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Abstract

In this report the classic Nevanlinna-Pick-Schur interpolation problem is dealt with.
The focus is on understanding the theory and Pick’s original work and how it can be
used in applications.

Denna rapport behandlar det klassiska ämnet Nevalinna-Pick-Schur-interpolation. Dessu-
tom diskuteras ett antal tillämpningar och lösningar presenteras.

Författaren vill rikta ett stort tack till min handledare Yishao Zhou för inspiration och
t̊alamod. Tack även till Jan-Erik Björk av samma anledningar.

1 Introduction

In his paper [7], Pick stated and proved the following statement:
Theorem. (The Pick Interpolation Theorem) Given pairs of complex numbers (zα, wα)
(α = 1, 2, ...n) with zα in the open unit disc D and wα in the closed unit disc D, the
necessary and sufficient conditions for the existence of an analytic function f : D → D
such that f(zα) = wα for α = 1, 2, ..., n, are that the so-called Pick matrix Pn is positive
semi-definite, and the Pick matrix Pn is of the form

(
1− wαwβ
1− zαzβ

)

α,β=1,2,...,n

.

When Pn is positive semi-definite there is a finite Blaschke product of degree at most n
which solves f(zα) = wα for α = 1, 2, ..., n.

This is a remarkable result which makes the theorem algebraically checkable, with a
digital computer for example. Thus it is very useful as far as the applications are concerned.
The aim of this report is to understand Pick’s original proof given in [7], and solutions
provided by Nevanlinna and Schur and how the theorem can be applied in a diversity of
applications, in particular, in circuit theory and modern robust control theory.

We start with some simple examples to show how the theorem can be applied.
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Example 1. (Optimizing the command response, [6]) In H∞ controller synthesis problems
we are asked to analyze the design of a reference signal preflight’s in command tracking
applications. Such a command response optimization can be depicted by the flow diagram
above

where the plant model g is supposed to be a given stable rational transfer function (i.e. g
has no poles in C+) and h is a given stable rational transfer function with desired command
response properties. The design task is to find a stable rational prefilter with a transfer
function f such that ‖h− gf‖∞ is minimized. Here the ∞-norm is defined as

‖h‖∞ = sup
ω∈R
|h(iω)|, i2 = 1.

An unstable prefilter is unacceptable in practical applications because it results in un-
bounded control signals and actuator saturation.

Now if g has no zeros in C+, then we may simply set f = g−1h. In case g has zeros in
C+, the plant inverse leads to an unstable prefilter unless C+-poles of g−1 happen to be
cancelled by zeros of h. Thus, when g has right-half-plane zeros, the requirement that the
prefilter be stable forces us to accept some error between gf and h:

e = h− gf ⇐⇒ f = g−1(h− e).

Assume now that the right-half-plane zeros of g are z1, z2, ..., zm of multiplicity one, the
prefilter will be stable if and only if

e(zα) = h(zα), α = 1, 2, ...,m,

since the unstable poles of g−1 will be cancelled by the zeros of h − e. The previous
conditions are called interpolation conditions/constraints. This is an example of the Pick
interpolation problem. This is because the half-plane can be one-to-one mapped to the unit
disc by the Möbius transform (see any text book in complex analysis or the Appendix).
The Pick matrix then has its components of the form

wα + wβ
zα + zβ

.
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More concrete we consider the functions g = s−1
s+2 , h = s+1

s+3 . Obviously g has a single
zero at s = 1 so there is a single interpolation condition

e(1) = h(1) =
s+ 1

s+ 3

∣∣∣
s=1

=
1

2
.

The Pick matrix should be (in the half-place case) a scalar w1+w1
z1+z1

= 1
2 > 0. By the Pick

Theorem the solution for e exists.
Next we consider two interpolation conditions. Let f = (s−1)(s−2)

(s+3)2
h = 2

3(s+3) . The

interpolation conditions are

e(1) = h(1) =
1

6
, e(2) = h(2) =

2

15
.

In this case the Pick matrix is
(

1/3
1+1

1/6+2/15
1+2

1/6+2/15
1+2

4/15
2+2

)
=

(
1/6 1/10
1/10 1/15

)
.

It is easy to check that it is positive definite. Again by the Pick Theorem there is a function
e interpolating the conditions above.

Example 2. (Design of a small signal oscillator of an active impedance [11])
Assume there is an active impedance (i.e. a tunnel diode) Zd(p) available. The design of

a small signal oscillator involves, at least in the preliminary conceptual stage, the problem
of embedding Zd(p) in an appropriate passive environment Z(p) in order to achieve a
prescribed set of modes, see the following Figure of the embedding of an active 2-terminal
device in a passive environment.

The complex frequencies pα which correspond to a non-zero circulating current I satisfy
the equation

Z(pα) + Zd(pα) = 0⇔ Z(pα) = −Zd(pα).

Hence, the problem of achieving a given set of frequencies pi, ..., pn in C+ is equivalent to
generating a positive real function Z(p) which assumes the values −Zd(pα) at the given
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points pα, α = 1, ..., n. By positive real function we mean Z(s) is H∞ and satisfies

Z(iω) + Z(iω) ≥ 0.

For example, let us consider the three pairs (1, 2), (2, 5
2), (3, 10

3 ). Is it possible to find a
positive real function Z(s) such that Z(1) = 2; Z(2) = 5

2 , Z(3) = 10
3 ?

Youla and Saito [11] raised the following question: Given n pairs (p1, z1), (p2, z2), ..., (pn, zn)
with Re pα > 0, α = 1, ..., n what are the necessary and sufficient conditions for the exis-
tence of a positive real function Z(p) satisfying the interpolation conditions

Z(pα) = zα, α = 1, ..., n ?

They showed that the answer is that the Pick-matrix of n× n

P =

(
z̄α + zβ
p̄α + pβ

)

α,β=1,...,n

must be non-negative definite.
For the three given pairs we form the Pick-matrix

P =




2 3/2 4/3
3/2 5/4 7/6
4/3 7/6 10/9




A straightforward computation shows that the principal minors of P

2 > 0,

∣∣∣∣
2 3/2

3/2 5/4

∣∣∣∣ = 1/4 > 0, and

∣∣∣∣∣∣

2 3/2 4/3
3/2 5/4 7/6
4/3 7/6 10/9

∣∣∣∣∣∣
= 0.

Hence the Pick matrix is positive semi-definite. Thus the function Z(p) exists.
Note that there are many approaches to the Pick interpolation problems, for example,

in operator theory. We will follow Pick, Nevanlinna and Schur, [7, 8, 9], basically from point
of view of classical analysis. Thus we sometimes say Nevanlinna-Pick-Schur interpolation
problem.

And of course we cant omit the work of the Swedish mathematician Arne Beurling. His
formulation and solution of the interpolation problem clarified and developed the problem
in a most elegant way. But this leads us to far away from the scope of this work.[2]

This report is organized as follows. In Section 2 we collect some definitions and ba-
sic facts necessary for our problems. In particular, we discuss the Schwarz Lemma, the
Schwarz-Pick Lemma, finite Blaschke products and their consequences and solve interpo-
lation problems for n = 1, 2. They provide some insights and techniques for solving more
general Nevanlinna-Pick-Schur interpolation problems. In Section 3 we give a complete
proof of the Pick Interpolation Theorem on existence. We shall, in Section 4, prove in
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detail many of the statements in [7] on the solution of the interpolation problem where
the Pick matrix is singular. Section 5 is a short review of Nevanlinnas approach to the
problem and Schur’s algorithm is presented Section 6. Finally in Section 7 we determine
solutions to the examples above together with solutions for feedback stabilization of linear
dynamical plants with uncertainty in the gain factor, which is the foundation work for
modern robust control theory. We hope to share with our readers some geometric pictures
of the topics presented in this report. The last mentioned point was the original motivation
for the author to study this subject due to the fact that it brings linear algebra into the
picture. We hope that linear algebra and classical analysis deserve a larger space in our
mathematical education.

2 The Schwarz Lemma and the Schwarz-Pick Lemma

Now we turn to a short discussion on the Pick interpolation theorem. The theorem concerns
finding necessary and sufficient conditions for the existence of an analytic function f(zα) =
wα and its successive derivatives when zα is in the open unit disc D and wα is in D. In this
report we focus on the case where zα’s are distinct and simple.

Pick and Nevalinna gave solutions independently in [7], [8]. Picks proof concerns finite
sequences whereas Nevanlinna gave a solution for denumerable sets recursively and Schur
parameterized the solution set. [9]. Pick showed that the necessary and sufficient conditions
are that the Pick matrix

Pn =

(
1− wαwβ
1− zαzβ

)

α,β=1,...,n

is positive semi-definite. The matrix above is given for the Schur class, S, of functions
which is the set of analytic functions from D to D. The necessity of the theorem comes
from a derivation of the Pick matrix from the Cauchy and Poisson formulas for analytic
functions where the former gives the function value in terms of a line integral around a
closed path and the latter in terms of its real part on the border of its definition. The result
is the Pick matrix for the Carathéodory class of analytic functions with funtions from D to
C+ (

wα + w̄β
1− z̄αzβ

)

α,β=1,...,n

.

As we have already seen in the previous section this is a third alternative of the Pick
Matrix.

For the sufficiency of the proof we will use the maximum modulus theorem, Schwarz
lemma, the Schwarz-Pick lemma, and the fact that the determinant of a Hermitian matrix
is a quadratic form. For the sake of exposition we recall some basic definitions and theorems
in this section.

The following notations are standard in the literature. The open unit disc D is defined
by D = {z ∈ C : |z| < 1} and the closed unit disc is D. The unit circle is denoted as T.
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The term analytic refers to the property of having a derivative at every point where the
function is defined. Therefore, an analytic function can be both real valued and complex
valued. The function can then be represented with its Taylor series and thus it is infinitely
differentiable and integrable. And so they can also be called holomorphic functions, from
the greek words holos (whole) and morphe (form). A property of holomorphic functions is
the maximum modulus theorem. The Pick interpolation theorem can be thought of as an
extension of the Schwarz Pick Lemma. From this point of view, we review these theorems
in this section. Proofs which have impact on interpolation will be given. We discuss these
basic results in the light of the Nevanlinna-Pick-Schur interpolation problem.

2.1 The Maximum Modulus Theorem and the Schwarz Lemma

The Maximum Modulus Theorem says essentially that holomorphic functions have their
maximum absolute value on the boundary of their domain of definition.
Theorem. [The Maximum Modulus Theorem] If a holomorphic function attains its
maximum in absolute value on an interior point it is a constant.

Let Ω be a region in the complex plane. If f(z) is analytic and non constant in Ω then
its absolute value |f(z)| has no maximum in Ω.

So if w0 = f(z) is any value in Ω there exits a neighbourhood |w−w0| < ε contained in
the image of Ω. In this neighbourhood there are points of modulus greater than |w0| and
so |f(z0)| is not the maximum of |f(z)|.

The property of the non-vanishing derivative together with the maximum modulus
theorem gives us,
Theorem. [The Schwarz Lemma] If f ∈ S and f(0) = 0, then

|f(z)| ≤ |z|, z 6= 0

|f ′(0)| ≤ 1

Furthermore, if |f(z)| = |z| for some 0 6= z ∈ D, or |f ′(0)| = 1 then f(z) = zeiθ (for some
θ ∈ R).
In other words, f rotates z on the unit circle.

Remark. Geometrically this is a holomorphic mapping of D into D with the origin fixed.
The Schwarz Lemma gives a connection between function theory and geometry in that it
relates the modulus of an analytic function to its analytic properties of having a derivative
at every point of its definition. �

We recall the proof here since the idea of the proof will be used later.
Proof. When f is analytic it has a Taylor series representation as f(z) =

∑∞
n=0 anz

n.
Since f(0) = 0 we can define

g(z) =

{
f(z)/z 0 < |z| < 1

a1 = f ′(0) z = 0
.
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This is a holomorphic function from D to D. For z ∈ D there exists r < 1 such that
|z| < r < 1. Then by the Maximum Modulus Theorem,

|g(z)| ≤ sup
|ζ|=r
|g(ζ)| = sup

|ζ|=r

|f(ζ)|
r
≤ 1

r

Letting r → 1 yields |g(z)| ≤ 1, i.e., |f(z)| ≤ |z| and |f ′(0)| ≤ 1 as desired.
If |f(c)| = |c| for some non-zero c ∈ D of |f ′(0)| = 1, that is, |g(c)| = 1 for some

non-zero |c| < 1 then g is constant with modulus 1 according to the Maximum Modulus
Theorem and hence f(z) = zeiθ (for some θ ∈ R).

2.2 The Schwarz-Pick Lemma

The Schwarz Lemma is given with the origin as a fixed point. If we choose to have another
point fixed we get the first extension of this lemma.
Theorem. [The Schwarz-Pick Lemma] Let f ∈ S. Then

∣∣∣∣∣
f(z)− f(a)

1− f(z)f(a)

∣∣∣∣∣ ≤
∣∣∣∣
z − a
1− āz

∣∣∣∣ , ∀z, a ∈ D, (SP1)

and
|f ′(z)|

1− |f(z)|2 ≤
1

1− |z|2 , ∀z ∈ D. (SP2)

Furthermore, equality in (SP1) for some z, a ∈ D or in (SP2) for some z ∈ D occurs if
and only if f is automorphism of D, consequently f is a Möbius transform.

The inequality says that for all z ∈ D and |a| < 1 the function f contracts the circles
with ”origin” a.

Recall that an automorphism of a region is a bijective conformal mapping of the region
to itself. To prove the The Schwarz-Pick Lemma, we first show

Proposition. Every automorphism ϕ : D→ D is a Möbius transform

ϕ(z) = eiθ
z − a
1− āz

for some θ ∈ R (Indeed θ = argϕ′(0)), where a = ϕ−1(0) ∈ D. In particular, every
ϕ ∈ Aut(D) extends continuously to a homeomorphism of D onto itself.

Proof. Using the identity

∣∣∣∣
z − a
1− āz

∣∣∣∣
2

= 1− (1− |a|2)(1− |z|2)

|1− āz|2 , ∀z ∈ D (Ic)

which is

1− |ϕ(z)|2 =
(1− |a|2)(1− |z|2)

|1− āz|2 , ∀z ∈ D
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and hence ϕ(D) ⊂ D; Moreover, a straightforward calculation gives the inverse of ϕ

ϕ−1(z) = e−iθ
z + aeiθ

1 + āe−iθz

(which can be verified by a routine computation). Now let Φ be the set of automorphisms
of the Möbius transforms. It is easy to show that Φ is a group (with composition as the
binary operation) and it acts transitively on D. Hence if ϕ is a automorphism of D there
exists ψ ∈ Φ such that ψ ◦ ϕ(0) = 0; thus it suffices to show that every automorphism ϕ
of D leaving 0 fixed is of the form ϕ(z) = eiθz for some real number θ and hence belongs
to Φ. But if we apply the Schwarz Lemma to ϕ and ϕ−1, we see that |ϕ′(0)| = 1 and the
statement follows from the Schwarz Lemma.

Proof of Schwarz-Pick Lemma. Pick an a ∈ D. Let

ϕ1(z) =
z − a
1− āz , ϕ2(z) =

z − f(a)

1− f(a)z
.

By the Proposition above they belong to Aut(D). Now we apply the Schwarz Lemma to
ϕ2 ◦ f ◦ ϕ1. That is

|(ϕ2 ◦ f ◦ ϕ1)(z)| ≤ |z|
or

|(ϕ2 ◦ f)(z)| ≤ |ϕ1(z)|
which is ∣∣∣∣∣

f(z)− f(a)

1− f(z)f(a)

∣∣∣∣∣ ≤
∣∣∣∣
z − a
1− āz

∣∣∣∣ ,

as desired. It is the same as
∣∣∣∣∣

f(z)− f(a)

(1− f(z)f(a))(z − a)

∣∣∣∣∣ ≤
∣∣∣∣

1

1− āz

∣∣∣∣

Thus the second inequality can be obtained by letting a→ z.
Remark 1. As we have studied in the first complex analysis course if w is a point in the
upper half-plane (i.e. Imw > 0), then

φw(z) =
z − w
z − w̄

is an invertible holomorphic function of z mapping from the upper half-plane onto the unit
disc and φw(w) = 0. The identity (Ic) for the circle becomes

∣∣∣∣
z − w
z − w̄

∣∣∣∣
2

= 1− 2(Im z)(Imw)

|z − w̄|2 .
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So φw maps the upper half-plane into the unit disc. Indeed the map is bijective. This is
because

φ−1
w (ζ) =

w − w̄ζ
1− ζ ,

and

Im
w − w̄ζ
1− ζ =

(Imw)(1− [ζ|2)

|1− ζ|2 .

If f is a holomorphic mapping of the upper half-plane into itself, and w is an arbitrary
point in the upper half-plane, then the φf(w) ◦ f ◦ φ−1

w maps the unit disc to itself, making
the point 0 fixed. The derivative

(φf(w) ◦ f ◦ φ−1
w )′(0) =

φ′f(w)(f(w))f ′(w)

φ′w(w)

and
φ′w(w) = 1/(2i Imw)

Thus the Schwarz Lemma yields

|f ′(w)| ≤ Im f(w)

Imw
, Imw > 0.

This is the Schwarz Lemma for the upper half-plane. In a similar way the Schwarz-Pick
Lemma reads

|φf(w) ◦ f(z)| ≤ |φw(z)| equivalently

∣∣∣∣∣
f(z)− f(w)

f(z − f(w)

∣∣∣∣∣ ≤
∣∣∣∣
z − w
z − w̄

∣∣∣∣ .

In fact we can transform the results on the unit circle to apply to a disk with an arbitrary
center and an arbitrary radius to any half-plane. In control theory and design the right
half-planes and unit circles are common objects. It is useful to know that we can switch
back and forth between the two settings so in the sequel we will do so without further
discussion. �

Remark 2. It is worth pointing out that every holomorphic function f on the unit disc
different from the identity map has at most one fixed point. It is because if f(z1) = z1

and f(z2) = z2 for two distinct points z1 and z2 in D (assuming z1 = 0, without loss of
generality) then f(z) = eiθz for some real number θ. However eiθz2 = z2 leads to eiθ = 1.
So f is an identity map on the unit circle. �

Remark 3. The inequality in the Schwarz-Pick Lemma is called an invariant form. Below
we explain why. Led by the inequality (SP1) we introduce

δ(z1, z2) =

∣∣∣∣
z1 − z2

1− z̄1z2

∣∣∣∣
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This is the pseudohyperbolic metric on D. The Schwarz-Pick Lemma says: A holomorphic
map from D to D is Lipschitz continuous in this metric:

δ(f(z), f(w)) ≤ δ(z, w)

The lemma also indicates that the metric is invariant under Möbius transform

δ(ϕ(z), ϕ(w)) = δ(z, w).

In other words we can reformulate the Schwarz-Pick lemma: A holomorphic self map of
the unit disc is either an isometry (preserves distances and norms) or a contraction with
respect to the hyperbolic metric.�
Remark 3. The Schwarz-Pick lemma is an extension of the Schwarz lemma with a new
origin a. In the same way the Pick Interpolation Theorem can be seen as a generalization
of the lemma but with an arbitrary number of points. In fact, when n = 2 the Pick Inter-
polation Theorem is equivalent to the Schwarz-Pick lemma. This can be proven directly.
Note that Pn is positive semidefinite, denoted by Pn ≥ 0, if and only if 1 − |w1| ≥ 0 and
the det(P2) ≥ 0, which is

(1− |w1|2)(1− |w2|2)

|1− w̄1w2|2
≥ (1− |z1|2)(1− |z2|2)

|1− z̄1z2|2

By the useful identity (Ic) the last inequality can be rewritten as

∣∣∣∣
w1 − w2

1− w̄1w2

∣∣∣∣ ≤
∣∣∣∣
z1 − z2

1− z̄1z2

∣∣∣∣

which is (SP1). �

2.3 Finite Blaschke products

Finite Blaschke products play an important role in solutions of the Nevanlinna-Pick-Schur
interpolation problems. It is due to the following theorem by Fatou [5]:

Theorem. If f is analytic on D and |f(z)| → 1 as |z| → 1, then f is a finite Blaschke
product.
Proof. Note that |f(z)| → 1 uniformly as |z| → 1. Then there is an r < 1 such that f
is non-vanishing on the annulus {z : r ≤ |z| < 1}. Consequently, f has at most a finite
number of zeros in D. Let B be the finite Blaschke product formed from the zeros of f ,
counted with multiplicity. Then f/B and B/f are analytic in D and their moduli tend
uniformly to 1 as we approach T. By the Maximum Modulus Principle |f/B| ≤ 1 and
|B/f | ≤ 1 on D, so f/B is constant on D. Since this constant must be unimodular, proving
that f is a unimodular scalar multiple of B.
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The theorem says when the function f is uniquely determined and of modulus 1 it can
be described by the finite Blaschke product:

B(z) = |c|
n∏

i=1

z − ai
1− aiz

.

Here the ai’s are the finite list of the zeros of B(z) and c is a constant with modulus 1,
thus can be written as eiθ for some real number θ.
The uniqueness follows from the fact that if there were two functions f and g, the difference
f − g would, thanks to the maximum principle, be zero. Therefore, if f = B(z), then f is
unique.

Each finite Blaschke product belongs the disk algebraA(D), the set of analytic functions
on D that extend continuously on D. In fact, the finite Blaschke products are the only
elements of A(D), that map T into T.
Corollary. If f ∈ A(D) is unimodular on T, then f is a finite Blaschke product.

Rephrase

B(z) = eiθ
n∏

i=1

z − ai
1− aiz

.

It has the properties:

• B is continuous across ∂D = T;

• |B| = 1 on the boundary T;

• B(z) = 1/B(1/z̄), if z ∈ C ∪ {∞}; and

• B has finitely many zeros in D.

In particular, every finite Blaschke product belongs to H∞ = H∞(D), the set of bounded
analytic functions on D.

Clearly, a finite Blaschke product is a rational function. Recall that if P and Q are two
coprime polynomials then the degree (or order ) of the rational function f = P/Q is defined
deg f = max{degP,degQ}. So the finite Blaschke product B described above has degree
n. Hence for each w ∈ C∪{∞} the equation B(z) = w has exactly n solutions counted by
multiplicity. If w ∈ D then these solutions lie in D; if w ∈ T then these solutions lie on T.

It is apparent that the set of all finite Blaschke products is closed under pointwise mul-
tiplication. Next we show that it is also closed under composition like Möbius transforms,
as anticipated since each factor in B(z), called Blaschke product, is a Möbius transform

Ma(z) =
z − a
1− āz .
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Proposition. Assume B1 and B2 are finite Blaschke products. Then B1 ◦ B2 is a finite
Blaschke product. Moreover, if n1 and n2 are the degree of B1 and B2, respectively, then
the degree of B1 ◦B2 is n1n2.
Proof. Call the zeros of B1 a1, ..., an1 . So

B1 = eiθ1Ma1Ma2 · · ·Man1
.

Then
B1 ◦B2 = eiθ(Ma1 ◦B2) · (Ma2 ◦B2) · · · (Man1

◦B2).

If we can show that each Mak ◦B2 (k ∈ {1, ..., n1}) is a finite Blaschke product of order n2

then we proved the theorem.
We know that the function Mak ◦ B2 is analytic in D and continuous on D, and uni-

modular on the boundary T the Corollary above tells us that Mak ◦B2 is a finite Blaschke
product. Moreover Mak ◦ B2(z) = 0 if and only if B2(z) = ak. As discussed before the
equation B2(z) = ak has exactly n2 solutions in D. Hence, Mak ◦ B2 is a finite Blaschke
product of degree n2.

Notice that we can also prove that B2 ◦Mak is a finite Blaschke product of degree n2.
Now we discuss the relation between the interpolation problem and finite Blaschke

products. The Möbius transformation of the form

M(z) =
pz + q

q̄z + p̄

can be written as

Ma(z) = eiθ
z − a
1− āz .

It follows from the following algebraic manipulation. Write q = −pa and a = −q/p so
|a| = |q|/|p| < 1.Then we get

M(z) =
pz − pa
−p̄āz + p̄

=

(
p

p̄

)
z − a
−āz + 1

=

(
p

p̄

)
z − a
1− āz

Since (
p

p̄

)
= eiθ

we get

Ma(z) = eiθ
z − a
1− āz .

The function M is indeed an interpolating function of the conditions M(0) = q/p̄, and
M(a) = 0. In this case the 2× 2 Pick matrix is




1−
∣∣∣ qp̄
∣∣∣
2

1

1 1/

(
1−

∣∣∣ qp
∣∣∣
2
)


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Obviously it is semi-definite and the determinant is equal to 0. By the Schwarz-Pick Lemma
(or the Pick Interpolation Theorem for n = 2), there is an analytic function on D satisfying
the interpolation conditions. The function is a finite Blaschke product of degree 1.

When the matrix is a singular of n × n we get a Blaschke product of at most n − 1
degree as stated by Pick.

Finally in this section, we illustrate the usefulness of the identity (Ic) by proving the
following equality which is of interest in the study of finite Blaschke products: Let

B(z) =
n∏

j=1

z − aj
1− ājz

,

Bk(z) =
k−1∏

j=1

z − aj
1− ājz

, 2 ≤ k ≤ n, B1(z) = 1

For every z ∈ C \ T,

1− |B(z)|2
1− |z|2 =

n∑

k=1

|Bk(z)|2
1− |ak|2
|1− ājz|2

.

We prove this identity by induction on n. When n = 1 it is the useful identity (Ic). Assume
the equality holds for n− 1, i.e.

1− |Bn(z)|2
1− |z|2 =

n−1∑

k=1

|Bk(z)|2
1− |ak|2
|1− ājz|2

.

Now

B(z) = Bn(z)
z − an
1− ānz

we have, using the identity (Ic),

1− |B(z)|2 = 1− |Bn(z)|2
∣∣∣∣
z − an
1− ānz

∣∣∣∣
2

=1− |Bn(z)|2 + |Bn(z)|2
(

1−
∣∣∣∣
z − an
1− ānz

∣∣∣∣
2
)

=1− |Bn(z)|2 + |Bn(z)|2 (1− |z|2)(1− |an|2)

|1− ānz|2
.

By the induction assumption we obtain

1− |B(z)|2
1− |z|2 =

1− |Bn(z)|2
1− |z|2 + |Bn(z)|2 1− |an|2

|1− ānz|2
=

n∑

k=1

|Bk(z)|2
1− |ak|2
|1− ākz|2

.
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2.4 Three special cases

Now we demonstrate the use of the Schwarz Lemma and the Schwarz-Pick Lemma to
solve some problems which will be used later, serving as a preparation for the general
interpolation problem.

Problem 1. Show that
(a) if f ∈ S, |f(0)| < 1, then

f1(z) =





f(z)− f(0)

z(1− f(0)f(z))
, z ∈ D \ {0}

f ′(0)

1− |f(0)|2 , z = 0

∈ S.

(b) Let ρ0 ∈ D. Then

f(z) =
ρ0 + zg(z)

1 + zρ̄0g(z)

describes all functions in S such that f(0) = ρ0, ∀g ∈ S.
Proof. (a) Since |f(0)| < 1, f(z) is not a constant with modulus 1, but it could be a
constant less than 1 in modulus. So |f(z)| < 1 for all z ∈ D. We know that the Möbius
transform act transitively on D (by the Proposition) , so |z| < 1 and |w| < 1 imply

∣∣∣∣
z − w
1− zw̄

∣∣∣∣ < 1 (†)

implying

h(z) :=
f(z)− f(0)

1− f(0)f(z)
∈ S, ∀z ∈ D,

and h(0) = 0. By the Schwarz Lemma

f1(z) =





h(z)

z
, z ∈ D \ {0}

h′(0), z = 0
∈ S.

(b) Assume that g ∈ S, we have

|zg(z)| < 1 ∀z ∈ D.

Taking z as zg(z) and w as ρ0 in (†) we can conclude that

f(z) =
ρ0 + zg(z)

1 + ρ̄0zg(z)
∈ S.

14



Obviously, f(0) = ρ0, so for all g ∈ S, f(z) ∈ S. It remains to show that the other direction
is also true. Assume now f is a solution, the function f1 defined in (a) with f(0) = ρ0 lies
in S. Solving f in terms of f1 yields

f(z) =
ρ0 + zf1(z)

1 + ρ̄0zf1(z)
∈ S.

Hence f is in the desired form in (b).
Furthermore we can compute the derivative f ′(0) in terms if g(0) and ρ0 in (b):

f ′(z) =
(g(z) + zg′(z))(1 + ρ̄0zg(z))− (ρ0 + zg(z))(ρ̄0g(z) + zρ̄0g

′(z))
(1 + ρ̄0zg(z))2

= (zg′(z) + g(z))
1− |ρ0|2

(1 + ρ̄0zg(z))2

Then
f ′(0) = g(0)(1− |ρ0|2).

From this computation we can conclude the following: To find f ∈ S with presigned values
of f(0) and f ′(0) it is sufficient to first solve the problem of finding all f ∈ S such that
f(0) is given. Then finding all f (if any) such that f ′(0) is given is to determine all g ∈ S
such that

g(0) =
f ′(0)

1− |ρ0|2
.

This problem (i) has no solution if

ρ1 :=
f ′(0)

1− |ρ0|2

has modulus greater than 1; (ii) has a unique solution if |ρ1| = 1 and (iii) has infinitely
many solutions if ρ1 ∈ D.

Problem 2. Given two pairs of numbers (z1, w1) and (z2, w2) in D2, find a necessary and
sufficient condition for a function f ∈ S to exist such that

f(z1) = w1, f(z2) = w2

and describe the set of of all solutions.
Solution. There are two cases.
(i) If |w1| = 1 the only function in S for which f(z1) = w1 is the constant function
f(z1) ≡ w1. Thus if w1 6= w2 the interpolation problem at hand has no solution, and it
has a unique solution f(z) ≡ w1 if w1 = w2.
(ii) |w1| < 1. By Problem 1, a function f ∈ S satisfies f(z1) = w1 if and only if it is of the
form

f(z) =
w1 + z−z1

1−z̄1zg(z)

1 + w̄1
z−z1
1−z̄1zg(z)

, g ∈ S

15



Then use the interpolation condition at z2, f(z2) = w2 to determine the necessary and
sufficient condition for f to exist. This constraint is equivalent to

w2 =
w1 + z2−z1

1−z̄1z2 g(z2)

1 + w̄1
z2−z1
1−z̄1z2 g(z2)

⇔ g(z2) =
w2 − w1

1− w̄1w2

1− z̄1z2

z2 − z1
:= ρ.

Now we have three possibilities depending on the value of ρ:

(i) If |ρ| > 1 there is no solution.

(ii) If |ρ| = 1 there is a unique solution:

f(z) =
w1 + z−z1

1−z̄1zρ

1 + w̄1
z−z1
1−z̄1zρ

=

(ρ− w1z̄1)(z − −w1 + ρz1

ρ− w1z̄1
)

(1− w̄1ρz1)(1− z̄1 − w̄1ρ

1− w̄1ρz1
z)

Set ζ1 :=
−w1 + ρz1

ρ− w1z̄1
. By (†) ζ1 ∈ D. Remembering that |ρ| = 1, we get

ζ̄1 =

(−w1 + ρz1

ρ− w1z̄1

)
=
−w̄1 + ρ̄z̄1

ρ̄− w̄1z1
=

ρ̄(z̄1 − ρw̄1)

ρ̄(1− w̄1ρz1)
=

z̄1 − ρw̄1

1− w̄1ρz1

as in the denominator, and

∣∣∣∣
ρ− w1z̄1

1− w̄1ρz1

∣∣∣∣ =

∣∣∣∣
ρ− w1z̄1

ρ(ρ̄− w̄1ρz1)

∣∣∣∣ =
1

|ρ| = 1.

so we can define

eiθ :=
ρ− w1z̄1

ρ(ρ̄− w̄1z1)
, θ ∈ R

Hence

f(z) =
ρ− w1z̄1

ρ(ρ̄− w̄1z1)
· z − ζ1

1− ζ̄1z
= eiθ

z − ζ1

1− ζ̄1z

Thus the unique solution is a Blaschke product of degree 1.

(iii) If |ρ| < 1 then there are infinitely many solutions of the form, using the result from
Problem 1(b):

f(z) =
ρ+ z−z2

1−z̄2zg(z)

1 + ρ̄ z2−z
1−z̄2zg(z)

, g ∈ S.

In other words, the solution is parametrizied by any g ∈ S.
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To summarize, a necessary and sufficient for f ∈ S interpolating f(z1) = w1 and f(z2) = w2

is |ρ| ≤ 1. Note that it is equivalent with that the Pick matrix
(

1− wjw̄k
1− zj z̄k

)

j,k=1,2

is positive semi-definite by the same reason as indicated in Remark 3 above.

Problem 3. (Carathéodory) If f(z) ∈ S then there is a sequence {Bk} of finite Blaschke
products that converges to f(z) pointwise on D.

Proof. Let f(z) = c0 + c1z + ... be the Taylor expansion of f . We shall find the Blaschke
product of degree at most m whose first n coefficients match those of f :

Bn = c0 + c1z + · · ·+ cn−1z
n−1 + dnz

n + · · ·
Now |c0| ≤ 1, and from the derivation of the Schur algorithm, we can take

B0 =
z + c0

1 + c̄0z
.

If |c0| = 1, then B0 = c0 is a Blaschke product of degree 0. Assume that for each g ∈ S we
have constructed Bn−1(z). Let

g(z) =
1

z

f − f(0)

1− f(0)f

and let Bn−1 be a Blaschke product of degree at most n− 1 such that g −Bn−1 has n− 1
zeros at 0. Then zg − zBn−1 has n zeros at 0. Define

Bn(z) =
zBn−1(z) + f(0)

1 + f(0)zBn−1(z)

Then Bn is a finite Blaschke product of degree zBn−1 ≤ n, and

f(z)−Bn(z) =
zg(z) + f(0)

1 + f(0)zg(z)
− zBn−1(z + f(0)

1 + f(0)zBn−1(z)

=
(1− |f(0)|2)z(g(z)−Bn−1(z))

(1 + f(0)zg(z))(1 + f(0)zBn−1(z))

so that f −Bn has a zero of order n at z = 0. The proof is complete.

Remark. Without further discussion we point out that the Carathéodory Theorem is linked
to the partial realization problem, see e.g. [3] .

3 The Pick interpolation Theorem

We now present Pick’s derivation of the Pick matrix, thus the necessity, and then a complete
proof. We start with a quote from a well known author: ”The proof of the sufficiency is
somewhat complicated”. [1]
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3.1 Derivation of the Pick Matrix

The necessity of the theorem comes from the Cauchy representation formula for analytic
functions:

f(z) =
1

2πi

∫ 2π

0

f(ξ)

ξ − z dξ.

The formula lets us compute the value of f(z) as soon as we know the values of f(ξ)
on the circle K centered at 0 with radius ρ. If we set ξ = eiθ we get

f(z) =
1

2π

∫ 2π

0
f(eiθ)

eiθ

eiθ − z dθ.

And with the point ζ on the circle we get

2πw =

∫ 2π

0
wK

ζ

ζ − z dθ (1)

where w = f(z) and wK stands for f(ζ).
If we consider a point outside the circle K we get an integral of an analytic function

0 =

∫ 2π

0
wK

ζ

ζ − ρ2

z

dθ

Since ζ is on the circle K, ζ=ρ2

ζ . Taking conjugate of this equality yields

0 =

∫ 2π

0
wK

ζ

ζ − ρ2

z

dθ

Simplifying we get

0 =

∫ 2π

0
wK

z

ζ − z dθ. (2)

Let wK = uK + ivK . Add (1) to (2), after simplification,

2πw =

∫ 2π

0
uK

ζ + z

ζ − z dθ + i

∫ 2π

0
vK dθ,

or

2πw =

∫ 2π

0
uK

ζ + z

ζ − z
dθ − i

∫ π

0
vK dθ.
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We sum the previous two equations with the number pairs (zα, wα) in the first equation
and (zβ, wβ) in the second and get

2π(wα + wβ) =

∫ 2π

0
uK

(
ζ + zα
ζ − zα

+
ζ + zβ

ζ − zβ

)
dθ =

∫ 2π

0
uK

2(ζζ − zαzβ)

(ζ − zα)(ζ − zβ)
dθ

i.e.
wα + wβ
ρ2 − zαzβ

=
1

π

∫ 2π

0
uK

dθ

(ζ − zα)(ζ − zβ)

Now let ρ2= 1 and take the sum from α, β = 1, ..., n. Multiply with sαsβ and sum over
α and β we get

qn(s1, ..., sn) =

n∑

α,β=1

wα + wβ
1− zαzβ

sαsβ =
1

π

∫ 2π

0
uk

∣∣∣∣∣
n∑

α

sα
ζ − zα

∣∣∣∣∣

2

dθ = 0.

Here qn is the hermitian form of the variables s1, ..., sn. Denote s =



s1
...
sn


. In matrix form

qn = sHPns

where

Pn =

(
wα + wβ
1− zαzβ

)n

α,β=1

is the Pick matrix. So we have proved that if there is a Schur function satisfying the
interpolation constraints the Pick matrix is positive semi-definite.
Remark. This version is in the setting of the Carathoédory class of functions. In order to
get the Pick matrix for Schur functions let us consider the analytic function f on the closed
disc. Then the function F = (1 + f)/(1− f) has a positive real part. Let F = U + iV and
so we can represent F by

F (z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − zU(eiθ)dθ + iV (0).

This yields

F (zα) + F (zβ) =
1

π

∫ 2π

0

1− zαzβ
(eiθ − zα)(e−iθ − zβ)

U dθ.

Therefore
n∑

α,β=1

F (zα) + F (zβ)

1− zαzβ
tαt̄β =

1

π

∫ 2π

0

∣∣∣∣∣
n∑

α=1

tα
eiθ − zα

∣∣∣∣∣

2

Udθ.
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Note that by the transformation made in the beginning

F (zα) + F (zβ) =
2(1− wαwβ)

(1− wα)(1− wβ)
.

So we get a Hermitian matrix where the elements of the Pick matrix has the form

Pn =

(
1− wαwβ
1− zαzβ

)n

α,β=1

.

3.2 Proof of the Pick Interpolation Theorem

Theorem (The Pick Interpolation Theorem) There is an f ∈ S satisfying the interpolation
conditions f(zα) = wα (α = 1, ..., n) if and only if Pn ≥ 0. When Pn ≥ 0 there is a Blaschke
product of degree at most n which satisfies the interpolation condition.
Proof. By defintion, the Pick matrix Pn is positive semi-definite if and only if the corre-
sponding Hermitian form is positive semi-definite, that is

Pn =

(
1− wαwβ
1− zαzβ

)n

α,β=1

≥ 0 ⇐⇒ hn(s1, ..., sn) =
n∑

α,β=1

1− wαw̄β
1− zαz̄β

sαs̄β ≥ 0, ∀s ∈ C

We use induction on n. Note that we have already proved the statement for n = 1, 2 as
shown in Problems 1 and 2 in the previous section. Now assume that the theorem holds
for n − 1, n > 1. We wish to show that it holds for n, that is hn ≥ 0 is equivalent to the
existence of f ∈ S such that f(zα) = wα, for α = 1, ..., n with (zα, wα) ∈ D2.

Suppose f(zα) = wα. Then it is clear that |wn| ≤ 1. If |wn| = 1 then the interpolating
function is the constant wn and wα = wn, 1 ≤ α ≤ n − 1. Suppose that hn ≥ 0. Choose
now sn = 1, sα = 0 for α = 1, ..., n− 1. This is |wn| ≤ 1. When |wn| = 1 we choose sα = 0
for α 6= β(< n), n. So

hn(0, ..., 1, 0..., 0, 1) ≥ 0 ⇐⇒




1−|wβ |2
1−|zβ |2

1−wβw̄n
1−zβ z̄n

1−wnw̄β
1−znz̄β

1−|wn|2
1−|zn|2


 ≥ 0.

By (SP1) in The Schwarz-Pick Lemma this implies wβ = wn, as shown before. Hence we
can choose Bn = wn if |wn| = 1.

Now we consider |wn| < 1. To make calculations easier we change variables so that zn
and wn are zero:

z′α =
zα − zn
1− z̄nzα

, w′α =
wα − wn
1− w̄nwα

α = 1, ..., n

Apparently z′n = 0, w′n = 0 as desired.
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Then there is f ∈ S satisfying the interpolation conditions if and only if

g(z) =

f

(
z + zn
1 + z̄nz

)
− wn

1− w̄nf
(
z + zn
1 + z̄nz

) ∈ S

and
g(z′α) = w′α, α = 1, ..., n.

Moreover, if f is a Blaschke product of degree at most n then the same is true for g, and
vice versa.

To be able to use the induction assumption we form the Hermitian form h′n corre-
sponding to the points {z′1, ..., z′n−1, 0} and {w′1, ..., w′n−1, 0} and try to find the relation to
hn.

First we compute:

1− w′αw̄′β
1− wαw̄β

=
1− wα−wn

1−w̄nwα
w̄β−w̄n
1−wnw̄β

1− wαw̄β
=

1− |wn|2
(1− w̄nwα)(1− wnw̄β)

= uαūβ

where

uα =

√
1− |wn|2

1− w̄nwα
.

In the same way for
1− z′αz̄′β
1− zαz̄β

=
1− |zn|2

(1− z̄nzα)(1− znz̄β)
= vαv̄β

and

vα =

√
1− |zn|2

1− z̄nzα
.

We have
1− w′αw̄′β
1− z′αz̄′β

sαs̄β =
1− wαw̄β
1− zαz̄β

(
uα
vα
sα

)(
uβ
vβ
sβ

)

Hence

h′n(s1, ..., sn) = hn

(
u1

v1
s1, ...,

un
vn
sn

)
.

Therefore
h′n ≥ 0 ⇐⇒ hn = 0.

Consequently, the problem is reduced to the case zn = 0, wn = 0.
For simplicity we assume that zn = 0, wn = 0, that is there is f ∈ S solving f(0) = 0,

f(zα) = wα, α = 1, ..., n − 1 if and only if there is g(z)/z ∈ S solving g(zα) = wα/zα,
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α = 1, ..., n − 1. So now we have to know whether there is an f ∈ S such that f(0) = 0
and f(zj) = wj for 1 5 j 5 n − 1. Moreover, f is a Blaschke product of degree at most d
if and only if g a Blaschke product of degree at most d− 1. By the induction assumption,
g(zα) = wα/zα, α = 1, ..., n− 1 has solution if and only if the Hermitian form

h̃n−1(s′1, ..., s
′
n−1) =

n−1∑

α,β=1

1− wα
zα

wβ
zβ

1− zαz̄β
s′αs̄
′
β ≥ 0

This means that the theorem reduces to show that

hn = 0 ⇐⇒ h̃n−1 = 0

provided that zn = 0, wn = 0.
Using, zn and wn = 0 we get,

hn(s1, ..., sn) = |sn|2 + 2Re
n−1∑

α=1

s̄αsn +
n−1∑

α,β=1

1− wαw̄β
1− zαz̄β

sαs̄β.

When completing the square relative to sα we get two sαs̄β’s so we have to subtract one
g(zα) = wα/zα, α = 1, ..., n− 1. It gives

hn(s1, ..., sn) =

∣∣∣∣∣sn +

n−1∑

α=1

sα

∣∣∣∣∣

2

+

n−1∑

α,β=1

(
1− wαw̄β
1− zαz̄β

− 1

)
sαs̄β

But

1− wαw̄β
1− zαz̄β

− 1 =
zαz̄β − wαw̄β

1− zαz̄β
=

1−
(
wα
zα

)(
wβ
zβ

)

1− zαz̄β
sαs̄β

yielding

hn(s1, ..., sn) =

∣∣∣∣∣
n∑

α=1

sα

∣∣∣∣∣

2

+
n−1∑

α,β=1

1−
(
wα
zα

)(
wβ
zβ

)

1− zαz̄β
(s′α)(s′β)

=

∣∣∣∣∣
n∑

α=1

sα

∣∣∣∣∣

2

+ h̃n−1(z1s1, ..., zn−1sn−1)

It follows that h̃n−1 ≥ 0 implies hn ≥ 0. Letting sn = −
n−1∑

α=1

sα we get the implication

hn ≥ 0 =⇒ h̃n−1 ≥ 0. This completes the proof.

Corollary. Assume P = 0. Then

22



(i) f(zα) = wα, (α = 1, ..., n) has a unique solution f(z) ∈ S if and only det(Pn) = 0.

(ii) If det(Pn) = 0 and m < n is the rank of Pn then the interpolating function is a
Blaschke product of degree m. Conversely, if a Blaschke product of degree m < n
satisfying f(zα) = wα, α = 1, ..., n, then Pn has rank m.

(iii) Let det(Pn) > 0 and z ∈ D, z 6= zα, α = 1, ..., n. The set of values

W = {f(z) : f ∈ S, f(zα) = wα, α = 1, ..., n}

is a nondegenerate closed disc contained in D. If f ∈ S such that f(zα) = wα, α =
1, ..., n, then f(z) ∈ ∂W if and only if f is a Blaschke product of degree n. Moreover,
if w ∈ ∂W there is a unique solution to the interpolation problem in S which also
solves f(z) = w.

Before processing the proof we recall that we have proved

(S1) h′n(s1, ..., sn) = hn

(
u1
v1
s1, ...,

un
vn
sn

)
.

(S2) hn(s1, ..., sn) =

∣∣∣∣∣
n∑

α=1

sα

∣∣∣∣∣

2

+ h̃n−1(z1s1, ..., zn−1sn−1)

Proof. (i) and (ii) Note that the problem is trivial if |wn| = 1 because then hn = 0, m = 0
and Bn = wn. So we assume that |wn| < 1.

We can also without loss of generality assume that zn = 0, wn = 0. By (S1), hn and h′n
have same rank. By g described in the proof of the Pick Theorem, the original problem
has a unique solution if and only if the problem with g(z′α) = w′α, α = 1, ..., n has a unique
solution. Moreover it can be solved by a Blaschke product of degree m if and only if the
original one can be solved.

Now that zn = wn = 0. The original problem has a unique solution if and only if
g(zα) = wα/zα, α = 1, .., n− 1 has a unique solution; and f(zα) = wα, α = 1, ..., n, can be
solved with a Blaschke product of degree m − 1. Consequently by induction (i) and (ii)
will be proved if we can show that

rank(hn) = 1 + rank(h̃n−1) (S3)

Denote the Hermitian matrix related to h̃n−1, P̃n−1 = (pαβ)α,β=1,...n−1. By inspection of
(S2) the Hermitian matrix Hn relative to hn is

Hn =




1 + zαz̄βpαβ

1
...
1

1 · · · 1 1



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By elementary row operations,




1 + zαz̄βpαβ

1
...
1

1 · · · 1 1


 ∼




zαz̄βpαβ

0
...
0

1 · · · 1 1




These two matrices should have same rank, but the latter has rank 1 + rank(P̃n).

(iii) Again we assume zn = wn. Then, using (S3) det(P̃n−1) > 0. By induction,

W̃ = {g(z) : g ∈ S, g(zα) = wα/zα, α = 1, ..., n− 1}

is a closed disc in D. But then W = {zζ : ζ ∈ W̃} is a close disc. Since w ∈ ∂W if and

only if w/z ∈ ∂W̃ , the other claims follow by induction.

4 Pick’s solutions

In his paper [7], Pick proved that if the determinant of the Pick matrix, being positive
definite, is zero then the solution to the Nevanlinna-Pick-Schur interpolation problem is a
unique real rational function of n − 1 degree. Also, he constructed the solution. He then
argued that the case where the determinant is positive can be reduced to the previous case
by a parametrization, thus we get infinitely many solutions. The key in this proof is the
following fact, whose proof was a single line in [7]:

Claim 1. Given the n pairs of numbers pα = (zα, wα), let the principal minors of the
Pick matrix Pn be

D(p1, ..., pk) = det
(

(pαβ)α,β=1,...,k

)
= det

((
wα − w̄β
zα − z̄β

)

α,β=1,...,k

)

or explicitly

D(p1, ..., pk) =

∣∣∣∣∣∣∣∣∣∣∣∣

w1 − w̄1

z1 − z̄1

w1 − w̄2

z1 − z̄2
· · · w1 − w̄k

z1 − z̄k
w2 − w̄1

z2 − z̄1

w2 − w̄2

z2 − z̄2
· · · w2 − w̄k

z2 − z̄k
· · · · · · · · · · · ·

wk − w̄1

zk − z̄1

wk − w̄2

zk − z̄2
· · · wk − w̄k

zk − z̄k

∣∣∣∣∣∣∣∣∣∣∣∣

, k = 1, ..., n.
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Assume that D(p1, ..., pn) = 0, then D(p1, ..., pn, p) ≥ 0 with p = (z, w), i.e.

D(p1, ..., pn, p) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w1 − w̄1

z1 − z̄1

w1 − w̄2

z1 − z̄2
· · · w1 − w̄n

z1 − z̄n
w1 − w̄
z1 − z̄

w2 − w̄1

z2 − z̄1

w2 − w̄2

z2 − z̄2
· · · w2 − w̄n

z2 − z̄n
w2 − w̄
z2 − z̄

· · · · · · · · · · · ·
wn − w̄1

zn − z̄1

wn − w̄2

zn − z̄2
· · · wn − w̄n

zn − z̄n
wn − w̄
zn − z̄

w − w̄1

z − z̄1

w − w̄2

z − z̄2
· · · w − w̄n

z − z̄n
w − w̄
z − z̄

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≥ 0

implies that there are n constants λ1, ..., λn independent of p (or z, w), such that

λ1
w − w̄1

z − z̄1
+ λ2

w − w̄w
z − z̄w

+ · · ·+ λn
w − w̄n
z − z̄n

= 0.

Before we prove this proposition, we discuss some of its consequences. Solving this equation
for w (call it fext) we see that fext is a unique rational function of z of degree n− 1:

fext(z) =
λ1

w̄1

z − z̄1
+ λ2

w̄2

z − z̄2
+ · · ·+ λn

w̄n
z − z̄n

λ1

z − z̄1
+

λ2

z − z̄2
+ · · ·+ λn

z − z̄n

=

n∑

k=1

λkw̄k

n∏

j=1
j 6=k

(z − z̄j)

n∑

k=1

λk

n∏

j=1
j 6=k

(z − z̄j)

From this fact Pick constructed the solution by setting

w =
ψ(z)

ϕ(z)
,

where ϕ and ψ are coprime polynomial of degree n − 1, then he claimed, without further
argument, that

wα =
ψ(zα)

ϕ(zα)
, w̄α =

ψ(z̄α)

ϕ(z̄α)
.

In order for this to be true we have to show that

Claim 2. The rational function fext obtained above is a real rational function, that is,
the coefficients of both ϕ(z) and ψ(z) are real.

Proof. We show that, for each z 6∈ {z,..., zn, z̄1, ..., z̄n} ∪ {z :
n∑

k=1

λk

n∏

j=1
j 6=k

(z− z̄j)}, fext(z̄) =
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fext(z) holds. So we compute

fext(z̄)− fext(z) =

n∑

k=1

λkw̄k
z̄ − z̄k

n∑

j=1

λ̄j
z̄ − zj

−
n∑

j=1

λ̄jwj
z̄ − zj

n∑

k=1

λk
z̄ − z̄k

n∑

k=1

λk
z̄ − z̄k

n∑

j=1

λ̄j
z̄ − zj

.

It remains to show that the denominator is equal to zero. It equals

n∑

k=1

λkw̄k
z̄ − z̄k

n∑

j=1

λ̄j
z̄ − zj

−
n∑

j=1

λ̄jwj
z̄ − zj

n∑

k=1

λk
z̄ − z̄k

=
n∑

j,k=1

λkλ̄jw̄k − λ̄jλkwj
(z̄ − z̄k)(z̄ − zj)

=
n∑

j,k=1

λkλ̄j(w̄k − wj)
(z̄ − z̄k)(z̄ − zj)

=
n∑

j,k=1

λkλ̄j(z̄k − zj)
(z̄ − z̄k)(z̄ − zj)

w̄k − wj
z̄k − zj

=

n∑

j,k=1

λkλ̄j
w̄k − wj
z̄k − zj

(
1

z̄ − z̄k
− 1

z̄ − zj

)

=
n∑

k=1

λk
z̄ − z̄k

n∑

j=1

λ̄j
wj − w̄k
zj − z̄k

−
n∑

j=1

λ̄j
z̄ − zj

n∑

k=1

λk
wj − w̄k
zj − z̄k

= 0

thanks to Claim 1
n∑

k=1

λk
wj − w̄k
zj − z̄k

= 0, j = 1, ..., n

and
n∑

j=1

λ̄j
wj − w̄k
zj − z̄k

= 0, k = 1, ..., n,

respectively,

Claim 3. The real rational function fext(z) satisfies the interpolation conditions.

Proof. Since λα 6= 0, α = 1, ..., n,

fext(zα) =
λ1

w̄1

zα − z̄1
+ λ2

w̄2

zα − z̄2
+ · · ·+ λn

w̄n
zα − z̄n

λ1

zα − z̄1
+

λ2

zα − z̄2
+ · · ·+ λn

zα − z̄n

=
λ1

(w̄1 − wα)

zα − z̄1
+ λ2

(w̄2 − wα)

zα − z̄2
+ · · ·+ λn

(w̄n − wα)

zα − z̄n
λ1

zα − z̄1
+

λ2

zα − z̄2
+ · · ·+ λn

zα − z̄n

+ wα = wα
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The last equality holds by Claim 1.

Now

pαβ =
wα − w̄β
zα − z̄β

=

ψ(zα)

ϕ(zα)
− ψ(z̄β)

ϕ(z̄β)

zα − z̄β
=

1

ϕ(zα)ϕ(z̄β)
· ϕ(z̄β)ψ(zα)− ψ(z̄β)ϕ(zα)

zα − z̄β
Let

Ω(z, z̄) :=
ϕ(z̄)ψ(z)− ψ(z̄)ϕ(z)

z − z̄ .

Then

pαβ =
Ω(zα, z̄β)

ϕ(zα)ϕ(z̄β)

So the principal minors

D(p1, ..., pm) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ω(z1, z̄1)

ϕ(z1)ϕ(z̄1)
· · · Ω(z1, z̄m)

ϕ(z1)ϕ(z̄m)
Ω(z2, z̄1)

ϕ(z2)ϕ(z̄1)
· · · Ω(z2, z̄m)

ϕ(z2)ϕ(z̄m)
· · · · · · · · ·

Ω(zm, z̄1)

ϕ(zm)ϕ(z̄1)
· · · Ω(zm, z̄m)

ϕ(zm)ϕ(z̄m)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

|ϕ(z1)|2 · · · |ϕ(zm)|2

∣∣∣∣∣∣∣∣

Ω(z1, z̄1) · · · Ω(z1, z̄m)
Ω(z2, z̄1) · · · Ω(z2, z̄m)
· · · · · · · · ·

Ω(zm, z̄1) · · · Ω(zm, z̄m)

∣∣∣∣∣∣∣∣

It is positive definite if and only if

∆m =

∣∣∣∣∣∣∣∣

Ω(z1, z̄1) · · · Ω(z1, z̄m)
Ω(z2, z̄1) · · · Ω(z2, z̄m)
· · · · · · · · ·

Ω(zm, z̄1) · · · Ω(zm, z̄m)

∣∣∣∣∣∣∣∣
> 0, m = 1, ..., n− 1

Equivalently, the Hermitian form

H(s) =
n∑

α,β=1

Ω(zα, z̄β)sαs̄β, s = (s1, ..., sn) ∈ Cn

is positive definite. Write now

ϕ(z) =
n−1∑

k=0

ϕkz
k, ψ(z) =

n−1∑

k=0

ψkz
k,

This leads to

Ω(z, z̄) =

n−1∑

j,k=0

(ϕjψk − ψjϕk)z̄jzk

z − z̄ =

n−1∑

j,k=0

(ϕjψk − ψjϕk)
z − z̄︸ ︷︷ ︸
ajk

z̄jzk =

n−1∑

j,k=0

ajkz̄
jzk > 0,
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Following Pick, we consider the Hermitian form

H(t) =
n−1∑

j,k=0

ajktj t̄k, t = (t0, ..., tn−1) ∈ Cn.

Further let us consider the linear transform Uz1,...,zn : Cn → Cn represented relative to the
standard basis by the matrix

V (z1, ..., zn) =




1 · · · 1
z1 · · · zn
...

. . .
...

zn−1
1 · · · zn−1

n




where we assume that the points z1, ..., zn are distinct, thus the matrix is invertible (the

determinant is
∏

n≥j>k≥1

(zj − zk), the Vandermonde determinant). Consequently the linear

transformation Uz1,...,zn is a bijection. So for s ∈ Cn we have

H(s) = H(Uz1,...,zns)

In other words, the Pick matrix and the matrix (ajk) have the same rank. And hence
Ω(z, z̄) > 0.

Next notice that when z tends to a real number x (also z̄ → x), we have

Ω(x) = ϕ(x)ψ′(x)− ψ(x)ϕ′(x), ( where (·)′ stands for the derivative of ·)

From this we see that neither ϕ nor ψ has multiple real zeros, for otherwise both ϕ(x), ϕ′(x)
would be zero (or the same for ψ(x)), violating Ω(x) > 0. Let ϕ(x) = 0 we have

ψ(x)

ϕ′(x)
= − Ω(x)

[ϕ′(x)]2
< 0

So if ϕ has n− 1 zeros a1, ..., an−1 we have

ψ(z)

ϕ(z)
= C − A1

z − a1
− · · · − An−1

z − an−1

where A1, ..., An−1 are positive. In case ϕ(z) has less than n− 1 zeros then we have

ψ(z)

ϕ(z)
= C +Az − A1

z − a1
− · · · − An−2

z − an−2

where A,A1, ..., An−1 are positive. Then we can show that the resulting Pick matrix is
positive semi-definite and the Pick matrix is singular.
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It remains to prove Claim 1.

Proof of Claim 1. Pick claimed that D(p1, ..., pn, p) is a sum of D(p1, ..., pn) multiplied by
a factor and

−
∣∣∣∣λ1

w − w̄1

z − z̄1
+ λ2

w − w̄w
z − z̄w

+ · · ·+ λn
w − w̄n
z − z̄n

∣∣∣∣
2

.

From this the Claim follows because of the non-negativity of D(p1, ..., pn, p). So we have
to show that

D(p1, ..., pn, p) = C·D(p1, .., pn)−
∣∣∣∣λ1

w − w̄1

z − z̄1
+ λ2

w − w̄w
z − z̄w

+ · · ·+ λn
w − w̄n
z − z̄n

∣∣∣∣
2

, C is a factor.

Using the Laplace’ formula after the last row,

D(p1, ..., pn, p) = D(p1, ..., pn)
w − w̄
z − z̄ + (−1)n+2D1

w − w̄1

z − z̄1
+ (−1)n+3D2

w − w̄2

z − z̄2
+

+ · · ·+ (−1)2n+1Dn
w − w̄n
z − z̄n

where Dj , (j = 1, ..., n), is the determinant of n× n matrix with jth column and the last
row of D(p1, ..., pn, p) deleted:

Dj =

∣∣∣∣∣∣∣∣∣∣∣∣∣

w1 − w̄1

z1 − z̄1
· · · w1 − w̄j−1

z1 − z̄j−1

w1 − w̄j+1

z1 − z̄j+1
· · · w1 − w̄n

z1 − z̄n
w1 − w̄
z1 − z̄

w2 − w̄1

z2 − z̄1
· · · w2 − w̄j−1

z2 − z̄j−1

w2 − w̄j+1

z2 − z̄j+1
· · · w2 − w̄n

z2 − z̄n
w2 − w̄
z2 − z̄

· · · · · · · · · · · ·
wn − w̄1

zn − z̄1
· · · wn − w̄j−1

zn − z̄j−1

wn − w̄j+1

zn − z̄j+1
· · · wn − w̄n

zn − z̄n
wn − w̄
zn − z̄

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

=(−1)n+1w1 − w̄
z1 − z̄

Dj1 + (−1)n+2w2 − w̄
z2 − z̄

Dj2 + · · ·+ (−1)2nwn − w̄
zn − z̄

Djn

Again we used the Laplace’ formula in the last equality but after the last column. By a
careful inspection we see that Djk (k = 1, ..., n) is the the determinant of (n− 1)× (n− 1)
matrix with the jth column and the kth row of the Pick matrix Pn deleted. Therefore,

D(p1, ..., pn, p) = D(p1, ..., pn)
w − w̄
z − z̄ +

(
w − w̄1

z − z̄1
· · · w − w̄n

z − z̄n

)
Adj(Pn)




w1 − w̄
z1 − z̄

...
wn − w̄
zn − z̄



.

Since the Pick matrix has rank n− 1) there is at least one nonzero (n− 1)× (n− 1) minor
of Pn. This implies that Adj(Pn) 6= 0. Since

PnAdj(Pn) = det(Pn)I = 0
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we conclude that the columns of Adj(Pn) lie in the kernel of Pn, ker(Pn). By the rank-nutty
Theorem

dim ker(Pn) = n− dimR(Pn) = n− (n− 1) = 1.

So the rank of Adj(Pn) is 1. Note that Adj(Pn) is Hermitian as Pn. Thus there is a full
rank factorization of Adj(Pn):

Adj(Pn) =




λ1

λ2
...
λn



(
λ̄1 λ̄2 · · · λ̄n

)
,

which yields

D(p1, ..., pn, p) = D(p1, ..., pn)
w − w̄
z − z̄ +

+

(
w − w̄1

z − z̄1
· · · w − w̄n

z − z̄n

)



λ1

λ2
...
λn



(
λ̄1 λ̄2 · · · λ̄n

)




w1 − w̄
z1 − z̄

...
wn − w̄
zn − z̄




=
w − w̄
z − z̄ ·D(p1, .., pn)−

∣∣∣∣λ1
w − w̄1

z − z̄1
+ λ2

w − w̄w
z − z̄w

+ · · ·+ λn
w − w̄n
z − z̄n

∣∣∣∣
2

.

Note that at least one λj 6= 0.

5 Nevanlinna’s solutions

Nevanlinna’s view on the interpolation theorem is based on the assumption that if the
function fn is in the unit disc then the function fn+1 also is in D.

With the same reasoning as in the proof of the Schwarz Lemma there exists a function

f1(z) = f(z)/z.

If |w| = 1 then f(z) is a constant. But if |w1| < 1 then we get a solution for f(z1) = w1,
which is the function f1. So with the Schwarz-Pick Lemma we should be able to write a
solution for the function f2 as

f2(z) =

f1(z)− w1

1− w1f1(z)
z − z1

1− z1z

.
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As long as there is an expression of the form above with fn(z) we know there exists a
function f(z). For every wα and zα we get a new function with |fα(z)| < |ziα|.

So what happens when |fα(z)| = |zα| ?
The inequality in the Schwarz-Pick Lemma becomes an equality and so |f(zα)| = 1 and

by the Maximum Modulus Principle f(z) is uniquely determined by the values of zα and
wα. If |wα| < 1 there is an unlimited number of functions. This is because the Maximum
Modulus Principle says that analytic functions have their maximum value (modulus) on
points at the boundary and so therefore if |wα| < 1 then we know by the Schwarz Lemma
that there exists a function for wα = f(zα). So whenever we have |wα| < |zα| there is a
function f(z) = w.

The resulting function fn+1(z) is given as a linear fractional transformation with the
function f1(z) and can therefore be written as

fn(z) =
an(z)fn+1(z) + bn(z)

cn(z)fn+1(z) + dn(z)
.

The terms an(z), bn(z), cn(z), dn(z) are polynomials.

6 Parametrization of solutions, Schur’s algorithm

Schur’s algorithm is a parametric representation of the coefficients in a power series repre-
senting an analytic function. So we show that all functions analytic in D and with values
in D̄ can be represented using Schur’s algorithm.

If f is an analytic function it can be represented with the power series

f(z) = c0 + c1z + c2z
2 + ...

It is convergent for all |z| ≤ 1 and so |c0| ≤ 1. If |c0| = 1 then f(z) is reduced to the
constant c0. If |c0| ≤ 1 we can form the expression, where γ0 represents c0,

f1 =
1

z

f − γ0

1− γ̄0f
=

c1 + c2z + c3z‘2 + ...

1− γ0γ̄0 − γ̄0c1z − γ̄0c2z2 − ... .

This gives

γ1 := f1(0) =
c1

1− c̄0c0
.

If |γ1| < 1 we define

f2 =
1

z

f1 − γ1

1− γ̄1f1
, γ2 := f2(0).

This gives us a sequence of functions f0 = f, f1, f2, ... in S, determined by the two
algorithms

fn+1 =
fn − γn

z(1− γ̄nfn)
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or, equivalently

fn =
γn + zfn+1

1 + γ̄nzfn+1
.

Recall that an analytic function f on D = {z = |z| < 1} is called a Schur function if and
only if sup

z∈D
|f(z)| ≤ 1. We say f is trivial if it is a finite Blaschke product

f(z) = eiθ
m∏

j=1

z − zj
1− z̄jz

, z1, ..., zm ∈ D.

If f(z) := w0 is a constant then f(z) is a finite Blaschke product of degree 0. If |w0| = 1
f is said to be trivial and if |w0| < 1 non-trivial. In case f(z) = w0 ∈ D f is called a
degenerate Schur function. Thus nondegenerated Schur functions are precisely analytic
maps of D onto D. Note that degenerated functions are also trivial.

Schur provided a continued fraction expansion of an arbitrary Schur function of the
form 




f(z) =f0(z)

fj+1 =
1

z

(
fj(z)− γj
1− γ̄jfj(z)

)

γj :=fj(0)

This is the Schur algorithm. The {γj}j≥0’s are the Schur parameters.
Now we can formulate the proposition that fj+1 above can be expressed as a continued

fraction. We solve for fj in the definition above:

fj(z) =
γj + zfj+1(z)

1 + γ̄jfj+1(z)
= γj +

(1− |γj |2)zfj+1

1− γ̄jzfj+1(z)
= γj +

1− |γj |2
1

zfj+1(z) + γj
.

Hence

f(z) = γ0 +
1− |γ0|2

γ̄0 +
1

zγ1 +
z(1− |γ1|2)

γ̄1 +
1

zf2(z)

Proposition. Nondegenerate Schur functions are maps of D onto D. The Schur algorithm
exploits two ways of mapping a Schur function to another.

Proof. We know that (i) for γ ∈ D we have

Tγ(0) =
w − γ
1− γ̄w

is an invertible analytic homeomorphism of D to D mapping γ to zero. So Tf(0) is a
nondegenerate Schur function which vanishes at zero.
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(ii). By the Schwarz Lemma, if f is a Schur function and f(0) = 0, then either f(z)
z is a

nondegenerate Schur function or a constant on ∂D.

Corollary. The Schur papameters satisfy |γj | < 1 for all j if f is nondegenerate.

As we saw above we get a sequence of Schur parameters γ0, γ1, ..., γn and Schur functions
f = f0, f1, ..., fn calle the Schur iterates of f . At some stage fn(z) = γn will lie on ∂D. In
that case we stop. If fn(z) = γn ∈ D, we continue, which means fn+1 = fn+2 = ... = 0
and γn+1 = γn+2 = ... = 0. Thus, any Schur function f is associated to either an infinite
sequence γ0, γ1, ... ∈ D or a finite sequence γ0, ..., γn whith γj ∈ D for j < n and γn ∈ ∂D.
It is not hard to se that the case γn ∈ ∂D holds if and only if f is trivial, i.e. a finite
Blaschke product.

The Schur algorithm is widely used in many applications,. Here we mention a few:
moment problems, robust control, signal processing, circuit theory, and numerical analysis.

7 Some worked examples

In this section we solve the problems mentioned in Section 1 and describe, fairly in detail,
how a robust control problem can be solved.

Example 1. (Revisited) As argued in Section 1, we have e(1) = 1
2 . By the Pick Interpolation

Theorem, there is a solution e. Since e is required to be stable, the Maximum Modulus
Principle ensures that

‖e‖∞ = sup
s=iω
|e(s)| = sup

Re(s)≥0
|e(s)| ≥ |e(1)| = 1

2
.

Therefore, the interpolating function with minimum infinity norm is the constant e = 1
2

and the associated norm is ‖e‖∞ = 1
2 . Remember that f = g−1(h− e), with g = s−1

s+2 and

h = s+1
s+3 . So we obtain

f =
s+ 2

s− 1

(
s+ 1

s+ 3
− 1

2

)
=

1

2

s+ 2

s+ 3

Although this is a very simple example it raises the interpolation problem with an additional
constraint, that is, with the minimum infinite norm. In this simple example we simply
choose the constant function. Next example shows that such choice is not feasible.

Example 2. (Revisited) In this example we shall find an e such that e(1) = 1
6 =: h1 and

e(2) = 2
15 =: h2 (s1 = 1, s2 = 2) with minimum infinity norm. If we imitate the method

used in the previous example we would have

‖e‖∞ ≥ max

{
1

6
,

2

15

}
.
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Since we have two values to interpolate, simply setting e = 1
6 will not work. The Nevanlinna-

Pick Interpolation theory says that there is an interpolation function e with ‖e‖∞ ≤ γ if
and only if the Pick matrix

P2(γ) =




γ2 − h2
1

2

γ2 − h1h2

3
γ2 − h1h2

3

γ2 − h2
2

4




is positive semidefinite. (See [6] for a general statement). We can show that if γ1 ≥ γ2

then P2(γ1) ≥ P2(γ2). So the desired optimal norm is the largest value of γ for which the
Pick matrix P2(γ) is singular. The optimal value of γ, γ∗ is the square root of the largest
eigenvalue of the symmetric matrix pencil

λ




1

2

1

3
1

3

1

4


−




h2
1

2

h1h2

3
h1h2

3

h2
2

4




which is γ∗ =

√
49+3

√
89

1800 ≈ 0.207233. The Nevanlinna-Pick Interpolation Theory gives the
optimal interpolating function as

e = γ∗
a− s
a+ s

where

a = sα
γ∗ + hα
γ∗ − hα

=
1

2

(
9 +
√

89
)
≈ 9.21699

with α either 1 or 2. Obviously, the e obtained here satisfies the interpolation conditions

and ‖e‖∞ = γ∗ because

∥∥∥∥
a− s
a+ s

∥∥∥∥
∞

= sup
ω>0

∣∣∣∣
a− iω
a+ iω

∣∣∣∣ = 1. So the optimal prefilter is

f = γ∗
s+ 3

s+ a
.

Notice that the optimal interpolating function is a constant multiplied by a stable transfer
function with unit magnitude on the imaginary axis, which is a general property of optimal
interpolating functions.

By this example we illustrated that an increase in the number of interpolation con-
straints makes the evaluation of the interpolating function much harder. Despite this, the
error function retains the ”constant magnitude on the imaginary axis” property associated
with constants.

Example 3. (Revisited) Efficient techniques for constructing an interpolating positive real
function are proposed by Youla-Saito [11], as follows: Let (p1, z1), ..., (pn, zn) be given. We
consider two cases:
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(i) The Pick-matrix A is singular and has rank r < n.

(ii) The Pick-matrix is positive definite.

For case (i) we have:

(1) Pick up any non-trivial solution of Ax = 0 for example x = (x1, ..., xn)T .

(2) Form two rational functions

g1(s) =

n∑

α=1

=
pαxα
p2
α + s

, g2(s) =
n∑

α=1

xαs

p2
α + s

(3) Let s1, ..., sr denote the finite, distinct, common real non-negative roots of g1(s) =
0, g2(s) = 0. Then r 5 n− 1.

(4) Set w2
β = sβ, β = 1, ..., r

z(s) = cs+
r∑

β=1

2saβ
s2 + wβ2

The solution of the (r + 1)× (r + 1) linear inhomogenous system

zk
pk

= c+
r∑

β=1

2aβ
p2
r + w2

β

, k = 1, 2, ..., r + 1

yields a unique real non-negative determinant of the r + 1 unknowns c, a1, ..., ar.
These determine z(s) as the unique Foster interpolating function. Note that we may
choose c = 0 if x1 + ...+ xn 6= 0.

Next we turn to the second situation where A > 0. There are two subcases.

(i) The interpolating positive real function Z(s) need not to be chosen Foster, and

(ii) it must be chosen Foster.

In both cases we reduce the problem to case (i). We omit the details here since it is beyond
the scope of this report.

Now we go back to solve the problem stated earlier.

A =




2 3/2 4/3
3/2 5/4 7/6
4/3 7/6 10/9



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As shown before the rank of A is 2. By the algorithm above we choose a solution to Ax = 0
to be x = (1,−4, 3)T . Then,

g1(s) =
1

1 + s
+
−8

4 + s
+

9

9 + s
and g2(s) =

s

1 + s
+
−4s

4 + s
+

3s

9 + s
.

Solving g1(s) = 0 and g2(s) = 0, i.e.

g1(0) =
2(s− 11)s

(s+ 1)(s+ 11)(s+ 9)
= 0, g2(s) = − 12s(s− 1)

(s+ 1)(s+ 4)(s+ 9)
= 0

which gives,
s = 11, s = 0, and s = 0, s = 1.

The only non-negative common root is 0. Thus we get

z(s) = cs+
2a1

s
.

For s = p1 = 1 and s = p2 = 2 we get two interpolating equations

2 = c+ 2a1

5/2 = 2s+ a1
⇔ c = 1, a1 = 1/2

So z(s) = s+ 1/3 is the desired Foster function.

Example 4. (Feedback stabilization of linear dynamical plants with uncertainty in the gain
factor. [10])

We start with some necessary definitions:

(i) A rational function whose denominator has degree greater than or equal to the degree
of the numerator is called a proper rational function.

(ii) A rational function whose numerator and denominator have no common factor and
which has no zeros in C+ is called a Hurwitz rational function. Furthermore, a Hur-
witz rational function has no zeros in C̄+ is called strictly Hurwitz rational function.

Problem formulation: Let P be our plant such that its input-output transfer function
P (s) = k ¯P (s), where P̄ is a fixed proper rational function with real coefficients and k
is the gain factor, which may vary in some interval [kmin, kmax]. This problem can be put
in the following cybernetic diagram:
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The aim of the control design is to stabilize the system. We want to find necessary and
sufficient conditions for being able to construct C(s) and F (s) holomorphic in C+

such that
1

C(s) and 1
F (s) should be strictly Hurwitz, and such that the denominator 1+P (s)C(s)F (s)

of the closed-loop transfer function will be strictly Hurwitz. The problem is commonly
referred to as the strong stabilisation problem for uncertainty gain factors. It can be
reduced to the problem of finding a fixed rational function g(s) = G1(s)

G2(s) with 1
g(s) proper

and G1 strict Hurwitz such that −g + kP is strict Hurwitz for all k ∈ [kmin, kmax].
In other words, given a real proper rational function P̄ we wish to solve the strong

stabilization problem for an uncertain gain factor by finding an interval [kmin, kmax] ∈ S
such that for all [a, b] ∈ S, kmax/kmin ≥ b

a where S is the set of all intervals [a, b], (b > a > 0)
such that there exists g(s)|[a,b] is a real strict Hurwitz rational function and 1

g(s)|[a,b] proper,

such that for all k ∈ [a, b], −g(s)|[a,b] + kP̄ (s) is strict Hurwitz. (For simplicity we drop
the explicit reference to the dependence of g(s)|[a,b] on the interval [a, b].) Moreover, it is
demanded to construct the corresponding rational function g(s).

To demonstrate the theory developed in [10] suing the Schur algorithm, we compute a

concert example by methd proposed in [10]: Consider P̄ (s) = (s−3)
(s−1) . We want to determine

g(s) as a real rational strict Hurwitz such that −g(s) + kP̄ (s) is strict Hurwitz for all k in
some maximal interval [kmin, kmax], (kmax > kmin > 0). It is shown in [10] that this problem
is equivalent to finding a real rational function h(s) such that,

(1) h(s) ∈ [kmin, kmax] for all s ∈ C̄+
⋃{∞};

(2) the zeros of h(s) in C̄+ are precisely the poles of P̄ (s) in C+ counted by multiplicities;

(3) any zero of P̄ (s) in C̄+
⋃{∞} of multiplicity m is a pole of h(s) of multiplicity at

least m.

Therefore we want to have h in C̄+
⋃{∞} → C+

⋃{∞}/[kmin, kmax] such that h(1) = 0
and h(3) =∞. The idea is to use the Schur algorithm.

Define first ψ : D̄ → C̄+
⋃{∞}. ψ(s) = 1+s

1−s . In particular, ψ(0) = 1, the pole of P̄ (s).
Now define

α1 =
1
1 − 1
1
1 + 1

= 0

α2 =
3
1 − 1
3
1 + 1

= 1
2

where both α1and α2 is in D. (notice that 1 and 3 in the α’s are the pole and the zero pf
P̄ ). This gives us ψ(0) = 1 and ψ(1/2) = 3, both in C+

So we wish to find a h̃ : D→ D such that h̃(0) = 0 ∈ D and h̃(1/2) = α ∈ D and h̃(s)
is closen so that |α| is maximized.

Our task is to make
kmax

kmin
=

(
1 + |α|max

1− |α|max

)2
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and
h(s) = φ−1 ◦ h̃ ◦ ψ−1,

where φ : C̄+cup{∞}|[kmin,kmax] → D, (kmax > kmin > 0) and φ(0) = 0, φ(∞) = α,
(0 < |α| < 1).

To determine h̃ we apply the Schur algorithm

h̃1(s) =
h̃(s)− β(0)

1

1− β̄(0)
1 h̃(s)

1− ᾱ1s

s− α1

β
(1)
2 =

β
(0)
2 − β(0)

1

1− β̄(0)
1 β

(0)
2

1− ᾱ1α2

α2 − α1

In our case β
(0)
1 = 0, β

(0)
2 = α, α1 = 0, α2 = 1

2 .
Then

h̃1(s) =
h̃(s)

1− 0 · h̃(s)

1− 0 · s
s− 0

=
h̃(s)

s

and

β
(1)
2 = α

1

1/2
= 2α.

Continue in the recursion,

h̃2(s) =
h̃1(s)− 2α

1− 2ᾱh̃1(s)

1− (1/2)s

s− (1/2)
=

h̃1(s)− sα
1− 2ᾱh̃1(s)

2− s
2s− 1

.

It can be shown [10] that we get a solution if |β(1)
2 | = |2α| ≤ 1 so that |α| ≤ (1/2), and

we can take h̃2(s) to be arbitrary, in particular we take h̃2 = 0.
Then

0 =
h̃1(s)− 2α

1− 2ᾱh̃1(s)

2− s
2s− 1

⇔ h̃1(s) = 2α.

Thus h̃(s) = 2αs is the required function.
Since α is bounded by 1/2 we can take α real and positive so that αmax = |α|max = 1/2.

Then h̃(s) = s is our solution. By the Schwarz Lemma |α| ≤ 1/2 so that |α|max = 1/2 and

then h̃(s) = s is a solution. Since αmax = 1/2 we have kmax
kmin

=
(

1+1/2
1−1/2

)2
= 9.
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In [10] φ is defined by the composition φ = φ4 ◦ φ3 ◦ φ2 ◦ φ1 where

φ1(s) =
s− a
s− b , mapping C ∪ {∞} \ [a, b] to C ∪ {∞} \ [−∞, 0], resulting in φ1(0) =

a

b

φ2(s) =
√
s, mapping C ∪ {∞} \ [−∞, 0] to C+ then φ2(a/b) =

√
a/b

φ3(s) = γ
1− s
1 + s

where |γ| = 1, mapping C+ to D with φ3(
√
a/b) = γ

(
1−

√
a/b

1 +
√
a/b

)
=: α′

note that
α′

γ
= |α′| and 0 < |α′| < 1

φ4(s) = γ′
s− α′
ᾱ′s− 1

, where |γ′| = 1, mapping D to D, then φ4(α′) = 0.

This amounts to
φ−1 = φ−1

1 ◦ φ−1
2 ◦ φ−1

3 ◦ φ−1
4

which gives

φ−1(s) =
a(α+ 1)2(s− 1)2 − (b(1− α)2(s+ 1)2

(α+ 1)2(s− 1)2 − (1− α)2(s+ 1)2
.

Since we are only interested in b/a , we might take a = 1 . However kmax/kmin = 9 thus
the maximal interval is [kmin, kmax] = [1, 9], i.e. b = kmax = 9. This yields

φ−1(s) =
−9s

2s2 − 5s+ 2
, ψ−1 =

s− 1

s+ 1

So

h(s) = φ−1 ◦ h̃ ◦ ψ−1(s) =
−9(s− 1)(s+ 1)

−s2 + 9
=

9(s− 1)(s+ 1)

(s− 3)(s+ 3)
.

Next we compute g(s):

g(s) = P̄ (s)h(s) =

(
s− 3

s− 1

)(
9(s− 1)(s+ 1)

(s− 3)(s+ 3)

)
=

9(s+ 1)

s+ 3
,

as expected ( or the pole −1 and the zero −3 are in C+). Finally

−g(s) + kP̄ (s) = −9(s+ 1)

s+ 3
+
k(s− 3)

s− 1
=

(k − 9)s2 − 9(k − 1)

(s− 1)(s+ 3)

is obviously Hurwitz for all k ∈ [1, 9].

Remark. If in h̃(s) = 2αs we take α < 1
2 and then do the similar calculations as above to

find corresponding h and g, then −g(s) + kP̄ (s) is strictly Hurwitz. For example α = 1
4
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then h̃(s) = 1
2s.

b
a =

(
1+ 1

4

1− 1
4

)2

=
(

5
3

)2
= 25

9 and again since we are interested in the ratio b
a

we may take a = 1, b = 25
9 which yields

φ−1(s) =
25(s− 1)(s+ 1)

4s2 − 17s+ 4
.

Now

h(s) = φ−1 ◦ h̃ ◦ ψ−1(s) =
25(s− 1)(s+ 1)

(s− 3)(7s+ 9)
⇒ g(s) = P̄ (s)h(s) =

25(s+ 1)

7s+ 9
.

It is strict Hurwitz and

−g(s) + kP̄ (s) = −25(s+ 1)

7s+ 9
+ k

s− 3

s− 1
= −(7k − 25)s2 − 12ks+ (25− 27k)

(7s+ 9)(s− 1)
.

The discriminant of the numerator is

144k2 − 4(25− 27k)(7k − 25) = 100(9k2 − 34k + 25) > 0

since 342 − 4 · 9 · 25 < 0. Now k ∈ [1, 25
9 ] we see that all coefficients of the numerator are

all negative so (25− 7k)s2 + 12ks+ (7k − 2s) has all zeros in C+. The zeros are

s± =
6k ± 5

√
9k2 − 34k + 25

7k − 25
.

So for all k ∈ [1, 25
9 ] we get −g(s) + kP̄ (s) as the sought function.

Finally it is worthwhile pointing out that Pick-Nevanlinna interpolation theory has been
applied to retention-solubility studies in the lungs, [4], somewhat not expected area. In this
paper computational procedures for retention-solubility studies are given which determine
data feasibility and some extreme properties of lung models compatible with given data.
The procedures provided in this paper are analytic and are based on the Pick-Nevanlinna
interpolation.
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Appendix

The purpose of this this Appendix is to provide geometric view of the Schwarz Lemma,
and some results of linear algebra in the Pick proof in [7].

A1. Circles on the complex plane

A circle in the complex plane can be described by

zz̄ − γ̄z − γz̄ − γγ̄ − ρ2 = 0 (3)

where γ = α+ iβ and ρ is the radius from the centre. Multiply with a real constant A and
we get

Azz̄ +Bz + Cz̄ +D = 0. (4)
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where B and C are complex conjugates, and D is real. A = 0 gives the equation for a
straight line. Since the expressions (3) and (4) are quadric functions with complex numbers
the circle can be written as a Hermitian matrix

T =

(
A B
C D

)

with the determinant ∆ = det(T) = AD − BC = AD − |B|2. When the determinant is
∆ = −ρ2 or ∆ = −Aρ2 we get a real circle. If ∆ = 0 we get a point circle (a point) where
ρ = 0, and ∆ > 0 gives us an imaginary circle. As an example, the imaginary unit circle
zz̄ + 1 = 0.

If we have two different circles C1 and C2 so that the their corresponding Hermitian
matrices, C1, C2 are not proportional we can form the pencil with the two circles

C = λ1C1 + λ2C2

where λ1, λ2 are real and both not zero. Thus we get the determinant of the pencil

|C| =
∣∣∣∣
λ1A1 + λ2A2 λ1B1 + λ2B2

λ1C1 + λ2C2 λ1D1 + λ2D2

∣∣∣∣ = ∆1λ1
2 + 2∆12λ1λ2 + ∆2λ2

2

which is a quadratic form of the variables λ1, λ2 with real coefficients

∆1 = |C1|, ∆2 = |C2|, 2∆12 = A1D2 +A2D1 −B1C2 −B2C1.

The two circles are centered at γ1, γ2 and with radius ρ1, ρ2 so

∆1 = −A1
2ρ1

2, ∆2 = −A2
2ρ2

2, 2∆12 = A1A2(δ2 − ρ1
2 − ρ2

2).

If one of the circles are contained within the other the distance between their centres
is δ = |γ1 − γ2|.

At a common point their tangents form an angle ω and by the law of cosines we get

δ2 = ρ1
2 + ρ2

2 ± 2ρ1ρ2 cosω

so we write
2∆12 = ±A1A2ρ1ρ2 cosω = −2

√
∆1

√
∆2 cosω

wich gives

cosω =
∆12√

∆1

√
∆2

. (5)

When the circles have points in common the angle ω between their tangents is real and

−1 ≤ cosω ≤ 1.
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Together with (5) we then get

∆1∆2 −∆2
12 ≥ 0 (6)

and if ∆1 < 0 this is the condition for the quadratic form (6) to have only non positive
values for any λ1, λ2.

We note that this illustrates a geometric approach to the algebraic solution of the
interpolation problem.

A2. From circle to half plane

Choose a Möbius transformation in the z and w plane:

z =
a+ bZ

c+ dZ
(7)

w =
a′ + b′W
c′ + d′W

(8)

With the Pick matrix of the form

wα + w̄β
1− zαz̄β

(9)

we get with (7), (8) and (9)

(c+ dZ)(c̄+ d̄Z)

(c′ + d′W )(c̄′ + d̄′W̄ )

(a′c̄+ ā′c′) + (ā′d′ + b′c̄¬)W + a′d̄¬+ b̄′c′)W̄ + (b′d̄′ + b̄′d′)WW̄

|c|2 − |a|2 + (cd̄− ab̄)Z̄ + (c̄d− āb)Z + (|d|2 − |b|2)ZZ̄
(10)

The left hand factor is a product of two conjugate quantities and a non negative real
number. The right hand factor is an equation for a circle or a plane depending on the
coefficients. The cross ratio T (w) = (w,w1, w2, w3) can be written as T (w) = a+bW

c+dW so the
denominator of (10) comes from

a+ bW

c+ dW
= − ā+ bW

c̄+ dW

which is the same as
T (w) = −T (w).

In the same way we get for the denominator

a+ bZ

c+ dZ
=
c̄+ dZ

ā+ bZ
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and
Tz = T (z)

−1

Since the cross ratios T (w) and T (z) are real numbers when the four points a, b, c, d lie on
a circle or a straight line we can express

wα + w̄β
1− zαz̄β

as the real number
Kw(wα, wβ)

Kz(zα, zβ)
= pα,β.

And as the assumption from Schwarz lemma is that there exists a function f(zα) = wα we
can express that with the value pair pα.
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