
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

A Model-Theoretic Proof of Gödel's Theorem:

Kripke's Notion of Ful�lment

av

Mattias Granberg Olsson

2017 - No 3

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

A Model-Theoretic Proof of Gödel's Theorem:

Kripke's Notion of Ful�lment

Mattias Granberg Olsson

Självständigt arbete i matematik 30 högskolepoäng, avancerad nivå

Handledare: Erik Palmgren

2017

The notion of fulfilment of a formula by a sequence of numbers, an approximation of
truth due to Kripke, is presented and subsequently formalised in the weak arithmetic
theory IΣ1, in some detail. After a number of technical results connecting the formalised
notion to the meta-theoretical one a version of Gödel’s Incompleteness Theorem, that no
consistent, recursively axiomatisable, Σ2-sound extension T of Peano arithmetic is com-
plete, is shown by construction of a true Π2-sentence and a model of T where it is false,
yielding its independence from T . These results are then generalised to a more general
notion of fulfilment, proving that IΣ1 has no complete, consistent, recursively axiomati-
sable, Σ2-sound extensions by a similar construction of an independent sentence. This
generalisation comes at the cost of some naturality, however, and an explicit falsifying
model will only be obtained under additional assumptions.

The aim of the thesis is to reproduce in some detail the notions and results developed
by Kripke and Quinsey and presented by Quinsey and Putnam. In particular no novel
results are obtained.

Contents

1 Introduction 1
1.1 On the history of fulfilment . 2
1.2 Indicators . 2
1.3 Disposition . 4
1.4 Notation . 4
1.5 Acknowledgements . 7

2 Preliminaries 8
2.1 The arithmetic hierarchy and some fragments of arithmetic 8
2.2 Arithmetisation of logic in IΣ1 . 19

2.2.1 Set theory . 20
2.2.2 Terms and formulae . 23

3 Coding of sets and functions in models of IΣ1 46

4 Initial Fulfilment: Incompleteness of PA 52
4.1 Definitions . 52

4.1.1 The initial-Gödel-Kripke sentence 71
4.2 The initial-Gödel-Kripke sentence is not refutable 72
4.3 The initial-Gödel-Kripke sentence is not derivable 75

5 Fulfilment: Incompleteness of IΣ1 79
5.1 Definitions . 79

5.1.1 The Gödel-Kripke sentence . 82
5.2 The Gödel-Kripke sentence is not refutable 83
5.3 The Gödel-Kripke sentence is not derivable 85

6 Summary and concluding remarks 87

VII

1 Introduction

In the well-known paper [2] (an English translation can be found in [3]), Kurt Gödel
proved the (first version of the) theorem which is usually denoted by any nonempty
combination of the labels “Gödel’s” and “Incompleteness” juxtaposed by “Theorem”,
usually summarised as “For any consistent recursively axiomatisable theory T containing
a sufficient amount of arithmetic there is a sentence of its language which is neither
derivable nor refutable in T”.1 The usual proof of this fact is by arithmetisation of logic
and T itself, that is by regarding (or coding) logical formulae as numbers and verifying
that many of their properties (in particular that of membership in and derivability from
T) can then be expressed in the language of arithmetic by rather simple (in a specific
sense) formulae, which are in turn provable in T . This leads to what is known as the
“Diagonal(isation) Lemma” or “Fixed Point Lemma”, that every property Φ of formulae
has a fixed point, a sentence ϕ which is provably (in T) equivalent to the fact that Φ
holds of ϕ, and setting Φ to be “Underivability in T” yields the theorem. The probably
most cited instance of this theorem concerns Peano arithmetic (henceforth PA) and in
particular states that PA is not the complete first-order theory of the natural numbers
(i.e. there is a true statement of arithmetic which is underivable in PA), which can also
be obtained by slightly less cumbersome arguments of the same spirit. E.g. [13] contains
a readable survey of these results.

This could be argued not to be a satisfactory answer to the question whether PA proves
all mathematical properties of the natural numbers, since the independent sentence above
(and those of similar nature), while (in theory) explicitly defined, can not readily be seen
to express some property of numbers of interest to, say, number theorists (and in fact
“the” independent sentence might very well depend on the chosen encoding of formulae
as numbers and the recursive axiomatisation of T , not giving credit to the definite
article from a number theoretic point of view). The generally accepted first purely
mathematical statements of arithmetic independent of PA are attributed to Jeff Paris
and Leo Harrington in the late 1970’s; in [9] they exhibited a combinatorial principle,
an extension of the Finite Ramsey Theorem nowadays known as the Paris-Harrington
principle (PH), which is true in N but unprovable in PA.

Various other independent statements and methods of their proof of independence have
been produced over the years. This thesis will present one such method, called fulfilment,
which is due to Saul Kripke. It has earlier been presented by Joseph Quinsey in [12] and
Hilary Putnam in [10], and the aim of this thesis is to reproduce these results. The idea is,
briefly, to define an approximation of truth in a recursively axiomatisable theory T (truth
itself of course being undefinable by Tarski’s Theorem) by a sequence of bounds for the
variables of a sentence: the sentence is said to be fulfilled by the sequence if the universal
quantifiers can be bounded by some numbers from the sequence and the existential
quantifiers can then be bounded by the subsequent numbers in the sequence (we will
give a precise definition in section 4). See also [10] for an illuminating account of this

1Thus we conform to the use of the term “Gödel’s Incompleteness Theorem” to apply to a range of
slightly different (at least technically) results, such as the Gödel-Rosser theorem. We will also use
the terms “derivation” and “derivable” for the formal versions of “proof” and “proovable”.

1

idea in terms of winning strategies in an “evaluation-like” game played on the sequence
and the sentence. Fulfilment turns out to be expressible in the language of arithmetic
in T , and, under certain assumptions on T , one obtains a sentence independent of T by
formalising “For every n, the first n axioms of T are fulfilled by a sequence of length n”
(colloquially this states that “the axioms of T are approximately true”).

One benefit of this approach is that we do not need to formalise the notion of proof
in the theories we are considering, and the proof does not use the Diagonal Lemma.
Another, and our main motivation, is that the proof of the independent sentence’s non-
derivability is by explicit construction of a model where it is false; for sound theories
(i.e. theories true in N) this model can be concretely defined. The dual, an example of
a model where it is true, will also be given for sound theories. The drawback of this
approach is that, instead of a provability predicate, we will in the most general case need
a satisfaction predicate for ∆0-formulae (formulae where every quantifier is bounded),
which is not a considerably weaker requirement. We will also in all cases need a coding of
sequences with some (provable) elementary properties, so we will require the theories we
consider to include a weak induction schema, whence the proof will not be as generally
applicable as the usual one. Moreover, the independent sentence we construct will be
Π2, as opposed to the Π1-sentence given by the usual proof.

1.1 On the history of fulfilment

The notion of fulfilment is Saul Kripke’s: in [8] he and Simon Kochen gives a proof of
Gödel’s Incompleteness Theorem for PA via the notion of bounded ultrapower. In a note
therein it is remarked that he (Kripke) has an argument for generalising the method (and
restricting the results) to theories other than PA, via “a concept of ‘satisfying’ formulas
by finite sequences called fulfillability” to appear in a later paper. To the best of the
author’s knowledge, this paper was never (or has yet to be) published. This is supported
by the few (again to the best of the author’s knowledge) works presenting Kripke’s proof,
namely [12] and [10] (which also appears summarised in [11]). Indeed, in the latter Hilary
Putnam comments that he publishes the paper in question “because Kripke’s proof is
still unpublished”. In [12], Joseph Quinsey uses the method to derive a considerable
number of results (old and new), which subsequently have been reproduced in other
works, resulting in a few more mentions of the method. That being said, this method
of proof appears to be largely unnoticed in the literature; [15] and [1] seems to be the
prominent examples of other works relating it. A similar construction also appears in
[14], though it is unknown (to the author) whether this is independent of the above.

1.2 Indicators

Another way to prove independence results in arithmetic (in particular for sound the-
ories) is via the notion of indicators. We will describe this notion briefly here, since it
has some relations to the subject of our work. We will base this exposition mainly on
the one found in [7, ch. 14] where these relations are apparent, though we will use a
generalised definition similar to the one in [4, ch. IV 3]. We refer to 1.4 and section 2

2

below for the terminology used in the following.
Let T ⊇ IΣ1 be an arithmetic theory and Q be a property of cuts of models of T . An

indicator for Q in T is a T -provably ∆1-function [y(x, y)=z] such that

• T ` ∀v∀y≤v∀x≤y∀u≤x[y(x, y)≤y(u, v)];

• for all nonstandard M |= T and a, b ∈ M with a <M b is it the case thatA

n ∈ N :M |= [y(a,b)>n] if and only if there is a cut I in M with a ∈ I ⊆ M<b

which has the property Q.2

For our purposes, Q can be taken to be I |= T ′ for some arithmetic theory T ′.
For sound theories T ⊇ IΣ1 the existence of indicators immediately yield incom-

pleteness results, via the following theorem ([4, Thm. 3.10, p. 248]): If T ⊇ IΣ1 is an
arithmetic theory and y is an indicator for T in T then

1. T 6` ∀x∀z∃y[y(x, y)≥z];

2.

A

n ∈ N : T ` ∀x∃y[y(x, y)≥n];

3. if T is sound then ∀x∀z∃y[y(x, y)≥z] is independent of T ;

4. {gn(x)}n∈N defined by T ` [y(x,gn(x))≥n]∧∀[y<gn(x)][y(x, y)<n] (this defines a
function by 2) for all n ∈ N are T -provably ∆1-functions such that if h(x) is any
other T -provably ∆1-function then T ` ∀x[h(x)<gn(x)] for some n ∈ N.

Combinatorial statements like PH can be used to prove the existence of indicators
for models of PA in PA by construction of “indiscernible sequences” s : N −→M (of a
model M of PA) in the sense that

M |=e ∃v0<s(n0)∀v1<s(n1) · · ·ϑ

holds if and only if

M |=e ∃v0<s(m0)∀v1<s(m1) · · ·ϑ
for all increasing {ni}i∈N ⊆ N>0 and {mi}i∈N ⊆ N>0, ∆0-formulae ϑ and evaluations e
of ∃v0∀v1 · · ·ϑ inM<n0−1 ∩M<m0−1 (see also [5, ch. 11.1] for a more general treatment
of indiscernible sequence in model theory, including some connections to combinatorics).
Since one may also require s(i)2 < s(i+ 1), these can in turn be used to construct cuts
of the form

I == {a ∈M| E

i ∈ N :M |= a<s(i)},
which will turn out to be initial substructures satisfying that

I |=e ∃v0∀v1 · · ·ϑ⇔M |=e ∃v0<s(i+ 1)∀v1<s(i+ 2) · · ·ϑ
for all ∆0-formulae ϑ, all i ∈ N and evaluations e of ∃v0∀v1 · · ·ϑ in M<s(i). In what
follows we will construct models in a similar fashion, and the proof of non-derivability
of our independent sentence will have certain aspects in common with the proof of non-
derivability in 1 above (see for example Theorem 4.11).

2The standard notation for indicators seems to be a capital Y , but we will keep to our convention of
denoting provable functions by lower case typewriter font letters.

3

1.3 Disposition

The disposition of this thesis will be as follows: In section 2 we introduce the arithmetic
hierarchy of formulae and several weak arithmetic theories, most prominently Q, PA−

and IΣ1. We subsequently formalise set theory and logic in IΣ1, and show that many
properties of formulae are provable in IΣ1. In section 3 we introduce the concept of
sets and functions coded by objects in models of IΣ1 and derive some basic properties
thereof. In section 4 we introduce the notion of initial-fulfilment briefly described above
and use it to derive the incompleteness of consistent, recursively axiomatisable, Σ2-
sound extensions of PA. This is then generalised in section 5 to show that IΣ1 has no
complete, consistent, recursively axiomatisable, Σ2-sound extensions. Finally, section 6
briefly summarises these results and comments on similarities and differences to other
proofs, as well as limitations and possible improvements.

1.4 Notation

We will use a convention similar to that in [4]: formulae will be particular numbers, in
such a way that IΣ1 proves the basic properties of formulae (this might appear to be a
circular definition, but bear in mind that we can define what numbers are formulae on
the meta level (in N) and then write down formulae formally defining these concepts in
IΣ1 and prove all their relevant properties therein). Informally speaking, we consider
first order logic with the logical symbols ¬, ∧, ∨, ∀, ∃, = (for simplicity, = is considered
a logical symbol, and the equality rules are thus part of the rules of inference) and
variables vi for all i ∈ N. The language of arithmetic, LA, will in addition contain the
non-logical symbols 0, S, +, · and <. The symbol ≤ will be used as an abbreviation:
x≤y is x<y∨x=y (except as bound for a quantifier; see the comment after Lemma 2.21).
In addition, parentheses (and) will be used in the presentation of formulae. They
will not be considered as symbols of the language, but are used to clarify association in
formulae and to distinguish between variables and constants on one hand and terms on
the other. We will use different conventions regarding parentheses at the different levels
of language (object language and the object language in the object language (which we
will call the formal object language)); in the object language parentheses are treated
mostly as reading aids to be omitted or included as is deemed fit, while in the formal
object language they are treated more like operators, never to be left out. In the object
language parentheses will also be used to denote substitutions in a formula (see below).

To distinguish the three different levels of language (the two above and the meta-
language) we will use the following conventions (except were this is deemed to be con-
fusing): In the meta-language all logical symbols are written in “blackboard bold” font
(though we will seldom use logical symbols in the meta-language), while the variables
and (defined) names will be subject to most usual conventions of math presentation,
except as stated in what follows. We will use the lowercase Greek letters ϕ, ψ and ϑ
to denote arbitrary formulae of the object language and τ , σ and ρ to denote arbitrary
terms. The variables and (non-)logical symbols of the object language will be written
in sans-serif font. While all variables are assumed to have a specific position within the

4

enumeration vi, we will in general suppress this, instead choosing as suggestive (low-
ercase) names for variables as possible; in case it matters these variable names will be
considered meta variables. Thus, in a context where x, y et cetera occur without having
been introduced, the statements should be read to hold for all variables, except that
variables with different names are assumed to be distinct unless otherwise stated.

We will also have to introduce many abbreviations of formulae, which will be written in
typewriter font. When introducing such an abbreviation of a formula, a list of variables
are written out following the name of the formula, F(x, y, z); it is then tacitly understood
that the free variables are among the listed variables, which in turn are v0, v1 etc. in
the order given following the name F, so that in the case under consideration x will
denote v0, y will denote v1 and z will denote v2. When introducing a (formula to be a)
provable function we use an abbreviation of the form [f(x̄)=y], and the same conventions
will be used except that y is v0 and the x:s are v1, v2 etc. in order of appearance; we
will subsequently often write simply “the formula F” or “the provable function f” when
the number of variables are immaterial. Note that abbreviations of provable functions
consists of lower-case letters throughout, while abbreviations of other formulae have
names starting with a capital letter.

In line with these conventions, when substituting terms for variables in the formula
F or provable function f we often write the term in question in place of the variable
following the name F or f (like ordinary relation and function application). Substitu-
tion will otherwise be denoted as follows: If ϕ is a formula and f : N ⇀ Term then
ϕ(f) is the formula obtained by simultaneously substituting f(i) for vi in ϕ for all
i ∈ dom(f) (note: we do not assume dom(f) to be finite). A tuple of terms will then
be considered a function from an initial segment of N to Term. We use the shorthand
ϕ[vi0/τ0, . . . , vin/τn] = ϕ(f) where f(ik) = τk for all k ≤ n. Moreover ϕ(τ0, . . . , τn),
where τi are terms, means ϕ[v0/τ0, . . . , vn/τn]. In the formal object language, finally,
the formulae will be written in boldface formal font, and substitution of terms for vari-
ables will be denoted by defined (in the object language) operators.

The main exception to the above conventions is that we will use a somewhat longer
standard equality sign == in the meta-language instead of the “blackboard bold variant”
=−, since introducing an unfamiliar sign for equality is deemed to be more confusing
than clarifying. Cases where this practise itself is likely to lead to confusion will be
avoided if possible. When equality is an abbreviation of a provable function, it is en-
closed in brackets, like [lh(x)=y]. If [f(x̄)=y] and [g(z̄)=y] are such abbreviations, then
[f(x̄)=g(z̄)] is an abbreviation of ∀y([f(x̄)↔y]∧[g(z̄)=y]), which is provably equivalent to
∃y([f(x̄)=y]∧[g(z̄)=y]) given that the original expressions are provable functions (here
(x̄) and (z̄) need not be disjoint). We extend these conventions to other predicates: if
[g(x̄)=y] is a provable function and F(z̄, v) an abbreviation of a formula then [F(z̄,g(x̄))]
will denote ∀u([g(x̄)=u]→F(z̄, u)), where u is a variable not occurring in [g(x̄)=y] and
F(z̄, v); to be canonical we can take u == v[g(x̄)=y]+F(z̄,v). Note that this is provably
equivalent to ∃u([g(x̄)=u]∧F(z̄, u)) (with same assumptions and conventions as above).
Similarly, if ϕ is a formula then [ϕ(g(x̄))] is ∀u([g(x̄)=u]→ϕ(u)) for a fresh u. Numerals
in the object language will be denoted by n (that is 0 == 0, k + 1 == S(k) for all k) while
numerals in the formal object language will be denoted τ̇ , where τ is a term.

5

Note that we will use juxtaposition to denote both multiplication of numbers and
composition of formulae, except where this would lead to confusion, in which case jux-
taposition will denote composition while the multiplication sign will be written out.

As an example of the above conventions, consider the following

AM |= IΣ1 :M |= [(∀v0∃v1S(v0)=v1)=(∀v0∃v1S(v0)=v1)].

By the soundness and completeness theorems for first-order logic, the above merely states
that IΣ1 proves the (formal) formula ∀v0∃v1S(v0)=v1 to be exactly the (numeral of)
the formula ∀v0∃v1S(v0)=v1. This is a true fact, as we shall see.

A generic structure of LA will be denoted M == (M, 0M, SM,+M, ·M, <M), while
the standard model of arithmetic is N == (ω, 0, S,+, ·, <); we will use similar notations
for structures of other signatures. We will however drop the subscripts marking which
particular structure we are working in whenever this is not inconvenient. Likewise we will
often identify a structure and its underlying set, writing e.g. a ∈M when a is an element
of (the universe of) the structure M. Consequently, we will generally not distinguish a
structure from any of its reducts (except in cases were this convention is deemed likely
to cause confusion). Nevertheless, we will let ⊆ denote the substructure relation, instead
of the subset relation, when used between structures of the same signature. In either
case, ⊂ is the corresponding strict relation.

Given an LA-structureM, an LA formula ϕ and a subset A ofM, an evaluation e of ϕ
in A is a partial function from the set of variables to A defined for all free variables of ϕ.
We writeM |=e ϕ when ϕ is true inM when the variables are interpreted according to e,
defined by Tarski’s conditions in the usual way; thus the truth ofM |=e ϕ only depends
on the values of e for the free variables of ϕ. We write M |= ϕ when M |=e ϕ for all
evaluations e of ϕ. In case ϕ and e is explicitly given, say [lh(x)=y] and {(x, a), (y, b)},
we will often write e.g. M |= [lh(a)=b] forM |=e [lh(x)=y]. Later on we will convolute
these notations and write e.g. M |=e′ [lh(x)=b] (where e′ is defined for x). This will be
taken to mean M |=e′bz [lh(x)=z] for some fresh variable z (like above, the choice can
be made canonical), so that the assignment written “in the formula” is the one that
takes precedence in case of an apparent conflict. Here f ba for a function f is defined
by f ba(c) == f(c) in case c 6= a and f ba(a) == b. We will also use fn to denote the nth
iteration of the function f (where f0 == id). A finite function will mean a function with
finite domain and f : A ⇀ B will mean that f is a partial function from A to B.

Since N can be canonically embedded as an initial substructure in any model of Robin-
son arithmetic Q (see Proposition 2.11), we will (for convenience of notation and without
loss of generality) assume that N is an initial substructure of any such model. In a sim-
ilar fashion, though much more straightforward, N will be considered an initial segment
of any infinite discrete linear order (an order where every non-maximal element has a
successor and every non-minimal a predecessor) with a least element.

We will thus need some notation for discrete linear orders, which we for technical
reasons will assume to be nonempty. Suppose L == (L,<L) is a discrete linear order.
The partial functions L⇀ L which maps an element to its successor (predecessor)will be
denoted SL (PL). We will also use the notations L<a == {b ∈ L | b <L a} and L>a == {b ∈

6

L | b >L a}. In case a has no successor (predecessor), i.e. is maximal (minimal), we write
L>SL(a) == ∅ (L<PL(a) == ∅). Note that the above will in particular apply to models of
weak theories of arithmetic and (consequently), as for the arithmetic structures above,
we will often omit the subscript to <. If N is a subset (or a substructure) of a linear order
L and a ∈ L, then N <L a will mean that b <L a for all b ∈ N . Unless otherwise stated,
an LA-structure will also be considered as a structure ordered by <M (if indeed this is
an ordering), and the power-set of any set will be considered an order under ⊂. The
adjective “increasing” will always mean “monotone” relative to the (strict) orderings
considered, so that for example an increasing sequence s : N −→ P(M) means that
s(k) ⊂ s(k + 1) for all k ∈ N. A sequence in a structure M is a function from some
discrete linear order L to M. Thus a sequence in a model of PA− is increasing if it is
monotone from <L to <M. A particular case of discrete linear orders are (N<n, <) for
n ∈ N, which we will simply denote by n.

By a theory we will mean a set of sentences; thus a theory T1 extends a theory T2

simply if T2 ⊆ T1 (as sets). However, most theories we shall consider will in addition
be deductively closed (anything derivable from the theory is an element of the theory).
When speaking of an axiomatisation of a deductively closed theory T , we will mean a
set of sentences the deductive closure of which is T . The reason we only consider closed
axiomatisations is technical; it could probably be circumvented by using a primitive
recursive function producing universal closures of formulae. Indeed, if we state that a
theory T is axiomatised by some open set of formulae it should be understood to mean
that T is axiomatised by their universal closures. We will call a theory T recursively
axiomatisable if there is a primitive recursive enumeration of an axiomatisation of T ,
that is a primitive recursive ax : N −→ Fmla whose range is an axiomatisation of T
(this will be justified in section 2, where we define Fmla as a ∆1 (recursive) set of
natural numbers). By Craig’s trick and using basic facts from computability theory and
decidability of the correctness of derivations (see for example [4, Thm. 2.29, p. 166], [7,
p. 150] and [13, pp. 130–131]), this is equivalent to there being a (primitive) recursive
(i.e. decidable) axiomatisation of T , as well as to T itself being recursively enumerable;
this motivates our use of terminology. Since we strive to avoid notions of computability
except as motivation, and will not formalise the notion of derivation, we will not go
further into this. As we shall see, all we need is that “recursively axiomatisable” means
that there is a T -provably ∆1(T)-function ax such that

E

k ∈ N : T ` [ax(k)=ϕ] for all
axioms ϕ of T and T ` [ax(k)6=m] for all k ∈ N and m ∈ N which are not axioms of T .

1.5 Acknowledgements

I would like to express my gratitude to my supervisor Erik Palmgren for his patience and
support, and in particular for his assistance in finding reference [12]. On that note I also
wish to offer my deep thanks to professor Jeremy Avigad of Carnegie-Mellon University,
who supplied me with a copy of this reference.

7

2 Preliminaries

The results given in this section are standard in the literature and will to a large extent
be stated without proof. We will base our exposition mainly on those found in [4] and
[7] with occasionally some additional material from [13], though we will deviate slightly
and in particular choose other symbols as primitives.

2.1 The arithmetic hierarchy and some fragments of arithmetic

Two elements central to the discussions and results of this thesis are the notions of
a bounded formula of LA and an end-extension of an LA-structure. There are some
interconnections between these two, as we shall see. We will first introduce the notion
of initial segments of arbitrary structures of the symbol <.

Definition 2.1 (Initial segments). Let M be a structure whose signature contains <.
A subset I of M is an initial segment of M if it is closed under <M, that is if a ∈ I
then b ∈ I for all b ∈M such that b <M a.

Note that, in particular, an initial segment of a discrete linear order is again a discrete
linear order.

Definition 2.2 (Cuts, initial substructures and end-extensions). Let M be an LA-
structure. A subset I of M is a cut if it is an initial segment closed under SM. If N is
both a substructure and a cut of M, then N is an initial substructure of M and M is
an end-extension of N , and we write N ⊆e M. That N is a proper initial substructure
of N (that is, N ⊆e M and N 6=M) will be denoted N ⊂e M.

The following transitivity lemma is immediate.

Lemma 2.1. If M, N and K are LA-structures with K ⊆e N and N ⊆e M, then
K ⊆e M.

Proof. Clearly K ⊆ M, so in particular K is closed under SM. Let b ∈ K and a ∈ M
satisfy a <M b. Then b ∈ N whence a ∈ N by N ⊆e M, so a <N b since N ⊆M. Thus
a ∈ K by K ⊆e N .

Remark 1. This is a slight deviation from the terminology of our sources. In particular,
the term “initial substructure” is nonstandard. In [4] the term “cut” has the same
meaning as here (restricted to models of a simple theory of arithmetic), but the term
“end-extension” does not require that the cut constitutes a substructure (that is, end-
extensions are not extensions in the model theoretic sense). [7], on the other hand, uses
“end-extension” and “cut” as we do, but denotes by “initial segment” that which we call
“initial substructure”. Both uses N ⊆e M to mean that M is an end-extension of N .
There are also texts on model theory (see for example [5]) which uses “end-extension”
similarly to the present one, but for structures of arbitrary signatures containing <.

The reason we do not use “initial segment” as in [7] is that we will reserve this term
for the order-theoretic notion of Definition 2.1.

8

“Initial substructure” will turn out to be a rather natural restriction of the notion
“substructure” for structures of arithmetic, akin to transitive models in set theory (see
for example [6]). In particular more formulae will be absolute between structures in this
relation. Similarly to set theory again, we may define a notion of bounded formulae,
which will turn out to constitute a natural set of such formulae.

Definition 2.3 (Bounded formulae). Given a formula ϕ ∈ LA and distinct variables x
and y, we will use the following abbreviations:

∀x<yϕ == ∀x(x<y→ϕ)

and

∃x<yϕ == ∃x(x<y∧ϕ).

A quantifier which occurs in one of the above contexts will be called bounded. A formula
is bounded if all its quantifiers are bounded, that is, bounded formulae can be recursively
defined as follows:

• All atomic formulae are bounded.

• If ϕ and ψ are bounded, then ϕ∧ψ, ϕ∨ψ, ¬ϕ, ∀x<yϕ and ∃x<yϕ are bounded.

Bounded formulae will also be called ∆0-formulae. This is extended to a classification
of “all” formulae by complexity (that is, every formula will be equivalent to a Πn or
Σn formula for some n ∈ N in all extensions of a weak arithmetic theory I∆0), by the
following definition.

Definition 2.4 (The arithmetic hierarchy). The sets Σn and Πn of arithmetic formulae
are simultaneously defined by recursion:

• Σ0 == Π0 == ∆0.

• Having defined Πk, we define Σk+1 by structural recursion on formulae, as follows:

– Every atomic formula is Σk+1.

– ϕ∧ψ is a Σk+1-formula if and only if ϕ∧ψ is bounded.

– ϕ∨ψ is a Σk+1-formula if and only if ϕ∨ψ is bounded.

– ¬ϕ is a Σk+1-formula if and only if ¬ϕ is bounded.

– ∃xϕ ∈ Σk+1 if and only if ϕ ∈ Σk+1.

– ∀xϕ ∈ Σk+1 if and only if ∀xϕ ∈ Πk.

• Having defined Σk, we define Πk+1 by structural recursion on formulae, as follows:

– Every atomic formula is Πk+1.

– ϕ∧ψ is a Πk+1-formula if and only if ϕ∧ψ is bounded.

9

– ϕ∨ψ is a Πk+1-formula if and only if ϕ∨ψ is bounded.

– ¬ϕ is a Πk+1-formula if and only if ¬ϕ is bounded.

– ∃xϕ ∈ Πk+1 if and only if ∃xϕ ∈ Σk.

– ∀xϕ ∈ Πk+1 if and only if ϕ ∈ Πk+1.

This is the arithmetic hierarchy of formulae.

Unwinding this definition, we see that a formula is Σn (where n > 0) if and only if it
is a ∆0-formula preceded n blocks of quantifiers of the same kind beginning with a block
of ∃’s, and dually for Πn, where the blocks are allowed to be empty. The central facts
of this hierarchy that we shall use are expressed in the next theorem, the exposition of
which will benefit from an additional definition.

Definition 2.5 (Absoluteness). Let N ⊆M be LA-structures and ϕ an LA-formula.

• If N |=e ϕ ⇒M |=e ϕ for all evaluations e of ϕ in N then ϕ is upwards absolute
between N and M.

• IfM |=e ϕ⇒ N |=e ϕ for all evaluations e of ϕ in N then ϕ is downwards absolute
between N and M.

• If ϕ is both upwards and downwards absolute betweenN andM, then ϕ is absolute
between N and M.

Remark 2. Note that the evaluation is always in the smaller structure (as the opposite
would be potentially meaningless).

This usage of the terms upwards/downwards absolute is taken from [6] by analogy.

Theorem 2.2. Let M and N be LA-structures such that N ⊆e M. Then:

1. if ϕ ∈ ∆0 then ϕ is absolute between N and M;

2. if ϕ ∈ Σ1 then ϕ is upwards absolute between N and M;

3. if ϕ ∈ Π1 then ϕ is downwards absolute between N and M.

A proof can be found in [7, pp. 24–25]. Indeed, the proof shows slightly more:

Lemma 2.3. Let N ⊆M be LA-structures.

1. If ϕ is upwards absolute between N and M then so is ∃xϕ.

2. If ϕ is downwards absolute between N and M then so is ∀xϕ.

These notions will also be used to define theories which restricts the induction schema
to certain levels in the hierarchy. There are several other families of theories defined by
instead restricting some other general schema of PA to one of the above sets, of which
we will consider one (see Definition 2.10).

10

Definition 2.6. LetM be a structure of LA and T be a theory of LA. For each n ∈ N,
a formula ϕ is Σn in T if and only if T ` ϕ↔ψ for some ψ ∈ Σn with the same free
variables. The set of such ϕ is denoted Σn(T). Similarly for Πn(T), Σn(M) and Πn(M)
(mutatis mutandis). A formula ϕ is ∆n in T (denoted ϕ ∈ ∆n(T)) if it is both Σn and
Πn in T . In the same way, ∆n(M) == Σn(M) ∩Πn(M).

That the arithmetic hierarchy gives a complexity to “all” formulae can now be stated
as in the following proposition.

Proposition 2.4. Let T be an LA-theory and M an LA-structure.

• For any ϕ ∈ LA there are m,n ∈ N such that ϕ ∈ Σm(T) and ϕ ∈ Πn(T)

• If ϕ,ψ ∈ Σn(T) then ϕ∧ψ,ϕ∨ψ ∈ Σn(T), and similarly for Πn(T).

• If ϕ ∈ Σn(T) then ¬ϕ ∈ Πn(T), and vice versa.

• Σn(T) ⊆ ∆n+1(T) ⊆ Πn+1(T) and Πn(T) ⊆ ∆n+1(T) ⊆ Σn+1(T).

• If ϕ ∈ Σn(T) then ∀xϕ ∈ Πn+1(T), and if ϕ ∈ Πn(T) then ∃xϕ ∈ Σn+1(T).

The corresponding results hold for Σn(M), Πm(M) and ∆k(M).

The proofs are straightforward, see [7, pp. 79–80] for the first four.

Remark 3. Subsets of N defined by some formula in the arithmetic hierarchy will have
computational properties linked to that formula’s position in the hierarchy. For instance,
∆1(N)-formulae define recursive subsets of N, while Σ1-formulae define the recursively
enumerable sets. So in a sense, the position in the hierarchy measures how far from
being computable a certain notion is. This is one of the chief sources of interest of the
hierarchy.

Remark 4. There are similar definitions in e.g. the language of set theory, with ∈ instead
of < above, see [6].

The results on absoluteness in Theorem 2.2 carry over to arbitrary arithmetic theories.

Lemma 2.5. Let N ⊆M both be models of the LA-theory T such that ∆0-formulae are
absolute between N and M. Then:

1. Σ1(T)-formulae are upwards absolute between N and M;

2. Π1(T)-formulae are downwards absolute between N and M;

3. ∆1(T)-formulae are absolute between N and M;

Proof. Let ϕ be a Σ1(T)-formula and ψ a Π1(T)-formula. Let ξ ∈ Σ1 and ϑ ∈ Π1

have the same free variables as ϕ and ψ, respectively, and be such that T ` ϕ↔ξ and
T ` ψ↔ϑ. Then

N |=e1 ϕ⇔ N |=e1 ξ ⇒M |=e1 ξ ⇔M |=e1 ϕ

11

for all evaluations e1 of ϕ in N , and

M |=e2 ψ ⇔M |=e2 ϑ⇒ N |=e2 ϑ⇔ N |=e2 ψ

for all evaluations e2 of ψ in N .
The claim on ∆1(T)-formulae follows by considering the case ϕ == ψ.

Definition 2.7. Let T ⊆ LA be a theory. T is Σk-sound (Πk-sound) if T ` ϕ⇒ N |= ϕ
for all Σk-sentences (Πk-sentences). T is sound if it is Σk-sound for every k ∈ N,
equivalently if N |= T .

Conversely, T is Σk-complete (Πk-complete) if N |= ϕ ⇒ T ` ϕ for all Σk-sentences
(Πk-sentences) ϕ.3

We now turn to some weak theories of arithmetic, which are in fact enough to deduce
many truths of N.

Definition 2.8. The theory Q of Robinson arithmetic is the deductive closure of the
following axioms

∀x(S(x)6=0) (1)

∀x∀y(S(x)=S(y)→x=y) (2)

∀x(x6=0→∃y(x=S(y))) (3)

∀x(x+0=x) (4)

∀x∀y(x+S(y)=S(x+y)) (5)

∀x(x·0=0) (6)

∀x∀y(x·S(y)=(x·y)+x) (7)

∀x∀y(x<y↔∃z(x+S(z)=y)) (8)

where x == v0, y == v1 and z == v2. The theory PA− is axiomatised by the axioms of Q
together with the following axioms

∀x∀y∀z((x + y) + z = x + (y + z)) (9)

∀x∀y(x + y = y + x) (10)

∀x∀y∀z((x · y) · z = x · (y · z)) (11)

∀x∀y(x · y = y · x) (12)

∀x∀y∀z(x · (y + z) = x · y + x · z) (13)

∀x∀y∀z((x < y ∧ y < z)→ x < z) (14)

∀x(x 6< x) (15)

∀x∀y(x < y ∨ x = y ∨ y < x) (16)

3N.B. Contrarily to soundness, completeness of a theory T means that T ` ϕ or T ` ¬ϕ for every
sentence ϕ ∈ LA, which is not the same as being Σk-complete for every k, since the only theory
which is Σk-complete for every k is Th(N).

12

∀x∀y∀z(x < y↔ x + z < y + z) (17)

∀x∀y∀z((0 < z ∧ x < y)↔ x · z < y · z) (18)

∀x∀y(y < x↔ (S(y) < x ∨ S(y) = x)) (19)

where again x == v0, y == v1 and z == v2.

Remark 5. Since our aim is not to investigate minimal axiomatisations of theories, we
have not made an effort to keep the axiomatisations above free of redundancy.

As a simple example, which will be of use in itself later on, of what can be proved in
PA− we consider the following.

Lemma 2.6. PA− ` (2≤z∧x<z∧y<z)→(x + y < z · z ∧ x · y < z · z).

Proof. We reason in PA−. Assume 2≤z, x<z and y<z. Then 0<z by (4), (10), (8) and
(14). By (17) x + y < x + z. By (10) x + z = z + x. By (17) again z + x < z + z. By (7)
and (6) z + z=z·2. By (12) z·2=2·z. Finally 2·z≤z·z by (18), whence x+y<z·z by (14).

Similarly, if y=0 then x·y=0 by (6), y·z=0 by (6) and (12) and y·z<z·z by (18). If
0<y then x · y < z · y by (18), z · y = y · z by (12) and y · z < z · z by (18) again, whence
x · y < z · z by (14). If y<0 then y+S(u)=0 for some u by (8) whence by (5) S(y + u)=0,
which contradicts (1). These cases are exhaustive by (16).

It will be of importance that any initial substructure of a model of PA− is itself such a
model. By Lemma 2.5 this will follow if we can show that all axioms of PA− are Π1(T)
for some simpler theory T which already has this property. Since most axioms of PA−

are Π1 already as stated we have an obvious choice for T :

Lemma 2.7. Let T be the theory axiomatised by all axioms of PA− except (3) and (8).
Then (3) and (8) are Π1(T).

Proof. First consider (3). Clearly

` (∀x(x 6= 0→ ∃y < x(x = S(y))))→ (∀x(x 6= 0→ ∃y(x = S(y)))).

Conversely, reasoning in T now, assume (3). Take x6=0, whence there is y such that
x = S(y) by assumption. By (19) we get y < x, hence ∃y < x(x = S(y)). Thus

T ` (∀x(x 6= 0→ ∃y(x = S(y))))→ (∀x(x 6= 0→ ∃y < x(x = S(y))))

as desired.
Next consider (8). Reasoning in T we prove this to be equivalent to

∀x∀y(x < y↔ ∃z < y(x + S(z) = y)). (20)

Assume (8) and take x and y. That ∃z < y(x + S(z) = y)→x<y is immediate by (8).
Thus suppose x < y, whence ∃z(x + S(z) = y) by (8). By (5) and (10)

z + S(x) = S(z + x) = S(x + z) = x + S(z) = y,

13

whence z < y by (8). To sum up

T ` (∀x∀y(x < y↔ ∃z(x + S(z) = y)))→ (∀x∀y(x < y↔ ∃z < y(x + S(z) = y))).

Conversely, assume (20) and take x and y. That x < y→ ∃z(x + S(z) = y) is now imme-
diate, so suppose ∃z(x + S(z) = y). By (16), y ≤ z or z < y; in the latter case x < y by
(20) so we need only consider the former case. Again

z + S(x) = S(x + z) = y

by (5) and (10), whence y 6= 0 by (1) and x + z < y by (19). Hence

x + z < z = 0 + z

by (14), (4) and (10), whence x < 0 by (17). Moreover, if y < 0 then by (20) there is a
u < 0 such that y + S(u) = 0, whence S(y + u) = 0 by (5); this is absurd by (1). Hence
0 < y by (16) again, whence x < y by (14). This verifies that

T ` (∀x∀y(x < y→ ∃z < y(x + S(z) = y)))↔ (∀x∀y(x < y↔ ∃z(x + S(z) = y)))

as claimed.

As noted earlier, T in the above lemma is itself axiomatised by Π1-formulae (T is even
a ∀-theory). Thus we get the following corollary.

Corollary 2.8. If N and M are LA-structures and N ⊆e M |= PA−, then N |= PA−.

The axioms of Q and PA− express well known properties of natural numbers. Of
the two, Q seems to be the more standard and natural choice for a “minimal theory of
arithmetic”, for example Q is already Σ1-complete, as will be shown below (Theorem
2.13). Unfortunately, it will not always be enough for our purposes; hence we consider
the slightly stronger theory PA−. There are two main reasons for this, that is, two
properties of PA− which will be important in the following which Q lacks. The first one
is the above absoluteness property; the second is the following.

Proposition 2.9. Models M of PA− are discrete linear orderings with successor the
interpretation of S in M, so the notation SM for the latter is unambiguous.

Proof. Let M |= PA−. That <M is a linear order is stated plainly in axioms (14), (15)
and (16). That the order theoretic successor exists and equals the arithmetic successor
is the content of axiom (19). 0M is the least element by (3) and (8) (and (4) and (10)),
and the former also give that every other element of M is a successor, and thus has a
predecessor.

Many results, however, are formulated in terms of Q in the literature, and we have
thus chosen to state results in terms of this theory whenever feasible. The following
lemma and proposition serve as good examples.

14

Lemma 2.10. Let n ∈ N. Then Q ` ∀x(x<n↔∨
i<n x=i).

Proof of the above can be found in [4, p. 30].

Proposition 2.11. For every model M of Q there is an N ⊆e M such that N ∼= N .

Proof. Let N = {nM |n ∈ N} and f : N −→ N be defined by f(n) == nM (that is,
f(n) is the interpretation of the closed term n in M). By the axioms of Q, f respects
SM, +M and ·M, whence N is the underlying set of a substructure N ofM. Moreover,
Q ` ∀x(x<n↔∨

i<n x=i) by above, whence N ⊆e M. Finally, this also implies that
Q ` n<m⇔ n < m for n,m ∈ N, whence f is an isomorphism.

Thus we can without loss of generality assume N ⊆e M for any model M of Q.
As already noted in notations subsection (1.4), we will do so henceforth. We might
occasionally comment on what differences omitting this assumption would require.

With the above proposition we can also give a (rather convoluted) proof that N |= PA−

(under the assumption that PA− is consistent): sinceM |= Q for anyM |= PA− we get
N ⊆e M for such M, whence N |= PA− by Corollary 2.8.

Proposition 2.12 (Soundness of PA−). N |= PA−.

A more interesting (and less obvious) fact which follows from Proposition 2.11 is that
Robinson arithmetic suffices to derive all Σ1-truths of N.

Theorem 2.13 (Σ1-completeness of Q). Let T ⊆ LA be a sound extension of Q and
ϕ ∈ LA be a Σ1(T) sentence true in N. Then T ` ϕ.

Proof. Let M be any model of T . By Proposition 2.11, N ⊆e M, whence M |= ϕ by
Lemma 2.5. Since M |= T was arbitrary, T ` ϕ by the completeness theorem.

For another proof (not using the soundness and completeness theorems) see [4, pp. 30–
31].

Definition 2.9 (IΣn). IΣn is the theory axiomatised by the axioms of PA− and the
schema of induction restricted to Σn-formulae:

(ϕ(0)∧∀x(ϕ(x)→ϕ(S(x))))→∀xϕ(x) (21)

where ϕ is a Σn-formula (with any number of free variables) and x is a variable which
does not occur in ϕ. IΣ0 is often denoted I∆0.

Peano arithmetic, PA, is axiomatised by PA− and the induction schema for all for-
mulae (with the above restriction on the induction variable). Thus PA can be thought
of as IΣω.

Definition 2.10 (Collection). BΣn is the theory axiomatised by the axioms of I∆0 and
the schema of collection for Σn-formulae:

∀u((∀x<u∃yϕ)→ (∃v∀x<u∃y<vϕ)) (22)

15

where ϕ is a Σn-formula (with any number of free variables) and u and v do not occur
free in ϕ.

Similarly, SΣn is the theory axiomatised by the axioms of I∆0 and strong collection
for Σn-formulae:

∀u∃v∀x<u((∃yϕ)→ (∃y<vϕ)) (23)

where ϕ is a Σn-formula (with any number of free variables) and u and v do not occur
free in ϕ.

The collection axioms are collected from set theory, where they express that the image
of a set under a (class) relation is contained (i.e. collected) in(to) a set (to see this, replace
< by ∈ in the formulae above), an alternative to the replacement axioms (see for example
[6]).4

In what follows we shall need some instances of the lemmas below. Proofs of those
which have no explicitly given reference may be found in e.g. [7, p. 82] or [4, pp. 63–70].

Lemma 2.14. For every n ∈ N, IΣn proves all axioms of BΣn and BΣn+1 proves all
axioms of IΣn.

For every n > 0, IΣn and SΣn are equivalent (the same theory), i.e. each proves all
axioms of the other.

Definition 2.11 (Provable functions). Let T be a theory and ϕ a formula with at least
one free variable y. Then ϕ defines y as a provable function in T (of the remaining free
variables of ϕ) if T ` ∃y(ϕ∧∀vϕ[y/v]→v=y).

Since y (and T) is often clear from the context (see below and Subsection 1.4), we will
usually say ϕ is a (T -)provable function.

We will sometimes write [f(x̄)=y] and similar for a general provable function. A
particular case will be the following observation:

If τ is a term and y is a variable which does not occur in τ , then τ=y is a
(∅-)provable function.

We will use the term “(T -)provably Σk-function” (Πk, Σk(IΣk) etc.) to mean “Σk-
formula which is (T -)provably a function”, as in the following lemmas.

Lemma 2.15. If F(z̄, v) is an abbreviation of a Σk(T)-formula and [g(x̄)=y] is a T -
provably Σk(T)-function then [F(z̄,g(x̄))] is also Σk(T).

Proof. Let u be a new variable. Then

T ` [F(z̄,g(x̄))]↔∃u([f(x̄)=u]∧f(z̄, u)).

4There appears to be some divergence of terminology between the subjects, however, since the above
strong collection schema in [6] is called simply “collection” (which in standard set theory is equivalent
to strong collection as above, by the separation schema); “collection” in our sense is used in [7] and
[4], while the term “strong collection” is taken from [4].

16

Lemma 2.16. In IΣ1, provably Σ1-functions are ∆1(IΣ1) and closed under definition
by composition and primitive recursion.

Proof. See [4, p. 48].

We will not state the above in greater detail here, but see also Lemma 2.31. Together
with the fact that the zero, successor and projection functions are clearly provably Σ1-
functions, this yields the corollary below.

Corollary 2.17. For every primitive recursive function f : Nn −→ N there is a IΣ1-
provably ∆1(IΣ1)-function [f(x1, . . . , xn)=y] (mimicking the construction of f as primi-
tive recursive as in the previous lemma) such that N |= [f(k1, . . . ,kn)=f(k1, . . . , kn)] for
all k1, . . . , kn ∈ N.

This means that primitive recursive functions are what is called provably recursive
in IΣ1. This is, however, somewhat misleading terminology, since if f is a primitive
recursive function and f and g are IΣ1-provably ∆1(IΣ1)-functions such that N |=
[f(k1, . . . ,kn)=f(k1, . . . , kn)] and N |= [g(k1, . . . ,kn)=f(k1, . . . , kn)] for all k1, . . . , kn ∈ N,
there is no guarantee that IΣ1 ` ∀x1 · · · ∀xn[f(x1, . . . ,xn)=g(x1, . . . ,xn)], since the latter
is a Π1-sentence.5 That said, many proofs of N |= [f(x1, . . . ,xn)=g(x1, . . . ,xn)] uses only
“Σ1-induction”, and so are translatable into IΣ1, especially if the corresponding def-
initions of f by primitive recursion as given by f and g are “natural”. Thus many
construction techniques of primitive recursive functions carry over to IΣ1-provably ∆1-
functions. Since we will only need that constructions by case distinction are valid we will
state and prove this directly, without further reference to primitive recursive functions.

Lemma 2.18. Let [f(x̄)=y] and [g(x̄)=y] be IΣ1-provably ∆1(IΣ1)-functions and ϕ be
a ∆1(IΣ1)-formula whose free variables are among x. Then there is an IΣ1-provably
∆1(IΣ1)-function [h(x̄)=y] such that

IΣ1 ` (ϕ→[h(x)=f(x)])∧(¬ϕ→[h(x)=g(x)]). (24)

Proof. Define [h(x)=y] to be the ∆1(IΣ1)-formula

(ϕ∧[f(x)=y])∨(¬ϕ∧[g(x)=y]).

We reason inside IΣ1 to show that h is a IΣ1-provable function satisfying (24).

Suppose ϕ. There is a y so that [f(x)=y], whence [h(x)=y] as well. If [h(x)=w] as
well then we must have ϕ(x)∧[f(x)=w] (since we cannot have ¬ϕ), so w=y since f is a
provable function.

If ¬ϕ then similarly to above there is a unique y such that [h(x)=y]. Thus h is a
provable function.

Consequently (24) is meaningful, and the arguments above then verifies that it is
true.

5In fact, there are counterexamples to this, by Gödel’s Incompleteness Theorems.

17

Since we will not need more general facts about provable recursion, we will not delve
further into this theory here.

Lemma 2.19. Let T be an LA-theory and k > 0. If [f(x̄)=y] is a T -provably ∆k(T)-
function then [u<f(x̄)] and [u≤f(x̄)] are ∆k(T) (where u and y may be same variable).

Proof. Let v be a fresh variable. Then

T ` [u<f(x̄)]↔∀v([f(x̄)=v]→u<v) and T ` [u<f(x̄)]↔∃v([f(x̄)=v]∧u<v).

Similarly

T ` [u≤f(x̄)]↔∀v([f(x̄)=v]→(u<v∨u=v)) and T ` [u≤f(x̄)]↔∃v([f(x̄)=v]∧(u<v∨u=v)).

Lemma 2.20. Let T be an LA-theory. If k > 0 and T proves Σk-collection then Σk(T)
and Πk(T) are closed under bounded quantifiers.

Lemma 2.21. Let k > 0, T be an LA-theory and [f(x̄)=y] a ∆k(T)-function. If T
proves Σk-collection then Σk(T) and Πk(T) are closed under quantification bounded by
f, that is if ϕ ∈ Σk(T) then ∀[u<f(x̄)]ϕ ∈ Σk(T) and ∃[u<f(x̄)]ϕ ∈ Σk(T), and similarly
for Πk(T) (where u may be y).

Proof. Let v be a fresh variable and ϕ ∈ Σk(T). Then

∀[u<f(x̄)]ϕ == ∀u([u<f(x̄)]︸ ︷︷ ︸
∆k(T)

→ϕ)

T↔̀ ∃v([f(x̄)=v]∧∀u<vϕ︸ ︷︷ ︸
Σk(T)

) ∈ Σk(T)

and

∃[u<f(x̄)]ϕ == ∃u([u<f(x̄)]︸ ︷︷ ︸
∆k(T)

∧ϕ) ∈ Σk(T).

The proof for Πk(T) is completely symmetric (with → instead of ∧).

Note that the above in particular applies for provable functions defined by terms. Thus
for many purposes we could equally well have allowed terms as bounds for quantifiers,
which is indeed often the case. In particular we define ∀x≤yϕ as ∀[x<S(y)]ϕ and similarly
for ∃.

The closedness results on Σk(T) et cetera above will be used throughout the thesis.
Thus we will seldom give explicit references to these results, but merely state “Let ϕ be
the Σk(T)-formula ...”, giving a definition from which the claim is immediate with the
closedness results.

We close this subsection with two central facts of IΣk.

18

Lemma 2.22 (Least number principle). Let ϕ be a Σk-formula or a Πk-formula. Then

IΣk ` (∃xϕ(x))→∃x(ϕ(x)∧∀y<x¬ϕ(y)),

where x and y do not occur in ϕ.

Proof. See [4, Theorem 2.4, pp. 63–66].

Corollary 2.23. The least number principle holds for Σk(M) as well: Let M |= Σk

and ϕ be a Σk(M)-formula. Then

M |= (∃xϕ(x))→∃x(ϕ(x)∧∀y<x¬ϕ(y)),

where x and y do not occur in ϕ.

Proof. Let ψ be a Σk-formula witnessing ϕ ∈ Σk(M) such that x and y do not occur in
ψ. Then

M |= (∃xψ(x))→∃x(ψ(x)∧∀y<x¬ψ(y))

by above, whence the same holds of ϕ since M |= ψ↔ϕ.

Lemma 2.24 (Overspill). Let M |= IΣk and I be a proper cut of M. Let ϕ ∈ Σk, x
be a variable, e be an evaluation of the free variables of ϕ, except possibly x, in M and
suppose M |=eax ϕ for all a ∈ I. Then M |=ebx

ϕ for some b ∈M \ I.

Proof. See [7, Lemma 6.1, pp. 70–71]. While that lemma, as written, only applies to
PA, the proof is the same (together with [4, Observation 1.15, p. 218]).

Note that the above in particular applies to proper initial substructures of M.

2.2 Arithmetisation of logic in IΣ1

We now turn to formalising logic within the theory IΣ1. We will mainly follow [4,
ch. 1 sec. 1]. We will in general only state results, of interest and adapted to the current
context; those proofs that are written out will be sketchy. However, to avoid unnecessary
dependencies on specific choices, we will introduce some in reality superfluous notation
(such as the predicate Set below; in [4] every number is (codes) a set). We also argue
that this makes it plausible that other theories able to code this amount of set theory
and arithmetic could have been used in place of IΣ1, see [12].

A preliminary result along these lines is the following.

Lemma 2.25 (Pairing). There are quantifier free I∆0-provable functions [〈x,y〉=z],
[〈z〉l=x] and [〈z〉r=y] such that

I∆0 ` [〈x,y〉=z]↔([〈z〉l=x]∧[〈z〉r=y])

I∆0 ` [〈z〉l≤z]

I∆0 ` [〈z〉r≤z]

19

Proof. The pairing formula [〈x, y〉=z] is (x + y) · (x + y + 1)+2·y=2·z (with projections
[〈z〉l=x] and [〈z〉r=y] defined by ∃y[〈x, y〉=z] and ∃x[〈x, y〉=z] respectively). The proof
that they have the required properties can be found in [4, 1.18, pp. 34–35].

Definition 2.12. We define the IΣ1-provably ∆1(IΣ1)-functions [〈x0,x1, . . . ,xk−1〉k=z]
and [〈z〉ki =x] for i < k, by recursion on k as follows:

• Define [〈〉0=z] to be 0=z, [〈x0〉1=z] to be x0=z and [〈z〉10=x] to be x=z.

• For l > 0 we define [〈x0,x1, . . . ,xl〉l+1=z] as [〈x0,〈x1, . . . ,xl〉l〉=z]. Moreover, we let
[〈z〉l+1

0 =x] be [〈z〉l=x] and [〈z〉l+1
i+1=x] be [〈〈z〉r〉li=x].

That these formulae define k-tuples with corresponding projections now follows di-
rectly from the lemma above by induction on k.

2.2.1 Set theory

In IΣ1 we have the following ∆1(IΣ1)-formulae:

Set(x),xεy,x@y,xvy,Fcn(f),Seq(s),

and the following provably ∆1(IΣ1)-functions:

[∅=x],[{x}=y],[(< x)=y],[xty=z],[x\y=z],[x×y=z],

[dom(f)=x],[ran(f)=x],[lh(s)=x],[apl(f, x)=y],[(s)x=y].

With the abbreviation ∀xεyϕ being ∀x<y(xεy→ϕ)6 and similarly for ∃ (extended by
conventions similar to those for <, see subsection 1.4), which are meaningful courtesy of
the first fact below, they satisfy the following properties:

Lemma 2.26.

IΣ1 ` xεy→x<y

IΣ1 ` xvy↔∀uεx(uεy)

IΣ1 ` xvy→x≤y

IΣ1 ` x@y↔(xvy∧¬(x=y))

IΣ1 ` [Set({x})]∧∀y([yε{x}]↔y=x)

IΣ1 ` [Set(∅)]∧∀x¬[xε∅]

IΣ1 ` [Set((<y))]∧∀x([xε(<y)]↔x<y)

IΣ1 ` (Set(x)∧Set(y))→([Set(xty)]∧∀u([uεxty]↔ (uεx∨uεy)))

IΣ1 ` (Set(x)∧Set(y))→([Set(x\y)]∧∀u([uεx\y]↔ (uεx∧¬(uεy))))

IΣ1 ` (Set(x)∧Set(y))→([Set(x×y)]∧∀u([uεx×y]↔ ∃vεx∃wεy(u=〈v,w〉)))
IΣ1 ` Set(x)→([Set(dom(x))]∧∀u([uεdom(x)]↔ ∃zεx∃v≤z(z=〈u,v〉)))

6Note that if ϕ is Σk(IΣ1) (or Πk(IΣ1)), ∀xεyϕ is Σk(IΣ1) (Πk(IΣ1)) if k > 0, otherwise ∆1(IΣ1).

20

IΣ1 ` Set(x)→([Set(ran(x))]∧∀u([uεran(x)]↔ ∃zεx∃v≤z(z=〈v,u〉)))
IΣ1 ` Fcn(f)↔(Set(f)∧∀pεf∃x∃y([〈x, y〉=p]∧∀z([〈x, z〉εf]→z=y)))

IΣ1 ` Fcn(f)→∀[xεdom(f)]([apl(f, x)=y]↔ [〈x, y〉εf])
IΣ1 ` Seq(s)↔(Fcn(s)∧∃x≤s[dom(s)=(< x)])

IΣ1 ` Seq(s)→([lh(s)=x]↔[dom(s)=(< x)])

IΣ1 ` Seq(s)→∀[x<lh(s)]([(s)x=y]↔ [apl(s, x)=y])

IΣ1 ` [Seq(∅)]∧[lh(∅)=0]

IΣ1 ` Seq(s)→([lh(s)≤s]∧∀[x<lh(s)][(s)x<s])

IΣ1 ` ∀x∃y(x<y∧¬Seq(y))

We also have the following highly desirable result.

Lemma 2.27 (Extensionality). IΣ1 proves extensionality for sets and functions (and
hence for sequences):

IΣ1 ` (Set(x)∧Set(y)∧∀u((uεx)↔(uεy)))→x=y,

IΣ1 ` (Fcn(f)∧Fcn(g)∧[dom(f)=dom(g)]∧∀[uεdom(f)][apl(f, u)=apl(g, u)])→f=g.

Proof. The first claim is Corollary 1.38 of [4], the second follows from the first using the
properties of sets stated above.

Worth mentioning might be that the present construction does not use a pairing based
on the language of set theory like e.g. the Kuratowski pairing, but the pairing defined
above (Lemma 2.25) where every object (i.e. number) is also a pair of objects. Thus this
is not a direct incorporation of a weak theory of sets in IΣ1.

Definition 2.13. The ∆1(IΣ1)-formula Setq(s) is

Seq(s)∧∀[i<lh(s)][Set((s)i)].

We also define the ∆1(IΣ1)-formulae Incrseq(s) and Incrsetq(s) to be

Seq(s)∧∀[i<lh(s)]([S(i)<lh(s)]→[(s)i<(s)S(i)])

and

Setq(s)∧∀[i<lh(s)]([S(i)<lh(s)]→[(s)i@(s)S(i)])

respectively.

As the final piece of set theory that we shall require, we verify that with the above
properties of sets we can always extend functions with a single pair of objects, and so in
particular we can construct sets and functions of any (concrete) finite cardinality.

Definition 2.14. Let [ext(f, x, y)=g] be the formula [(f\{〈x,apl(f, x)〉})t{〈x, y〉}=g].

21

This construction shares the principal properties of the corresponding operation on
actual functions.

Lemma 2.28. ext is a IΣ1-provably ∆1(IΣ1)-function satisfying

IΣ1 `Fcn(f)→([Fcn(ext(f, x, y))]∧[dom(ext(f, x, y))=dom(f)t{x}]∧
∀[zεdom(ext(f, x, y))]((z=x→[apl(ext(f, x, y),z)=y])∧

(z6=x→[apl(ext(f, x, y),z)=apl(f, z)]))),

IΣ1 `(Fcn(f)∧[xεdom(f)])→[ext(f,x,apl(f, x))=f].

Proof. Since ext is a composition of IΣ1-provably ∆1(IΣ1)-functions, it is itself an IΣ1-
provably ∆1(IΣ1)-function. To verify the claimed properties we reason in IΣ1.

First let f, x, y and g be such that Fcn(f) and [ext(f, x, y)=g]. Then Set(g) by Lemma
2.26. Let pεg, then [pε(f\{〈x,apl(f, x)〉})] or p=〈x, y〉. In the first case let z be such that
p=〈z,apl(f, z)〉; then z6=x and for all w such that [〈z,w〉εg] we must have [〈z,w〉εf], whence
[apl(f, z)=w]. In the second case let z be such that [〈x, z〉εg]; then either [〈x, z〉εf] but
[〈x, z〉6=〈x,apl(f, x)〉], which is impossible since Fcn(f), or [〈x, z〉=〈x, y〉], in which case
z=y. Thus Fcn(g). Now let [uεdom(g)]. If u=x then [〈u, y〉εg] by definition, whence
[apl(g, u)=y]. If instead u6=x we must have [uεdom(f)], whence [apl(g, u)=apl(f, u)].
This confirms the first claim.

Next let f, x and g be such that [xεdom(f)] and [ext(f,x,apl(f, x))=g]. Then, by above,
[dom(g)=dom(f)]. Suppose [zεdom(f)]. If z=x then [apl(g, z)=apl(f, z)], and if z 6=x we
have [apl(g, z)=apl(f, z)], again by above. Hence f=g by extensionality.

Lemma 2.29. Given k ∈ N there are IΣ1-provably ∆1(IΣ1)-functions [{x0, . . . ,xk−1}k=y]
and [fnk(x0, . . . ,xk−1,y0, . . . ,yk−1)=f] such that

IΣ1 `[Set({x0, . . . ,xk−1}k)]∧∀y([yε{x0, . . . ,xk−1}k]↔
∨

0≤i<k
y=xi)

and

IΣ1 `([fnk(x0, . . . ,xk−1,y0, . . . ,yk−1)=f]∧
∧

0≤i<j<k
¬(xi=xj))→

(Fcn(f)∧[dom(f)={x0, . . . ,xk−1}k]∧
∧

0≤i<k
[apl(f,xi)=yi])

Proof. Define [{}0=y] to be [∅=y] and for all k ∈ N define [{x0, . . . ,xk}k+1=y] to be
[(· · · ({x0}t · · · t{xk−1})t{xk})=y]. By the properties expressed in Lemma 2.26 and
induction on k, the first statement above holds.

Now define [fnk(x0, . . . ,xk−1,y0, . . . ,yk−1)=f] by [{〈x0,y0〉, . . . ,〈xk−1,yk−1〉}k=f]. Rea-
soning in IΣ1, let x0,. . .,xk−1,y0,. . .,yk−1 satisfy

∧
0≤i<j<k¬(xi=xj) and f be such that

[fnk(x0, . . . ,xk−1,y0, . . . ,yk−1)=f]. Take p such that pεf; then
∨

0≤i<k[〈xi,yi〉=p] by above.
Assuming [〈xn,yn〉=p], let z be such that [〈xn,z〉εf]. By above again

∨
0≤i<k[〈xi,yi〉=〈xn,z〉],

whence [〈xn,yn〉=〈xn,z〉] by
∧

0≤i<j<k¬(xi=xj) and Lemma 2.25, which subsequently gives
yn=z. Thus Fcn(f). Furthermore

[xεdom(f)]↔∃v[〈x, v〉εf]↔∃v
∨

0≤i<k
[〈xi,yi〉=〈x, v〉]↔

∨
0≤i<k

x=xi,

22

so [dom(f)={x0, . . . ,xk−1}k]. Since
∧

0≤i<k[〈xi,yi〉εf] this implies
∧

0≤i<k[apl(f,xi)=yi] by
Lemma 2.26.

2.2.2 Terms and formulae

With set theory, we can define what are terms and formulae. Specifically, there are
∆1(IΣ1)-formulae Var(x), Term(t) and Fmla(f) and IΣ1-provably ∆1(IΣ1)-functions [(x)=t],
[0=x], [vx=y], [(Ss)=t], [(r+s)=t], [(r·s)=t], [(s=t)=f], [(s<t)=f], [(h∧g)=f], [(h∨g)=f],
[(¬g)=f], [(∀vxg)=f] and [(∃vxg)=f] such that

IΣ1 `[x<vx],

IΣ1 `Var(x)↔∃i<x[vi=x],

IΣ1 `[vx=vy]→x=y,

IΣ1 `[Term((0))]∧[0<(0)],

IΣ1 `Var(x)→([Term((x))]∧[x<(x)]),

IΣ1 `Term(t)→([Term((St))]∧[t<(St)]),

IΣ1 `(Term(s)∧Term(t))→([Term((s+t))]∧[s<(s+t)]∧[t<(s+t)]),

IΣ1 `(Term(s)∧Term(t))→([Term((s·t))]∧[s<(s·t)]∧[t<(s·t)]),

IΣ1 `(Term(s)∧Term(t))→ ([Fmla((s=t))]∧[s<(s=t)]∧[t<(s=t)]),

IΣ1 `(Term(s)∧Term(t))→ ([Fmla((s<t))]∧[s<(s<t)]∧[t<(s<t)]),

IΣ1 `(Fmla(f)∧Fmla(g))→ ([Fmla((f∧g))]∧[f<(f∧g)]∧[g<(f∧g)]),

IΣ1 `(Fmla(f)∧Fmla(g))→ ([Fmla((f∨g))]∧[f<(f∨g)]∧[g<(f∨g)]),

IΣ1 `Fmla(f)→ ([Fmla((¬f))]∧[f<(¬f)]),

IΣ1 `Fmla(f)→ ([Fmla((∀vxf))]∧[vx<(∀vxf)]∧[f<(∀vxf)]),

IΣ1 `Fmla(f)→ ([Fmla((∃vxf))]∧[vx<(∃vxf)]∧[f<(∃vxf)]),

IΣ1 `¬(Term(x)∧Fmla(x))

IΣ1 `(¬Term(0))∧(¬Fmla(0)).

We also define Atf(f) to be ∃s<f∃t<fTerm(s)∧Term(t) ∧ ([(s=t)=f]∨[(s<t)=f]), so that

IΣ1 `Atf(f)→Fmla(f)

et cetera.
We can introduce the usual abbreviations for→ and↔, but we will not since we will

have little use for them, instead using them solely at the meta level.
Σ1-induction now extends to (formal) terms and formulae.

Lemma 2.30 (Σ1-Term-induction and Σ1-Fmla-induction). For all Σ1-formulae ϕ we
have

IΣ1 `([ϕ((0))] ∧ ∀x[ϕ((vx))]∧
∀s∀t((Term(s) ∧ Term(t)∧ϕ(s)∧ϕ(t))→([ϕ((St))]∧[ϕ((s+t))]∧[ϕ((s·t))])))→
∀t(Term(t)→ϕ(t))

23

where t and s do not occur in ϕ, and

IΣ1 `(∀s∀t((Term(t)∧Term(s))→[ϕ((s=t))]∧[ϕ((s≤t))])∧
∀f∀g((Fmla(f) ∧ Fmla(g)∧ϕ(f)∧ϕ(g))→

([ϕ((¬f))]∧[ϕ((f∧g))]∧[ϕ((f∨g))]∧∀x([ϕ((∀vxf))]∧[ϕ((∃vxf))]))))→
∀f(Fmla(f)→ϕ(f))

where f and g do not occur in ϕ.

In IΣ1 we can even define provably ∆1(IΣ1)-functions on terms and formulae by struc-
tural recursion with parameters.

Lemma 2.31 (Σ1-Term-recursion and Σ1-Fmla-recursion). If hVarVarVar, h0, hS, h+ and h· as
well as h=, h<, h∧, h∨, h¬, h∀ and h∃ are IΣ1-provably ∆1(IΣ1)-functions (with the
correct number of parameters) then there are unique IΣ1-provably ∆1(IΣ1)-functions f

and g such that

IΣ1 ` [f(x̄,(0))=h0(x̄)]

IΣ1 ` [f(x̄,(vy))=hVarVarVar(x̄,vy)]

IΣ1 ` Term(t)→[f(x̄,(St))=hS(x̄,f(t))]

IΣ1 ` (Term(s)∧Term(t))→[f(x̄,(s+t))=h+(x̄,f(s),f(t))]

IΣ1 ` (Term(s)∧Term(t))→[f(x̄,(s·t))=h·(x̄,f(s),f(t))]

IΣ1 ` ¬Term(t)→[f(x̄,t)=0]

and

IΣ1 ` (Term(s)∧Term(t))→[g(x̄,(s=t))=h=(x̄,s,t)]

IΣ1 ` (Term(s)∧Term(t))→[g(x̄,(s<t))=h<(x̄,s,t)]

IΣ1 ` Fmla(f)→[g(x̄,(¬f))=h¬(x̄,g(f))]

IΣ1 ` (Fmla(f)∧Fmla(g))→[g(x̄,(f∧g))=h∧(x̄,g(f),g(g))]

IΣ1 ` (Fmla(f)∧Fmla(g))→[g(x̄,(f∨g))=h∨(x̄,g(f),g(g))]

IΣ1 ` Fmla(f)→[g(x̄,(∀vyf))=h∀(x̄,vy,g(f))]

IΣ1 ` Fmla(f)→[g(x̄,(∃vyf))=h∃(x̄,vy,g(f))]

IΣ1 ` ¬Fmla(f)→[g(x̄,f)=0].

Among other things this, in a roundabout way, gives uniqueness of the “construction-
trees” of (formal) formulae.

Lemma 2.32 (Uniqueness of formula-constructions). IΣ1 proves uniqueness of the con-

24

struction of any formula:

IΣ1 ` Fmla(f)↔(Atf(f)∨∃g<f(Fmla(g)∧[(¬g)=f])∨
∃g<f∃h<f(Fmla(g)∧Fmla(h)∧[(g∧h)=f])∨
∃g<f∃h<f(Fmla(g)∧Fmla(h)∧[(g∨h)=f])∨
∃g<f∃x<f(Fmla(g)∧[(∀vxg)=f])∨
∃g<f∃x<f(Fmla(g)∧[(∃vxg)=f])),

IΣ1 ` (Term(s)∧Term(t))→(∀r∀u((Term(r)∧Term(u)∧[(r=u)=(s=t)])→(r=s∧u=t))∧
¬∃r∃u(Term(r)∧Term(u)∧[(r<u)=(s=t)])∧
¬∃f(Fmla(f)∧[(¬f)=(s=t)])∧
¬∃f∃g(Fmla(f)∧Fmla(g)∧[(f∧g)=(s=t)])∧
¬∃f∃g(Fmla(f)∧Fmla(g)∧[(f∨g)=(s=t)])∧
¬∃f∃x(Fmla(f)∧[(∀vxf)=(s=t)])∧
¬∃f∃x(Fmla(f)∧[(∃vxf)=(s=t)])),

IΣ1 ` (Term(s)∧Term(t))→(∀r∀u((Term(r)∧Term(u)∧[(r<u)=(s<t)])→(r=s∧u=t))∧
¬∃r∃u(Term(r)∧Term(u)∧[(r=u)=(s<t)])∧
¬∃f(Fmla(f)∧[(¬f)=(s<t)])∧
¬∃f∃g(Fmla(f)∧Fmla(g)∧[(f∧g)=(s<t)])∧
¬∃f∃g(Fmla(f)∧Fmla(g)∧[(f∨g)=(s<t)])∧
¬∃f∃x(Fmla(f)∧[(∀vxf)=(s<t)])∧
¬∃f∃x(Fmla(f)∧[(∃vxf)=(s<t)])),

IΣ1 ` Fmla(f)→(∀g((Fmla(g)∧[(¬g)=(¬f)])→g=f)∧
¬∃s∃t(Term(s)∧Term(t)∧[(s=t)=(¬f)])∧
¬∃s∃t(Term(s)∧Term(t)∧[(s<t)=(¬f)])∧
¬∃g∃h(Fmla(g)∧Fmla(h)∧[(g∧h)=(¬f)])∧
¬∃g∃h(Fmla(g)∧Fmla(h)∧[(g∨h)=(¬f)])∧
¬∃g∃x(Fmla(g)∧[(∀vxg)=(¬f)])∧
¬∃g∃x(Fmla(g)∧[(∃vxg)=(¬f)])),

IΣ1 ` (Fmla(f)∧Fmla(g))→(∀h∀k((Fmla(h)∧Fmla(k)∧[(h∧k)=(f∧g)])→(h=f∧k=g))∧
¬∃s∃t(Term(s)∧Term(t)∧[(s=t)=(f∧g)])∧
¬∃s∃t(Term(s)∧Term(t)∧[(s<t)=(f∧g)])∧
¬∃h(Fmla(h)∧[(¬f)=(f∧g)])∧
¬∃h∃k(Fmla(h)∧Fmla(k)∧[(h∨k)=(f∧g)])∧
¬∃h∃x(Fmla(h)∧[(∀vxh)=(f∧g)])∧
¬∃h∃x(Fmla(h)∧[(∃vxh)=(f∧g)])),

IΣ1 ` (Fmla(f)∧Fmla(g))→(∀h∀k((Fmla(h)∧Fmla(k)∧[(h∨k)=(f∨g)])→(h=f∧k=g))∧
¬∃s∃t(Term(s)∧Term(t)∧[(s=t)=(f∨g)])∧

25

¬∃s∃t(Term(s)∧Term(t)∧[(s<t)=(f∨g)])∧
¬∃h(Fmla(h)∧[(¬f)=(f∨g)])∧
¬∃h∃k(Fmla(h)∧Fmla(k)∧[(h∧k)=(f∨g)])∧
¬∃h∃x(Fmla(h)∧[(∀vxh)=(f∨g)])∧
¬∃h∃x(Fmla(h)∧[(∃vxh)=(f∨g)])),

IΣ1 ` Fmla(f)→(∀g∀y((Fmla(g)∧[(∀vyg)=(∀vxf)])→(y=x∧g=f))∧
¬∃s∃t(Term(s)∧Term(t)∧[(s=t)=(∀vxf)])∧
¬∃s∃t(Term(s)∧Term(t)∧[(s<t)=(∀vxf)])∧
¬∃g(Fmla(g)∧[(¬g)=(∀vxf)])∧
¬∃g∃h(Fmla(g)∧Fmla(h)∧[(g∧h)=(∀vxf)])∧
¬∃g∃h(Fmla(g)∧Fmla(h)∧[(g∨h)=(∀vxf)])∧
¬∃g∃y(Fmla(g)∧[(∃vyg)=(∀vxf)]))

and

IΣ1 ` Fmla(f)→(∀g∀y((Fmla(g)∧[(∃vyg)=(∃vxf)])→(y=x∧g=f))∧
¬∃s∃t(Term(s)∧Term(t)∧[(s=t)=(∃vxf)])∧
¬∃s∃t(Term(s)∧Term(t)∧[(s<t)=(∃vxf)])∧
¬∃g(Fmla(g)∧[(¬g)=(∃vxf)])∧
¬∃g∃h(Fmla(g)∧Fmla(h)∧[(g∧h)=(∃vxf)])∧
¬∃g∃h(Fmla(g)∧Fmla(h)∧[(g∨h)=(∃vxf)])∧
¬∃g∃y(Fmla(g)∧[(∀vyg)=(∃vxf)])).

Proof. The first claim is immediate by Σ1-Fmla-induction (see the proof of Lemma 2.34
for comparison). The others follow by Σ1-recursion; we show a representative part of
the statement for the disjunction as a template.

Let [f(f)=y] be the IΣ1-provably ∆1(IΣ1)-function satisfying

IΣ1 ` (Term(s)∧Term(t))→[f((s=t))=0]

IΣ1 ` (Term(s)∧Term(t))→[f((s<t))=0]

IΣ1 ` Fmla(f)→[f((¬f))=0]

IΣ1 ` (Fmla(f)∧Fmla(g))→[f((f∧g))=0]

IΣ1 ` (Fmla(f)∧Fmla(g))→[f((f∨g))=〈f,g〉]
IΣ1 ` Fmla(f)→[f((∀vxf))=0]

IΣ1 ` Fmla(f)→[f((∃vxf))=0].

Reasoning in IΣ1 now, if Fmla(f), Fmla(g), Fmla(h), Fmla(k) and [(f∨g)=(h∨k)] then
[〈f,g〉=〈h,k〉] by definition of f, whence f=h and g=k by Lemma 2.25. If e.g. there are
s and t with Term(s) and Term(t) such that [(f∨g)=(s=t)] then [〈f,g〉=0], whereby f=0
and g=0, contradicting that ¬Fmla(0).

The remaining cases are similar.

26

A similar statement holds for Term, but since we will not have use for this, we will
omit it (and save some paper).

We can use this result to show that restrictions in the inductive clauses of the definition
of Fmla can meaningfully be made to yield certain “subclasses” of Fmla. For instance we
can formalise the notion of negation normal form, which will be of the utmost importance
for the central constructions of this thesis.

Lemma 2.33. There is a ∆1(IΣ1)-formula Nnf(f) which satisfies

IΣ1 ` Nnf(f)↔(Fmla(f)∧(Atf(f)∨∃g<f(Atf(g)∧[(¬g)=f])∨
∃g<f∃h<f(Nnf(g)∧Nnf(h)∧[(g∧h)=f])∨
∃g<f∃h<f(Nnf(g)∧Nnf(h)∧[(g∨h)=f])∨ (25)

∃g<f∃x<f(Nnf(g)∧[(∀vxg)=f])∨
∃g<f∃x<f(Nnf(g)∧[(∃vxg)=f])))

and an IΣ1-provably ∆1(IΣ1)-function [nnf(f)=g] satisfying

IΣ1 ` Atf(f)→([nnf(f)=f]∧[nnf((¬f))=(¬nnf(f))]),

IΣ1 ` Fmla(f)→[nnf((¬(¬f)))=nnf(f)],

IΣ1 ` (Fmla(f)∧Fmla(g))→([nnf((f∧g))=(nnf(f)∧nnf(g))]∧
[nnf((¬(f∧g)))=(nnf((¬f))∨nnf((¬g)))]),

IΣ1 ` (Fmla(f)∧Fmla(g))→([nnf((f∨g))=(nnf(f)∨nnf(g))]∧ (26)

[nnf((¬(f∨g)))=(nnf((¬f))∧nnf((¬g)))]),

IΣ1 ` Fmla(f)→([nnf((∀vxf))=(∀vxnnf(f))]∧[nnf((¬(∀vxf)))=(∃vxnnf((¬f)))]),

IΣ1 ` Fmla(f)→([nnf((∃vxf))=(∃vxnnf(f))]∧[nnf((¬(∃vxf)))=(∀vxnnf((¬f)))])

and such that in addition IΣ1 ` Fmla(f)→[Nnf(nnf(f))] and IΣ1 ` Nnf(f)→[nnf(f)=f].

Proof. Let [cAtf(x)=y] be the IΣ1-provably ∆1(IΣ1)-function (Atf(x)∧y=1)∨(¬Atf(x)∧y=0).
Let cNnf be the IΣ1-provably ∆1(IΣ1)-function satisfying

IΣ1 ` (Term(s)∧Term(t))→[cNnf((s=t))=1],

IΣ1 ` (Term(s)∧Term(t))→[cNnf((s<t))=1],

IΣ1 ` (Fmla(f)∧Fmla(g))→[cNnf((f∧g))=cNnf(f)·cNnf(g)],

IΣ1 ` (Fmla(f)∧Fmla(g))→[cNnf((f∨g))=cNnf(f)·cNnf(g)],

IΣ1 ` Fmla(f)→[cNnf((¬f))=cAtf(f)],

IΣ1 ` Fmla(f)→[cNnf((∀vxf))=cNnf(f)],

IΣ1 ` Fmla(f)→[cNnf((∃vxf))=cNnf(f)],

IΣ1 ` ¬Fmla(x)→[cNnf(x)=0].

Define Nnf(f) to be the formula [cNnf(f)=1]. It is now straightforward to verify the
right to left direction of the first claim. To prove the other direction, note that IΣ1 `

27

Nnf(f)→Fmla(f) is the contraposition of the last line above. Thus we use Σ1-Fmla-
induction on f with the formula F(f) defined as

Nnf(f)→(Atf(f)∨∃g<f(Atf(g)∧[(¬g)=f])∨
∃g<f∃h<f(Nnf(g)∧Nnf(h)∧[(g∧h)=f])∨
∃g<f∃h<f(Nnf(g)∧Nnf(h)∧[(g∨h)=f])∨
∃g<f∃x<f(Nnf(g)∧[(∀vxg)=f])∨
∃g<f∃x<f(Nnf(g)∧[(∃vxg)=f])).

We reason in IΣ1 to verify each conjunct of the relevant antecedent (see Lemma 2.30).
We will need the fact that IΣ1 ` x·y=1→(x=1∧y=1).

• Assume that Term(s) and Term(t). Then Atf((s=t)) and Atf((s<t)) so that
[F((s=t))] and [F((s<t))].

• Suppose that Fmla(f), Fmla(g), F(f) and F(g).

Assume [Nnf((¬f))], that is [cNnf((¬f))=1]. Then [cAtf(f)=1] by definition, whence

∃[g<(¬f)](Atf(g)∧[(¬g)=(¬f)]).

So [F((¬f))].

Assume [Nnf((f∧g))]. Then [cNnf(f)·cNnf(g)=1], so that [cNnf(f)=1] and [cNnf(g)=1].
Hence

∃[h1<(f∧g)]∃[h2<(f∧g)](Nnf(h1)∧Nnf(h2)∧[(h1∧h2)=(f∧g)]),

whereby [F((f∧g))].

Similarly, assume [Nnf((f∨g))], whence [Nnf(f)] and [Nnf(g)]. Thus

∃[h1<(f∨g)]∃[h2<(f∨g)](Nnf(h1)∧Nnf(h2)∧[(h1∨h2)=(f∨g)]),

whence [F((f∨g))].

Assume [Nnf((∀vxf))]. Then [cNnf((∀vxf))=1], whence [cNnf(f)=1]. So

∃[g<(∀vxf)]∃[y<(∀vxf)](Nnf(g)∧[(∀vyg)=(∀vxf)]),

from which [F((∀vxf))] follows.

Assume [Nnf((∃vxf))], so that [Nnf(f)]. Hence

∃[g<(∃vxf)]∃[y<(∃vxf)](Nnf(g)∧[(∃vyg)=(∀vxf)]),

and consequently [F((∃vxf))] follows.

28

Thus IΣ1 ` Fmla(f)→F(f), which verifies (25).
Now let [nnf2(f)=p] be the IΣ1-provably ∆1(IΣ1)-function satisfying

IΣ1 ` Atf(f)→[nnf2(f)=〈f,(¬f)〉],
IΣ1 ` Fmla(f)→[nnf2((¬f))=〈〈nnf2(f)〉r,〈nnf2(f)〉l〉],
IΣ1 ` (Fmla(f)∧Fmla(g))→

[nnf2((f∧g))=〈(〈nnf2(f)〉l∧〈nnf2(g)〉l),(〈nnf2(f)〉r∨〈nnf2(g)〉r)〉],
IΣ1 ` (Fmla(f)∧Fmla(g))→

[nnf2((f∨g))=〈(〈nnf2(f)〉l∨〈nnf2(g)〉l),(〈nnf2(f)〉r∧〈nnf2(g)〉r)〉],
IΣ1 ` Fmla(f)→[nnf2((∀vxf))=〈(∀vx〈nnf2(f)〉l),(∃vx〈nnf2(f)〉r)〉],
IΣ1 ` Fmla(f)→[nnf2((∃vxf))=〈(∃vx〈nnf2(f)〉l),(∀vx〈nnf2(f)〉r)〉].

Define [nnf(f)=g] as [〈nnf2(f)〉l=g]. Then IΣ1 ` [nnf((¬f))=〈nnf2(f)〉r], from which
(26) follows directly.

Next we verify that

IΣ1 ` Fmla(f)→([Nnf(nnf(f))]∧[Nnf(nnf((¬f)))])

by Σ1-Fmla-induction on f with the formula [Nnf(nnf(f))]∧[Nnf(nnf((¬f)))]. As above
we reason in IΣ1 to prove each conjunct of the antecedent of the relevant instance of
Lemma 2.30.

• Suppose Term(s) and Term(t). Then Atf((s=t)) and Atf((s<t)), whence
[nnf((s=t))=(s=t)], [nnf((s<t))=(s<t)], [nnf((¬(s=t)))=(¬(s=t))] and
[nnf((¬(s<t)))=(¬(s<t))] by (26), and [Nnf((s=t))], [Nnf((s<t))],
[Nnf((¬(s=t)))] and [Nnf((¬(s<t)))] by (25).

• Suppose Fmla(f), Fmla(g), [Nnf(nnf(f))], [Nnf(nnf((¬f)))], [Nnf(nnf(g))] and
[Nnf(nnf((¬g)))].

Consider (¬f). Since [nnf((¬(¬f)))=nnf(f)] by (26) we have [Nnf(nnf((¬f)))]
and [Nnf(nnf((¬(¬f))))] by induction hypothesis.

Consider (f∧g). We have [nnf((f∧g))=(nnf(f)∧nnf(g))] and
[nnf((¬(f∧g)))=(nnf((¬f))∨nnf((¬g)))] by (26), whence [Nnf(nnf((f∧g)))] and
[Nnf(nnf((¬(f∧g))))] by (25).

Now consider (f∨g). We have [nnf((f∨g))=(nnf(f)∨nnf(g))] and
[nnf((¬(f∨g)))=(nnf((¬f))∧nnf((¬g)))] by (26), whence [Nnf(nnf((f∨g)))] and
[Nnf(nnf((¬(f∨g))))] by (25).

Next consider (∀vxf). By (26), [nnf((∀vxf))=(∀vxnnf(f))] and
[nnf((¬(∀vxf)))=(∃vxnnf((¬f)))]. Thus [Nnf(nnf((∀vxf)))] and
[Nnf(nnf((¬(∀vxf))))], by (25).

Finally consider (∃vxf). We have [nnf((∀vxf))=(∀vxnnf(f))] and
[nnf((¬(∀vxf)))=(∃vxnnf((¬f)))] by (26). Thus [Nnf(nnf((∀vxf)))] and
[Nnf(nnf((¬(∀vxf))))] by (25).

29

Hence IΣ1 ` Fmla(f)→([Nnf(nnf(f))]∧[Nnf(nnf((¬f)))]), whence in particular IΣ1 `
Fmla(f)→[Nnf(nnf(f))].

Finally we verify

IΣ1 ` Fmla(f)→(Nnf(f)→[nnf(f)=f])

by Σ1-Fmla-induction on f with the formula Nnf(f)→[nnf(f)=f]. We reason in IΣ1 as
before.

• Suppose Term(s) and Term(t). Then Atf((s=t)) and Atf((s<t)), whence
[nnf((s=t))=(s=t)] and [nnf((s<t))=(s<t)] by (26).

• Suppose Fmla(f), Fmla(g), Nnf(f)→[nnf(f)=f] and Nnf(g)→[nnf(g)=g].

Assume [Nnf((¬f))]. Then (25) and Lemma 2.32 give Atf(f), whence Nnf(f). The
induction hypothesis then gives [nnf(f)=f], whereby [nnf((¬f))=(¬f)] by (26).

Assume [Nnf((f∧g))]. Then (25) and Lemma 2.32 give Nnf(f) and Nnf(g). By in-
duction hypothesis we get [nnf(f)=f] and [nnf(g)=g], whence [nnf((f∧g))=(f∧g)]
by (26).

Assume [Nnf((f∨g))]. Like above, (25) and Lemma 2.32 give Nnf(f) and Nnf(g),
whence [nnf(f)=f] and [nnf(g)=g]. Thus [nnf((f∨g))=(f∨g)] by (26).

Assume [Nnf((∀vxf))]. Then (25) and Lemma 2.32 give Nnf(f), whence [nnf(f)=f].
Consequently [nnf((∀vxf))=(∀vxf)] by (26).

Assume [Nnf((∃vxf))], whence Nnf(f) by (25) and Lemma 2.32. By induction
hypothesis this implies [nnf(f)=f], whence (26) gives [nnf((∃vxf))=(∃vxf)].

Thus IΣ1 ` Fmla(f)→(Nnf(f)→[nnf(f)=f]). Since IΣ1 ` Nnf(f)→Fmla(f), this simplifies
to IΣ1 ` Nnf(f)→[nnf(f)=f].

Uniqueness of the construction trees of formulae (Lemma 2.32) also makes it mean-
ingful to speak about “occurrences” of “symbols” in a formula. The above then confirms
that Nnf coincides precisely with the meta-theoretic idea of negation normal form: for-
mulae where negation occur in front of atomic formulae only.

With recursion we can also construct many familiar notions concerning terms and
formulae, such as the set of variables free in a term or a formula and what is the value
of a term given an evaluation for it.

Definition 2.15. Let freevarT be the IΣ1-provably ∆1(IΣ1)-function satisfying

IΣ1 `[freevarT((0))=∅]

IΣ1 `[freevarT((vx))={vx}]
IΣ1 `Term(t)→[freevarT((St))=freevarT(t)]

IΣ1 `(Term(s)∧Term(t))→[freevarT((s+t))=freevarT(s)tfreevarT(t)]

IΣ1 `(Term(s)∧Term(t))→[freevarT((s·t))=freevarT(s)tfreevarT(t)]

IΣ1 `¬Term(x)→[freevarT(x)=0].

30

Similarly, let freevarF be the IΣ1-provably ∆1(IΣ1)-function satisfying

IΣ1 `(Term(s)∧Term(t))→[freevarF((s=t))=freevarT(s)tfreevarT(t)]

IΣ1 `(Term(s)∧Term(t))→[freevarF((s<t))=freevarT(s)tfreevarT(t)]

IΣ1 `Fmla(f)→[freevarF((¬f))=freevarF(f)]

IΣ1 `(Fmla(f)∧Fmla(g))→[freevarF((f∧g))=freevarF(f)tfreevarF(g)]

IΣ1 `(Fmla(f)∧Fmla(g))→[freevarF((f∨g))=freevarF(f)tfreevarF(g)]

IΣ1 `Fmla(f)→[freevarF((∀vxf))=freevarF(f)\{vx}]
IΣ1 `Fmla(f)→[freevarF((∃vxf))=freevarF(f)\{vx}]
IΣ1 `¬Fmla(x)→[freevarF(x)=0].

Define Eval(e, s) to be the formula

Fcn(e)∧(∀[xεdom(f)]Var(x))∧
((Term(s)∧[freevarT(s)vdom(e)]) ∨ (Fmla(s)∧[freevarF(s)vdom(e)]))

and [val(e, t)=x] the IΣ1-provably ∆1(IΣ1)-function satisfying

IΣ1 ` [val(e,(0))=0]

IΣ1 ` [val(e,(vx))=apl(e,vx)]

IΣ1 ` Term(t)→[val(e,(St))=S(val(e,t))]

IΣ1 ` (Term(s)∧Term(t))→[val(e,(s+t))=val(e,s)+val(e,t)]

IΣ1 ` (Term(s)∧Term(t))→[val(e,(s·t))=val(e,s)·val(e,t)]

IΣ1 ` ¬Term(t)→[val(e, t)=0].

Finally define Sent(f) to be the formula Fmla(f)∧[freevarF(f)=∅].

Remark 6. Note that IΣ1 ` (Term(s)∧Term(t)∧Eval(e,(s=t)))↔(Eval(e, s)∧Eval(e, t))
etc.

Given that we can evaluate a term, we would like to do the corresponding thing
for formulae, that is define a truth predicate. This is of course impossible by Tarski’s
theorem, but we can define a truth (or as we shall call it, satisfaction) predicate for
(formal) ∆0-formulae, the class of which is itself defined by a ∆1(IΣ1)-formula.

Lemma 2.34. In IΣ1 we have the ∆1(IΣ1)-formula ∆0(f) which satisfies:

IΣ1 ` ∆0(f)↔(Fmla(f)∧(Atf(f)∨∃g<f(∆0(g)∧[(¬g)=f])∨
∃g<f∃h<f(∆0(g)∧∆0(h)∧[(g∧h)=f])∨
∃g<f∃h<f(∆0(g)∧∆0(h)∧[(g∨h)=f])∨
∃g<f∃x<f∃y<f(∆0(g)∧x6=y∧[(∀vx((¬(vx<vy))∨g))=f])∨
∃g<f∃x<f∃y<f(∆0(g)∧x6=y∧[(∃vx((vx<vy)∧g))=f]))).

Proof. This is (modulo a proof by induction) Lemma 1.68 of [4].

31

Proposition 2.35 (Satisfaction). There is a ∆1(IΣ1)-formula Sat0 such that

IΣ1 `(Term(s)∧Term(t)∧Eval(e,(s=t)))→(Sat0((e,s=t))↔val(e, s)=val(e, t))

IΣ1 `(Term(s)∧Term(t)∧Eval(e,(s<t)))→(Sat0((e,s<t))↔val(e, s)<val(e, t))

IΣ1 `(Fmla(f)∧[Eval(e,(¬f))])→([Sat0(e,(¬f))]↔¬Sat0(e, f))

IΣ1 `(Fmla(f)∧Fmla(g)∧[Eval(e,(f∧g))])→([Sat0(e,(f∧g))]↔(Sat0(e, f)∧Sat0(e, g)))

IΣ1 `(Fmla(f)∧Fmla(g)∧[Eval(e,(f∨g))])→([Sat0(e,(f∨g))]↔(Sat0(e, f)∨Sat0(e, g)))

IΣ1 `(Fmla(f)∧x6=y∧[Eval(e,(∀vx((¬(vx<vy))∨f)))])→
([Sat0(e,(∀vx((¬(vx<vy))∨f)))]↔∀[z<apl(e,vy)][Sat0(ext(e,vx,z),f)])

IΣ1 `(Fmla(f)∧x6=y∧[Eval(e,(∃vx((¬(vx<vy))∨f)))])→
([Sat0(e,(∃vx((¬(vx<vy))∨f)))]↔∃[z<apl(e,vy)][Sat0(ext(e,vx,z),f)])

IΣ1 `Sat0(e, f)→(∆0(f)∧Eval(e, f)).

Proof. See Theorem 1.70 of [4].

With the above definition of satisfaction, it is possible to prove that the truth value
of a formula under an evaluation only depends on the values of the evaluation for the
free variables of the formula, which we know to be true at the meta level. Like many
propositions of this sort, the proof is just mimicking the meta proof, taking care to find
appropriate bounds for quantifiers to make the induction go through.

Lemma 2.36.

IΣ1 ` ∀e∀d∀t((Term(t)∧Eval(e, t)∧Eval(d, t)∧
∀[xεfreevarT(t)][apl(e, x)=apl(d, x)])→

[val(e, t)=val(d, t)])

Proof. By Σ1-Term-induction on t with the formula

(Eval(e, t)∧Eval(d, t)∧∀[xεfreevarT(t)][apl(e, x)=apl(d, x)])→[val(e, t)=val(d, t)].

We reason in IΣ1.

• Assume Eval(e,(0)), Eval(d,(0)) and ∀[xεfreevarT((0))][apl(e, x)=apl(d, x)]. By
definition [val(e,(0))=0] and [val(d,(0))=0].

• Assume Eval(e,(vy)), Eval(d,(vy)) and ∀[xεfreevarT((vy))][apl(e, x)=apl(d, x)].
Since [freevarT((vy))={vy}1] we have

[apl(e,vy)=apl(d,vy)],

and since [val(e,(vy))=apl(e,vy)] and [val(d,(vy))=apl(d,vy)] we thus get

[val(e,(vy))=val(d,(vy))].

32

• Suppose Term(t) and

(Eval(e, t)∧Eval(d, t)∧∀[xεfreevarT(t)][apl(e, x)=apl(d, x)])→[val(e, t)=val(d, t)].

Assume Eval(e,(St)), Eval(d,(St)) and ∀[xεfreevarT((St))][apl(e, x)=apl(d, x)].
Since [freevarT((St))=freevarT(t)] we get Eval(e, t), Eval(d, t) and

∀[xεfreevarT(t)][apl(e, x)=apl(d, x)],

whence [val(e, t)=val(d, t)] by induction hypothesis. Finally [val(e,(St))=S(val(e, t))]
and [val(d,(St))=S(val(d, t))], whereby

[val(e,(St))=val(d,(St))].

• Suppose Term(s), Term(t),

(Eval(e, s)∧Eval(d, s)∧∀[xεfreevarT(s)][apl(e, x)=apl(d, x)])→[val(e, s)=val(d, s)]

and similarly for t. Assume Eval(e,(s+t)), Eval(d,(s+t)) and

∀[xεfreevarT((s+t))][apl(e, x)=apl(d, x)].

By definition [freevarT((s+t))=freevarT(s)tfreevarT(t)], whence
Eval(e, s), Eval(d, s) and ∀[xεfreevarT(s)][apl(e, x)=apl(d, x)], and similarly for t.
Thus [val(e, s)=val(d, s)] and [val(e, t)=val(d, t)] by induction hypothesis. Since
[val(e,(s+t))=val(e, s)+val(e, t)] and similarly for d, we get

[val(e,(s+t))=val(d,(s+t))].

• The case (s · t) is similar.

This concludes the induction and the proof.

Lemma 2.37.

IΣ1 ` ∀e∀d∀f((∆0(f)∧Eval(e, f)∧Eval(d, f)∧
∀[xεfreevarF(f)][apl(e, x)=apl(d, x)])→

(Sat0(e, f)↔Sat0(d, f))).

Proof. Using the lemma above we show

IΣ1 ` ∀n∀f((∆0(f)∧f<n)→
∀[ev(< n)× (< n)]∀[dv(< n)× (< n)]

((Eval(e, f)∧Eval(d, f)∧
∀[xεfreevarF(f)][apl(e, x)=apl(d, x)])→

(Sat0(e, f)↔Sat0(d, f))))

33

by Σ1-Fmla-induction on f with the formula

(∆0(f)∧f<n)→
∀[ev(< n)× (< n)]∀[dv(< n)× (< n)]

((Eval(e, f)∧Eval(d, f)∧
∀[xεfreevarF(f)][apl(e, x)=apl(d, x)])→

(Sat0(e, f)↔Sat0(d, f))).

We reason in IΣ1.

• Suppose Term(s) and Term(t). Let [ev(< n)× (< n)] and [dv(< n)× (< n)] be such
that Eval(e,(s=t)), Eval(d,(s=t)) and ∀[xεfreevarF((s=t))][apl(e, x)=apl(d, x)].
Since [freevarF((s=t))=freevarT(s)tfreevarT(t)] we get

[val(e, s)=val(d, s)]

and

[val(e, t)=val(d, t)]

by Lemma 2.36. Thus

[val(e, s)=val(e, t)]↔[val(d, s)=val(d, t)],

whence Sat0(e,(s=t))↔Sat0(d,(s=t)) by construction (Proposition 2.35).

• The case (s<t) is similar.

• Suppose Fmla(f) and

(∆0(f)∧f<n)→
∀[ev(< n)× (< n)]∀[dv(< n)× (< n)]

((Eval(e, f)∧Eval(d, f)∧
∀[xεfreevarF(f)][apl(e, x)=apl(d, x)])→

(Sat0(e, f)↔Sat0(d, f))).

Assume [∆0((¬f))] and [(¬f)<n] and let [ev(< n)× (< n)] and [dv(< n)× (< n)]
satisfy Eval(e,(¬f)), Eval(d,(¬f)) and ∀[xεfreevarF((¬f))][apl(e, x)=apl(d, x)].
By uniqueness of the construction of (¬f) and construction of ∆0 we have ∆0(f)
and f<n. Furthermore, since [freevarF((¬f))=freevarF(f)] we get Eval(e, f),
Eval(d, f) and hence, by induction hypothesis,

Sat0(e, f)↔Sat0(d, f).

By the construction of Sat0, finally,

Sat0(e,(¬f))↔Sat0(d,(¬f)).

34

• Suppose Fmla(f), Fmla(g),

(∆0(f)∧f<n)→
∀[ev(< n)× (< n)]∀[dv(< n)× (< n)]

((Eval(e, f)∧Eval(d, f)∧
∀[xεfreevarF(f)][apl(e, x)=apl(d, x)])→

(Sat0(e, f)↔Sat0(d, f)))

and similarly for g. Assume [∆0((f∧g))] and [(f∧g)<n], and let [ev(< n)× (< n)]
and [dv(< n)× (< n)] be such that Eval(e,(f∧g)), Eval(d,(f∧g)) and
∀[xεfreevarF((f∧g))][apl(e, x)=apl(d, x)]. By construction of ∆0 and the unique-
ness of the construction of (f∧g) we have ∆0(f), f<n, ∆0(g) and g<n. That
[freevarF((f∧g))=freevarF(f)tfreevarF(g)] implies Eval(e, f), Eval(d, f) and
Eval(e, g), Eval(d, g). By induction hypothesis these facts imply

Sat0(e, f)↔Sat0(d, f)

and

Sat0(e, g)↔Sat0(d, g),

whence

Sat0(e,(f∧g))↔Sat0(d,(f∧g))

by the construction of Sat0.

• The case (f∨g) is similar.

• Suppose Fmla(f) and

(∆0(f)∧f<n)→
∀[ev(< n)× (< n)]∀[dv(< n)× (< n)]

((Eval(e, f)∧Eval(d, f)∧
∀[xεfreevarF(f)][apl(e, x)=apl(d, x)])→

(Sat0(e, f)↔Sat0(d, f))).

Assume ∆0((∀vyf)) and [(∀vyf)<n]. Take [ev(< n)× (< n)] and [dv(< n)× (< n)]
with Eval(e,(∀vyf)), Eval(d,(∀vyf)) and ∀[xεfreevarF((∀vyf))][apl(e, x)=apl(d, x)].
By the uniqueness of the construction of (∀vxf) we have f<n and, by the construc-
tion of ∆0, there must be g<f and z<f with ∆0(g), z6=y and

[((¬(vy<vz))∨g)=f].

35

Hence ∆0(f). Moreover, [freevarF((∀vyf))=freevarF(f)\{vy}] and [vzεfreevarF(f)],
whence in particular

[apl(e,vz)=apl(d,vz)].

Now take [a<apl(e,vz)], so that in particular a<n. Since

[dom(ext(e,vy,a))=dom(e)t{vy}]

and

[dom(ext(d,vy,a))=dom(d)t{vy}]

we have [Eval(ext(e,vy,a),f)] and [Eval(ext(d,vy,a),f)]. If [xεfreevarF(f)] then
either [x=vy] or [xεfreevarF((∀vyf))]; in the first case [apl(ext(e,vy,a),x)=a] and
[(ext(d,vy,a),x)=a] by definition of ext, in the latter [apl(ext(e,vy,a),x)=apl(e, x)]
and [apl(ext(d,vy,a),x)=apl(d, x)]. Thus

∀[xεfreevarF(f)][apl(ext(e,vy,a),x)=apl(ext(d,vy,a),x)].

Finally we have [vy<(∀vyf)], so [vy<n]. Hence [ext(e,vy,a)v(< n)× (< n)] and
[ext(d,vy,a)v(< n)× (< n)]. Consequently the induction hypothesis applies, yield-
ing

[Sat0(ext(e,vy,a),f)]↔[Sat0(ext(d,vy,a),f)].

Since [f=((¬(vy<vz))∨g)] this is equivalent to

((¬[a<apl(e,vz)])∨[Sat0(ext(e,vy,a),g)])↔((¬[a<apl(d,vz)])∨[Sat0(ext(d,vy,a),g)])

by construction of Sat0. As [a<apl(e,vz)] and [a<apl(d,vz)], the above statement
is equivalent to

[Sat0(ext(e,vy,a),g)]↔[Sat0(ext(d,vy,a),g)]

in turn.

Since the choice of [a<apl(e,vz)] was arbitrary, we conclude that

∀[a<apl(e,vy)]([Sat0(ext(e,vy,a),g)]↔[Sat0(ext(d,vy,a),g)]).

As [apl(e,vz)=apl(d,vz)], the above gives

∀[a<apl(e,vy)][Sat0(ext(e,vy,a),g)]↔∀[a<apl(d,vy)][Sat0(ext(d,vy,a),g)],

which by construction of Sat0 is equivalent to

[Sat0(e,(∀vyf))]↔[Sat0(d,(∀vyf))],

the desired conclusion.

36

• The case (∃vyf) is similar.

This concludes the induction.
To verify the claim we reason in IΣ1 again: Given f, e and d such that ∆0(f), Eval(e, f),

Eval(d, f) and ∀[xεfreevarF(f)][apl(e, x)=apl(d, x)], let n=S(f + e + d). Then f<n, e<n
and d<n, whence in particular x<n for all [xεdom(e)] and y<n for all [yεran(e)], and
similarly for d. Thus [ev(< n)×(< n)] and [dv(< n)×(< n)], whereby

Sat0(e, f)↔Sat0(d, f)

by above.

Note that, until now, we have not presupposed anything about terms, formulae, et
cetera that requires them to be any particular kind of objects, as long as they have the
correct relationships to each other, and this is precisely what the above states is true of
the sets Term(N) and Fmla(N) et cetera of numbers. Thus we will follow [4]7 to define
formulae as those particular natural numbers that satisfy these properties. Indeed we
can assume that this is the definition of “formula” we have been working with all along
(since we could have defined these sets in N directly, without the detour via IΣ1).

To make this precise we state that have defined terms and formulae via the following
definition.

Definition 2.16 (Terms and formulae). 0 is the number x ∈ N such that N |= [0=x].8

Likewise vi is the number x ∈ N such that N |= [vi=x]. (This amounts to saying that
N |= [0=0] and N |= [vi=vi] by definition.)

Terms are recursively defined as follows:

• The term (0), often abbreviated 0, is defined by N |= [(0)=(0)].

• For each i ∈ N the term (vi), often abbreviated vi, is defined by N |= [(vi)=(v)i].

• If τ is a term then (Sτ), abbreviated S(τ), is a term, defined by N |= [(Sτ)=(Sτ)].

• If σ and τ are terms then (σ+τ), abbreviated σ+τ , is a term, defined by N |=
[(σ+τ)=(σ+τ)].

• If σ and τ are terms then (σ·τ), abbreviated σ·τ , is a term, defined by N |=
[(σ·τ)=(σ·τ)].

The set of terms will be denoted Term.
Formulae are recursively defined as follows:

• If σ and τ are terms then (σ=τ) is a formula and defined by N |= [(σ=τ)=(σ=τ)].

• If σ and τ are terms then (σ<τ) is a formula and defined by N |= [(σ<τ)=(σ<τ)].

7who attributes the idea to Feferman
8Again, this last statement can be unwinded to yield some explicit (in terms of the basic arithmetic

operations and relations on N) statement about x, which is what we use as the definition of 0.

37

• If ϕ is a formula then (¬ϕ) is a formula, defined by N |= [(¬ϕ)=(¬ϕ)].

• If ϕ and ψ are formulae then (ϕ∧ψ) is a formula, defined by N |= [(ϕ∧ψ)=(ϕ∧ψ)].

• If ϕ and ψ are formulae then (ϕ∨ψ) is a formula, defined by N |= [(ϕ∨ψ)=(ϕ∨ψ)].

• For each i, if ϕ is a formula then (∀viϕ) is a formula defined by N |= [(∀viϕ)=(∀viϕ)].

• For each i, if ϕ is a formula then (∃viϕ) is a formula defined by N |= [(∃viϕ)=(∃viϕ)].

The set of formulae will be denoted Fmla.

Since these are recursive definitions of subsets of N and each construct is greater (with
respect to <) than its constituents (which is provable in IΣ1), we can prove properties of
formulae by (unrestricted) induction. In particular we can prove that τ is a term if and
only if N |= Term(τ) and ϕ is a formula if and only if N |= Fmla(ϕ); in a similar fashion we
see that ϕ is a ∆0-formula if and only if N |= ∆0(ϕ). Moreover, since we have uniqueness
of formula constructions by Lemma 2.32, we can define functions and predicates by
recursion on the construction of formulae the way we are used to (a similar result holds
for terms, but we will not need it). Finally, this definition of terms and formulae justifies
the definition of a recursively axiomatisable theory, since Term and Fmla are ∆1-sets.

A result similar to the above for ∆0-formulae would hold for negation normal formulae,
if indeed we had given a definition of negation normal formulae at the meta level. Thus
we can take this opportunity to simplify matters and define negation normal formulae
to be exactly those formulae which satisfy Nnf.

Definition 2.17. A formula ϕ is a negation normal formula (or on negation normal
form) if N |= Nnf(ϕ). The set of negation normal formulae will be denoted Nnf.

It is now straightforward, basically just applying de Morgan’s laws, to verify that the
function nnf : Fmla −→ Nnf defined so that N |= [nnf(ϕ)=nnf(ϕ)] to every formula
gives a (logically) equivalent negation normal form.

Lemma 2.38. For every formula ϕ,

` ϕ↔nnf(ϕ).

Proof. We show that ` ϕ↔nnf(ϕ) and ` ¬ϕ↔nnf(¬ϕ) for all ϕ by induction.

• Suppose ϑ is atomic; then N |= Atf(ϑ). Hence

N |= [nnf(ϑ)=ϑ] and N |= [nnf((¬ϑ))=(¬ϑ)]

by Lemma 2.33. Thereby nnf(ϑ) == ϑ and nnf(¬ϑ) == ¬ϑ by Definition 2.16,
whence

` ϑ↔nnf(ϑ) and ` ¬ϑ↔ nnf(¬ϑ)

trivially.

38

• Assume ` ϑ↔ nnf(ϑ) and ` ¬ϑ↔ nnf(¬ϑ) and consider ¬ϑ. By induction hypoth-
esis

` ¬ϑ↔nnf(¬ϑ).

Furthermore, Lemma 2.33 gives nnf(¬(¬ϑ)) == nnf(ϑ), whence

` ¬(¬ϑ)↔ nnf(¬(¬ϑ))

since ` ¬(¬ϑ)↔ϑ and ` ϑ↔nnf(ϑ) by induction hypothesis.

• Assume ` ϑ↔nnf(ϑ), ` ¬ϑ↔nnf(¬ϑ), ` ψ↔nnf(ψ) and ` ¬ψ↔nnf(¬ψ) and con-
sider ϑ∧ψ. By Lemma 2.33 we get nnf(ϑ∧ψ) == nnf(ϑ)∧nnf(ψ) and
nnf(¬(ϑ∧ψ))== nnf(¬ϑ)∨nnf(¬ψ). Now

` ϑ∧ψ↔nnf(ϑ∧ψ) and ` ¬(ϑ∧ψ)↔ nnf(¬(ϑ∧ψ))

by induction hypothesis and de Morgan’s laws.

• The disjunctive case is similar.

• Assume ` ϑ↔ nnf(ϑ) and ` ¬ϑ↔ nnf(¬ϑ) and consider ∀viϑ. By Lemma 2.33 we
have nnf(∀viϑ)=∀vi nnf(ϑ) and nnf(¬∀viϑ)=∃vi nnf(¬ϑ), whereby

` ∀viϑ↔nnf(∀viϑ) and ` ¬∀viϑ↔nnf(¬∀viϑ)

by induction hypothesis and de Morgan’s laws.

• The existential case is similar.

This concludes the induction, and the proof.

We have thus identified Term and Fmla as particular subsets of N. The (in the
author’s experience) more usual practice is to let terms and formulae be whatever they
are, and define a(n effective) Gödel numbering of them, that is a “computable” function
p·q : Term∪Fmla −→ N, such that the Gödel number of a formula (term et cetera) is
exactly the number given by the definitions above (or similar; there are many Gödel
numberings). Thus, our approach amounts to an identification of formulae (terms) and
their Gödel numbers. Both descriptions have their merits and their drawbacks, and our
choice of definition is partly to avoid, or at least hide, the subtleties they might entail
in what follows. The other reason is purely expository, since we will avoid the clutter of
p q in our statements.

Remark 7. Since this might still (naturally) lead to some confusion, it can be worth to
keep the following example in mind. While indeed

N |= [0=0]

39

(that is, the numeral of the term 0 is interpreted (in N, and hence in any other model
of IΣ1) as the number which has the property of being the formal term 0), this is not to
say that any of these are 0 (the number zero). In fact they are not, that is

N |= 06=0

and

N |= [06=0]

(however, N |= 0=0 by definition).

Having verified the relationships between the construction of formulae of the object
language and of the formal object language, we can likewise verify that these construc-
tions and the satisfaction predicate have some sort of “inverse” behaviour. This is to be
expected, to the degree that we at the meta level rarely bother proving similar results,
instead taking it for granted that e.g. M |= ∀x∀y<x∃z<x(x=y+z) just in case there for
all a, b ∈ M with b <M a is a c ∈ M with c <M a and a == b+M c. This is in fact not
an issue, since in all concrete cases we only need to apply Tarski’s truth definition an
explicitly given finite number of times, which is trivial. The proof of the lemma below
uses exactly this idea: via induction on the meta level (which should correspond roughly
to our notion of an “explicitly given finite number” from the point of view of the object
level) we verify that the formal object corresponding to a formula (that is, its numeral)
is satisfied if and only if the formula is true.

Lemma 2.39. Let k ∈ N. For every LA-term τ with variables among v0, . . . , vk−1 we
have that

IΣ1 `[Eval(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),τ)]∧
([val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),τ)=τ]).

Proof. Since this is a schema in τ (that is, a statement in the meta-language about real
terms τ) we prove this by induction, this time not inside IΣ1 but at the meta level, on
the construction of τ . Note that IΣ1 ` Term(τ) for all terms τ by Σ1-completeness.

• Consider the term (0) (where we include the parentheses for clarity). Since N |=
[(0)=(0)] by definition, IΣ1 |= [(0)=(0)] by Σ1-completeness. Hence

IΣ1 ` [val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),(0))=(0)]

by definition. Since (0) has no free variables, and this is provable in IΣ1 (for (0)
that is) by definition,

IΣ1 ` [Eval(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),(0))]

vacuously.

40

• Let i < k and consider the term (vi) (where we again include the parentheses for
clarity). Since IΣ1 ` [vi=vi] we have

IΣ1 ` [viεdom(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1))],

whence

IΣ1 ` [Eval(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),(vi))]

by definition. Furthermore

IΣ1 ` ([apl(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),vi)=(vi)])

by definition of fnk, whence

IΣ1 ` [val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),(vi))=(vi)]

by definition of val.

• Suppose σ is a term such that if no vi for i ≥ k is free in σ,

IΣ1 `[Eval(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),σ)]∧
([val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),σ)=σ]).

Assume that no vi for i ≥ k is free in S(σ). Like before, by Σ1-completeness IΣ1 `
[(Sσ)=S(σ)]. Moreover, by definition IΣ1 ` [freevarT((Sσ))=freevarT(σ)], whence
no vi is free in σ for i ≥ k. Taking this into account as well, we get

IΣ1 `[Eval(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),S(σ))]

by induction hypothesis. Additionally

IΣ1 `[val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),(Sσ))=

S(val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),σ))]

by definition, and since IΣ1 ` [S(val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),σ))=S(σ)] by
induction hypothesis we get

IΣ1 `[val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),S(σ))=S(σ)].

• Suppose σ and ρ are terms such that if no vi for i ≥ k is free in σ then

IΣ1 `[Eval(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),σ)]∧
([val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),σ)=σ])

41

and similarly for ρ. Assume that no vi with i ≥ k is free in σ+ρ. By Σ1-
completeness again, IΣ1 ` [(σ+ρ)=σ+ρ], and by definition

IΣ1 `[freevarT((σ+ρ))=freevarT(σ)tfreevarT(ρ)]

so that no vi with i ≥ k is free in σ or ρ and

IΣ1 `[Eval(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),σ+ρ)]

by induction hypothesis. Since furthermore

IΣ1 `[val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),(σ+ρ))=

val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),σ)+

val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),ρ)],

using the induction hypothesis again we get

IΣ1 `[val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),σ+ρ)=σ+ρ]

as desired.

• The case · is completely analogous to the above.

This concludes the induction, and the proof.

Lemma 2.40. Let k ∈ N. For every ∆0-formula ϕ such that the variables of ϕ are
among v0, . . . , vk−1we have

IΣ1 `[Eval(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),ϕ)]∧
([Sat0(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),ϕ)]↔ϕ).

Proof. The subsequent induction on the construction of ϕ is very similar to the one in
the lemma above (2.39), and hence we will omit most of it.

• Let σ and τ be terms and consider σ=τ . Suppose its variables are among v0, . . . , vk−1.
Since IΣ1 ` [(σ=τ)=σ=τ] and

IΣ1 `[freevarF((σ=τ))=freevarT(σ)tfreevarT(τ)]

we have that the variables of σ and τ are among v0, . . . , vk−1. Then

IΣ1 `[Eval(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),τ)]∧
([val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),τ)=τ])

and similarly for σ, by Lemma 2.39. In particular

IΣ1 `[freevarT(τ)vdom(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1))]

42

and similarly for σ, whence

IΣ1 `[Eval(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),σ=τ)].

Furthermore, since

IΣ1 `[Sat0(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),(σ=τ))]↔
val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),σ)=

val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),τ),

we get

IΣ1 `[Sat0(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),(σ=τ))]↔σ=τ .

• The case σ<τ is similar.

• The case ¬ϑ is similar to S(σ) of Lemma 2.39 and is omitted.

• The case ϑ∧ψ is similar to σ+ρ of Lemma 2.39, and is omitted.

• The case ϑ∨ψ is similar to σ+ρ of Lemma 2.39, and is omitted.

• Suppose ϑ is a ∆0-formula such that if no vi for i ≥ k occurs in ϑ then

IΣ1 `[Eval(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),ϑ)]∧
([Sat0(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),ϑ)]↔ϑ).

Consider ∀vp<vqϑ, and suppose its variables are among v0, . . . , vk−1. Thus the
same holds of ϑ, and in addition p, q < k. By induction hypothesis, then,

IΣ1 `[Eval(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),ϑ)]∧
([Sat0(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),ϑ)]↔ϑ).

In particular

IΣ1 `[freevarF(ϑ)vdom(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1))],

and

IΣ1 `[freevarF(∀vp<vqϑ)vdom(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1))]

since by definition

IΣ1 `[(∀vp((¬(vp<vq))∨ϑ))=∀vp<vqϑ]

43

and

IΣ1 `[freevarF((∀vp((¬(vp<vq))∨ϑ)))=({vq}tfreevarF(ϑ))\{vp}].

This implies that

IΣ1 `[Eval(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),∀vp<vqϑ)].

Turning to the second conjunct to be verified, by definition

IΣ1 `[Sat0(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),∀vp<vqϑ)]↔
∀[z<apl(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),vq)]

[Sat0(ext(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),vp,z),ϑ)],

where z is a fresh variable. However, IΣ1 ` [apl(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),vi)=vi]
for all i < k, whereby in particular

IΣ1 `[ext(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),vp,z)=

fnk(v0, . . . ,vp, . . . ,vk−1,v0, . . . ,z, . . . ,vk−1)]

by Lemmas 2.28 and 2.29, and consequently

IΣ1 `[Sat0(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),∀vp<vqϑ)]↔
∀z<vq[Sat0(fnk(v0, . . . ,vp, . . . ,vk−1,v0, . . . ,z, . . . ,vk−1),ϑ)].

Moreover

IΣ1 `∀z<vq[Sat0(fnk(v0, . . . ,vp, . . . ,vk−1,v0, . . . ,z, . . . ,vk−1),ϑ)]↔
∀vp<vq[Sat0(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),ϑ)]

since vp is not free in [Sat0(fnk(v0, . . . ,vp, . . . ,vk−1,v0, . . . ,z, . . . ,vk−1),ϑ)]. Thus

IΣ1 `[Sat0(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),∀vp<vqϑ)]↔
∀vp<vq[Sat0(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),ϑ)].

By induction hypothesis

IΣ1 `[Sat0(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),ϑ)]↔ϑ,

whence

IΣ1 `[Sat0(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),∀vp<vqϑ)]↔∀vp<vqϑ

as desired.

44

• The case ∃x<yϑ is similar to the above.

This concludes the induction, and the proof.

This is (essentially) Corollary 1.76 on p. 59 of [4]. In view of Lemma 2.37 this result
is far from being the best possible, but it is sufficient for our purposes. In fact, it
is probably less cumbersome to apply both 2.37 and the above whenever needed than
finding a general formulation (and proof) which incorporates the first into the latter. A
similar comment applies to Lemma 2.39 relative Lemma 2.36.

45

3 Coding of sets and functions in models of IΣ1

The material of this section could also be considered preliminaries, were it not for the
fact that the author was unable to find an applicable reference to it. To remedy this,
proofs will be given for all results, though they might be slightly less formalistic than in
the previous section.

Definition 3.1. Let M |= IΣ1.

1. For m ∈ M such that M |= Set(m) we define the (set-)realisation of m as
Rs(m)M == {a ∈M|M |= aεm}.

2. For A ⊆M such that there is a m ∈M withM |= Set(m) and A == Rs(m)M, we
write m == Fs(A)M. We say A is coded in M.

The above definition is meaningful by extensionality, Lemma 2.27.

Remark 8. The code of a natural number n as a set (finite ordinal) inM will in general
not be nM.

Lemma 3.1. If M |= IΣ1, then all finite subsets of M, as well as M<l for l ∈M, are
coded in M.

Proof. Let A be a finite set and a0, . . . , ak−1 be an enumeration of A. Let m ∈ M be
such that M |= [{a0, . . . ,ak−1}k=m]. By Lemma 2.29

IΣ1 `[Set(m)]∧∀y(yεm↔
∨

0≤i<k
y=ai),

whence A == Rs(m)M, that is A is coded in M.

Now let l ∈ M. By Lemma 2.26, M |= [Set((<l))]∧∀x([xε(<l)]↔x<l), so M<l is
coded in M.

As there will seldom be more than one structure under consideration, we will often
drop the subscripts specifying the structure, as usual.

Lemma 3.2. Let M |= IΣ1 and A,B ⊆M be coded in M. Then A ⊆ B if and only if
M |= Fs(A)vFs(B).

Proof. Assume A ⊆ B and a ∈ M satisfies M |= aεFs(A). Then a ∈ A ⊆ B, whence
M |= aεFs(B). Hence M |= Fs(A)vFs(B).

Conversely, assume M |= Fs(A)vFs(B). Let a ∈ A. Then M |= aεFs(A), whence
M |= aεFs(B) and consequently a ∈ B. Thus A ⊆ B.

Definition 3.2. Let M |= IΣ1.

1. For every m, d ∈ M such that M |= Fcn(m) and M |= [dom(m)=d] we define the
(function-)realisation Rf(m)M : Rs(d)M −→M byM |= [apl(m,a)=Rf(m)M(a)]
for all a ∈ Rs(d).

46

2. For f :M⇀M with f == Rf(m)M for some m ∈M withM |= Fcn(m), we write
Ff(f)M == m and say f is coded in M.

Again, this is meaningful by extensionality.

Remark 9. Note that, if M |= IΣ1 and f : M ⇀ M is coded in M, then dom(f) is
coded in M and M |= [dom(Ff(f))=Fs(dom(f))].

Lemma 3.3. Let M |= IΣ1. Then every finite f :M⇀M is coded in M.

Proof. Let a0, . . . , ak−1 be an enumeration of the domain of f and g ∈ M be such that
M |= [fnk(a0, . . . ,ak−1,f(a1), . . . , f(ak−1))=g]. By Lemma 2.29 we have M |= Fcn(g),
M |= [dom(g)={a0, . . . ,ak−1}k] andM |= [apl(g,ai)=f(ai)] for each i < k. With the aid
of the previous lemma, g == Ff(f).

Remark 10. Since we assume N ⊆e M, the above in particular applies to evaluations.
Moreover, for sequences s :M<m −→M the definition of Ff(s) is rather elegant: Ff(s) ∈
M the unique element so thatM |= Seq(Ff(s))∧[lh(Ff(s))=m] andM |= [(Ff(s))i=s(i)]
for all i ∈M<m.

Lemma 3.4. Let M |= IΣ1 and f : N⇀M be coded in M. Then f is finite.

Proof. Assume f is infinite. Then M |= ∃x(x>n∧[xεFs(dom(f))]). Since the latter is
a Σ1-formula, there is an a ∈ M \ N such that M |= ∃x(x>a∧[xεFs(dom(f))]), by Σ1-
overspill (Lemma 2.24). Thus there is a b ∈ M \ N such that b ∈ dom(f), which is
absurd.

Again, the above in particular applies to evaluations.

Corollary 3.5. For every n ∈ N and f : n −→ N

IΣ1 ` ∃s(Seq(s)∧[lh(s)=n]∧
∧

i<n
([(s)i=f(i)])∧

∀t((Seq(t)∧[lh(t)=n]∧
∧

i<n
([(t)i=f(i)]))→t=s)).

Definition 3.3. Let M |= IΣ1.

1. For every m, d ∈ M such that M |= Fcn(m), M |= ∀[xεdom(m)][Set(apl(m,x))]
and M |= [dom(m)=d], we define the (set-function-)realisation of m, Rsf(m)M :
Rs(d)M −→ P(M), by Rsf(m)M(a) == Rs(Rf(m)M(a))M for all a ∈ Rs(dom(m)).

2. For f :M⇀ P(M) with f == Rsf(m)M for some m ∈ M with M |= Fcn(m) and
M |= ∀[xεdom(m)][Set(apl(m,x))], we write Ff(f)M == m and say f is coded in
M.

Once again, extensionality guarantees that the above definition is meaningful.

Remark 11. If f :M⇀ P(M) is such that each f(a) ⊆ M for a ∈ dom(f) is coded in
M and g :M−→M defined by g(a) == Fs(f(a)) is coded in M, then f is coded in M.

47

Having shown that we in many cases can find elements of a model M which this
“believes” to be certain external objects, we conclude this subsection with a number of
technical results concerning these notions.

Lemma 3.6. Let M |= IΣ1 and e be an evaluation in M coded in M. Then M |=e

[Ff(e)(vi)=vi] for all i ∈ N such that e is defined for vi.

Proof. We know that

M |= [apl(Ff(e),vi)=e(vi)] (27)

and

N |= [vi=vi]

by definitions. The latter gives

M |= [vi=vi] (28)

by Σ1-completeness. Now, let vk be outside the domain of e.9 ThenM |=
e
Ff (e)
vk

[apl(vk,vi)=vi]

by (27), whenceM |=
e
Ff (e)
vk

[apl(vk,vi)=vi] by (28), which is exactlyM |=e [apl(Ff(e),vi)=vi].

Lemma 3.7. Let M |= IΣ1, ν be a term or a formula of LA and e : N⇀M be coded in
M.10 Then e is an evaluation for ν if and only if M |= Eval(Ff(e),ν).

Proof. We prove the case when ν is a formula. The proof when ν is a term is almost
completely identical.

First assume e is an evaluation for ν and consider Ff(e). Let a ∈ M be such that
M |= [aεdom(Ff(e))], that is a ∈ dom(e), which implies that a ∈ Var. Thus M |=
∀[xεdom(Ff(e))]Var(x). Moreover, if b ∈ M is such that M |= [bεfreevarF(ν)], then
b <M ν and so b ∈ N, whence N |= [bεfreevarF(ν)] by ∆1(IΣ1)-absoluteness, that is
b is a free variable of ν. Thus b ∈ dom(e), whence M |= [bεdom(Ff(e))]. So M |=
∀[xεfreevarF(ν)][xεdom(Ff(e))]. Hence M |= Eval(Ff(e),ν).

Now assume M |= Eval(Ff(e),ν). Let x ∈ dom(e). Then M |= [xεdom(Ff(e))],
whence M |= Var(x). By absoluteness we get N |= Var(x), that is x is a variable.
Finally let x be a free variable of ν; then N |= [xεfreevarF(ν)]. By absoluteness again,
M |= [xεfreevarF(ν)], whence M |= [xεdom(Ff(e))]. Thus x ∈ dom(e). Therefore e is
an evaluation of ν in M.

9This is slightly technical, but in (27) the (suppressed) variable will depend (so as to be different from)
vi. Since Lemma 3.4 assures e is finite, this is not a restriction.

10We cannot assume e : M ⇀ M because there is no (Σ1) formulation of Eval which ensures that
M |= Eval(Ff(e),ν) is true only for e defined only for real variables and not also for elements v of
M\ N satisfying M |= Var(v), by Σ1-overspill.

48

The next lemmas could be considered model-theoretic analogues of Lemma 2.39 and
Lemma 2.40.

Lemma 3.8. Let M |= IΣ1 and τ a term. Then

M |=e [τ=val(Ff(e),τ)]

for all coded evaluations e of τ in M.

Proof. By the previous lemma M |=e Eval(Ff(e),τ). Let k ∈ N be such that the free
variables of τ are among v0, . . . , vk−1. By Lemma 2.39 we then have

M |=[Eval(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),τ)]∧
([val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),τ)=τ]),

whence in particular

M |=e[Eval(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),τ)]∧
([val(fnk(v0, . . . ,vk−1,v0, . . . ,vk−1),τ)=τ]).

Let f ∈M be such that M |=e [fnk(v0, . . . ,vk−1,v0, . . . ,vk−1)=f]. By Lemma 2.36

M |=(Term(τ)∧Eval(Ff(e),τ)∧Eval(f,τ)∧
∀[xεfreevarT(τ)][apl(Ff(e),x)=apl(f,x)])→

[val(Ff(e),τ)=val(f,τ)],

whence

M |= ∀[xεfreevarT(τ)][apl(Ff(e),x)=apl(f,x)])→[val(Ff(e),τ)=val(f,τ)].

Now let vi be a free variable of τ ; then i < k by assumption. ThusM |= [apl(Ff(e),vi)=e(vi)]
and M |=e [apl(f,vi)=vi] by construction. Since the latter is equivalent to M |=e�{vi}
[apl(f,vi)=vi], which is exactlyM |= [apl(f,vi)=e(vi)], we getM |= [apl(Ff(e),vi)=apl(f,vi)].
Thus M |= ∀[xεfreevarF(τ)][apl(Ff(e),x)=apl(f,x)], whence

M |= val(Ff(e),τ)=val(f,τ)

by above. Since M |=e [τ=val(f,τ)] we get

M |=e [τ=val(Ff(e),τ)]

as desired.

Lemma 3.9. Let M |= IΣ1 and ϕ be a ∆0-formula. Then

M |=e ϕ⇔M |= Sat0(Ff(e),ϕ)

for all evaluations e of ϕ in M coded in M.

49

Proof. As in the previous lemma, let k ∈ N be such that the free variables of ϕ are
among v0, . . . vk−1 and f ∈ M satisfy M |=e [f=fnk(v0, . . . ,vk−1,v0, . . . ,vk−1)]. Then
M |=e Eval(f,ϕ)∧Sat0(f,ϕ) by Lemma 2.40, M |= Eval(Ff(e),ϕ) by Lemma 3.7, and

M |=(∆0(ϕ)∧Eval(Ff(e),ϕ)∧Eval(f,ϕ)∧
∀[xεfreevarF(ϕ)][apl(Ff(e),x)=apl(f,x)])→

(Sat0(Ff(e),ϕ)↔Sat0(f,ϕ)),

by Lemma 2.37. Moreover M |= ∀[xεfreevarF(ϕ)][apl(Ff(e),x)=apl(f,x)] like in the
previous lemma. Thus

M |= Sat0(Ff(e),ϕ)↔Sat0(f,ϕ).

Since M |=e ϕ↔Sat0(f,ϕ) we get M |=e ϕ↔Sat0(Ff(e),ϕ). This is equivalent to

M |=e ϕ⇔M |= Sat0(Ff(e),ϕ)

as desired.

Lemma 3.10. Let M |= IΣ1 and f :M⇀M be coded in M. Then f ba is coded in M,
indeed M |= [ext(Ff(f),a,b)=Ff(f

b
a)] for all a, b ∈M.

Proof. Let a, b ∈M. By definition Ff(f) ∈M is such that

M |= Fcn(Ff(f))∧[dom(Ff(f))=Fs(dom(f))]

and M |= [apl(Ff(f),x)=f(x)] for all x ∈ dom f . Since

M |= [dom(ext(Ff(f),a,b))=dom(Ff(f))t{a}],

we thus have

M |= [dom(ext(Ff(f),a,b))=Fs(dom(f ba))].

Moreover,

M |= [apl(ext(Ff(f),a,b),x)=f(x)]

for all x ∈ dom(f) \ {a} and

M |= [apl(ext(Ff(f),a,b),a)=b],

whence

M |= [ext(Ff(f),a,b)=Ff(f
b
a)]

as desired.

50

Corollary 3.11. Let M |= IΣ1, k ∈ N and e be an evaluation in M. Then
M |= [ext(Ff(e),vk,b)=Ff(e

b
vk

)].

Proof. This follows from the above lemma with a == vk == vkM.

We recall that the above results have corresponding formulations in terms of realisa-
tions of elements of a model M. They will be used interchangeably henceforth.

Remark 12. The corresponding statement for @ follows by extensionality.

Lemma 3.12. Let M |= IΣ1, D,R ⊆ M and f : M ⇀ M be coded in M. Then
dom(f) ⊆ D and ran(f) ⊆ R if and only if M |= [Ff(f)vFs(D)×Fs(R)].

Proof. By assumption, if a ∈ dom(f) then a ∈ D whence M |= aεFs(D), so M |=
[dom(Ff(f))vFs(D)]. In the same way ran(f) ⊆ R implies M |= [ran(Ff(f))vFs(R)].
Hence M |= [Ff(f)vFs(D)×Fs(R)].

Lemma 3.13. Let M |= IΣ1, l ∈ M and f : M<l −→ P(M) be coded in M. Then
M |= Setq(Fsf(f)). Furthermore, M |= Incrsetq(Fsf(f)) if and only if f is increasing.

Proof. We know that M |= [dom(Fsf(f))=(<l)] and M |= [(Fsf(f))i=Fs(f(i))] for all
i ∈M<l. ThusM |= Seq(Fsf(f))∧∀i<l[Set((Fsf(f))i)]. Moreover, if f is increasing then
f(i) ⊂ f(SM(i)) for all i,SM(i) ∈M<l, whenceM |= Fs(f(i))@Fs(f(SM(i))) for such i.
Conversely, if M |= ∀[i<l]([S(i)<l]→Fs(f(i))@Fs(f(SM(i)))) then f(i) ⊂ f(SM(i)) for
all i,SM(i) ∈M<l.

Remark 13. The corresponding result for f :M<l −→M and Incrseq is immediate.

51

4 Initial Fulfilment: Incompleteness of PA

We first present a slight generalisation of the argument in [10] probably due to Quinsey,
see [12]. The idea is Kripke’s, though he does not seem to have published more than a
remark on it, see [8].The proof does not seem to be directly generalisable to work for
theories not extending PA (for theories in the language of arithmetic extending Q), since
an apparently unbounded number of instances of collection is required for the argument
in subsection 4.2 to go through.

4.1 Definitions

Definition 4.1 (Initial-fulfilment). Let L be a discrete linear order. Given M |= PA−

and an L-sequence s : L −→M, we define for formulae ϕ to be initial-fulfilled by s with
respect to an assignment e of ϕ in M at i ∈ L recursively as follows:

M
s,i,e

|=I ϑ⇔M |=e ϑ if ϑ is atomic,

M
s,i,e

|=I ¬ϑ⇔

A

j ∈ L≥i :M
s,j,e

6|=Iϑ,

M
s,i,e

|=I ϑ∧ψ ⇔M
s,i,e

|=I ϑ
∨∨N�M

s,i,e

|=I ψ,

M
s,i,e

|=I ϑ∨ψ ⇔M
s,i,e

|=I ϑ∨∨N�M
s,i,e

|=I ψ,

M
s,i,e

|=I ∀xϑ⇔ A

j ∈ L≥i

A

a ∈M<s(j) :M
s,j,eax
|=I ϑ,

M
s,i,e

|=I ∃xϑ⇔ (SL(i) ∈ L ⇒ E
a ∈M<s(SL(i)) :M

s,SL(i),eax
|=I ϑ).

Note that the information L is implicit in s.

If ϕ is a sentence then ϕ is simply initial-fulfilled by s in M if M
s,0,∅
|=I ϕ. If there is

an increasing L-sequence s which initial-fulfils the sentence ϕ inM, then ϕ is initial-L-
fulfillable in M.

Some differences to the definitions in [10] and [12] should be pointed out. Putnam
(in [10]) uses a non-recursive formulation in terms of games, restricted to Π2n-formulae
on “normal form” in the arithmetical hierarchy (that is a ∆0-formula preceded by a
sequence of even length of alternating quantifiers, beginning with ∀) only, which thus
has no need to consider different starting positions in the sequence; focus is more on
effectiveness. Quinsey’s definition (in [12]), on the other hand, uses terminal segments
instead of positions in the sequence in the recursive clauses; thus a formula of the form
∀xϕ (for instance) is fulfilled by a sequence if ϕ is fulfilled by all terminal segments of the
sequence. The present formulation is chosen partly to emphasise the similarity between
fulfilment and Kripke models (in particular the clause for negation). Moreover, while
Quinsey’s definition has some advantage of exposition at the meta level, the present
one seems easier to formalise in IΣ1.We will not benefit from the similarity with Kripke
models, however, since in the relevant cases all formulae will be on negation normal

52

form, and for atomic ϑ we have M
s,i,e

|=I ¬ϑ ⇔M
s,i,e

6|=Iϑ. This will be elaborated upon in
the next lemma.

Lemma 4.1. LetM |= PA−, L be a discrete linear order and s : L −→M be a sequence.

If s is increasing and ϕ is on negation normal form then M
s,i,e

|=I ϕ ⇒M
s,j,e

|=I ϕ for all
i ∈ L, j ∈ L≥i and all evaluations e of ϕ in M. A converse holds if instead ϕ is

quantifier free; indeed M
s,i,e

|=I ϕ⇔M |=e ϕ for i ∈ L and evaluations e for such ϕ.

Proof. We prove the second claim first, by induction on ϕ.

• If ϑ is atomic then M
s,i,e

|=I ϑ ⇔ M |=e ϑ for all i ∈ L and evaluations e of ϕ by
definition.

• Suppose M
s,i,e

|=I ϑ⇔M |=e ϑ for all i ∈ L and evaluations e of ϕ. Then

M
s,i,e

|=I ¬ϑ⇔

A

j ∈ L≥iM
s,j,e

6|=Iϑ

⇔ A

j ∈ L≥iM 6|=e ϑ

⇔M 6|=e ϑ

for all i ∈ L and evaluations e of ϕ, where the last equivalence holds since L 6= ∅.

• Assume M
s,i,e

|=I ϑ⇔M |=e ϑ for all i ∈ L and evaluations e of ϑ and similarly for
ψ. Then

M
s,i,e

|=I ϑ∧ψ ⇔M
s,i,e

|=I ϑ
∨∨N�M

s,i,e

|=I ψ

⇔M |=e ϑ
∨∨N�M |=e ψ

⇔M |=e ϑ∧ψ

for all i ∈ L and evaluations e of ϑ∧ψ.

• The disjunctive case is similar.

To verify the first claim we proceed by induction on ϕ.

• If ϑ is a literal then

M
s,i,e

|=I ϑ⇔M |=e ϑ⇔M
s,j,e

|=I ϑ

for all i ∈ L, j ∈ L≥i and evaluations e of ϑ by above.

53

• AssumeM
s,i,e

|=I ϑ⇒M
s,j,e

|=I ϑ andM
s,i,f

|=I ψ ⇒M
s,j,f

|=I ψ for all i ∈ L, j ∈ L≥i and
evaluations e and f of ϑ and ψ, respectively. Then

M
s,i,e

|=I ϑ∧ψ ⇔M
s,i,e

|=I ϑ
∨∨N�M

s,i,e

|=I ψ

⇒M
s,j,e

|=I ϑ
∨∨N�M

s,j,e

|=I ψ

⇔M
s,j,e

|=I ϑ∧ψ

for all i ∈ L, j ∈ L≥i and evaluations e of ϑ∧ψ.

• The disjunctive case is similar.

• Consider ∀xϑ. Then

M
s,i,e

|=I ∀xϑ⇔ A

k ∈ L≥i

A

a ∈M<s(k) :M
s,k,ex

a

|=I ϑ

⇒ A

k ∈ L≥j

A

a ∈M<s(k) :M
s,k,ex

a

|=I ϑ

⇔M
s,j,e

|=I ∀xϑ

for all i ∈ L, j ∈ L≥i and evaluations e of ϑ.

• Suppose M
s,l,f

|=I ϑ ⇒M
s,k,f

|=I ϑ for all l ∈ L, k ∈ L≥l and evaluations f of ϑ. Let
i ∈ L, j ∈ L≥i and e be an evaluation of ∃xϑ. Then

M
s,i,e

|=I ∃xϑ⇔ (SL(i) ∈ L ⇒ E

a ∈M<s(SL(i)) :M
s,SL(i),ex

a

|=I ϑ)

⇒ (SL(j) ∈ L ⇒ E

a ∈M<s(SL(i)) :M
s,SL(i),ex

a

|=I ϑ)

⇒ (SL(j) ∈ L ⇒ E

a ∈M<s(SL(i)) :M
s,SL(j),ex

a

|=I ϑ)

⇒ (SL(j) ∈ L ⇒ E

a ∈M<s(SL(j)) :M
s,SL(j),ex

a

|=I ϑ)

⇔M
s,j,e

|=I ∃xϑ.

where the last implication (second last row) holds since s is increasing.

As it has already been remarked, the above lemma shows that for formulae on negation
normal form, we could have used the definition

M
s,i,e

|=I ¬ϑ⇔M
s,i,e

6|=Iϑ

54

of a negated formula being fulfilled by s at i.

We continue by showing some degree of independence of fulfilment on the length on
the sequence and the particular model, just like we have just shown independence of the
actual place in the sequence.

Lemma 4.2. Let M |= PA−, L be a discrete linear order and s an L-sequence in
M. Let L′ ⊆ L be closed under the successor function in L and s′ == s � L′. Then

M
s,i,e

|=I ϕ ⇒M
s′,i,e
|=I ϕ for every negation normal formula ϕ, all evaluations e of ϕ and

all i ∈ L′.

Proof. The proof is by induction on ϕ.

• Let ϑ be a literal. Then

M
s,i,e

|=I ϑ⇔M |=e ϑ⇔M
s′,i,e
|=I ϑ

for all evaluations e of ϑ and i ∈ L′, by the previous lemma.

• Suppose ϑ and ψ are such that M
s,k,f

|=I ϑ ⇒ M
s′,k,f
|=I ϑ for all evaluations f of ϑ

and k ∈ L′, and similarly for ψ. Then

M
s,i,e

|=I ϑ∧ψ ⇔M
s,i,e

|=I ϑ
∨∨N�M

s,i,e

|=I ψ ⇒M
s′,i,e
|=I ϕ

∨∨N�M
s′,i,e
|=I ψ ⇔M

s,i,e

|=I ϑ∧ψ

for all evaluations e of ϑ∧ψ and i ∈ L′.

• The disjunctive case is similar.

• Assume ϑ is such thatM
s,k,f

|=I ϑ⇒M
s′,k,f
|=I ϑ for all evaluations f of ϑ and k ∈ L′.

Then

M
s,i,e

|=I ∀xϑ⇔ A

j ∈ L>i

A

a ∈M<s(j) :M
s,j,eax
|=I ϑ

⇒ A

j ∈ L′>i

A

a ∈M<s′(j) :M
s,j,eax
|=I ϑ

⇒ A

j ∈ L′>i

A

a ∈M<s′(j) :M
s′,j,eax
|=I ϑ

⇔M
s′,i,e
|=I ∀xϑ

for all evaluations e of ∀xϑ and i ∈ L′.

• Let ϑ satisfyM
s,k,f

|=I ϑ⇒M
s′,k,f
|=I ϑ for all evaluations f of ϑ and k ∈ L′. Let e be

an evaluation of ∃xϑ and i ∈ L′. Suppose M
s,i,e

|=I ∃xϑ and that i has a successor
in L′. Hence it is not maximal in L, whence it has a successor there as well, and

55

by assumption on the closedness of L′, SL′(i) == SL(i). Consequently there is an
a ∈M<s′(SL′ (i)) such that

M
s,SL′ (i),eax
|=I ϑ.

By induction hypothesis

M
s′,SL′ (i),eax
|=I ϑ,

whence

M
s′,i,e
|=I ∃xϑ.

This concludes the induction, and the proof.

Lemma 4.3. Let N ⊆e M |= PA−, L be a discrete linear order and s : L −→ N be a

sequence. Then N
s,i,e

|=I ϕ ⇔M
s,i,e

|=I ϕ for every formula ϕ, all evaluations e of ϕ in N
and all i ∈ L.

Proof. The proof is by induction on ϕ.

• Let ϑ be an atomic formula. Then

N
s,i,e

|=I ϑ⇔ N |=e ϑ⇔M |=e ϑ⇔M
s,i,e

|=I ϑ

for all evaluations e of ϑ in N and all i ∈ L, by definition.

• Suppose ϑ satisfies N
s,k,f

|=I ϑ ⇔ M
s,k,f

|=I ϑ for all evaluations f of ϑ in N and all
k ∈ L. Then

N
s,i,e

|=I ¬ϑ⇔

A

j ∈ L≥i : N
s,j,e

6|=Iϑ⇔

A

j ∈ L≥i :M
s,j,e

6|=Iϑ⇔M
s,i,e

|=I ¬ϑ

for all evaluations e of ¬ϑ in N and i ∈ L.

• Let ϑ and ψ be such that N
s,k,f

|=I ϑ ⇔ M
s,k,f

|=I ϑ for all evaluations f of ϑ in N
and all k ∈ L, and similarly for ψ. We have

N
s,i,e

|=I ϑ∧ψ ⇔ N
s,i,e

|=I ϑ
∨∨N�N

s,i,e

|=I ψ ⇔M
s,i,e

|=I ϑ
∨∨N�M

s,i,e

|=I ψ ⇔M
s,i,e

|=I ϑ∧ψ

for all evaluations e of ϑ∧ψ in N and i ∈ L.

• The disjunctive case is similar.

56

• Assume ϑ is such that N
s,k,f

|=I ϑ ⇔ M
s,k,f

|=I ϑ for all evaluations f of ϑ in N and
all k ∈ L. Then

N
s,i,e

|=I ∀xϑ⇔ A

j ∈ L≥i

A

a ∈ N<s(j) : N
s,j,eax
|=I ϑ

⇔ A

j ∈ L≥i

A

a ∈ N<s(j) :M
s,j,eax
|=I ϑ

⇔ A

j ∈ L≥i

A

a ∈M<s(j) :M
s,j,eax
|=I ϑ

⇔M
s,i,e

|=I ∀xϑ

for all evaluations e of ∀xϑ in N and all i ∈ L, where the left to right direction of
the third equivalence follows since N<b ==M<b for b ∈ N by N ⊆e M.

• Let ϑ satisfy N
s,k,f

|=I ϑ ⇔M
s,k,f

|=I ϑ for all evaluations f of ϑ in N and all k ∈ L.
Then

N
s,i,e

|=I ∃xϑ⇔ (SL(i) ∈ L ⇒ E

a ∈ N<s(SL(i)) : N
s,SL(i),eax
|=I ϑ)

⇔ (SL(i) ∈ L ⇒ E

a ∈ N<s(SL(i)) :M
s,SL(i),eax
|=I ϑ)

⇔ (SL(i) ∈ L ⇒ E
a ∈M<s(SL(i)) :M

s,SL(i),eax
|=I ϑ)

⇔M
s,i,e

|=I ∃xϑ

for all evaluations e of ∃xϑ in N and all i ∈ L.

This concludes the induction, and the proof.

Having now derived the basic properties of fulfilment we will turn to the corresponding
notions inside IΣ1; with some care we can make essentially the same definitions work,
and show them to yield the same result for coded sequences. With this formalised notion
of fulfilment we will be able to construct a sentence independent of a given theory T .
Similarly to how the formalisation of provability is used to construct an independent
sentence in the proof of Gödel’s Second Incompleteness Theorem, this sentence will
express that T has a certain correctness property (in Gödel’s theorem it is consistency,
here it is fulfillability of the axioms by arbitrarily long sequences).

57

Proposition 4.4. There is a ∆1(IΣ1)-formula IFulf with the following properties:

IΣ1 `(Seq(s)∧[i<lh(s)]∧[ev(< n)×(< s)]∧Term(r)∧Term(t)∧[Eval(e,(r=t))]∧[(r=t)≤n])→
([IFulf(s,i,e,n,(r=t))]↔([Eval(e,(r=t))]∧[val(e,r)=val(e,t)]))

IΣ1 `(Seq(s)∧[i<lh(s)]∧[ev(< n)×(< s)]∧Term(r)∧Term(t)∧[Eval(e,(r=t))]∧[(r<t)≤n])→
([IFulf(s,i,e,n,(r<t))]↔([Eval(e,(r<t))]∧[val(e,r)<val(e,t)]))

IΣ1 `(Seq(s)∧[i<lh(s)]∧[ev(< n)×(< s)]∧Fmla(f)∧[Eval(e,(¬f))]∧[(¬f)≤n])→
([IFulf(s,i,e,n,(¬f))]↔∀[j<lh(s)](i≤j→¬IFulf(s, j, e, n, f)))

IΣ1 `(Seq(s)∧[i<lh(s)]∧[ev(< n)×(< s)]∧Fmla(f)∧Fmla(g)∧[Eval(e,(f∧g))]∧[(f∧g)≤n])→
([IFulf(s,i,e,n,(f∧g))]↔(IFulf(s, i, e, n, f)∧IFulf(s, i, e, n, g)))

IΣ1 `(Seq(s)∧[i<lh(s)]∧[ev(< n)×(< s)]∧Fmla(f)∧Fmla(g)∧[Eval(e,(f∨g))]∧[(f∨g)≤n])→
([IFulf(s,i,e,n,(f∨g))]↔(IFulf(s, i, e, n, f)∨IFulf(s, i, e, n, g)))

IΣ1 `(Seq(s)∧[i<lh(s)]∧[ev(< n)×(< s)]∧Fmla(f)∧[Eval(e,(∀vxf))]∧[(∀vxf)≤n])→
([IFulf(s,i,e,n,(∀vxf))]↔∀[j<lh(s)](i≤j→∀[a<(s)j][IFulf(s,j,ext(e,vx,a),n,f)]))

IΣ1 `(Seq(s)∧[i<lh(s)]∧[ev(< n)×(< s)]∧Fmla(f)∧[Eval(e,(∃vxf))]∧[(∃vxf)≤n])→
([IFulf(s,i,e,n,(∃vxf))]↔([S(i)<lh(s)]→∃[a<(s)S(i)][IFulf(s,S(i),ext(e,vx,a),n,f)])).

Proof. The proof is rather lengthy and divided into several parts. The point is that we
for each formula, sequence et cetera construct a sequence containing the information
whether the formula is fulfilled for (at least) all admissible values of the evaluation and
index of the sequence. We do this by introducing a number of auxiliary IΣ1-provably
∆1(IΣ1)-functions in three steps, at each step constructing new functions by recursion
from the ones at the previous step. First, c=, c<, c¬, c∧, c∨, c∀ and c∃ are the
IΣ1-provably ∆1(IΣ1)-functions which satisfy:

IΣ1 `([val(e, r)=val(e, t)]→[c=(e, r, t)=1])∧(¬[val(e, r)=val(e, t)]→[c=(e, r, t)=0]),

IΣ1 `([val(e, r)<val(e, t)]→[c<(e, r, t)=1])∧(¬[val(e, r)<val(e, t)]→[c<(e, r, t)=0]),

IΣ1 `(∀[j<lh(s)](i≤j→[(q)〈j,e〉=0])→[c¬(s, i, e, q)=1])∧
(¬∀[j<lh(s)](i≤j→[(q)〈j,e〉=0])→[c¬(s, i, e, q)=0]),

IΣ1 `((a=1∧b=1)→[c∧(a, b)=1])∧(¬(a=1∧b=1)→[c∧(a, b)=0]),

IΣ1 `((a=1∨b=1)→[c∨(a, b)=1])∧(¬(a=1∨b=1)→[c∨(a, b)=0]),

IΣ1 `((∀[j<lh(s)](i≤j→∀[a<(s)j][(q)〈j,ext(e,vx,a)〉=1]))→[c∀(s, i, e, x, q)=1])∧
(¬∀[j<lh(s)](i≤j→∀[a<(s)j][(q)〈j,ext(e,vx,a)〉=1])→[c∀(s, i, e, x, q)=0]),

IΣ1 `(([S(i)<lh(s)]→∃[a<(s)S(i)][(q)〈S(i),ext(e,vx,a)〉=1])→[c∃(s, i, e, x, q)=1])∧
(¬([S(i)<lh(s)]→∃[a<(s)S(i)][(q)〈S(i),ext(e,vx,a)〉=1])→[c∃(s, i, e, x, q)=0]).

Next we introduce tseq=, tseq<, tseq¬, tseq∧, tseq∨, tseq∀ and tseq∃ by stipulating

58

that:

IΣ1 `[tseq=(0, r, t)=∅]

IΣ1 `[tseq=(S(l), r, t)=ext(tseq=(l, r, t),l,c=(〈l〉r,r,t))],
IΣ1 `[tseq<(0, r, t)=∅]

IΣ1 `[tseq<(S(l), r, t)=ext(tseq=(l, r, t),l,c<(〈l〉r,r,t))],
IΣ1 `[tseq¬(s, 0, q)=∅]

IΣ1 `[tseq¬(s,S(l), q)=ext(tseq¬(s, l, q),l,c¬(s, 〈l〉l,〈l〉r,q))],

IΣ1 `[tseq∧(0, q,w)=∅]

IΣ1 `[tseq∧(S(l), q,w)=ext(tseq∧(l, q,w),l,c∧((q)l,(w)l))],

IΣ1 `[tseq∧(0, q,w)=∅]

IΣ1 `[tseq∨(S(l), q,w)=ext(tseq∨(l, q,w),l,c∨((q)l,(w)l))],

IΣ1 `[tseq∀(s, 0, x, q)=∅]

IΣ1 `[tseq∀(s,S(l), x, q)=ext(tseq∀(s, l, x, q),l,c∀(s,〈l〉l,〈l〉r,x,q))],

IΣ1 `[tseq∃(s, 0, x, q)=∅]

IΣ1 `[tseq∃(s,S(l), x, q)=ext(tseq∃(s, l, x, q),l,c∃(s,〈l〉l,〈l〉r,x,q))].

Now we can define iful as the IΣ1-provably ∆1-function which satisfies:

IΣ1 `(Term(r)∧Term(t))→[iful(s,n,(r=t))=tseq=(〈lh(s),S((< n)× (< s))〉,r,t)]
IΣ1 `(Term(r)∧Term(t))→[iful(s,n,(r<t))=tseq<(〈lh(s),S((< n)× (< s))〉,r,t)]
IΣ1 `Fmla(f)→[iful(s,n,(¬f))=tseq¬(s,〈lh(s),S((< n)× (< s))〉,iful(s,n,f))]

IΣ1 `(Fmla(f)∧Fmla(g))→
[iful(s,n,(f∧g))=tseq∧(〈lh(s),S((< n)× (< s))〉,iful(s,n,f),iful(s,n,g))]

IΣ1 `(Fmla(f)∧Fmla(g))→
[iful(s,n,(f∨g))=tseq∨(〈lh(s),S((< n)× (< s))〉,iful(s,n,f),iful(s,n,g))]

IΣ1 `Fmla(f)→[iful(s,n,(∀vxf))=tseq∀(s,〈lh(s),S((< n)× (< s))〉,x,iful(s,n,f))]

IΣ1 `Fmla(f)→[iful(s,n,(∃vxf))=tseq∃(s,〈lh(s),S((< n)× (< s))〉,x,iful(s,n,f))].

Since it is defined by composition and primitive recursion from IΣ1-provably ∆1-functions,
iful is an IΣ1-provably ∆1-function. We will show that iful has the following proper-
ties:

IΣ1 `(Seq(s)∧Fmla(f))→
([Seq(iful(s, n, f))]∧[lh(iful(s, n, f))=〈lh(s),S((< n)×(< s))〉]∧ (29)

∀[i<lh(s)]∀[e≤(< n)×(< s)][(iful(s,n,f))〈i,e〉<2])

IΣ1 `(Seq(s)∧[i<lh(s)]∧[e≤(< n)×(< s)]∧Term(r)∧Term(t))→ (30)

([(iful(s,n,t=r))〈i,e〉=1]↔[val(e, r)=val(e, t)])

IΣ1 `(Seq(s)∧[i<lh(s)]∧[e≤(< n)×(< s)]∧Term(r)∧Term(t))→ (31)

59

([(iful(s,n,t<r))〈i,e〉=1]↔[val(e, r)<val(e, t)])

IΣ1 `(Seq(s)∧[i<lh(s)]∧[e≤(< n)×(< s)]∧Fmla(f))→ (32)

([(iful(s,n,(¬f)))〈i,e〉=1]↔∀[j<lh(s)](i≤j→[(iful(s, n, f))〈j,e〉=0]))

IΣ1 `(Seq(s)∧[i<lh(s)]∧[e≤(< n)×(< s)]∧Fmla(f)∧Fmla(g))→ (33)

([(iful(s,n,(f∧g)))〈i,e〉=1]↔([(iful(s,n,f))〈i,e〉=1]∧[(iful(s,n,g))〈i,e〉=1]))

IΣ1 `(Seq(s)∧[i<lh(s)]∧[e≤(< n)×(< s)]∧Fmla(f)∧Fmla(g))→ (34)

([(iful(s,n,(f∨g)))〈i,e〉=1]↔([(iful(s,n,f))〈i,e〉=1]∨[(iful(s,n,g))〈i,e〉=1]))

IΣ1 `(Seq(s)∧[i<lh(s)]∧[e≤(< n)×(< s)]∧Fmla(f))→
([(iful(s,n,(∀vxf)))〈i,e〉=1]↔ (35)

∀[j<lh(s)](i≤j→∀[a<(s)j][(iful(s,n,f))〈j,ext(e,vx,a)〉=1]))

IΣ1 `(Seq(s)∧[i<lh(s)]∧[e≤(< n)×(< s)]∧Fmla(f))→
([(iful(s,n,(∃vxf)))〈i,e〉=1]↔ (36)

([S(i)<lh(s)]→∃[a<(s)S(i)][(iful(s,n,f))〈S(i),ext(e,vx,a)〉=1])).

To this end, we begin by verifying that each of the functions tseq satisfies the corre-
sponding properties. First we argue in IΣ1 to show that

IΣ1 `(Seq(s)∧[lh(s)=l]∧x<2∧∀i<l[(s)i<2])→ (37)

([Seq(ext(s, l, x))]∧[lh(ext(s, l, x))=S(l)]∧∀i≤l[(ext(s, l, x))i<2]).

Thus suppose Seq(s)∧[lh(s)=l]∧x<2∧∀i<l[(s)i<2] and consider ext(s, l, x). We have
[Fcn(ext(s, l, x))], [dom(ext(s, l, x))=dom(s)t{l}], ∀i<l[apl(ext(s, l, x),i)=apl(s, i)] and
[apl(ext(s, l, x),l)=x] by Lemma 2.28. Consequently

∀i≤l[(ext(s, l, x))i<2]

and, since [(< l)t{l}=(< S(l))], also

[Seq(ext(s, l, x))]∧[lh(ext(s, l, x))=S(l)]

by Lemma 2.26.

Next we use (37) inductively for each of the functions tseq.

• We reason in IΣ1 to show that

IΣ1 `[Seq(tseq=(l, r, t))]∧[lh(tseq=(l, r, t))=l]∧
∀k<l([(tseq=(l, r, t))k<2]∧ (38)

([(tseq=(l, r, t))k=1]↔[val(〈k〉r,r)=val(〈k〉r,t)]))

by Σ1-induction on l.

60

– Since [tseq=(0, r, t)=∅] we have

[Seq(tseq=(0, r, t))], [lh(tseq=(0, r, t))=0]

and

∀k<0([(tseq=(0, r, t))i<2]∧
([(tseq=(0, r, t))k=1]↔[val(〈k〉r,r)=val(〈k〉r,t)]))

vacuously, by Lemma 2.26.

– Suppose

[Seq(tseq=(l, r, t))]∧[lh(tseq=(l, r, t))=l]∧
∀k<l([(tseq=(l, r, t))k<2]∧

([(tseq=(l, r, t))k=1]↔[val(〈k〉r,r)=val(〈k〉r,t)])).

Then since [tseq=(S(l), r, t)=ext(tseq=(l, r, t),l,c=(〈l〉r,r,t))] we have

[Seq(tseq=(S(l), r, t))]∧[lh(tseq=(S(l), r, t))=S(l)]∧
∀k<S(l)[(tseq=(S(l), f))k<2]

by definition of c= and (37). Now let k < S(l); then k < l or k = l. In the first
case

[(tseq=(S(l), r, t))k=1]↔[val(〈k〉r,r)=val(〈k〉r,t)]

by Lemma 2.28 and induction hypothesis. In the latter case we have that
[(tseq=(S(l), r, t))k=c=(〈l〉r,r,t)], whereby

[(tseq=(S(l), r, t))k=1]↔[val(〈k〉r,r)=val(〈r〉l,t)]

by definition of c=.

This concludes the induction and verifies (38).

• By Σ1-induction on l we also have

IΣ1 `[Seq(tseq<(l, r, t))]∧[lh(tseq<(l, r, t))=l]∧
∀k<l([(tseq<(l, r, t))k<2]∧ (39)

([(tseq<(l, r, t))k=1]↔[val(〈k〉r,r)<val(〈k〉r,t)]))

in essentially the same way as for (38), whence we omit the proof.

• We reason in IΣ1 to show that

IΣ1 `[Seq(tseq¬(s, l, q))]∧[lh(tseq¬(s, l, q))=l]∧
∀k<l([(tseq¬(s, l, q))k<2]∧ (40)

([(tseq¬(s, l, q))k=1]↔∀[j<lh(s)]([〈k〉l≤j]→[(q)〈j,〈k〉r〉=0])))

by Σ1-induction on l.

61

– Since [tseq¬(s, 0, q)=∅],

[Seq(tseq¬(s, 0, q))]∧[lh(tseq¬(s, 0, q))=0]∧
∀k<0([(tseq¬(s, 0, q))k<2]∧

([(tseq¬(s, 0, q))k=1]↔∀[j<lh(s)]([〈k〉l≤j]→[(q)〈j,〈k〉r〉=0])))

holds as for tseq=.

– Suppose

[Seq(tseq¬(s, l, q))]∧[lh(tseq¬(s, l, q))=l]∧
∀k<l([(tseq¬(s, l, q))k<2]∧

([(tseq¬(s, l, q))k=1]↔∀[j<lh(s)]([〈k〉l≤j]→[(q)〈j,〈k〉r〉=0]))).

By definition [tseq¬(s,S(l), q)=ext(tseq¬(s, l, q),l,c¬(s, 〈l〉l,〈l〉r,q))] which to-
gether with [c¬(s, 〈l〉l,〈l〉r,q)<2] implies

[Seq(tseq¬(s,S(l), q))]∧[lh(tseq¬(s,S(l), q))=S(l)]∧
∀k<S(l)[(tseq¬(s, S(l), q))k<2]

by (37). Now take k<S(l). If k<l then

[(tseq¬(s,S(l), q))k=1]↔∀[j<lh(s)]([〈k〉l≤j]→[(q)〈j,〈k〉r〉=0])

by induction hypothesis. If k=l then [(tseq¬(s, S(l), q))k=c¬(s, 〈k〉l,〈k〉r,q)]
on the other hand, whence

[(tseq¬(s,S(l), q))k=1]↔∀[j<lh(s)]([〈k〉l≤j]→[(q)〈j,〈k〉r〉=0])

by definition of c¬.

• We reason in IΣ1 to show that

IΣ1 `[Seq(tseq∧(l, q,w))]∧[lh(tseq∧(l, q,w))=l]∧
∀k<l([(tseq∧(l, q,w))k<2]∧ (41)

([(tseq∧(l, q,w))k=1]↔([(q)k=1]∧[(w)k=1])))

by Σ1-induction on l.

– Since [tseq∧(0, q, r)=∅],

[Seq(tseq∧(0, q, r))]∧[lh(tseq∧(0, q, r))=0]∧
∀k<0([(tseq∧(0, q, r))k<2]∧

([(tseq∧(0, q,w))k=1]↔([(q)k=1]∧[(w)k=1])))

holds as before.

62

– Suppose

[Seq(tseq∧(l, q, r))]∧[lh(tseq∧(l, q, r))=l]∧
∀k<l([(tseq∧(l, q, r))k<2]∧

([(tseq∧(l, q,w))k=1]↔([(q)k=1]∧[(w)k=1]))).

Since [tseq∧(S(l), q, r)=ext(tseq∧(l, q, r),l,c∧((q)l,(r)l))] and [c∧((q)l,(r)l)<2]
this implies

[Seq(tseq∧(S(l), q, r))]∧[lh(tseq∧(S(l), q, r))=S(l)]∧
∀k<S(l)[(tseq∧(S(l), q, r))k<2]

by (37). Moreover,

[(tseq∧(S(l), q,w))k=1]↔([(q)k=1]∧[(w)k=1])

for all k<l by induction hypothesis, and

[(tseq∧(S(l), q,w))l=1]↔([(q)k=1]∧[(w)k=1])

by definition of c∧.

• The proof that

IΣ1 `[Seq(tseq∨(l, q, r))]∧[lh(tseq∨(l, q, r))=l]∧
∀k<l([(tseq∨(l, q, r))k<2]∧ (42)

([(tseq∨(l, q,w))k=1]↔([(q)k=1]∨[(w)k=1])))

is almost identical to the Σ1-induction for tseq∧ above.

• We now show that

IΣ1 `[Seq(tseq∀(s, l, x, q))]∧[lh(tseq∀(s, l, x, q))=l]∧
∀k<l([(tseq∀(s, l, x, q))k<2]∧ (43)

([(tseq∀(s, l, x, q))k=1]↔
∀[j<lh(s)]([〈k〉l≤j]→∀[a<(s)j][(q)〈j,ext(〈k〉r,vx,a)〉=1])))

by Σ1-induction on l. We reason in IΣ1.

– Since [tseq∀(s, 0, q, x)=∅], the base case holds true as in the earlier proofs.

– Suppose

[Seq(tseq∀(s, l, q, x))]∧[lh(tseq∀(s, l, q, x))=l]∧
∀k<l([(tseq∀(s, l, q, x))k<2]∧

([(tseq∀(s, l, x, q))k=1]↔∀[j<lh(s)]([〈k〉l≤j]→∀[a<(s)j][(q)〈j,ext(〈k〉r,vx,a)〉=1]))).

63

Since [tseq∀(s, S(l), x, q)=ext(tseq∀(s, l, x, q),l,c∀(s, 〈l〉l,〈l〉r,x,q))] and we have
[c∀(s, 〈l〉l,〈l〉r,x,q)<2], we get

[Seq(tseq∀(s,S(l), x, q))]∧[lh(tseq∀(s,S(l), x, q))=S(l)]∧
∀k<S(l)[(tseq∀(s,S(l), x, q))k<2]

by (37). We also get

[(tseq∀(s, S(l), x, q))k=1]↔∀[j<lh(s)]([〈k〉l≤j]→∀[a<(s)j][(q)〈j,ext(〈k〉r,vx,a)〉=1])

for all k<l by induction hypothesis and

[(tseq∀(s,S(l), x, q))l=1]↔∀[j<lh(s)]([〈l〉l≤j]→∀[a<(s)j][(q)〈j,ext(〈l〉r,vx,a)〉=1])

by definition of c∀.

• We finally show that

IΣ1 `[Seq(tseq∃(s, l, x, q))]∧[lh(tseq∃(s, l, x, q))=l]∧
∀k<l([(tseq∃(s, l, x, q))k<2]∧ (44)

([(tseq∃(s, l, x, q))k=1]↔
([S(〈k〉l)<lh(s)]→∃[a<(s)S(〈k〉l)][(q)〈S(〈k〉l),ext(〈k〉l,vx,a)〉=1])))

by Σ1-induction on l, reasoning in IΣ1.

– Since [tseq∃(s, 0, q, x)=∅], the base case is true.

– Suppose that

[Seq(tseq∃(s, l, x, q))]∧[lh(tseq∃(s, l, x, q))=l]∧
∀k<l([(tseq∃(s, l, x, q))k<2]∧

([(tseq∃(s, l, x, q))k=1]↔
([S(〈k〉l)<lh(s)]→∃[a<(s)S(〈k〉l)][(q)〈S(〈k〉l),ext(〈k〉l,vx,a)〉=1]))).

Since [tseq∃(s,S(l), x, q)=ext(tseq∃(s, l, x, q),l,c∃(s, 〈l〉l,〈l〉r,x,q))] and like be-
fore [c∃(s, 〈l〉l,〈l〉r,x,q)<2], we get

[Seq(tseq∃(s,S(l), x, q))]∧[lh(tseq∃(s,S(l), x, q))=S(l)]∧
∀k<S(l)[(tseq∃(s,S(l), x, q))k<2]

by (37). Furthermore,

[(tseq∃(s,S(l), x, q))k=1]↔
([S(〈k〉l)<lh(s)]→∃[a<(s)S(〈k〉l)][(q)〈S(〈k〉l),ext(〈k〉r,vx,a)〉=1])

for all k<l by induction hypothesis and

[(tseq∃(s, S(l), x, q))l=1]↔
([S(〈l〉l)<lh(s)]→∃[a<(s)S(〈l〉l)][(q)〈S(〈l〉l),ext(〈l〉r,vx,a)〉=1])

by definition of c∃.

64

We now verify the properties of iful expressed in (29)–(36), reasoning in IΣ1 again.
Thus suppose Seq(s), [i<lh(s)] and [e≤(< n)× (< s)], so [〈i, e〉<〈lh(s),S((< n)× (< s))〉]
by Lemma 2.25.

• Let r and t be such that Term(r) and Term(t). Then

[iful(s,n,(r=t))=tseq=(〈lh(s),S((< n)× (< s))〉,(r=t))]

and

[iful(s,n,(r<t))=tseq<(〈lh(s),S((< n)× (< s))〉,(r<t))].

Thus we have

[Seq(iful(s,n,(r=t)))]∧[lh(iful(s,n,(r=t)))=〈lh(s),S((< n)× (< s))〉]∧
[(iful(s,n,(r=t)))〈i,e〉<2]∧([(iful(s,n,(r=t)))〈i,e〉=1]↔[val(e, r)=val(e, t)])

by (38), since [〈i, e〉<〈lh(s),S((< n)× (< s))〉] and [〈〈i, e〉〉r=e]. Similarly

[Seq(iful(s,n,(r<t)))]∧[lh(iful(s,n,(r<t)))=〈lh(s),S((< n)× (< s))〉]∧
[(iful(s,n,(r<t)))〈i,e〉<2]∧([(iful(s,n,(r<t)))〈i,e〉=1]↔[val(e, r)<val(e, t)])

by (39).

• Assume Fmla(f) and consider (¬f). By definition we have

[iful(s,n,(¬f))=tseq¬(s,〈lh(s),S((< n)× (< s))〉,iful(s,n,f))],

whereby

[Seq(iful(s,n,(¬f)))]∧[lh(iful(s,n,(¬f)))=〈lh(s),S((< n)× (< s))〉]∧
[(iful(s,n,(¬f)))〈i,e〉<2]∧
([(iful(s,n,(¬f)))〈i,e〉=1]↔∀[j<lh(s)](i≤j→[(iful(s, n, f))〈j,e〉=0]))

by (40), since [〈〈i, e〉〉l=i] and [〈〈i, e〉〉r=e].

• Assume Fmla(f) and Fmla(g) and consider (f∧g). Then by definition

[iful(s,n,(f∧g))=tseq∧(〈lh(s),S((< n)× (< s))〉,iful(s,n,f),iful(s,n,g))].

Hence

[Seq(iful(s,n,(f∧g)))]∧[lh(iful(s,n,(f∧g)))=〈lh(s),S((< n)×(< s))〉]∧
[(iful(s,n,(f∧g)))〈i,e〉<2]∧
([(iful(s,n,(f∧g)))〈i,e〉=1]↔([(iful(s, n, f))〈i,e〉=1]∧[(iful(s, n, g))〈i,e〉=1]))

by (41), like before.

65

• Similarly, if Fmla(f) and Fmla(g) then

[iful(s,n,(f∨g))=tseq∨(〈lh(s),S((< n)× (< s))〉,iful(s,n,f),iful(s,n,g))]

by definition, whence

[Seq(iful(s,n,(f∨g)))]∧[lh(iful(s,n,(f∨g)))=〈lh(s),S((< n)×(< s))〉]∧
[(iful(s,n,(f∨g)))〈i,e〉<2]∧
([(iful(s,n,(f∨g)))〈i,e〉=1]↔([(iful(s, n, f))〈i,e〉=1]∨[(iful(s, n, g))〈i,e〉=1]))

by (42).

• Assume Fmla(f). Since

[iful(s,n,(∀vxf))=tseq∀(s,〈lh(s),S((< n)× (< s))〉,x,iful(s,n,f))]

by definition,

[Seq(iful(s,n,(∀vxf)))]∧[lh(iful(s,n,(∀vxf)))=〈lh(s),S((< n)×(< s))〉]∧
[(iful(s,n,(∀vxf)))〈i,e〉<2]∧
([(iful(s,n,(∀vxf)))〈i,e〉=1]↔
∀[j<lh(s)](i≤j→∀[a<(s)j][(iful(s,n,f))〈j,ext(e,vx,a)〉=1]))

by (43) (compare to (¬f) above).

• Similarly, if Fmla(f) again, we have

[iful(s,n,(∃vxf))=tseq∃(s,〈lh(s),S((< n)× (< s))〉,x,iful(s,n,f))]

by definition, whence

[Seq(iful(s,n,(∃vxf)))]∧[lh(iful(s,n,(∃vxf)))=〈lh(s),S((< n)×(< s))〉]∧
[(iful(s,n,(∃vxf)))〈i,e〉<2]∧
([(iful(s,n,(∃vxf)))〈i,e〉=1]↔
([S(i)<lh(s)]→∃[a<(s)S(i)][(iful(s,n,f))〈S(i),ext(e,vx,a)〉=1]))

by (44).

To verify (29) ((30)–(36) being immediate from the above), we note that by Lemma
2.32

IΣ1 ` Fmla(f)↔(Atf(f)∨(∃g<fFmla(g)∧[(¬g)=f])∨
(∃g<f∃h<fFmla(g)∧Fmla(h)∧[(g∧h)=f])∨
(∃g<f∃h<fFmla(g)∧Fmla(h)∧[(g∨h)=f])∨
(∃g<f∃x<fFmla(g)∧[(∀vxg)=f])∨
(∃g<f∃x<fFmla(g)∧[(∃vxg)=f])),

66

whence

IΣ1 ` Fmla(f)→([Seq(iful(s, n, f))]∧
[lh(iful(s, n, f))=〈lh(s),S((< n)×(< s))〉]∧
∀[i<lh(s)]∀[e≤(< n)×(< s)][(iful(s,n,f))〈i,e〉<2])

by the foregoing, as desired. This verifies (29).
We can now define IFulf(s, i, e, n, f) to be the formula

[(iful(s,n,f))〈i,e〉=1]

and verify each of the statements of the proposition, all of whose proofs will use the fact
that IΣ1 ` [ev(< n)×(< s)]→[e≤(< n)×(< s)] by Lemma 2.26. We reason in IΣ1.

• Suppose Seq(s), [i<lh(s)], [ev(< n)×(< s)], Term(r), Term(t), [Eval(e,(r=t))], and
[(r=t)≤n]. Then

[IFulf(s,i,e,n,(r=t))]↔[val(e, r)=val(e, t)]

by (30).

• Suppose Seq(s), [i<lh(s)], [ev(< n)×(< s)], Term(r), Term(t), [Eval(e,(r=t))], and
[(r=t)≤n]. Then

[IFulf(s,i,e,n,(r<t))]↔[val(e, r)<val(e, t)]

by (31).

• Now suppose Seq(s), [i<lh(s)], [ev(< n)×(< s)], Fmla(f), [Eval(e,(¬f))] and [(¬f)≤n].
Assume

[IFulf(s,i,e,n,(¬f))],

that is [(iful(s,n,(¬f)))〈i,e〉=1]. Then

∀[j<lh(s)](i≤j→[(iful(s, n, f))〈j,e〉=0])

by (32), whence in particular

∀[j<lh(s)](i≤j→¬IFulf(s, j, e, n, f)).

Conversely, assuming the above we have

∀[j<lh(s)](i≤j→[(iful(s, n, f))〈j,e〉 6=1])

whence

∀[j<lh(s)](i≤j→[(iful(s, n, f))〈j,e〉=0])

since ∀[j<lh(s)][(iful(s, n, f))〈j,e〉<2] by (29). The latter is equivalent to

[IFulf(s,i,e,n,(¬f))]

by (32).

67

• Suppose Seq(s), [i<lh(s)], [ev(< n)×(< s)], Fmla(f), Fmla(g), [Eval(e,(f∧g))] and
[(f∧g)≤n]. Then

[IFulf(s,i,e,n,(f∧g))]↔(IFulf(s, i, e, n, f)∧IFulf(s, i, e, n, g))

by unwinding the definition and applying (33).

• In the same way, if Seq(s), [i<lh(s)], [ev(< n)×(< s)], Fmla(f), Fmla(g), [Eval(e,(f∨g))]
and [(f∨g)≤n], then

[IFulf(s,i,e,n,(f∨g))]↔(IFulf(s, i, e, n, f)∨IFulf(s, i, e, n, g)).

by (34).

• Now suppose Seq(s), [i<lh(s)], [ev(< n)×(< s)], Fmla(f), [Eval(e,(∀vxf))] and
[(∀vxf)≤n]. Then

[IFulf(s,i,e,n,(∀vxf))]↔∀[j<lh(s)](i≤j→∀[a<(s)j][IFulf(s,j,ext(e,vx,a),n,f)])

by definition and (35).

• Finally suppose Seq(s), [i<lh(s)], [ev(< n)×(< s)], Fmla(f), [Eval(e,(∃vxf))] and
[(∃vxf)≤n]. Again

[IFulf(s,i,e,n,(∃vxf))]↔(S(i)<lh(s)→∃[a<(s)S(i)][IFulf(s,S(i),ext(e,vx,a),n,f)])

by definition and (36).

Remark 14. As can be seen from the proof, nothing in the definition of IFulf(s, i, e, n, f)
requires Eval(e, f) or f≤n, or even [ev(< n)×(< s)], for the inductive relations ex-
pressed in the theorem. We make these requirements partly to ensure the notion is
stable; if [ev(< n)×(< s)], f≤n and n≤m then IFulf(s, i, e, n, f)↔IFulf(s, i, e,m, f) since
[e≤(< n)×(< s)] at all stages of the induction. Moreover, these requirements restrict
to the cases we will use where IFulf(s, i, e, n, f) has the intended meaning. We will not
prove these facts, but see Proposition 4.5.

We can now define

IFbl(s, f) == Incrseq(s)∧Sent(f)∧IFulf(s,0,∅, nnf(f),nnf(f)).

We thus have “two” notions of fulfilment: one in the meta-language about the object
language and one in the object language about the formal object language. As the sim-
ilarities suggest, these notions coincide in the intended cases where both are applicable.

Proposition 4.5. Let M |= IΣ1 and s, l ∈ M>0 be such that M |= Seq(s) and M |=
[lh(s)=l]. Let m ∈ M. Given a formula ϕ ≤M m (which is of course trivially the case
if m 6∈ N) and a finite evaluation e of ϕ in M<s undefined for variables x ≥M m, we

have M |= IFulf(s,i,Ff(e),m,ϕ) iff M
Rf(s),i,e

|=I ϕ, for all i ∈M<l.

68

Proof. First, for ϕ and e as in the statement, dom(e) ⊆ M<m and ran(e) ⊆ M<s,
whence M |= [Ff(e)v(<m)×(<s)] by Lemma 3.12. Moreover, such an e will satisfy
M |= Eval(Ff(e),ϕ) by Lemma 3.7.

The rest of the proof is by induction on ϕ.

• Suppose σ and τ are terms such that (σ=τ) ≤M m. Then

M |= IFulf(s,i,Ff(e),m,(σ=τ))⇔M |=e [IFulf(s,i,Ff(e),m,(σ=τ))]

⇔M |=e [val(Ff(e),σ)=val(Ff(e),τ)] by 4.4

⇔M |=e σ=τ by 3.8

⇔M
Rf(s),i,e

|=I σ=τ by definition

for all finite evaluations e of (σ=τ) in M<s undefined for variables x ≥M m and
all i ∈M<l.

• Suppose σ and τ are terms such that (σ<τ) ≤M m. Then

M |= IFulf(s,i,Ff(e),m,(σ<τ))⇔M |=e [IFulf(s,i,Ff(e),m,(σ<τ))]

⇔M |=e [val(Ff(e),σ)<val(Ff(e),τ)] by 4.4

⇔M |=e σ<τ by 3.8

⇔M
Rf(s),i,e

|=I σ<τ by definition

for all finite evaluations e of (σ<τ) in M<s undefined for variables x ≥M m and
all i ∈M<l.

• Let ϑ ≤M m be a formula such that M |= IFulf(s,k,Ff(f),m,ϑ) ⇔M
Rf(s),k,f

|=I ϑ
for all finite evaluations f of ϑ in M<s undefined for variables x ≥M m and all
k ∈M<l. Suppose (¬ϑ) ≤M m. Then

M |= IFulf(s,i,Ff(e),m,(¬ϑ))⇔M |= [IFulf(s,i,Ff(e),m,(¬ϑ))]

⇔M |= ∀j<l(i≤j→¬IFulf(s,j,Ff(e),m,ϑ))

⇔ A

j ∈M<l ∩M≥i :M 6|= IFulf(s,j,Ff(e),m,ϑ)

⇔ A

j ∈M<l ∩M≥i :M
Rf(s),j,e

6|=I ϕ

⇔M
Rf(s),i,e

|=I ¬ϑ

for all finite evaluations e of ¬ϑ in M<s undefined for variables x ≥M m and all
i ∈M<l.

• Let ϑ, ψ ≤M m be formulae such thatM |= IFulf(s,k,Ff(f),m,ϑ)⇔M
Rf(s),k,f

|=I ϑ
for all finite evaluations f of ϑ in M<s undefined for variables x ≥M m and all

69

k ∈M<l, and similarly for ψ. Suppose (ϑ∧ψ) ≤M m. Then

M |= IFulf(s,i,Ff(e),m,(ϑ∧ψ))⇔M |= [IFulf(s,i,Ff(e),m,(ϑ∧ψ))]

⇔M |= IFulf(s,i,Ff(e),m,ϑ)∧IFulf(s,i,Ff(e),m,ψ)

⇔M
Rf(s),i,e

|=I ϑ
∨∨N�M

Rf(s),i,e

|=I ψ

⇔M
Rf(s),i,e

|=I ϑ∧ψ

for all finite evaluations e of ϑ∧ψ in M<s undefined for variables x ≥M m and all
i ∈M<l.

• The disjunctive case is again similar.

• Let ϑ ≤M m be a formula such that M |= IFulf(s,k,Ff(f),n,ϑ) ⇔ M
Rf(s),k,f

|=I ϑ
for all finite evaluations f of ϑ in M<s undefined for variables x ≥M m and all
k ∈ M<l. Suppose (∀vnϑ) ≤M m (so that in particular vn <M m) and let e
be a finite evaluation of (∀vnϑ in M<s) undefined for variables x ≥M m. Then
given k ∈ M<l and b ∈ M<Rf(s)(k) ⊂ M<s, Ff(e

b
vn) is an evaluation of ϑ in M<s

undefined for variables x ≥M m, and moreover M |= [ext(Ff(e),vn,b)=Ff(e
b
vn)] by

Corollary 3.11. Thus

M |= IFulf(s,i,Ff(e),m,(∀vnϑ))

⇔M |= [IFulf(s,i,Ff(e),m,(∀vnϑ))]

⇔M |= ∀j<l(i≤j→∀a<(s)j[IFulf(s,i,ext(Ff(e),vn,a),m,ϑ)])

⇔ A

j ∈M<l ∩M≥i

A

a ∈M<Rf(s)(j) :M |= [IFulf(s,i,ext(Ff(e),vn,a),m,ϑ)]

⇔ A

j ∈M<l ∩M≥i

A

a ∈M<Rf(s)(j) :M |= [IFulf(s,i,Ff(e
a
vn),m,ϑ)]

⇔ A

j ∈M<l ∩M≥i

A

a ∈M<Rf(s)(j) :M
Rf(s),j,e

a
vn

|=I ϑ

⇔M
Rf(s),i,e

|=I ∀vnϑ

for all i ∈M<l.

• Let ϑ ≤M m be a formula such that M |= IFulf(s,k,Ff(f),m,ϑ) ⇔M
Rf(s),k,f

|=I ϑ
for all finite evaluations f of ϑ in M<s undefined for variables x ≥M m. Sup-
pose (∃vnϑ) ≤M m (so vn <M m). Furthermore, let e be a finite evaluation of
(∃vnϑ) in M<s undefined for variables x ≥M m. Then for b ∈ M<s, Ff(e

b
vn)

is also an evaluation of ϑ in M<s undefined for variables x ≥M m and M |=

70

[ext(Ff(e),vn,b)=Ff(e
b
vn)]. Consequently

M |= IFulf(s,i,Ff(e),m,(∃vnϑ))

⇔M |= [IFulf(s,i,Ff(e),m,(∃vnϑ))]

⇔M |= S(i)<l→∃a<(s)S(i)[IFulf(s,S(i),ext(Ff(e),vn,a),m,ϑ)]

⇔SM(i) ∈M<l ⇒

E

a ∈M<Rf(s)(SM(i)) :M |= [IFulf(s,S(i),ext(Ff(e),vn,a),m,ϑ)]

⇔SM(i) ∈M<l ⇒

E

a ∈M<Rf(s)(SM(i)) :M |= IFulf(s,S(i),Ff(e
a
vn),m,ϑ)

⇔SM(i) ∈M<l ⇒

E

a ∈M<Rf(s)(SM(i)) :M
Rf(s),SM(i),eavn

|=I ϑ

⇔M
Rf(s),i,e

|=I ∃vnϑ

for all i ∈M<l.

This concludes the induction, and the proof.

We will use this notion of fulfilment to construct new models of IΣ1 with particular
properties, by restricting to subsets of a given model bounded by elements of the sequence
fulfilling a statement. To ensure that the result of this procedure is indeed a model of
IΣ1, or at least an LA-structure, we require that the sequences increase quick enough
that sums and products of elements of the model less than some element of a sequence
will be less than the subsequent element of the sequence. For reasons that will become
apparent, we also require that the length of the sequence is smaller than its first element.

Definition 4.2 (Bounded initial partial models). Let M |= PA− and l ∈ M>0. A
sequence s : M<l −→ M is an bounded initial partial model (reminiscent of Putnam’s
term “finite partial model” from [11]) if

l <M s(0) and s(SM(i)) >M s(i)2
M

for all non-maximal i ∈ M<l. If l ∈ N and s(i) ∈ N for all i ∈ M<l then s is a finite
initial partial model.

The formal counterpart of this notion is given in IΣ1 by the ∆1(IΣ1)-formula IBpm(s)
defined as

Seq(s)∧[0<lh(s)]∧[lh(s)<(s)0]∧∀[i<lh(s)]([S(i)<lh(s)]→(s)2
i <(s)S(i)).

Note that bounded initial partial models are increasing, and if the IΣ1-model M |=
IBpm(s), then Rf(s)M is a bounded initial partial model, and vice versa.

4.1.1 The initial-Gödel-Kripke sentence

Throughout the rest of this section, let T be a consistent and recursively axiomatisable
arithmetic theory extending IΣ1, and let ax be some primitive recursive enumeration of
an axiomatisation of T . Since ax is then provably recursive in IΣ1, let ax(x) be some

71

IΣ1-provably ∆1(IΣ1)-function which coincides with ax in N (see Corollary 2.17 and the
succeeding comment). It is worth pointing out that the independent sentence we will
construct will depend upon this choice of the formula [ax(x)=y].

Definition 4.3 (The initial-Gödel-Kripke sentence). IK(x), where K is for “Kripke” and
I is for “initial”, is the formula ∃s(IBpm(s)∧[lh(s)=S(x)]∧∀y<xIFbl(s,ax(y))) stating
that “the first x axioms have (are fulfilled by) a bounded initial partial model of length
S(x)”.

The following formula is the initial-Gödel-Kripke sentence, which we shall prove to be
independent of T , under certain circumstances:

∀xIK(x).

This proof of independence is naturally divided into two parts: showing that ∀xIK(x)
cannot be refuted in T and showing that it cannot be proved in T .

4.2 The initial-Gödel-Kripke sentence is not refutable

The aim of this subsection is to show that the initial-Gödel-Kripke sentence is not
refutable in T if T is Σ2-sound and “resembles” PA closely enough (to be made pre-
cise). Our approach is to show that N, which is then a model of the Σ2-part of T , is
also a model of ∀xIK(x). This will be the conclusion of Theorem 4.8. First we need two
technical results concerning SΣn, the first rather general, the second more specific to the
current context. By Lemma 2.14 these could have just as well have been formulated for
IΣn, if n > 0.

Lemma 4.6. Let k, n ∈ N, ϕ be a Σn-formula, x0, . . . , xk−1, y, u and v be distinct
variables such that u and v do not occur in ϕ. Then

SΣn ` ∀u∃v∀x0<u · · · ∀xk−1<u((∃yϕ)→∃y<vϕ).

Proof. Let z and w be distinct new variables and ψ be the formula

∀x0≤z · · · ∀xk−1≤z((
∧

i<k
[〈z〉ki =xi])→ϕ).

This is a Σn-formula, whence SΣn ` ∀w∃v∀z<w((∃yψ)→∃y<vψ).
We now reason in SΣn: Given u let w=S(〈u,u, . . . ,u〉k). Then there is a v such

that ∀z<w((∃yψ)→∃y<vψ). Now take x0<u, . . . ,xk−1<u and assume that ∃yϕ. Let
z=〈x0, . . . ,xk−1〉k. Then z<w and ∃yψ, whence there is a y<v so that ψ holds. Since
x0≤z∧ · · · ∧xk−1≤z and (

∧
i<k[〈z〉ki =xi]) we have ϕ.

Thus SΣn ` ∀u∃v∀x0<u · · · ∀xk−1<u((∃yϕ)→∃y<vϕ).

Lemma 4.7. Let k ∈ N and Φ be a finite set of negation normal Σk(SΣk)-formulae. Let
M |= SΣk. (In truth, we only need strong collection for the existential sub-formulae of
Φ.) Then for every n ∈ N>0 there is a bounded initial partial model s : n −→ M such

that M
s,i,e

|=I ϕ for all ϕ ∈ Φ, i < n and evaluations e of ϕ in M<s(i) such that M |=e ϕ.

72

Proof. Let E be the (finite) set of (literal) existential sub-formulae of formulae from Φ.
Let, for ψ ∈ E, v(ψ) be the index of the largest free variable of ψ, w(ψ) be the index
of the “outermost” bound variable in ψ (which by definition is bound by an existential
quantifier) and ψ̃ be ψ without this quantifier, so that ψ == ∃vw(ψ)ψ̃. Moreover, for every

such ψ, let ψ̂ be the formula ∀v0<vψ· · ·∀vv(ψ)<vψ(ψ→∃vw(ψ)<vψ+1ψ̃). Note that vψ and

vψ+1 do not occur in ψ, and thus are the only free variables of ψ̂.

By Lemma 4.6 we have M |= ∀vψ∃vψ+1ψ̂. Let Gψ :M −→M be a Skolem function

for ∃vψ+1ψ̂, so that

M |=e ∃vψ+1ψ̂ ⇒M |=
e
Gψ(e(vψ))
vψ+1

ψ̂ (45)

for all evaluations e of ∃vψ+1ψ̂ in M (such a construction is possible by the axiom of
choice).

Now fix n ∈ N>0. Define s : n −→M by

s(0) == n+ 1

s(i+ 1) == SM


max
M

({s(i)2} ∪
⋃

ψ∈E
{Gψ(s(i))})




for all i < n− 1. Note that, since E is finite, in each step the maximum is taken over a
finite set, so s is well defined. Thus s is a bounded initial partial model.

We now show that for any ϕ which is a sub-formula of some formula of Φ, if i < n and

e is an evaluation of ϕ in M<s(i) such that M |=e ϕ, then M
s,i,e

|=I ϕ, by induction on ϕ.

• Suppose ϑ is a literal and e is an evaluation of ϑ such thatM |=e ϑ. ThenM
s,i,e

|=I ϑ
for all i < n by Lemma 4.1.

• Let ϑ and ψ be such that M |=f ϑ⇒M
s,j,f

|=I ϑ for all j < n and evaluations f of
ϑ in M<s(j), and the corresponding for ψ. Then

M |=e ϑ∧ψ ⇔M |=e ϑ
∨∨N�M |=e ψ ⇒M

s,i,e

|=I ϑ
∨∨N�M

s,i,e

|= ψ ⇔M
s,i,e

|=I ϑ∧ψ

for all i < n and evaluations e of ϑ∧ψ in M<s(i).

• The disjunctive case is once again similar.

• Assume ϑ is such thatM |=f ϑ⇒M
s,j,f

|=I ϑ for all j < n and evaluations f of ϑ in
M<s(j). Let i < n, e be an evaluation of ∀xϑ in M<s(i) and suppose M |=e ∀xϑ.
Take l < n, l ≥ i and a ∈ M<s(l). Then eax is an evaluation of ϑ in M<s(l) and
M |=eax ϑ, whence

M
s,l,eax
|=I ϑ

73

by induction hypothesis. Since l and a ∈ M<s(l) were arbitrary with l < n and

l > i, M
s,i,e

|=I ∀xϑ.

• Let ϑ be such that M |=f ϑ ⇒ M
s,j,f

|=I ϑ for all j < n and evaluations f of ϑ in
M<s(j), and consider ∃xϑ. Note w(∃xϑ) == x. By assumption this is a sub-formula
of some ψ ∈ Φ, whence ∃xϑ ∈ E. Thus we have G∃xϑ as defined above. Let i < n
and e be an evaluation of ∃xϑ in M<s(i) such that M |=e ∃xϑ. If i + 1 == n

then M
s,i,e

|=I ∃xϑ vacuously, so assume i + 1 < n. Let a == G∃xϑ(s(i)) which by
construction is in M<s(i+1). Recall that

M |= ∃vψ+1∀v0<s(i)· · ·∀vv(ψ)<s(i)(∃xϑ→∃x<vψ+1ϑ),

whence

M |= ∀v0<s(i)· · ·∀vv(ψ)<s(i)(∃xϑ→∃x<aϑ)

by (45). Since e is an evaluation of ∃xϑ in M<s(i) we get

M |=e ∃xϑ→∃x<aϑ,

whence

M |=e ∃x<aϑ.

Thus there is a b <M a such that

M |=ebx
ϑ,

whence, since ebx is an evaluation of ϑ in M<s(i+1),

M
s,i+1,ebx
|=I ϑ

by induction hypothesis. Thus M
s,i,e

|=I ∃xϑ.

This concludes the induction.

In particular, for any ϕ ∈ Φ, i < n and evaluation e of ϕ in M<s(i) we have that

M |=e ϕ implies M
s,i,e

|=I ϕ.

Theorem 4.8. Suppose T is Σ2-sound. Then T 6` ¬∀xIK(x) in case any of the following
holds:

1. PA ⊆ T ,

74

2. N |= T

Proof. First, letM be a model of T + PA, which exists in either case. Let n ∈ N. Since
PA proves strong collection, the above lemma gives a bounded initial partial model

s : n+ 1 −→M with M
s,0,∅
|=I nnf(ax(i)) for all i < n. This is a finite sequence, whence

Ff(s) exists and satisfies M |= IBpm(Ff(s))∧[lh(Ff(s))=n+ 1]. By Proposition 4.5 this
means that

M |= IFulf(Ff(s),0,Ff(∅),nnf(ax(i)),nnf(ax(i))),

that is

M |= [IFulf(Ff(s),0,∅,nnf(ax(i)),nnf(ax(i)))]

since M |= [∅=Ff(∅)] and M |= [nnf(ax(i))=nnf(ax(i))] (by Σ1-completeness), for all
i < n. Furthermore, Σ1-completeness also gives M |= Sent(ax(i)) for all i < n. Thus
M |= IFbl(Ff(s),ax(i)) for all i < n. To sum up

M |= ∃sIBpm(s)∧[lh(s)=n+ 1]∧∀y<nIFbl(s,ax(y)).

Hence M |= IK(n) for all n ∈ N.
We next show that, in either case, N |= ∀xIK(x).

1. Let M be a model of T ; by above M |= IK(n) for all n ∈ N. Hence T ` IK(n) for
all n ∈ N. Since T is Σ1-sound, N |= IK(n) for all n ∈ N

2. Since N |= T + PA, the above gives N |= IK(n) for all n ∈ N.

Now assume T ` ¬∀xIK(x), whence N |= ¬∀xIK(x) as T is Σ2-sound. This contradicts
the above.

Remark 15. From the perspective of incompleteness the first alternative in the above
theorem is the stronger, since if T is sound and complete then certainly PA ⊆ T .

Note also that the proof shows that ∀xIK(x) is true (in N).

4.3 The initial-Gödel-Kripke sentence is not derivable

We finally turn to verifying the non-provability of the initial-Gödel-Kripke sentence,
thereby establishing its independence. The idea is, given a nonstandard model of T
where the sentence is true (or at least not too false), to use the sequence given by
the sentence to construct a structure where the sentence is false. To ensure that this
structure is itself a model of T , we will need the following result.

Lemma 4.9. Let M |= PA−, L be a discrete linear order without maximal element
and s : L −→ M be an increasing sequence unbounded (or cofinal) in M (that is

A

a ∈
M E

i ∈ L : a <M s(i)). ThenM
s,i,e

|=I ϕ⇒M |=e ϕ for every negation normal arithmetic
formula ϕ, all evaluations e of ϕ and all i ∈ L.

75

Proof. The proof is by induction on ϕ.

• Let ϑ be a literal. Then M
s,i,e

|=I ϑ⇒M |=e ϑ for all evaluations e of ϑ and i ∈ L,
by Lemma 4.1.

• Suppose ϑ and ψ are such thatM
s,k,f

|=I ϑ⇒M |=f ϑ for all evaluations f of ϑ and
k ∈ L, and the corresponding for ψ. Then

M
s,i,e

|=I ϑ∧ψ ⇔M
s,i,e

|=I ϑ
∨∨N�M

s,i,e

|=I ψ ⇒M |=e ϑ
∨∨N�M |=e ψ ⇔M |=e ϑ∧ψ

for all evaluations e of ϕ∧ψ and i ∈ L.

• The disjunctive case is the same, mutatis mutandis.

• Let ϑ be such that M
s,k,f

|=I ϑ⇒M |=f ϑ for all evaluations f of ϑ and k ∈ L, and
consider ∀xϑ. Let e be an evaluation of ∀xϑ and i ∈ L and suppose

M
s,i,e

|=I ∀xϑ. (46)

Also let a ∈ M. Since s unbounded in M, there is a j ∈ L such that a <M s(j);
since s is increasing, we can choose j ≥L i. By (46) we thus have

M
s,j,eax
|=I ϑ

which by induction hypothesis implies that

M |=eax ϑ.

Since a ∈M was arbitrary, M |=e ∀xϑ.

• Suppose ϑ satisfies M
s,k,f

|=I ϑ ⇒ M |=f ϑ for all evaluations f of ϑ and k ∈ L.
Then

M
s,i,e

|=I ∃xϑ⇔ E

a ∈M<s(SL(i)) :M
s,SL(i),eax
|=I ϑ

⇒ E

a ∈M<s(SL(i)) :M |=eax ϑ

⇒M |=e ∃xϑ

for all evaluations e of ∃xϑ and i ∈ L, since L has no maximum.

This concludes the induction, and the proof.

Corollary 4.10. Let M |= PA−, L be a discrete linear order without maximum and
s : L −→M be an unbounded increasing sequence such that s initial-fulfils the negation
normal sentence ϕ in M. Then M |= ϕ.

76

Proof. Immediate by the lemma.

Theorem 4.11. Suppose T has a nonstandard model M with M |= IK(m) for some
nonstandard m ∈M. Then there is a nonstandard model N of T such that N 6|= ∀xIK(x).
In particular T 6` ∀xIK(x).

Proof. Since IK(x) == ∃s(IBpm(s)∧[lh(s)=S(x)]∧∀y<xIFbl(s,ax(y))) is a Σ1(IΣ1)-formula
and M |= IΣ1, let s ∈ M be least (by the least number principle for Σ1(M)-formulae,
2.23) so that

M |= IBpm(s) ∧ [lh(s)=S(m)]∧∀y<mIFbl(s,ax(y)).

Consider f == Rf(s) � N ; then f(k)2
M <M f(SM(k)) for all k ∈ N. Define N =⋃

k∈NM<f(k). Since a, b <M f(k) implies SM(a), a+M b, a ·M b <M f(k)2 <M f(k +
1) (since f(0) >M m >M 2) by Lemma 2.6, N is closed under SM, +M and ·M.
Furthermore, if a ∈ N and b ∈M is such that b <M a, then b <M f(k) for some k ∈ N,
whence b ∈ N . Thus N ⊆M is (the underlying set of) an initial substructure N , which
is a model of PA− by Corollary 2.8.

Now let ϕ be the negation normal form of some axiom of T , that is ϕ == nnf(ax(n))
for some n ∈ N. Since m is nonstandard, n <M m. By choice of s we thus have

M |= [IFulf(s,0,∅,ϕ,ϕ)].

Proposition 4.5 then gives M
Rf(s),0,∅
|=I ϕ, whence M

f,0,∅
|=I ϕ by Lemma 4.2 and thus

N
f,0,∅
|=I ϕ by Lemma 4.3. Now Lemma 4.9 guarantees N |= ϕ. Since this holds for all

axioms of T , we have N |= T .

Note however that s 6∈ N , since for no k ∈ N do we have M |= [s < apl(s,k)]; in fact
a <M s for all a ∈ N . On the other hand m ∈ N since m <M s(0)11. Hence if N |=
∀xIK(x) there is a t ∈ N such that N |= IBpm(t) ∧ [lh(t)=S(m)]∧∀y<mIFbl(t,ax(y)).
But this is a ∆1(IΣ1)-formula, whenceM |= IBpm(t)∧[lh(t)=S(m)]∧∀y<mIFbl(t,ax(y))
by Lemma 2.5. Since t <M s, this contradicts the choice of s. Consequently N 6|=
∀xIK(x).

Corollary 4.12. If T is Σ2-sound and extends PA, then T is incomplete.

Proof. By Theorem 4.8, T + ∀xIK(x) has a model, which without loss of generality can
be chosen nonstandard by the Löwenheim-Skolem theorems. Then Theorem 4.11 gives
a nonstandard model of T + ¬∀xIK(x).

Remark 16. As Putnam remarks in [10], these results have the following sharpening in
case T + PA is consistent: If M is any nonstandard model of T + PA then M |= IK(n)
for all n ∈ N as in the proof of Theorem 4.8, whence there is a nonstandard m ∈ M so
that M |= IK(m) by Σ1-overspill (Lemma 2.24). The proof of the above theorem then

11This is the principal reason for this requirement

77

yields a (nonstandard) model of T + PA +¬∀xIK(x). In case T is sound we thus have an
explicit model of T + ∀xIK(x), namely N, and by above can construct an explicit model
of T + ¬∀xIK(x) by choosing M as an appropriate ultrapower of N.

The above theorems, while establishing incompleteness for PA itself, are still somewhat
limited; for if the proof of non-refutability of ∀xIK(x) in T is to work, then T must be
either sound or prove the collection schema (see Theorem 4.8). As far as incompleteness
is concerned, this means that T is an extension of PA (sound theories are consistent with
PA, so if T is to be complete then PA ⊆ T). The reason why collection is required can
be seen in the prof of Lemma 4.7, where a bounded initial partial model is constructed
by recursion using a finite set of Skolem functions. The issue here is that, if an element
m of the sequence is ever nonstandard, then the next element of the sequence should be
an upper bound to the values of the Skolem functions in the (infinite) initial segment
defined by m, and without (the appropriate instances of) collection there is no reason
why such an element would exist. Furthermore, we have to apply this lemma to any
finite collection of the axioms, whence the full collection schema seems the only plausible
alternative.

One remedy to this is to generalise the notion of initial fulfilment so that, instead of
requiring that quantifiers be instantiated in initial segments given by the elements of
some sequence, we can instantiate them in some element of a (more general) sequence
of sets. This will be the approach of the next section.

78

5 Fulfilment: Incompleteness of IΣ1

We now turn to the full notion of fulfilment where we replace the initial segments of
initial-fulfilment by arbitrary sets. While able to prove incompleteness of arbitrary
recursively axiomatisable extensions of IΣ1, this generalisation carries a cost, as the
counter model we will construct in Theorem 5.11 (similarly to in Theorem 4.11) will
not be an initial substructure of the original model, and so we can not appeal to ∆0-
absoluteness for initial substructures to make the proof go through. We will instead
have the independent-to-be sentence express ∆0-absoluteness between any of its models
and the bounded partial model it claims to exist. Nevertheless, most arguments will be
essentially identical to those of section 4 and will be omitted.

The material in this section was presented by Quinsey in [12], where it is attributed
mainly to Kripke. Like in the previous section, our approach is a combination of the
ones in [12] and [10], with the addition of a number of technical proofs.

5.1 Definitions

Definition 5.1. Let L be a discrete linear order. Given a LA-structure M and an
L-sequence s : L −→ P(M), we define for formulae ϕ to be fulfilled by s with respect
to an assignment e in M at i ∈ L recursively as follows:

M
s,i,e

|= ϑ⇔M |=e ϑ if ϑ is atomic,

M
s,i,e

|= ¬ϑ⇔ A

j ∈ L≥i :M
s,j,e

6|= ϑ,

M
s,i,e

|= ϑ∧ψ ⇔M
s,i,e

|= ϑ
∨∨N�M

s,i,e

|= ψ,

M
s,i,e

|= ϑ∨ψ ⇔M
s,i,e

|= ϑ∨∨N�M
s,i,e

|= ψ,

M
s,i,e

|= ∀xϑ⇔ A

j ∈ L≥i

A

a ∈ s(j) :M
s,j,eax
|= ϑ,

M
s,i,e

|= ∃xϑ⇔ (SL(i) ∈ L ⇒ E

a ∈ s(SL(i)) :M
s,SL(i),eax
|= ϑ).

If ϕ is a sentence then ϕ is simply fulfilled by s in M if M
s,0,∅
|= ϕ. If there is an

increasing L-sequence s which fulfils the sentence ϕ in M, then ϕ is L-fulfillable in M.

As can be seen from the definitions, initial-fulfilment by a sequence s of elements of
a model M of PA− is the same as fulfilment by the sequence of initial segments of M
defined by the elements of s, hence the term initial-fulfilment. The reason we require
M |= PA− in the definition of initial-fulfilment is that we want M to be (linearly)
ordered by <M for the definition of initial-fulfilment to make sense; this is not an issue
for (general) fulfilment.

The differences between the two notions will result in a slightly more convoluted
formalisation of this concept in the theory IΣ1, and some additional issues in finding a
model witnessing T 6` ∀xK(x) (to be defined, see Definition 5.3), since a model defined as

79

the union of all elements of such a sequence will not necessarily be an initial substructure
of M.

Remark 17. As in Definition 4.1, we remark on the similarity between this definition
and that of truth in a Kripke model (of e.g. constructive mathematics, see for example
[16]).

Lemma 5.1. Let M be an LA-structure, L a discrete linear order and s : L −→ P(M).

If s is increasing and ϕ is on negation normal form then M
s,i,e

|= ϕ ⇒M
s,j,e

|= ϕ for all
i ∈ L, j ∈ L≥i and all evaluations e of ϕ in M. If instead ϕ is quantifier free we have

M
s,i,e

|= ϕ⇔M |=e ϕ for all such i and e.

Proof. The proof is the same as that of Lemma 4.1, mutatis mutandis.

As in the case of initial fulfilment, this shows that as far as negation normal formulae
are concerned, we could have used the definition

M
s,i,e

|= ¬ϑ⇔M
s,i,e

6|= ϑ

of a negated formula being fulfilled by s at i.

Lemma 5.2. LetM be an LA-structure, L be a discrete linear order and s an increasing
L-sequence in P(M). Let L′ ⊆ L be closed under the successor function in L and

s′ == s � L′. Then M
s,i,e

|= ϕ ⇒ M
s′,i,e
|= ϕ for every negation normal formula ϕ, all

evaluations e of ϕ in M and all i ∈ L′.

Proof. The same proof as Lemma 4.2, mutatis mutandis.

Lemma 5.3. Let N ⊂M be LA-structures , L be a discrete linear order and s : L −→
P(N). Then N

s,i,e

|= ϕ⇔M
s,i,e

|= ϕ for every formula ϕ, all evaluations e of ϕ in N and
all i ∈ L.

Proof. The proof is similar to (in fact slightly more straightforward than) that of Lemma
4.3, and is omitted.

In the same way as initial-fulfilment, these notions are formalisable within IΣ1.

80

Proposition 5.4. Thereis a ∆1(IΣ1)-formula Fulf with the following properties:

IΣ1 `(Setq(s)∧[i<lh(s)]∧[ev(< n)×(< s)]∧Term(r)∧Term(t)∧[Eval(e,(r=t))]∧[(r=t)≤n])→
([Fulf(s,i,e,n,(r=t))]↔([Eval(e,(r=t))]∧[val(e,r)=val(e,t)]))

IΣ1 `(Setq(s)∧[i<lh(s)]∧[ev(< n)×(< s)]∧Term(r)∧Term(t)∧[Eval(e,(r=t))]∧[(r<t)≤n])→
([Fulf(s,i,e,n,(r<t))]↔([Eval(e,(r<t))]∧[val(e,r)<val(e,t)]))

IΣ1 `(Setq(s)∧[i<lh(s)]∧[ev(< n)×(< s)]∧Fmla(f)∧[Eval(e,(¬f))]∧[(¬f)≤n])→
([Fulf(s,i,e,n,(¬f))]↔∀[j<lh(s)](i≤j→¬Fulf(s, j, e, n, f)))

IΣ1 `(Setq(s)∧[i<lh(s)]∧[ev(< n)×(< s)]∧Fmla(f)∧Fmla(g)∧[Eval(e,(f∧g))]∧[(f∧g)≤n])→
([Fulf(s,i,e,n,(f∧g))]↔(Fulf(s, i, e, n, f)∧Fulf(s, i, e, n, g)))

IΣ1 `(Setq(s)∧[i<lh(s)]∧[ev(< n)×(< s)]∧Fmla(f)∧Fmla(g)∧[Eval(e,(f∨g))]∧[(f∨g)≤n])→
([Fulf(s,i,e,n,(f∨g))]↔(Fulf(s, i, e, n, f)∨Fulf(s, i, e, n, g)))

IΣ1 `(Setq(s)∧[i<lh(s)]∧[ev(< n)×(< s)]∧Fmla(f)∧[Eval(e,(∀vxf))]∧[(∀vxf)≤n])→
([Fulf(s,i,e,n,(∀vxf))]↔∀[j<lh(s)](i≤j→∀[aε(s)j][Fulf(s,j,ext(e,vx,a),n,f)]))

IΣ1 `(Setq(s)∧[i<lh(s)]∧[ev(< n)×(< s)]∧Fmla(f)∧[Eval(e,(∃vxf))]∧[(∃vxf)≤n])→
([Fulf(s,i,e,n,(∃vxf))]↔([S(i)<lh(s)]→∃[aε(s)S(i)][Fulf(s,S(i),ext(e,vx,a),n,f)])).

Proof. The proof is the same as that of Proposition 4.4, with a number of occurrences
of Seq and < replaced by Setq and ε, respectively (since these are all ∆1(IΣ1) concepts,
this replacement does not alter the construction).

We can now define

Fbl(s, f) == Incrsetq(s)∧Sent(f)∧[Fulf(s,0,∅,nnf(f), nnf(f))]

With this, we are almost ready to construct the Gödel-Kripke sentence which we will
show to be independent of IΣ1.

First however, as in the case of initial fulfilment we should confirm that this formal
definition is adequate: that it captures exactly what is meant by a sequence fulfilling
a formula. The similarities of the definitions, and of the corresponding ones for initial
fulfilment, of course make this rather plausible.

Proposition 5.5. Let M |= IΣ1 and s, l ∈ M>0 be such that M |= Setq(s) and
M |= [lh(s)=l]. Let m ∈ M. Given a formula ϕ ≤M m and a finite evaluation e
of ϕ in M<s undefined for variables x ≥M m, we have M |= Fulf(s,i,Ff(e),m,ϕ) iff

M
Rsf(s),i,e

|= ϕ, for all i ∈M<l.

Proof. The proof is essentially the same as that of Proposition 4.5. The important
differences are that Ff(s) is replaced by Fsf(s) and that M<Rf(s)(k) is replaced by its
subset Rsf(s)(k) (since IΣ1 ` xεy→x<y and IΣ1 ` Setq(s)→Seq(s)).

81

Definition 5.2 (Bounded partial models). Let M |= PA− and l ∈ M>0. A sequence
s :M<l −→ P(M) is a bounded partial model if 0, l ∈ s(0) and

SM(a), a+M b, a ·M b ∈ s(SM(i))

for all a, b ∈ s(i), for all non-maximal i ∈ M<l. If in addition l ∈ N and s(i) is finite
for every i ∈ M<l we call s a finite partial model (the term is introduced in [11]). We
furthermore define the corresponding notion in IΣ1 by the ∆1(IΣ1)-formula Bpm(s):

Setq(s)∧[0<lh(s)]∧[0ε(s)0]∧[lh(s)ε(s)0]∧
∀[i<lh(s)]([S(i)<lh(s)]→

(∀[xε(s)i]∀[yε(s)i][S(x)ε(s)S(i)]∧[x + yε(s)S(i)]∧[x · yε(s)S(i)]))).

As for bounded initial partial models, we note that a bounded partial model is in
particular increasing.

5.1.1 The Gödel-Kripke sentence

Now fix a consistent and recursively axiomatised arithmetic theory T ⊇ IΣ1, a primitive
recursive enumeration ax of an axiomatisation of T and a IΣ1-provably ∆1(IΣ1)-function
ax(x) coinciding with ax in N. As for initial-fulfilment in 4.1.1, the independent sentence
will depend upon this choice of the formula [ax(x)=y].

Definition 5.3 (The Gödel-Kripke sentence). The ∆1(IΣ1)-formula Tr0(s) is

∀[f<lh(s)]∀[i<lh(s)]∀[ev(< f)× (s)i]((Eval(e, f)∧∆0(f)∧Sat0(e, f))→
[Fulf(s,i,e,nnf(f),nnf(f))]).

Now, the formula K(x) is

∃s(Bpm(s)∧[lh(s)=S(x)]∧Tr0(s)∧∀y<xFbl(s,ax(y))).

The Gödel-Kripke sentence is the sentence

∀xK(x),

which we shall prove to be independent of T .

The formula Tr0 is Quinsey’s construction from [12], somewhat adapted to the current
context, and codes “∆0-absoluteness” for the bounded partial model Fsf(s).

We now turn to the proof of the independence of K from T as above. The proof of its
non-provability and non-refutability follows the same strategies as in the case of initial-
fulfilment, though the individual theorems, and their proofs, are slightly different.

82

5.2 The Gödel-Kripke sentence is not refutable

Lemma 5.6. LetM |= Q and Φ be a finite set of negation normal formulae of LA. Then

for every n ∈ N>0 there is a finite partial model s : n −→ P(M) such that M
s,i,e

|= ϕ for
all ϕ ∈ Φ, i < n and evaluations e of ϕ in s(i) with M |=e ϕ.

Proof. Fix n ∈ N>0. Let E be the (finite) set of (literal) existential sub-formulae of
formulae from Φ. Let, for ψ ∈ E, v(ψ) be the index of the largest free variable of ψ.
Moreover, for every such ψ, let Fψ : Mv(ψ) −→ M be a Skolem function associated to
ψ, so that if ψ == ∃xϑ then

M |=e ψ ⇒M |=
e
Fψ(e(v0),e(v1),...,e(vv(ψ)))

x

ϑ

for all evaluations e of ψ in M (the intended construction of course makes Fψ invariant
under changes of the evaluations of variables which are not free in ψ, but this is not an
issue). Define s : n −→ P(M) by

s(0) ==M≤n
s(k + 1) == {a+M b | a, b ∈ s(k)} ∪ {a ·M b | a, b ∈ s(k)} ∪

⋃

ψ∈E
Fψ[s(k)v(ψ)]

for all k < n−1. Note that, sinceM |= Q, s(0) is a finite set, and if s(k) is finite then so is
s(k+1) (since E is). Moreover, 0, 1, n ∈ s(0), and if 1, a ∈ s(k) then 1 == 1+M0 ∈ s(k+1)
and SM(a) = a +M 1 ∈ s(k + 1) whence Sm[s(k)] ⊆ s(k + 1). Thus s is a finite partial
model.

We show by induction that for any ϕ which is a sub-formula of some formula of Φ, if

i < n and e is an evaluation of ϕ in s(i) with M |=e ϕ, then M
s,i,e

|= ϕ.

• Suppose ϑ is a literal and e is an evaluation of ϑ such thatM |=e ϑ. ThenM
s,i,e

|= ϑ
for all i < n by Lemma 5.1.

• Let ϑ and ψ be such that M |=f ϑ⇒M
s,k,f

|= ϑ for all k < n and evaluations f of
ϑ in s(k), and the corresponding for ψ. Then

M |=e ϑ∧ψ ⇔M |=e ϑ
∨∨N�M |=e ψ ⇒M

s,i,e

|= ϑ
∨∨N�M

s,i,e

|= ψ ⇔M
s,i,e

|= ϑ∧ψ

for all i < n and evaluations e of ϑ∧ψ in s(i).

• The disjunctive case is once again similar.

• Assume ϑ is such that M |=f ϑ ⇒M
s,k,f

|= ϑ for all k < n and evaluations f of ϑ
in s(k). Let i < n and e be an evaluation of ∀xϑ in s(i), and suppose M |=e ∀xϑ.

83

Also let j ∈ n≥i and a ∈ s(j); then M |=eax ϑ. As eax is an evaluation of ϑ in s(j)
this implies

M
s,j,eax
|= ϑ

by induction hypothesis. Since j ∈ n≥i and a ∈ s(j) was arbitrary, M
s,i,e

|= ∀xϑ.

• Let ϑ be such that M |=f ϑ ⇒ M
s,k,f

|= ϑ for all k < n and evaluations f of ϑ
in s(k), and consider ∃xϑ. By assumption this is a sub-formula of some ψ ∈ Φ,
whence ∃xϑ ∈ E. Thus F∃xϑ as above is a Skolem function for ∃xϑ. Let i < n, e be
an evaluation of ∃xϑ in s(i) and a == F∃xϑ(e(v0), e(v1), . . . , e(vv(∃xϑ))), and suppose

M |=e ∃xϑ. If i+ 1 ≥ n then M
s,i,e

|= ∃xϑ vacuously, otherwise a ∈ s(i+ 1) by the
definition of s. In this case eax is an evaluation of ϑ in s(i+ 1), and sinceM |=eax ϑ

by the definition of F∃xϑ, M
s,i+1,eax
|= ϑ by induction hypothesis. Thus M

s,i,e

|= ϑ.

This concludes the induction. In particular M
s,i,e

|= ϕ for all i < n and all evaluations e
of ϕ in s(i), for every ϕ ∈ Φ.

Proposition 5.7. Let M |= T . Then for every n ∈ N, M |= K(n).

Proof. Take n ∈ N. Let A be the set of negation normal forms of axioms 0 to n−1 of T .
Additionally, let B be the set of negation normal forms of ∆0-formulae less than n and
Φ == A ∪ B. Apply Lemma 5.6 to M, Φ and n + 1; thus there is a finite partial model

s : n+ 1 −→ P(M) such that M
s,i,e

|= ϕ for all i ≤ n and evaluations e of ϕ in s(i) with

M |=e ϕ, for all ϕ ∈ Φ. In particular M
s,0,∅
|= ϕ for all ϕ ∈ A.

Thus if i < n then nnf(ax(i)) ∈ A andM |= Sent(ax(i)), the latter by Σ1-completeness.
Furthermore, since s is finite and consists of finite sets, Fsf(s) exists and hence satisfies

M |= [Fulf(Fsf(s),0,∅,nnf(ax(i)),nnf(ax(i)))]

by Proposition 5.5. Thus M |= Fbl(Fsf(s),ax(i)). Since i < n was arbitrary, M |= ∀i <
nFbl(Fsf(s),ax(i)).

Now let ϕ, i ≤ n and e ∈ M be such that M |= e<(<ϕ)×(Fsf(s))i; then Rf(e) ⊆
ϕ × s(i) by Lemma 3.12. Suppose M |= Eval(e,ϕ)∧∆0(ϕ)∧Sat0(e,ϕ). Then (by Σ1-
completeness) ϕ is a ∆0-formula, whence nnf(ϕ) ∈ B. By Lemma 3.7 Rf(e) is an
evaluation of ϕ in s(i) and thus M |=Rf(e) ϕ by Lemma 3.9. By definition of nnf, Rf(e)
is also an evaluation of nnf(ϕ) and M |=Rf(e) nnf(ϕ). Since nnf(ϕ) ∈ B this implies

M
s,Rf(e),i

|= nnf(ϕ),

whence M |= Fulf(Fsf(s),i,e,nnf(ϕ),nnf(ϕ)) by Proposition 5.5. With i, ϕ and e being
arbitrary with the mentioned properties, we have M |= Tr0(Fsf(s)).

Thus M |= ∃s(Bpm(s)∧[lh(s)=n]∧Tr0(s)∧∀y<xFbl(s,ax(y))), i.e. M |= K(n).

84

Theorem 5.8. If T is Σ2-sound then

T 6` ¬∀xK(x).

Proof. By Proposition 5.7 (and the completeness theorem), T ` K(n) for all n ∈ N.
Since K(n) is a Σ1(IΣ1)-formula, N |= K(n) for all n ∈ N, whence N |= ∀xK(x). But if
T ` ¬∀xK(x) then N |= ¬∀xK(x), since this is a Σ2(IΣ1)-formula and T is Σ2-sound; hence
T 6` ¬∀xK(x) as claimed.

As in section 5, the proof shows that ∀xK(x) is true (in N).

5.3 The Gödel-Kripke sentence is not derivable

Lemma 5.9. LetM be an LA-structure and L be a discrete linear order without maximal
element and s : L −→ P(M) be an increasing sequence unbounded in M (that is M =

=
⋃
i∈L s(i)). Then M

s,i,e

|= ϕ⇒M |=e ϕ for every negation normal arithmetic formula
ϕ, all evaluations e of ϕ and all i ∈ L.

Proof. The proof is essentially the same as that of Lemma 4.9.

Corollary 5.10. Let M be an LA-structure and L be a discrete linear order without
maximal element. Suppose s : L −→ P(M) is an increasing sequence unbounded in M
such that s fulfils the negation normal sentence ϕ in M. Then M |= ϕ.

Proof. Immediate by the lemma.

Theorem 5.11. There is a nonstandard model N of T such that N 6|= ∀xK(x).

Proof. Let M |= T be nonstandard. By Proposition 5.7 M |= K(n) for all n ∈ N.
Then M |= K(m) for some m ∈ M \ N by Σ1-overspill (Lemma 2.24). By the least
number principle for Σ1-formulae (Lemma 2.22) in M, there is a least s ∈ M such
that M |= Bpm(s)∧[lh(s)=m]∧Tr0(s)∧∀y<mFbl(s,ax(y)). Let f == Rsf(s) � N and
N ==

⋃
i∈N f(i).

Now let ϑ ∈ LA be on negation normal form. Then we have the following chain of
implications, for any finite evaluation e of ϕ in N and i ∈ N:

M |= Fulf(s,i,Ff(e),ϑ, ϑ)⇒M
Rsf(s),i,e

|= ϑ by Prp. 5.5

⇒M
f,i,e

|= ϑ by Lma. 5.2

⇒ N
f,i,e

|= ϑ by Lma. 5.3

⇒ N |=e ϑ by Lma. 5.9.

Consider an axiom ϕ (in the chosen axiomatisation) of T . Then ϕ == ax(k) for some
k ∈ N, whence M |= Fbl(s,ϕ). Thus M |= [Fulf(s,0,∅,nnf(ϕ),nnf(ϕ))]. By above we
get N |= nnf(ϕ), that is N |= ϕ. Since ϕ was an arbitrary axiom of T , N |= T .

85

Now let ϑ be a ∆0-formula and e′ an evaluation of ϑ in N . Suppose M |=e′ ϑ. Let
e be the restriction of e′ to the variables occurring in ϑ; then e is a finite evaluation
of ϑ in N and in particular is coded in M. Moreover, ran(e) ⊆ f(i) == Rsf(s)M(i) ==
Rs(Rf(s)M(i))M for some i ∈ N, and since M |= [(s)i=Rf(s)M(i)] and dom(e) ⊆M<ϑ

we get M |= Ff(e)Mv(<ϑ)×(s)i by Lemma 3.12. Furthermore, i, ϑ < m since m is
nonstandard,M |= ∆0(ϑ) by Σ1-completeness,M |= Eval(Ff(e)M,ϑ) by Lemma 3.7 and
M |= Sat0(Ff(e)M,ϑ) by 3.9. Since M |= Tr0(s) we thus get

M |= Fulf(s,i,Ff(e),ϑ,ϑ),

whence N |=e′ ϑ by above. Thus ∆0-formulae are downwards absolute between N and
M, and since negated ∆0-formulae are (tautologically) equivalent to ∆0-formulae, ∆0-
formulae are absolute between N and M. Consequently Σ1(T)-formulae are upwards
absolute between N and M by Lemma 2.5.

Finally, since m ∈ f(0), m ∈ N . Assume towards a contradiction that N |= K(m) and
let t be a witness thereof, that is N |= Bpm(t)∧[lh(t)=m]∧Tr0(t)∧∀y<mFbl(t,ax(y)).
Since this is a ∆1(IΣ1)-formula, M |= Bpm(t)∧[lh(t)=m]∧Tr0(t)∧∀y<mFbl(t,ax(y)) as
well. Moreover, t ∈ N implies t ∈ f(k) == Rsf(s)(k) for some k ∈ N, whenceM |= [tε(s)k]
like before; in particular M |= t<s. But this contradicts that s was the least witness of
M |= K(m) in M. Hence N 6|= K(m).

Corollary 5.12. If T is Σ2-sound then T is incomplete.

Proof. By Theorems 5.8 and 5.11.

Remark 18. As in section 4, for sound theories T the above results can be sharpened to
yield explicit models of T + ∀xK(x) and T + ¬∀xK(x).

86

6 Summary and concluding remarks

The results of sections 4 and 5, as summarised in Corollaries 4.12 and 5.12, verifies
that Σ2-sound recursively axiomatisable extensions of PA and IΣ1, respectively, are
incomplete. These are rather weak incompleteness results as compared to those obtained
by the standard Gödel-Rosser proof via diagonalisation (see for example [13, pp. 135-
140]). However, this method of proof still deserves some attention, since it is a rather
explicit model-theoretic construction which is, at the same time, applicable to a wide
range of theories. In the case of a sound theory such as PA the proofs can even be
modified to yield truly explicit models witnessing its incompleteness. Also, these proofs
appears to be slightly easier than the standard one (though the independent sentence is
more complex, Π2 instead of Π1), since we do not need to formalise the notion of formal
derivation. This is in particular true for the proof via initial fulfilment which does not
even use the satisfaction predicate Sat0. It might be possible, however, to remove the
dependence on Sat0 even in the proof of section 5. Namely, by the MRDP-theorem
for IΣ1 (see [4, Theorem 3.25 p. 97]), every Σ1(IΣ1)-formula is equivalent in IΣ1 to a
formula of the form ∃xϕ with the same free variables, such that ϕ is quantifier free.
This indicates that Tr0, the only place where Sat0 is used, is in fact not needed in the
proof of Theorem 5.11, since quantifier free formulae are upwards absolute between a
structure and any of its extensions. Whether this would constitute a simplification of
the proof finally depends on your view of which of the proof of the MRDP-theorem
and the construction of Sat0 is the simpler one. A final note along this line: MRDP is
provable even in I∆0(exp), so if all other constructions used are possible in I∆0(exp) as
well (with the exception of Fulf, this is done in [13] (using other coding techniques than
the ones we have used here) and it is plausible that Fulf can be given a ∆1-definition
in I∆0(exp) as well, since the construction mainly involves a number of 0-1-sequences
of predetermined length) then the proof of section 5 should generalise to I∆0(exp) (the
languages differ slightly, but this should not be a problem). This of course also applies
to initial fulfilment which, as far as arithmetic is concerned, seems the more elegant
construction.

As indicated above, these results should also hold for languages other than LA as
long as “recursively axiomatisable theory” is meaningful (so the language cannot be
uncountable, for instance), there are only finitely many function symbols and we have
a hierarchy of formulae such that Sat0 is ∆1-definable. This is, approximately, actually
one of the approaches of [12], which also uses a more set-theoretic framework in general,
which seems more natural for the proofs of section 5. That is, while the ordinary proof
of the Incompleteness Theorem uses logic coded in arithmetic (possibly partly via set
theory as we have done here), the more natural approach to this proof might be to code
logic directly in (weak) set theory. Thus, this take on the proof emphasises that the
incompleteness theorem is applicable to theories which “contains a sufficient amount of
set theory” rather than “a sufficient amount of arithmetic”.

The differences between the approaches of sections 4 and 5, minor though they may
seem, might also merit some comments. First, note that the proof by initial fulfilment
does not seem to involve any kind of self-reference or diagonalisation; the independent

87

sentence expresses properties of the theory it is independent from, not of the sentence
itself or any of its constituents. On the contrary, the proof by (general) fulfilment could
be said to involve at least a weak form of self-reference (or at least an undesirable degree
of impredicativity, though not diagonalisation), as the formula Tr0(s) expresses that
“every true ∆0-formula (with parameters) is fulfilled by s”, among which are, of course,
the ∆0-formulae witnessing that Tr0(s) is ∆1(IΣ1); this is an essential part of the proof.
Thus there seems to be some at least anecdotal evidence of the parole “the nicer the
class of independent sentences, the smaller the class of theories it is applicable to”. This
is also supported by the Paris-Harrington theorem, which has the nicest (concrete and
natural) independent sentence and applies to the smallest class of theories of the proofs
here considered. Likewise, the results of [8] seems to indicate that for PA we could have
used an even simpler definition of initial fulfilment, where each quantifier only increases
the position in the sequence by one. The same thing is suggested by the proof via
indicators constructed from combinatorial principles (see [7, ch. 14])

Concerning indicators, the proof of 4.11 also seems to indicate that the IΣ1-provably
∆1(IΣ1)-function [y(a, b)=s]

(IBpm(s)∧s<b∧[lh(s)=a]∧∀x<aIFbl(s,ax(x))∧
∀t<s(([lh(t)=a]∧IBpm(t))→¬∀x<aIFbl(t,ax(x))))

∨(∀t<b¬([lh(t)=a]∧IBpm(t)∧(∀x<aIFbl(t,ax(x))))∧s=0)

(that is, y(a, b) is the smallest IBpm less than b which has length a and fulfils all of the
first a−1 axioms, if such a thing exists, otherwise 0) is an indicator of T in IΣ1, where
T and ax are as in section 4.

88

References

[1] Warren Goldfarb. Herbrand’s theorem and the incompleteness of arithmetic. Iyyun,
A Jerusalem Philosophical Quaterly, 39:45–64, 1990.

[2] Kurt Gödel. Über formal unentscheidbare sätze der Principia mathematica und
verwandter systeme I. Monatshefte für Mathematik und Physik, 38:173–198, 1931.

[3] Kurt Gödel. On formally undecidable propositions of principia mathematica and re-
lated systems. In Solomon Feferman, editor, Kurt Gödel Collected Works, volume 1,
pages 144–195. Oxford University Press, 1986.

[4] Petr Hájek and Pavel Pudlák. Metamathematics of First-Order Arithmetic. Per-
spectives in Mathematical Logic. Spriger-Verlag, first edition, 1993.

[5] Wilfrid Hodges. Model Theory. Number 42 in Encyclopedia of Mathematics and
its Applications. Cambridge University Press, first edition, 1993.

[6] Thomas Jech. Set Theory. Springer Monographs in Mathematics. Springer, third
edition, 2002.

[7] Richard Kaye. Models of Peano Arithmetic. Number 15 in Oxford Logic Guides.
Oxford University Press, first edition, 1991.

[8] Simon Kochen and Saul Kripke. Non-standard models of Peano arithmetic.
L’Enseignement Mathématique, 28(1–2):211–231, 1982.

[9] Jeff Paris and Leo Harrington. A mathematical incompleteness in Peano arithmetic.
In Jon Barwise, editor, Handbook of Mathematical Logic, volume 90 of Studies in
Logic and the Foundations of Mathematics, chapter D.8, pages 1133–1142. North-
Holland Publishing Company, first edition, 1977.

[10] Hilary Putnam. Nonstandard models and Kripke’s proof of the Gödel theorem.
Notre Dame Journal of Formal Logic, 41(1):53–58, 2000.

[11] Hilary Putnam. After Gödel. Logic Journal of the IGPL, 14(5):745–754, 2006.

[12] Joseph Emerson Quinsey. Some Problems in Logic. PhD thesis, St Catherine’s
College, Oxford, April 1980.

[13] Helmut Schwichtenberg and Stanley S. Wainer. Proofs and Computations. Perspec-
tives in Logic. Cambridge University Press, first edition, 2012.

[14] Saharon Shelah. On logical sentences in PA. In G. Lolli, G. Longo, and A. Marcja,
editors, Logic Colloquium ’82, volume 112 of Studies in Logic and the Foundations
of Mathematics, pages 145–160. Elsevier Science Publishers B.V., 1984.

[15] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in
Mathematical Logic. Springer, first edition, 1999.

89

[16] Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics An Introduc-
tion Volume I, volume 121 of Studies in Logic and the Foundations of Mathematics.
North-Holland, first edition, 1988.

90

