell us what an elimination set will look like:

Theorem 18. Let K be a class of L-structures, α = ω or α = ∞, and Φ
a set of Lαβ-formulas. If:

(i) Every atomic formula of L is in Φ.

(ii) for every formula φ(X) of the form ∃Y ∧Ψ(X ∪ Y ), where Ψ ⊆
Φ ∪ ¬Φ, there is a formula φ∗(X) ∈ 〈Φ〉 of Lαβ such that φ ↔ φ∗

(mod ThK).

Then Φ is an elimination set for K.

Proof. Let φ(X) be a formula of complexity α > 0 above Φ, and assume
every formula ψ(X) of complexity < α above Φ is equivalent to some
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formula ψ′(X) ∈ 〈Φ〉 in every structure in K (remember that 〈Φ〉 is the set
of Boolean combinations of elements in Φ). φ(X) is on one of the following
forms:

(a) ¬ψ, ∨Ψ or
∧

Ψ.

(b) ∃Y ψ(X ∪ Y ).

(c) ∀Y ψ(X ∪ Y ).

Here ψ, π and every formula in Ψ have complexities < α, and X and Y
are disjoint. If it is (a), then by the induction hypothesis ψ ∈ 〈Φ〉.
If it is (b), then by the induction hypothesis ψ(X∪Y ) is equivalent to some
boolean combination of formulas in Φ, which by Theorem 2 is equivalent to
a formula on disjunctive normal form over Φ, so that for some Ψ(X∪Y ) ⊆ Φ

∃Y ψ(X ∪ Y )←→ ∃Y
∨∧

Ψ←→
∨
∃Y
∧

Ψ.

by (ii) the last formula is equivalent to
∨
θ∗(X ∪ Y ) where θ∗ ∈ 〈Φ〉. But∨

θ∗ ↔ θ∗, which is the formula we are looking for. If it is (c), then we use
∀Y ψ ↔ ¬∃Y ¬ψ and then proceed in the same way as for (b).
Every formula of complexity 0 is already in Φ, so by transfinite induction
every formula is equivalent to a formula in 〈Φ〉 modulo ThK.

A notion related to quantifier elimination is decidability. A sentence φ is a
consequence of a theory T if φ ∈ Th ModT , i.e. if φ is true in every model of T
(this definition of consequence is equivalent to that of Hodges [3].) A theory T of
a language Lαβ is decidable if there is a terminating algorithm which determines
whether any given sentence of Lαβ is a consequence of T . Note that decidability
implies completeness.

Decidability is related to quantifier elimination both spiritually and practi-
cally: Spiritually, decidability of a theory T means that every sentence of ModT
can be reduced algorithmically to the “elimination set” {>,⊥}. So decidability
in a sense is a stronger form of quantifier elimination, but only on sentences.
Practically, an algorithm for decidability may often begin with an algorithm for
quantifier elimination. Se Tarski [8] for an example of this.
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4.1 The real case

Let R be the signature (0, 1,−,+, ·, <), and let R be the structure of the reals
as an ordered field with signature R (used of course interchangeably with R as
simply the set of reals). The real-closed fields, abbreviated RCF, are the
structures that are elementarily equivalent to R, or in other words

A ∈ RCF ⇐⇒ ThRωω A = ThRωω R.

If we wish to talk about the theory of R in other languages, we shall use the
notation Rαβ = ThRαβ R. It turns out (see Hodges [3]) that RCF (= Rωω) can
be axiomatised by a countably infinite of formulas.

As famously shown by Tarski [8], the atomic formulas are an elimination
set for the class of real-closed fields where Rωω has been exchanged for in the
language (0, 1,−1,+, ·, <)ωω. This is only a cosmetic change since in every use
of − and −1 from the two signatures, we can simply switch between (−1) · a
and −a (or 0 − a if we consider − a binary function.) So the theory of RCF
has quantifier elimination. Furthermore, Tarski shows that the theory of RCF
is decidable (this statement would of course suffice, since quantifier elimination
follows from decidability). Since R is an RCF, we arrive at

Theorem 19 (Tarski). Let R be the signature of R as an ordered field, and
Rωω = ThRωω R. Then Rωω has quantifier elimination, and is decidable.

Remains the questions of whether Rαβ is decidable or has quantifier elimina-
tion when α, β ≥ ω1. Let us call Rαβ, where α, β ≥ ω1, infinitary RCF. It
is intuitively clear that the answer to the question of decidability is no. For
in infinitary RCF with domain R we can express the set of integers, and thus
decidability would imply an oracle for first-order statements about integers.

To be more precise about this idea, we will first construct a framework of
formulas in Rωω and Rω1ω1 that let us talk about specific numbers and sets of
numbers, and then use these to show that decidability of infinitary RCF implies
a solution to Hilbert’s tenth problem. We will demarcate the formulas with (αβ)
to show which language Rαβ they are part of (note that (00) means an atomic
formula. First of all let us define the non-negative integers:

(00): ζ0(x) ≡ x = 0,

(00): ζi(x) ≡ x = 1 + · · ·+ 1︸ ︷︷ ︸
i times

for i ≥ 1. (4.1)
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In R, the interpretation is that ζn defines the natural number n, and in an
infinitary language we can actually use all of these atomic formulas and thus
construct formulas that talk about all natural numbers instead of only a finite
subset of them. For example we can define the formulas

(ω10): ν(x) ≡
∨

N

ζi(x),

(ω10): ζ(x) ≡ ν(x) ∨ ν(−x),

(ω1ω): ϙ(x) ≡ ∃{y, z} ζ(y) ∧ ζ(z) ∧ y 6= 0 ∧ (x · y = z).

(4.2)

ν[s] is true in R iff s ∈ N, R � ζ[s] iff s ∈ Z and R � ϙ[s] iff s ∈ Q. So using ν, ζ
and ϙ (”qoppa”) we can construct formulas that deal explicitly with the natural
numbers, the integers and the rationals respectively. It will also be of use to
be able to talk about specific integers and rationals, for example to construct
specific Diophantine equations. Therefore let

(00): ζn(x) ≡ ζ−n(−x) for n ≤ −1,

(ωω): ϙa,b(x) ≡ ∃{y, z}ζa(y) ∧ ζb(z) ∧ z 6= 0 ∧ (x · z = y).
(4.3)

Note that because of Theorem 19, formulas (4.3) above are in fact equivalent to
Rω0-formulas. ζn[s] is true in R iff s is the integer n, and R � ϙa,b[s] iff s is the
rational a/b where a and b are integers. If q is a rational we shall often be lazy
and use the notation ϙq, taken to mean ϙa,b where a, b is some pair of integers
such that q = a/b.

It is interesting to note that to define a given rational, as in equations (4.3)
above, Rωω suffices. But to define the corresponding sets, as in equations (4.2),
we have usedRω1ω. To define a specific real however, we immediately make use of
Rω1ω: For every real r choose a sequence {q−i }i∈N and a sequence {q+i }i∈N where
q−i and q+i are rationals such that all q−i < r, all q+i > r and lim q−i = lim q+i = r.
Then the formula

(ω1ω): ρ̂r(x) ≡
∧

i∈N

(
∃{y, z} ϙq−i (y) ∧ ϙq+i (z) ∧ y < x ∧ x < z

)
(4.4)

defines r. That is, R � ρ̂r[s] iff s = r. Note that the formula inside the conjunc-
tion above is an Rωω-formula, and thus by Theorem 19 equivalent to a quantifier-
free formula. Thus ρ̂r is, in fact, equivalent to a formula of Rω10, and we can
assert the following:
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Proposition 20. For every real r there is a formula

ρr(x) ∈ Rω10 (4.5)

which defines r.

Using νn we can express solutions to Diophantine equations with rational coef-
ficients. Every Diophantine equation with rational coefficients is equivalent to a
Diophantine equation with integer coefficients, so we need only consider those.
To express solutions to such an equation D, replace every integer coefficient n
with the variable vn and take integer powers to mean repeated multiplication.
Then we get a corresponding atomic formula αD. WithN as the set of coefficients
in D and X the set of variables, let

(ωω): δD(X) ≡ ∃{vi}N
∧

N

ζi(vi) ∧ αD,

(ω1ω): ςD ≡ ∃X δD(X) ∧
∧

x∈X
ϙ(x).

(4.6)

and note that R � δD[S] iff S is a solution to D, and R � ςD iff D has a rational
solution. Hilbert in his tenth problem proposed to seek an algorithm by which
the solvability in rationals of any rational Diophantine equation could be decided
(see [2]). Verbatim:

10. DETERMINATION OF THE SOLVABILITY OF A DIOPHAN-
TINE EQUATION.

Given a diophantine equation with any number of unknown quan-
tities and with rational integral numerical coefficients: To devise a
process according to which it can be determined by a finite number
of operations whether the equation is solvable in rational integers.

This was proved impossible by Matiyasevich [6]. Therefore, since decidability of
infinitary RCF implies an algorithm for deciding, for every Diophantine equation
D, whether R � ςD or not, infinitary RCF is not decidable.

Theorem 21 (Matiyasevich). Rαβ is not decidable for α ≥ ω1 and β ≥ ω.
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4.2 A Counterexample to quantifier elimination
in Rω1ω1

As discussed in Section 4.1, Tarski [8] showed that Rωω has quantifier elimination,
and Matiyasevich [6] implies that Rω1ω1 is not decidable (and therefore neither
does Rαβ for higher ordinals α, β.) A natural question arises: For which α, β > ω,
if any, does Rαβ also have quantifier elimination? Turns out, none. Our strategy
for proving this will be to show that sets definable without quantifiers are Borel
sets, and that there are sets definable with quantifiers in infinitary R that are
not Borel sets. We will start by defining the Borel sets, following Jech [4]. Jech
defines Borel sets in the more general topological setting of Polish spaces, but
we will do it only for the reals (which is indeed a Polish space.) For this we shall
need some topological concepts, but for simplicity we shall define these too only
for R. They will however agree with the ordinary more general definitions.

The topology of R is generated by its open balls, the open intervals.
Every open set in R is a countable union of open intervals in R (note that

the empty set is an open set).

Lemma 22. The Borel subsets of R are definable without quantifiers in
Rω1ω1.

Proof. First we show that the open sets of R are definable without quanti-
fiers in Rω1ω1 : The standard topology of R is generated by the open intervals
of the forms (a, b), (−∞, b) and (a,∞), where a and b are reals. Let Q be
the set of all open intervals with rational end-points, and Q∗ the set of all
unions of intervals in Q.
Every open interval is the union of its subintervals of finite length with
rational end-points, and is thus in Q∗. Therefore, the topology on R is also
generated by Q∗. Since Q is closed under finite intersections, so is Q∗, and
quite clearly Q∗ is closed under unions. Hence, Q∗ is the standard topology
on R.
Since Q is countable Q must be countable, and therefore every element in
Q∗ is equal to an (at most) countable union of elements in Q. So every
open subset S ⊆ R is either the empty set, which is defined by the formula
α∅(x) ≡ ⊥, or of the form ⋃

i∈I
(qi, pi)

32



where qi and pi are rationals and I is non-empty and at most countable.
This set is defined by the quantifier-free Rω1ω1-formula

αS(x) ≡
∨

i∈I
qi < x < pi.

If {Bi}i∈I is an at most countable set of subsets of R, and each Bi is de-
fined by a quantifier-free formula ψBi(x) of Rω1ω1 , then the union

⋃
i∈I Bi is

defined by the quantifier-free formula
∨
i∈I ψBi(x) of Rω1ω1 , and the comple-

ment of any Bi is defined by ¬ψBi(x) of Rω1ω1 which is also quantifier-free.
So by induction every set in the σ-algebra generated by {Bi}I is defined by
a quantifier-free formula, and by Definition 1 these formulas are of Rω1ω1 .
Thus, the Borel subsets of R are defined by quantifier-free formulas.

Lemma 23. Let A be a structure with signature L and a topology. Suppose
every atomic formula with at most one free variable defines a Borel set.
Then every quantifier-free formula in Lω1ω1 with at most one free variable
defines a Borel set.

Proof. Let Φx be the atomic formulas in Lω1ω1 with at most x as a free
variable. The quantifier-free formulas with at most x are precisely 〈Φx〉.
Now

• Every atomic formula in Φx is in B per assumption.

• > defines A and ⊥ defines ∅, both of which are in B.

• If Ψ = {ψi(x)}I is a countable set of formulas where each ψi defines
a set Bi ∈ B then ∧

Ψ defines
⋂

I

Bi

and ∨
Ψ defines

⋃

I

Bi,

both of which are in B.

Therefore, following Defintion 1, 〈Φx〉 all define Borel sets. The same proof
of course holds for every single variable in place of x.
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Theorem 24. The Borel sets of R are precisely the sets defined by the
quantifier-free formulas in Rω1ω1.

Proof. By Lemma 22 every Borel set is defined by a quantifier-free formula.
Every atomic formula is a polynomial equation or strict inequality in one
variable. Polynomial equations in R have at a finite number of roots, and
so define closed sets, which are Borel. Strict polynomial inequalities define
unions of open intervals, which are Borel. Therefore Lemma 23 implies
that quantifier-free formulas which define sets, define Borel sets.

Theorem 25. Every analytic subset of R is definable in Rω1ω1.

Proof. Let A be an analytic subset of R. Then A is the image of a contin-
uous function f : N → R. The idea is that for a continuous function it is
enough to know the values of a dense subset of the domain to be able to
calculate the values of the entire domain. We will construct a formula φ of
Rω1ω1 that defines A in terms of such a set.
For every s ∈ Seq choose a point s∗ ∈ O(s). Let {p1,i}N be the sequence
of every second prime, {p2,i}N every second of those which are left, {p3,i}N
those which are left after {p1,i}N and {p2,i}N, etc. Let P be the set of all
products of at least one distinct prime. Define the encoding function

enc : Seq→P
{si}ni=0 7→Πn

i=0pi,si .

Note that enc is a bijection, and that enc(s) divides enc(t) iff t begins with
the sequence s. Re-index the values {f(s∗)}s∈Seq by letting renc s = f(s∗).
We will need a way to access elements of indexed sets with formulas. Let

ι(x, y) ≡
∨

i∈P
ζi(x) ∧ ρri(y),

where ζi and ρri are the formulas in (4.3). R � ι[i, r] iff i ∈ P and r = ri.
Let δ(x, y) ≡ x 6= y ∧∃z ζ(z)∧x · z = y and π(x) ≡ ∨i∈P ζi(x). R � δ(a, b)
iff b is an integer multiple of a (i.e. a|b if a and b are integers) and a 6= b.
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R � π[a] iff a ∈ P . Finally, let

α(x) ≡ ∃{xi}N
[∧

N

π(xi)

]

(1)

∧
[∧

N

δ(xi, xi+1)

]

(2)

∧

¬
[
∃z π(z) ∧

(∧

N

z 6= xi

)
∧
∨

N

(
δ(xi, z) ∧ δ(z, xi+1)

)
]

(3)

∧
[
∀ε ε > 0→ ∃N

∧

N

xi > N → ∃y ι(xi, y) ∧
(
(x− y)2 < ε2

)
]

(4)

.

If t is a sequence, let t � n mean the subsequence of t consisting of the first
n elements. (1) indicates that {xi}N is a subset of P . (2) indicates that
{xi}N that every xi divides xi+1. Paired with (1) this means that {xi}N
is a subsequence of {enc s̄ � n}n∈N for some s̄ ∈ N . (3) indicates that
there are no other elements of P in-between the elements of {xi}N, so that
together with (1) and (2) {xi}N = {enc s̄ � n}n∈N. (4) Uses the epsilon-
delta definition of limits to say that x is the limit of the sequence indexed
by {xi}N. So α(x) says that x is the limit of the subsequence {ri}{xi}N of
{ri}P , i.e. that for some s̄ ∈ N

x = lim
n→∞

renc(s̄�n) = lim
n→∞

f ((s̄ � n)∗) . (4.7)

By Proposition 5 every open set A containing s̄ is a union of elements in
Ô. So there is an O(t) ⊆ A, t ∈ Seq, such that s̄ ∈ O(t). But this means
that t = s̄ � N for some N , which in turn means that if N < n then
(s̄ � n)∗ ∈ O(t) ⊆ A. Thus

lim
n→∞

(s̄ � n)∗ = s̄. (4.8)

Equations (4.7) and (4.8) together with Proposition 4 which says that f
preserves limits, then tell us that f(s̄) = x. So

R � α[r] iff r ∈ im f = A.

Using Proposition 16 and Theorems 24 and 25, we draw the conclusion that there
is a formula α(x) of Rω1ω1 , which defines an analytic set but not a Borel set, and
therefore is not logically equivalent to a quantifier-free formula. Which in turn
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allows us to draw this thesis final conclusion:

Theorem 26. Let R be the signature of R as an ordered field, and Rω1ω1 =
ThRω1ω1 R. Then Rω1ω1 does not have quantifier elimination.

4.3 Beyond countability

So what about languages of other cardinalities? Let us go about it systematically
and fill out table (4.1). We assume the continuum hypothesis so that we can limit
the cardinalities we examine. The subject matter is the existence of quantifier
elimination and decidability, and the variables are α and β in Rαβ. Remember
that |α| is the maximum cardinality of the set of formulas that a conjunction
or a disjunction can act upon, and |β| is the maximum cardinality of the set of
variables that a quantifier binds.

α\β 0 ω ω1 ω2

0 Q.E dec. ? dec.
ω Q.E dec. Q.E dec.
ω1 Q.E ? ? dec. Q.E dec.
ω2 Q.E ? ? dec. ? dec Sub. dec.

Table 4.1: Q.E. and decidability of Rαβ.

If 0 < β < ω then even though each quantifier is limited to some finite number of
variables, we can circumvent this limit by stringing multiple quantifiers together.
Thus every formula of Rαω is equivalent to a formula of Rαβ, and the reverse is
clear. So we need only consider Rαω. Similarly we can omit the cases 0 < α < ω.

If |ω| < |α| and α < β, then even though every quantifier can bind |β|
variables, α still limits how many variables can occur in a formula. So the
formulas of Rαβ are equivalent to formulas of Rαα. And since Rαα ⊂ Rαβ we
need not consider the theories where α < β. Having decided on which theories
to consider, we can start examining them:

• If β = 0 then every formula is already quantifier free.

• If Rαβ is decidable, then so is Rγδ for every γ ≤ α and δ ≤ β. By Theo-
rem 19, Rωω is decidable.
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• The contrapositive of this is of course that if Rαβ is not decidable, then
neither is Rγδ where γ ≥ α and δ ≥ β. By Theorem 21, Rω1ω is not
decidable.

• By Theorem 26, Rω1ω1 does not have quantifier elimination.

What about quantifier elimination for Rω2ω2? In Rω2ω2 every set is definable
without quantifiers (using ρr of formula (4.5)). This lets us construct the fol-
lowing formulas: Let φ(XI) be a formula of Rαβ where XI is precisely the set of
free variables of φ. Let SJ be the set of all I-indexed subsets SjI of R such that
R � φ[SjI ]. Then

φ(XI)↔
∨

J

∧

I

ρsji(xi) (mod R). (4.9)

If we want every formula of the form of the LHS above to be a formula of Rγδ,
what do the cardinalities of γ and δ need to be? Well, ρsji is quantifier free,
so δ = 0. γ needs to allow for connectives of cardinalities |J |, |I| and |ω|. |ω|
immediately implies that γ ≥ ω1. Depending on φ, J can be as big as RI since SJ
is a set of indexed subsets of R which have cardinalities |I|. But |R||I| ≥ 2|I| which
is the cardinality of the power set of I and strictly greater than the cardinality
if I itself. Therefore |J | could be strictly greater than |I|, which is limited by α.
Thus |γ| > |α|.

So we cannot use equation (4.9) to eliminate quantifiers in arbitrary formulas
of a language. But we limit the number of free variables in a formula, we can use it
to perform quantifier elimination on a subset of the language. If we allow no more
than countably many free variables then |I| = |N|, and thus |J | = |R||N| = |R| at
most. Then it suffices with γ = ω2. Hence:

• The subset of Rω2β where the sets of free variables are countable, has quan-
tifier elimination.
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