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Abstract

A graph is (2, 1)-colorable if it allows a partition of its vertices into two
classes such that both induce graphs with maximum degree at most one.
A non-(2, 1)-colorable graph is minimal if all proper subgraphs are (2, 1)-
colorable. We prove that such graphs are 2-edge-connected and that every
edge sits in an odd cycle. Furthermore, we show properties of edge cuts
and particular graphs which are no induced subgraphs. We demonstrate
that there are infinitely many minimal non-(2, 1)-colorable graphs, at least
one of order n for all n ≥ 5. Moreover, we present all minimal non-(2, 1)-
colorable graphs of order at most seven. We consider the maximum degree
of minimal non-(2, 1)-colorable graphs and show that it is at least four but
can be arbitrarily large. We prove that the average degree is greater than
8/3 and give sufficient properties for graphs with average degree greater
than 14/5. We conjecture that all minimal non-(2, 1)-colorable graphs fulfill
these properties.





vii

Contents

1 Introduction 1

1.1 Graph Colorings . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Extremal Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 About this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Outline of this Thesis . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 9

3 Structural Properties 11

3.1 Connectivity and Minimal Degree . . . . . . . . . . . . . . . 11

3.2 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Edge Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Unique Violation of (2,1)-Colorability . . . . . . . . . . . . . 18

4 Graphs of Small Order 21

4.1 Graphs with a Central Vertex . . . . . . . . . . . . . . . . . . 21

No Generalization to the Maximum Degree . . . . . . 23

4.2 Graphs with Five Vertices . . . . . . . . . . . . . . . . . . . . 23

4.3 Graphs with Six Vertices . . . . . . . . . . . . . . . . . . . . . 24

4.3.1 Minimal Non-(2,1)-Colorable Graphs of Order Six . 24

4.3.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . 25



viii

4.4 Graphs with Seven Vertices . . . . . . . . . . . . . . . . . . . 27

4.4.1 Minimal Non-(2,1)-Colorable Graphs of Order Seven 27

4.4.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . 29

5 Unbounded Maximum Degree 31

5.1 The Graph Set G∆ . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 The Sets G= and G 6= . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Homo- and Heterochromatic Graphs . . . . . . . . . . . . . . 33

5.4 Minimal Non-(2,1)-Colorability of Graphs in G∆ . . . . . . 34

5.5 Infinity of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Extension of Odd Cycles 37

6.1 Composition of Odd Cycles . . . . . . . . . . . . . . . . . . . 37

6.2 Addition of P3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2.1 Odd Cycle with k Triangles . . . . . . . . . . . . . . . 40

6.2.2 Non-Planar Graphs in G . . . . . . . . . . . . . . . . . 41

6.3 Addition of Building Blocks . . . . . . . . . . . . . . . . . . . 42

6.3.1 Building Blocks . . . . . . . . . . . . . . . . . . . . . . 42

6.3.2 Odd Cycles with Building Blocks . . . . . . . . . . . . 43

6.3.3 Examples of Building Blocks . . . . . . . . . . . . . . 44

6.4 Combination of P3 and Building Blocks . . . . . . . . . . . . 46

6.4.1 Odd Cycles with Triangles and Building Blocks . . . 46

6.4.2 Generalization to 3-Paths and Building Blocks . . . . 48

6.4.3 Paths with 3-Paths and Building Blocks . . . . . . . . 48

6.5 Order of Minimal Non-(2,1)-Colorable Graphs . . . . . . . . 50

7 Average Degree 53



ix

7.1 Coloring of Graphs with n + 1 Edges . . . . . . . . . . . . . 53

7.2 Lower Bound for the Average Degree . . . . . . . . . . . . . 54

7.3 (2,1)-Density of Minimal Graphs . . . . . . . . . . . . . . . . 57

7.4 Conjecture: ad(G) > 14/5 . . . . . . . . . . . . . . . . . . . . 58

7.4.1 Order on the Set of Graphs . . . . . . . . . . . . . . . 59

7.4.2 Flags and Superflags . . . . . . . . . . . . . . . . . . . 60

7.4.3 Open Conjectures . . . . . . . . . . . . . . . . . . . . . 61

7.4.4 Forbidden Subgraphs . . . . . . . . . . . . . . . . . . 63

7.4.5 Proof by Discharging . . . . . . . . . . . . . . . . . . . 67

7.5 Remark on “On 1-Improper 2-Coloring of Sparse Graphs” . 73

7.5.1 On the Partial Order . . . . . . . . . . . . . . . . . . . 73

7.5.2 Lemma 25 . . . . . . . . . . . . . . . . . . . . . . . . . 75

A Illustration of Lemma 5 77

List of Symbols 79

Bibliography 82





1

Chapter 1

Introduction

Is it possible to dye the mandala in Figure 1.1 (a) in four colors such that
no adjacent regions have the same color? Can the organizer of a conference
about cultural diversity invite exactly one speaker per regarded country if
they have scheduled various talks, each comparing two of the countries and
given by the corresponding two speakers, and no speach shall be given by
speakers of the same gender? What is the minimum amount of time, sports
classes of one hour need in total, if some of them require the same room?

(a) Mandala (b) Corresponding graph

FIGURE 1.1: Mandala

1.1 Graph Colorings

All these questions can be answered by coloring graphs. To see that, we
first need to cast our examples into a graph setting. In the mandala, two
regions shall not get the same color if they are neighboring. We can illus-
trate the mandala by a planar graph in such a way that vertices represent
regions and edges adjacencies between them, see Figure 1.1 (b). No two ad-
jacent vertices shall be colored alike. Hence, our question asks if the graph
is 4-colorable.
Regarding the second question, consider a graph with the countries dis-
cussed in the conference as vertices. We join two vertices if and only if
there is a speech about the two corresponding countries. We color a vertex
in one color if the representative of this country is female and in the other
color if he is male. Our question is answered in the affirmative if and only
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if there is a coloring such that every edge is dichromatic.
Two sports classes cannot take place at the same time if and only if they
require the same room. As in the other examples, we can also map this into
the framework of graph coloring. In fact, we can think of each sports class
being represented by a vertex in the graph and connect them if their room
is the same. In a proper coloring of this graph, each color represents a time
slot. Hence, we need as many hours for our schedule as we need colors in
our graph.

But how many colors do we actually need? Of course, this number is
bounded from above by the number of vertices in the graph (i.e., in our
sport example the total number of sports classes). The more interesting
question is that of the minimum number of colors (or hours, in our exam-
ple) that are required. This number is called the chromatic number. For k ≥ 3,
calculating the chromatic number of a graph is NP-complete, see, e.g., [14].
One can verify whether a given coloring is valid in quadratic running time
by checking each edge. A polynomial time reduction from 3-SAT gives the
NP-hardness. The best known exact algorithm applies inclusion-exclusion
and zeta transformation. It decides whether a graph is k-colorable (we call
it also k-partite) in running time O(2nn), see [4]. The problem is easier to
solve for 2-colorability. A graph is 2-colorable (or bipartite) if and only if it
contains no odd cycle, see, e.g., [9]. This can be checked in linear time using
breadth-first search or depth-first search.
A fast procedure to color a graph with a bounded number of colors is fol-
lowing greedy algorithm: regard all vertices in a fixed order and pick for
every vertex the first color which is not already used in its neighborhood.
A vertex of degree d receives at most color d + 1. Therefore, the algorithm
does not need more than ∆ + 1 colors in total, where ∆ denotes the maxi-
mum degree over all vertices. In complete graphs, we need a different color
for each vertex and in odd cycles, we need three colors. It follows in both
cases that the chromatic number is ∆ + 1. Brooks’ Theorem [6] shows that
the chromatic number of any other connected graph is at most the maxi-
mum degree.

The probably best-known theorem in the field of graph theory is the Four
Color Theorem. Its statement was already conjectured in 1852 by Francis
Guthrie but remained open for more than hundred years. Guthrie asked
if four or less colors are sufficient to color the countries of any map such
that no neighboring countries have the same color. We saw above, in the
example of the mandala, that this is equivalent to the question if any planar
graph can be 4-colored. After a sequence of proof attempts, the conjecture
was finally shown by Appel and Haken in 1976 [2, 3]. This was the first ma-
jor proof using the help of computers and hence was initially not accepted
by all mathematicians. Figure 1.2 shows a 4-coloring of our mandala.
From this theorem, we can derive that any outerplanar graph is 3-colorable.
A graph is outerplanar if it has a planar drawing such that all vertices be-
long to the outer face. To see the 3-colorability, we add one vertex to the
outerplanar graph and join it to every other vertex. The new vertex must
have a different color from any vertex in the outerplanar graph. Thus, this
graph requires one color more than the outerplanar graph. The graph is
still planar as we can draw the new vertex in the outer face. Therefore,
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it needs at most four colors and the outerplanar graph cannot need more
than three colors. Moreover, Grötzsch [12] proved already in 1959 that also
planar graphs without triangles as subgraphs are 3-partite.

FIGURE 1.2: 4-Colored mandala

Referring back to the conference about different cultures, what happens
with our graph if the speakers accept to give one gender-equal talk? What
happens in the case of scheduling sports classes, if the rooms in the gym
have sufficient space for two or more contemporaneous courses?
In terms of the conference, each vertex might sit in one monochromatic
edge. The fitness center can offer more courses per room at once. Vertices
of the same color represent simoultaneous courses. Hence, any vertex can
have j same-colored neighbors if the rooms are big enough for j+1 courses.

We characterize a coloring as defective or j-improper, if it is such that ev-
ery vertex has at most j monochromatic edges. We refer to j-improper k-
colorings as (k, j)-colorings. The minimum number k such that a graph G
is (k, j)-colorable is called its j-defective chromatic number χj(G). Defective
colorings were introduced almost simoultaneously by Andrews and Jacob-
son [1], Harary and Jones [13] and Cowen, Cowen and Woodall [7]. They
are defined for all integers j ≥ 0 and k ≥ 1. Hence, proper colorings are the
special case of defective colorings where j = 0. We denote χ0(G) by χ(G).
The problem (k, j)-COLORING asks whether a given graph is (k, j)-colorable.
As previously seen, (k, 0)-COLORING is NP-complete for k ≥ 3 and qua-
dratic for k = 2. Also (k, j)-COLORING is in NP since checking the neigh-
bors of each vertices in a colored graph can be done in quadratic running
time. In addition, Cowen, Goddard and Jesurum [8] showed by a reduc-
tion from (k, 0)-COLORING that it is NP-hard to determine whether a graph
is (k, j)-colorable for all k ≥ 3 and j ≥ 1. Furthermore, they proved the
NP-completeness of (2, 1)-COLORABILITY for graphs of maximum degree
four and for planar graphs of maximum degree at most five by means of
polynomial time reduction from 3-SAT. This problem is reducable to (2, j)-
COLORABILITY and to (3, 1)-COLORABILITY for planar graphs for all j ≥ 1.
It is especially interesting to see that (2, j)-COLORING is fast for j = 0 but
cannot be solved efficiently for all j ≥ 1.
We saw by dint of the greedy algorithm that the chromatic number is boun-
ded by the maximum degree ∆. Also the defective chromatic number is
bounded in terms of the maximum degree. Gerencsér [10] showed for
1-improper colorings, that any graph G with maximum degree ∆ fulfills
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χ1(G) ≤ b∆/2c+ 1. This result was extended by Lovász [16] to (k, b∆/kc)-
colorability for all k ≥ 1.
Applying the notation of defective colorings, the Four Color Theorem states
that planar graphs are (4, 0)-colorable. Cowen, Cowen and Woodall [7]
proved that planar graphs are moreover (3, 2)-colorable and that outerpla-
nar graphs are (2, 2)-colorable. Planar graphs even allow a (3, 2)-coloring
without monochromatic cycles, i.e., where all monochromatic connected
components are paths, as shown by Poh [17] and Goddard [11].

Defective colorings are introduced to allow monochromatic star graphs with
at most j leaves. In our example from above, where sports classes are sched-
uled, this would correspond to permitting j + 1 concurrent classes in one
room. In the graph setting, these classes induce not only a monochromatic
star but even a monochromatic clique (a complete subgraph). Hence, an op-
timal schedule has at most k hours if we can color the graph in k colors
without a monochromatic clique of order j + 2. Let us apply this idea to an
arbitrary graph F . A coloring without a monochromatic copy of F is called
an F -coloring. The defective colorings are the special case of F -colorings
where F is the star of order j + 2.
The study of F -colorings is amongst others motivated by Ramsey theory.
The classical problem in this field asks for the minimum number of people
one must invite such that at least r will know each other or at least s will
not know each other. Let us map this question onto the following graph:
every person is represented by a vertex and every two vertices are adjacent.
Now, let us color the edges of this graph. The edge between two persons
receives one color if the persons know each other and the other color if
not. An r-clique of the first color represents r persons which know each
other and an s-clique of the second color represents s persons which do not
know each other. Therefore, our question asks for the minimum size of a
complete graph such that any coloring of its edges in two colors contains ei-
ther an r-clique of one color or an s-clique of the other. Ramsey [18] proved
the existence of such a minimum size for any two integers r and s. There
are various generalizations of the classical problem within Ramsey theory.
They treat for example higher numbers of colors, forbidden monochromatic
subgraphs (w.r.t. the edge coloring) which are no cliques or sets of forbid-
den monochromatic subgraphs, e.g., the set of all cycles.

1.2 Extremal Graphs

We saw above that there is a fast algorithm deciding whether a graph is
2-colorable or not. This algorithm employs the fact that a graph cannot be
2-colored if and only if it contains an odd cycle as a subgraph. We refer to a
graph as minimal with respect to a certain property if it fulfills this property
but no proper subgraph does. Similarly, a graph is maximal w.r.t. a property
if the graph itself has the property but no proper supergraph does. Con-
sider the set of all graphs together with the subgraph relation. This is a
partially ordered set with the empty graph as its least element and without
any maximal elements. Both, the set of minimal and the set of maximal



1.3. About this Thesis 5

graphs w.r.t. some property form an antichain. Consider a property which
is closed under taking subgraphs and the minimal graphs which do not
fulfill it. Also these graphs form an antichain in the partially ordered set.
As the set is closed downwards, precisely the graphs in and above this an-
tichain do not fulfill the property. With these notations, the odd cycles are
the minimal non-2-colorable graphs. They form an antichain and precisely
their supergraphs are not bipartite. Also defective colorablility is closed un-
der taking subgraphs. Therefore, the minimal non-(k, j)-colorable graphs
form an antichain for any k and j. Every non-(k, j)-colorable graph con-
tains at least one of them.

How do the maximal (k, j)-colorable graphs look like? Considering this
question, we see that such graphs do not exist. We could always add an
isolated vertex and the graph would remain (k, j)-colorable. We might in-
stead ask for the graphs where we can not add an edge without loosing
(k, j)-colorability. In other words, we only consider graphs of the same or-
der. Hence, this partially ordered set is bounded from above. We call a
graph edge-maximal w.r.t. some property if the graph itself fulfills this prop-
erty but no proper supergraph of the same order does. It is well-known
that the edge-maximal k-colorable graphs are the complete k-partite graphs.
These are the graphs with a vertex partition into k classes such that any two
vertices are adjacent if and only if they are in different partition classes, see,
e.g., [9].
We want to extend this idea to (2, 1)-colorability. Let us partition the ver-
tices into two classes, one per color. As our graph shall be maximal, we join
any two vertices, which are not in the same class, by an edge. Within the
partition classes, the degree is bounded by one. To obtain maximality, both
classes contain a disjoint union of 2-cliques and possibly one additional iso-
lated vertex. Figure 1.3 illustrates these graphs.

...

...

FIGURE 1.3: Edge-maximal (2, 1)-colorable graphs

1.3 About this Thesis

We studied minimal non-(2, 0)-colorable graphs, maximal k-colorable graphs
and maximal (2, 1)-colorable graphs. This leads to the question, how min-
imal non-(2, 1)-colorable graphs look like. We will henceforth refer to the
class of all these graphs as G. We saw that (2, 0)-COLORING can be solved in
quadratic running time, but already (2, 1)-COLORING is NP-complete, even
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for bounded maximum degree and planar graphs. This indicates that G
might be intricate and encourages its analysis.

A second motivation to study minimal non-(2, 1)-colorable graphs arises
from an article from Borodin, Kostochka and Yancey [5], published in 2013.
The authors showed that all non-(2, 1)-colorable graphs have at least one
subgraph with average degree greater than 14/5. Already in 1994, Kurek
and Riciński [15] proved the existence of a subgraph with average degree
at least 8/3. A non-(2, 1)-colorable graph contains a subgraph G which be-
longs to G. We wondered if G is one of the subgraphs with average degree
at least 8/3. Is it even possible to bound the average degree of G by 14/5?
These questions inspired us to analyze the average degree of minimal non-
(2, 1)-colorable graphs.

1.4 Our Results

The thesis at hand proves various graph invariants fulfilled by the graphs
in G. These are local restrictions, e.g., that no bivalent vertices are adja-
cent, and global properties, such as 2-edge-connectivity. One main result
improves this conclusion and shows that every edge even sits in an odd
cycle, see Theorem 7. Moreover, we present subsets of G. First, we display
all graphs with at most seven vertices. Secondly, we demonstrate infinite
subsets of G. The existence of such subsets directly implies the infinity of
|G| which we also conclude from the NP-completeness of (2, 1)-COLORING

assuming P 6= NP.
It follows directly from the previously mentioned results of Gerencsér and
Lovász, that the maximum degree of minimal non-(2, 1)-colorable graphs is
at least four. We display an infinite subset of G which contains only graphs
of maximum degree four. On the other hand, we employ an infinite subset
of G to show that the maximum degree of a minimal non-(2, 1)-colorable
graph can be arbitrarily large, see Theorem 5. Some infinite subsets belong
entirely to the planar graphs. Nevertheless, there are non-planar graphs in
G, see Theorem 9. Furthermore, we show that there is a G ∈ G of order n
for all n ≥ 5, see Theorem 13.
In a final step, we study the average degree of minimal non-(2, 1)-colorable
graphs. In Theorem 14, we show that the graphs in G have average de-
gree strictly greater than 8/3. As mentioned above, a recent publication
of Borodin, Kostochka and Yancey raised the question if this lower bound
can be improved to 14/5. We identified sufficient properties for an average
degree greater than 14/5, see Theorem 15. We analyze ifG ∈ G fulfills them.

1.5 Outline of this Thesis

In Chapter 2, we introduce the notations and definitions used in this work.
In Chapter 3, we characterize the structure of the graphs in G. This includes
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basic properties about connectivity and vertices of small degree and restric-
tions for their subgraphs. Chapter 4 presents all graphs in G which have
less than eight vertices and proves the completeness of this set. In Chapter
5, we prove that G has unbounded maximum degree by presenting a sub-
set of G with this property. In Chapter 6, we study odd cycles. We prove
that any edge in G ∈ G belongs to an odd cycle and present sets of mini-
mal non-(2, 1)-colorable graphs with one central odd cycle. In Chapter 7,
we investigate the infimum for the average degree of G. We show that this
infimum is at least 8/3 and at most 14/5. In Section 7.4, we conjecture that
the infimum is 14/5 and reduce this conjecture to weaker statements.
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Chapter 2

Preliminaries

We denote the vertex set of a graph G by V (G) and the edge set by E(G).
The edge {x, y} is usually written as xy. The function n maps a graph onto
its order and the function m onto its number of edges.

Let V ′ be a vertex subset and v a vertex, E′ an edge subset and e an edge
of a graph G = (V,E). The graph G[V ′] is the subgraph of G induced by
V ′. The graph G[E′] contains the edges in E′ and all vertices which belong
to one of these edges. We write G − V ′ for the graph G[V \V ′] and G − G′
for G− V (G′). The graph G−E′ denotes (V,E\E′) and for a set F of pairs
of vertices in G, G + F is the graph (G,E ∪ F ). In case of singletons, we
shorten G − v := G − {v}, G − e := G − {e} and G + f := G + {f}. For
e = vw, G− {v, w}means G− v − w, not G− e.

The complement graph of G is G := (V,E) where two vertices are adjacent if
and only if they are not adjacent in G. Let G1 = (V1, E1) and G2 = (V2, E2)
be graphs. Their union is G1 ∪G2 := (V1 ∪V2, E1 ∪E2). If V1 ∩V2 = ∅, this is
a disjoint union, denoted by G1∪̇G2. Their intersection is defined as G1 ∩G2

:= (V1∩V2, E1∩E2). The union of two vertex-disjoint graphs together with
edges between any two vertices v1 and v2 such that v1 ∈ V1 and v2 ∈ V2 is
called graph join G1 +G2.

Following special types of graphs play an important role in this thesis:
A k-path Pk is a graph with k vertices v1, . . . , vk and edges vivi+1 for all

1 ≤ i ≤ k − 1. We write Pk = v1v2 . . . vk. The length of the path Pk is k − 1,
the number of its edges. We call a path odd if its length is odd and even
otherwise. A path which is a subgraph of Pk is called subpath of Pk.

A k-cycle Ck is the 2-regular connected graph with k vertices. We write
Ck = v1v2 . . . vk. For an odd number k, Ck is called odd and for an even k,
it is called even. A graph is called cyclic if it contains a cycle as a subgraph
and acyclic otherwise.

A k-clique Kk is the graph on k vertices where all pairs of vertices are
adjacent. We call this graph complete.

A complete bipartite graph Kn1,n2 has a partition of its vertex set into two
classes of size n1 and n2 such that two vertices are adjacent if and only if
they belong to the different classes.
A k-star Sk is the tree on k vertices with one central vertex of degree k − 1.
A k-wheel Wk is the graph join of a cycle Ck−1 and a graph of order 1.
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(a) P6 (b) C6 (c) K6

(d) K4,2 (e) S6 (f) W6

FIGURE 2.1: Special graphs of order six

The degree dG(v) of a vertex is the size of its neighborhood NG(v). For a
subgraph G′ of G, dG′(v) denotes the size of NG′(v) := NG(v) ∩ V (G′). The
set of neighbors of V ′ ⊆ V in V \V ′ is NG(V ′). Similarly, NG(G′) are the
neighbors of V (G′) outside G′. If there is no chance for confusion, we omit
the index G. The maximum degree of a graph is denoted by ∆(G) and the
minimum degree by δ(G). The average degree is ad(G) := 2m(G)/n(G).
The maximum average degree over all subgraphs H ⊆ G is denoted by
mad(G). A vertex of degree zero is called isolated and a vertex of degree one
is a leaf.

For any vertex coloring c of G, we define the impropriety of a vertex as the
number of its monochromatic edges and the impropriety of c as the max-
imum over all improprieties of vertices in G. Let G′ be a subgraph of G.
We call a (2, 1)-coloring c′ of G′ extendable to G if there is a (2, 1)-coloring
c of G such that c|G′ = c′. The terms “Coloring” and “colorability” are ab-
breviations for “(2, 1)-coloring” and “(2, 1)-colorability” unless otherwise
stated.
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Chapter 3

Structural Properties

In this chapter, we consider the structure of minimal non-(k, j)-colorable
graphs, primarily the case j = 1 and k = 2. The main points of interest are
connectivity results and induced subgraphs which cannot occur.

3.1 Connectivity and Minimal Degree

Lemma 1. All minimal non-(k, j)-colorable graphs are connected.

Proof. A non-(k, j)-colorable graph contains a connected component which
is non-(k, j)-colorable. If the graph were disconnected, this component
were a proper subgraph.

Lemma 2. Let G be minimal non-(k, j)-colorable for a k ≥ 2. Then G has no
separating edge, i.e., deleting any edge does not increase the number of components.

Proof. For a contradiction, assume that G contains a separating edge e =
vw. The graph G− e has a (k, j)-coloring c since G is minimal. The vertices
v and w are not connected in G − e. Thus, we can assume c(v) 6= c(w). It
follows that c is also a (k, j)-coloring of G which leads to contradiction.

An edge which is not separating belongs to a cycle. Together with Lemma
1, this gives following results:

Corollary 1. Minimal non-(k, j)-colorable graphs are 2-edge-connected for k ≥ 2,
i.e., removing any edge does not distroy the connectivity.

Corollary 2. For all k ≥ 2, every vertex in a minimal non-(k, j)-colorable graph
has degree at least two.

Corollary 2 also follows from the following stronger result:

Theorem 1. The minimal degree δ(G) of a minimal non-(k, j)-colorable graph
with k ≥ 2 is at least k.
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Proof. Assume that G contains a vertex v with at most k − 1 neighbors. As
G is minimal, G − v has a (k, j)-coloring. In this coloring, one color is not
used in the neighborhood of v. Coloring v in this color and all other vertices
as in the coloring of G− v gives a (k, j)-coloring of G.

3.2 Configurations

In this section, we consider local structures which cannot occur in minimal
non-(2, 1)-colorable graphs.

Definition 1. A configuration in G is a triple (H ,deg,VH ) such that H is
an induced subgraph of G, the configuration subgraph. Moreover, VH is a
vertex subset of H and deg a function assigning a non-negative integer to
each vertex in V (H)\VH . Vertices in VH fulfill dG(v) ≥ dH(v), we call these
vertices unbounded. Vertices in V (H)\VH have degree dG(v) = deg(v), we
call them bounded. We define kv as deg(v)− dH(v) for all v ∈ V (H)\VH . For
a configuration C in G, we denote by G\C the graph G− (H − VH), where
C is deleted.

The illustration of configurations is as follows: we draw the subgraph H
together with kv additional vertices for each v ∈ V (H)\VH . These vertices
are drawn distinct and non-adjacent even if bounded vertices might have
common neighbors outside H or these neighbors can be connected by an
edge. The additional vertices are joined to v by dashed edges. With three
short and thin edges, we symbolize that a vertex can have further neighbors
outside the configuration. An example is shown in Figure 3.1. The picture
illustrates the configuration

(({v, x, y, z}, {vx, vy, vz, yz}), {deg : v 7→ 3, x 7→ 2, y 7→ 2}, {z}) .

x

y
z

v

FIGURE 3.1: Example of a configuration

A configuration is a set of induced subgraphs with specified vertices which
are allowed to have neighbors outside the subgraph. In this section, we
show local properties of minimal non-(2, 1)-colorable graphs. These prop-
erties can be described as configurations which do not appear.

Lemma 3. Every edge in a minimal non-(2, 1)-colorable graph contains a vertex
of degree at least 3.

This equals the fact that the configurations (K2, deg, ∅) with deg(v) ≤ 2 ∀v ∈
V (K2) do not occur.
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Proof. Let e = vw be an edge in a graph G ∈ G. We know that v and w have
degree at least two, see Corollary 2. Suppose that both vertices are bivalent.
The graph G′ := G− {v, w} is a proper subgraph of G and hence permits a
(2, 1)-coloring c′. Coloring all vertices in V \{v, w} as in c′ and the vertices v
and w in the other color from their neighbor in G′ gives a (2, 1)-coloring of
G. This contradicts the fact that G is non-(2, 1)-colorable.

Lemma 4. In a minimal non-(2, 1)-colorable graph, every vertex of degree three
has a neighbor of degree at least three.

Proof. Assume for a contradiction that there is a vertex v in G ∈ G with
N(v) = {v1, v2, v3} and d(vi) ≤ 2 for all i ∈ {1, 2, 3}. By Corollary 2, d(vi) =
2. Let wi be the second neighbor of vi. By minimality, the graph G − v has
a (2, 1)-coloring c. We can assume w.l.o.g. that c(vi) 6= c(wi) because the
vertices vi are leaves in G − v. One color occurs at most once in NG(v).
Coloring v in this color gives a 1-improper 2-coloring of G.

FIGURE 3.2: Configuration which does not appear in mini-
mal non-(2, 1)-colorable graphs

Less formally, we can say that a trivalent vertex is not surrounded by bi-
valent vertices. This statement can be extended to bipartite graphs. Kurek
and Ruciński showed the weaker extension to trees, see Lemma 3 in [15].

Lemma 5. Let G be a minimal non-(2, 1)-colorable graph and Vd the set of all d-
valent vertices. Every component ofG−V2 contains either an odd cycle or a vertex
of degree at least four.

Proof. For a contradiction, assume that there is a bipartite component G′ of
G−V2 with V (G′) ⊆ V3. Let V ′2 be the set of all vertices of degree two whose
neighbors are both in V (G′). The graph G is minimal non-(2, 1)-colorable.
Thus, there is a (2, 1)-coloring c of the graph G′′ := G − G′ − V ′2 . It holds
dG′′(v) = 1 for the vertices v in N(G′)\V ′2 . We can assume w.l.o.g. that their
edges are dichromatic in c.
Let Ĝ be the graph which results from G if we replace every vertex v in V ′2
by two leaves such that each neighbor of v is adjacent to one of the leaves.
Consider following coloring ĉ of Ĝ: leaves receive color 1 and the other
vertices in Ĝ−G′ the same color as in c. We extend this coloring successively
to a supergraph Ĝ′ of Ĝ−G′. All vertices inG′, which have two neighbors of
the same color, receive the other color. Let Ĝ′ be the maximal graph where
this is possible.
All vertices v ∈ G′ have three neighbors in Ĝ. Hence, if we color v, at most
one neighbor is not colored yet. We see by induction, that, except for the
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last vertex, the third neighbor is always uncolored and therefore, no vertex
in V (G′) ∩ V (Ĝ′) is in a monochromatic edge. Induction also gives that the
uncolored subgraph stays connected. If Ĝ′ = Ĝ, i.e., if we color the entire
subgraph G′ by this procedure, the last vertex has impropriety at most one.
Hence, this is a (2, 1)-coloring of Ĝ.
If Ĝ′ 6= Ĝ, no vertex in V (G′) ∩ V (Ĝ′) is in a monochromatic edge. The
neighborhood of the uncolored subgraph Ĝ′′ = Ĝ − Ĝ′ consist of leaves,
vertices in N(G′)\V ′2 and vertices in V (G′) ∩ V (Ĝ′). All these vertices are
not in monochromatic edges. Moreover, a vertex in Ĝ′′ is not adjacent to two
vertices of the same color as it would belong to Ĝ′ in this case. Thus, if we
extend ĉ by coloring the vertices in Ĝ′′ properly, the whole graph contains
no monochromatic P3 and ĉ is a (2, 1)-coloring of Ĝ. This is possible since
Ĝ′′ ⊆ G′ is bipartite.
The following derives a (2, 1)-coloring of G from any (2, 1)-coloring of Ĝ
where all leaves have color 1. Color G− V ′2 as in Ĝ. In Ĝ, v ∈ V ′2 is replaced
by leaves of color 1. As these leaves are not in Ĝ, we can color v in color 1 if
not v and its two neighbors would form a P3 of color 1. If so, both neighbors
have color 1 and we can give color 2 to v. This is a 1-improper 2-coloring of
G und thus, gives the sought contradiction.

Figure A.1 in Appendix A illustrates this coloring.

We can strengthen this result as follows:

Lemma 6. Let G and Vd be as in Lemma 5. If a component in G − V2 consists
only of vertices in V3, it contains at least two odd cycles.

Proof. Assume that there is such a componentG′ with exactly one odd cycle
C = v1v2 . . . vk. Let Ĝ be as in the proof of Lemma 5. We construct a (2, 1)-
coloring ĉ of Ĝ in a similar manner as above. Again, we give color 1 to the
leaves and (2, 1)-color the other vertices in Ĝ−G′ such that no neighbor of
G′ is in a monochromatic edge. We color a supergraph Ĝ′ of Ĝ − G′ such
that every vertex with two neighbors in one color gets the other color and
choose Ĝ′ maximal.
The graph Ĝ′ does not contain the odd cycle C as each vi has only one
neighbor outside C. We call this neighbor wi. Let us color Ĝ′′ := Ĝ− Ĝ′ as
follows: if all wi are in Ĝ′, there is a j ≤ k − 1 such that ĉ(wj) = ĉ(wj+1).
Color vj and vj+1 in the other color from wj . Otherwise, let wj be a vertex
which does not belong to Ĝ′. If wj+1 is in Ĝ′, color vj and vj+1 in the other
color from wj+1. If wj+1 is not in Ĝ′, color vj and vj+1 in color 1. The graph
Ĝ′′ − vjvj+1 is bipartite. We 2-color it properly, extending the coloring of vj
and vj+1.
This coloring ĉ of Ĝ has no monochromatic P3 in the subgraphs Ĝ′ and Ĝ′′.
Consider an edge xy with x ∈ V (Ĝ′) and y ∈ V (Ĝ′′). The edge vjvj+1 is
the only monochromatic edge in Ĝ′′. If y ∈ {vj , vj+1}, x is its neighbor
outside the cycle. We see that y received the other color from x. Similarly
to the proof above, no vertex in N

Ĝ
(Ĝ′′) is in a monochromatic edge. As
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x ∈ N
Ĝ

(Ĝ′′), the coloring ĉ is a (2, 1)-coloring of Ĝ. We can construct a
(2, 1)-coloring of G as in the proof of Lemma 5.

3.3 Edge Cuts

Definition 2. An edge cut of a graph G is a set of edges E′ ⊆ E such that
G − E′ is disconnected. Edge-connectivity λ(G) is the minimum size of an
edge cut ofG. We call edges inE′ cut edges and their vertices edge cut vertices.

Let G be a minimal non-(2, 1)-colorable graph. We know from Lemma 2,
that G has no separating edge and thus, λ(G) ≥ 2.

First, we treat the case λ(G) = 2. Let E′ = {e1, e2} be an edge cut of G and
Gx and Gy the components of G − E′, the cut sets. The subgraphs Gx and
Gy are connected. Otherwise, either G were disconnected or both cut edges
were separating. Let ei = xiyi with xi ∈ V (Gx) and yi ∈ V (Gy).

x1

x2

y1

y2

Gx Gy

FIGURE 3.3: Graph with an edge cut of size two

Definition 3. Let G be a (2, 1)-colorable graph with specified vertices x1

and x2. We call G enforced same-colored w.r.t. x1 and x2 if c(x1) = c(x2) in any
(2, 1)-coloring of G and enforced different-colored w.r.t. x1 and x2 if c(x1) 6=
c(x2) in any (2, 1)-coloring of G.

Lemma 7. It holds w.l.o.g., that the subgraph Gx is enforced same-colored w.r.t.
x1 and x2 and the subgraph Gy is enforced different-colored w.r.t. y1 and y2.

Proof. Suppose that both cut sets admit a coloring where the edge cut ver-
tices have the same color. We call these colorings cx and cy. As the colors
are symmetric, we can assume cx(x1) = cx(x2) = 1 and cy(y1) = cy(y2) = 2.
Then cx ∪ cy is a (2, 1)-coloring of G. In a similar way, let both subgraphs
have a (2, 1)-coloring with different-colored edge cut vertices, say c′x and
c′y. Then we can assume c′x(xi) 6= c′y(yi) for both cut edges ei and c′x ∪ c′y is a
(2, 1)-coloring of G. As both components are (2, 1)-colorable, the symmetry
of Gx and Gy gives the lemma.

Remark 1. The case x1 = x2 is possible.

Remark 2. Lemma 7 holds for all non-(2, 1)-colorable graphs with an edge
cut of size two if the cut sets are (2, 1)-colorable.

Corollary 3. The cut sets contain at least five vertices.
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Proof. The 4-clique is (2, 1)-colorable and neither enforced same-colored
nor enforced different-colored w.r.t. x1 and x2 for any two vertices x1 and
x2 in K4. Every graph with less than five vertices is a subgraph of K4 and
thus, also fulfills this property.

We can conclude the following lemma from this corollary:

Lemma 8. Let v and w be adjacent vertices of degree three. Then all vertices in
N(v) ∩N(w) have degree greater than two.

Proof. Let N(v) = {w, x, y} and X be the set of bivalent vertices in N(v) ∩
N(w). We assume for a contradiction that X 6= ∅. If X = {x, y}, the connec-
tivity of G gives V (G) = {v, w, x, y}. Since this graph is (2, 1)-colorable, we
can assume X = {x}. Let z be the other neighbor of w. The edges vy and
wz form an edge cut of G such that one cut set a 3-clique. This contradicts
Corollary 3.

Figure 3.4 shows (2, 1)-colorings of the configuration with X = {x}. One
of them colors the vertices v and w in the same color and one in different
colors. We call this configuration C ′1.

w

v

x

y

z w

x

vy

z

FIGURE 3.4: Configuration C ′1

Now, consider a graph H with an edge cut E′ of size two. We denote the
cut edges as in Lemma 7 and the cut sets by Hx and Hy. Let Hx be enforced
same-colored w.r.t. x1 and x2 and Hy be enforced different-colored w.r.t. y1

and y2. Furthermore, let both cut sets are minimal with this property, i.e.,
any proper subgraphs of Hx admits a (2, 1)-coloring c such that c(x1) 6=
c(x2) and similarly for Hy.

Lemma 9. The graph H is minimal non-(2, 1)-colorable iff in any (2, 1)-coloring
of H − E′, at least one vertex of each cut edge is in a monochromatic edge.

This is equivalent to the fact that, either in every coloring of one cut set, both
edge cut vertices are in monochromatic edges, or, that for an i ∈ {1, 2}, the
vertices xi and y3−i are in monochromatic edges in every coloring of the
entire graph H − E′.

Proof. Assume that there is a (2, 1)-coloring of H . As Hx is enforced same-
colored w.r.t. x1 and x2 and Hy is enforced different-colored w.r.t. y1 and y2,
one cut edge is monochromatic and thus, in a monochromatic P3. We want
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to show that H is minimal, i.e., that any proper subgraph of H is (2, 1)-
colorable. As (2, 1)-colorability is closed under taking subgraphs, it is suffi-
cient to show this for all maximal proper subgraphs. These are the graphs
in {H − e | e ∈ E(G)}. First, let e be an edge in one of the components,
say w.l.o.g. e ∈ E(Hx). The graph Hx is minimal enforced same-colored
w.r.t. x1 and x2. Thus, Hx− e is neither enforced same-colored nor enforced
different-colored w.r.t. x1 and x2. By Remark 2, the graph H − e is (2, 1)-
colorable. Now, consider H − ei for i ∈ {1, 2}. In this graph, the cut edge
e3−i is a separating edge and we can (2, 1)-color Hx and Hy such that this
edge is dichromatic.
Conversely, assume that there is a (2, 1)-coloring c of H − E′ such that
w.l.o.g. x1 and y1 are in no monochromatic edge. If c is no (2, 1)-coloring of
H , the edge e2 belongs to a monochromatic P3. Interchanging colors in Hy

leads to c(x2) 6= c(y2) and thus to a (2, 1)-coloring of H .

Remark 3. Let E′ = {e1, . . . , el} be an edge cut of size l ∈ N with ei = xiyi
for all i ≤ l. In this case, the cut sets Gx and Gy might be disconnected. It
follows from the same arguments that there are no (2, 1)-colorings cx and
cy of Gx and Gy such that cx(xi) = cy(yi) ∀i ≤ l or cx(xi) 6= cy(yi) ∀i ≤ l.
Remark 4. Lemma 7 and Remark 3 hold for any defective 2-coloring: if the
cut sets could be (2, j)-colored such that all cut edges were dichromatic, no
cut edge were in a monochromatic Sj+1 and we had a (2, j)-coloring of G.

We apply our results to forbid certain configurations in minimal non-(2, 1)-
colorable graphs.

Corollary 4. LetC be a configuration with VH = ∅ and kv ≤ 1 for any vertex v in
H . If C admits a (2, 1)-coloring for any partition of the vertices with kv = 1 into
two color classes, then C does not occur in a minimal non-(2, 1)-colorable graph.

Proof. In a configuration without unbounded vertices, the dashed edges
form an edge cut. The vertices of H are in the edge cut iff kv ≥ 1. In C, all
these vertices belong to exactly one cut edge. Any 2-coloring of the edge
cut vertices is extendable to C. A graph G ∈ G does not contain C because
the subgraph G\C were (2, 1)-colorable and we could extend this to G by a
(2, 1)-coloring of C where each cut edge is dichromatic.

Figure 3.5 displays six configurations C ′i = (Hi, degi, VHi) which cannot oc-
cur in any minimal non-(2, 1)-colorable graph. The picture shows that these
configurations fulfill the conditions of Corollary 4. This proves Lemma 10.
We use the lemma in Chapter 7.4.

Lemma 10. A minimal non-(2, 1)-colorable graph does not contain the configura-
tions C ′2, C

′
3, C

′
4, C

′
5, C

′
6 and C ′7 shown in Figure 3.5.
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(a) Configuration C′2

(b) Configuration C′3

(c) Configuration C′4

(d) Configuration C′5

(e) Configuration C′6

(f) Configuration C′7

FIGURE 3.5: Forbidden configurations

3.4 Unique Violation of (2,1)-Colorability

Let G be a graph in G. We show that we can 2-color its vertices such that
only one path violates the requirements of a (2, 1)-coloring.

Lemma 11. Every minimal non-(2, 1)-colorable graph admits a 2-coloring of its
vertices with exactly one monochromatic subgraph with more than two vertices.
This subgraph is a path of length at most three.
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Proof. LetG be a minimal non-(2, 1)-colorable graph with an arbitrary edge
e = vw. By minimality, G−e has a (2, 1)-coloring. If we color the vertices of
G analogously, every monochromatic connected subgraph of order at least
three contains e. Thus, there is only one such subgraph. Both, v andw, have
at most one neighbor of the same color and this neighbor has no further
monochromatic edges. Hence, the unique monochromatic subgraph with
at least three vertices is a P3 or a P4.

Lemma 12. A minimal non-(2, 1)-colorable graph G with δ(G) ≤ 3 permits a
2-coloring such that only one vertex has impropriety two.

Proof. Let v be a vertex with d(v) ≤ 3. By minimality, the graphG−v admits
a (2, 1)-coloring such that one color occurs only once inNG(v). Giving v this
color leads to a coloring which fulfills the requirements.
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Chapter 4

Graphs of Small Order

We saw different properties of the graphs in G. Some of these graphs are
presented in this chapter. It displays all minimal non-(2, 1)-colorable graphs
with at most seven vertices.

4.1 Graphs with a Central Vertex

Definition 4. Let G be a graph with a vertex v of degree n(G) − 1. The
vertex v is called central vertex.

Lemma 13. Consider a graph G with a central vertex v. The graph G is (2, 1)-
colorable if and only if there is a vertex set of size n(G) − 2 in G − v which does
not contain a P3.

Proof. If such a set exists, color it in color 1 and the two remaining vertices
in color 2. Conversely, any 1-improper 2-coloring of G colors at most one
vertex in G− v in the same color as v. Thus, n(G)− 2 vertices in G− v are
monochromatic and hence contain no P3.

For any minimal non-(2, 1)-colorable graph G with a central vertex v, the
graph G′ := G − v is minimal with the property that any vertex set of size
n(G′)− 1 contains a P3. We denote this property by (∗).

Let n := n(G′) and V (G′) := {v1, . . . , vn}. For all i ≤ n, let Wi be the set
V (G′)\{vi}. Any graph G′ which fulfills (∗) has at least four vertices and
contains P3, say w.l.o.g. P3 = v1v2v3. It follows that all G′[Wi] with i ≥ 4
contain a P3. The set W2 shall also fulfill this property. Up to isomorphy,
Figure 4.1 shows all minimal graphs with the edges v1v2 and v2v3 where
G′[W2] contains a P3.

The graphs G′1 and G′2 fulfill (∗) with minimality. In G′′1, G
′′
2 and G′′3 , only

the set W1 does not induce a P3. A supergraph of G′′1 fulfills (∗) and does
not contain a subgraph isomorphic to G′1 or G′2 if either v3v5 ∈ E(G′) or
v2v4 ∈ E(G′), compare Figure 4.2. Every supergraph of G′′2 or G′′3 such that
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v1 v2

v3

v6v5

v4

(a) G′1

v1 v2

v3v4

(b) G′2

v1 v2

v3

v5

v4

(c) G′′1

v1 v2

v3v4
v5

(d) G′′2

v1 v2

v3v4

(e) G′′3

FIGURE 4.1: Graphs with P3 ⊆ G′[W2]

G′[W1] contains a P3 is a supergraph of G′j for a j ≤ 4. Thus, the graphs G′j
are the only minimal graphs with property (∗).

v1 v2

v3

v5

v4

(a) G′3

v1 v2

v3

v5

v4

(b) G′4

FIGURE 4.2: Further minimal graphs with property (∗)

Figure 4.3 shows the graphs Gj := G′j + v where v is a central vertex. These
are the graphs which are minimal with the property that there is a central
vertex and that G is not (2, 1)-colorable. We will see later that the graph
G4 has a proper minimal non-(2, 1)-colorable subgraph but G1, G2 and G3

do not. Hence, the graphs G1, G2 and G3 in Figure 4.3 are precisely the
minimal non-(2, 1)-colorable graphs with a central vertex.

(a) G1 (b) G2 (c) G3 (d) G4

FIGURE 4.3: Graphs with a central vertex
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No Generalization to the Maximum Degree

A central vertex in a graph in G has at most six neighbors. Every vertex
v is a local central vertex in G [N(v) ∪ {v}]. However, considering local
central vertices gives no upper bound of the maximum degree. A vertex in
a minimal non-(2, 1)-colorable graph can have more than six neighbors. An
example is shown in Figure 4.4. Furthermore, Chapter 5 presents minimal
non-(2, 1)-colorable graphs with arbitrarily large maximum degree.

u

v

w

FIGURE 4.4: Graph in G with maximum degree seven

Lemma 14. The graph in Figure 4.4 is minimal non-(2, 1)-colorable.

Proof. Let v be the vertex of degree seven, w the vertex with distance two to
v and u the middle vertex of the P5 induced by N(v). We color the vertex v
w.l.o.g. in color 1. Assume that there is a (2, 1)-coloring of G. At most one
vertex in N(v) has the same color as v. This is the vertex u as G contains
no monochromatic P3. We denote this unique (2, 1)-coloring of G− w by c.
The vertex w is adjacent to a vertex in a monochromatic edge of each color.
Thus, c is not extendable to G and G not (2, 1)-colorable.
The graph is minimal ifG−e is (2, 1)-colorable for any edge e. If e is an edge
of w or a monochromatic edge in c incident to an edge of w, c is extendable
toG−e. If e is in the P5 induced by the neighbors of v, we can color another
vertex in N(v) in color 1. Thus, both neighbors of w have color 2 what is
extendable to G − e. If e = vx for an x 6= u, color x in color 1. If x belongs
to the P5 in N(v), then there is a coloring of G− e− w where u has color 2.
Otherwise, w is not adjacent to a vertex in a monochromatic edge of color
2. Both is extendable to G− e which shows that G is indeed minimal.

4.2 Graphs with Five Vertices

Graphs with less than five vertices are (2, 1)-colorable as this allows color
classes of size at most two.

Theorem 2. The wheel graph W5 is the only minimal non-(2, 1)-colorable graph
on five vertices.

Proof. All graphs in G fulfill δ(G) ≥ 2 and have no adjacent vertices of de-
gree two, see Corollary 2 and Lemma 3. Furthermore, any trivalent ver-
tex has a neighbor of degree at least three, see Lemma 4. Figure 4.5 dis-
plays all graphs with five vertices and these poperties. The picture presents
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(2, 1)-colorings of the graphs in the first row. We proved the non-(2, 1)-
colorability of the wheel graph W5 in Section 4.1. The picture shows that
both isomorphic types of maximal proper subgraphs are (2, 1)-colorable.
Thus, we have minimality. The further graphs in Figure 4.5 are supergraphs
of W5.

W5

FIGURE 4.5: Graphs of order five

4.3 Graphs with Six Vertices

Two graphs of order six are minimal non-(2, 1)-colorable. They are pre-
sented in Figure 4.6. First, we prove their minimality. Secondly, we show
that there are no further graphs with six vertices in G.

4.3.1 Minimal Non-(2,1)-Colorable Graphs of Order Six

Lemma 15. The graphs W6 and G̃ in Figure 4.6 are minimal non-(2, 1)-colorable.

(a) The graph W6

(b) The graph G̃

FIGURE 4.6: Graphs of order six in G

Proof. The graph W6 is not (2, 1)-colorable as shown in Section 4.1. It con-
tains two isomorphic types of edges. Figure 4.6 shows a (2, 1)-coloring of
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G − e for both. Now, consider the graph G̃. The triangle induced by the
tetravalent vertices contains a monochromatic edge in any 2-coloring. Ev-
ery bivalent vertex is adjacent to at least one vertex of this edge. Thus, if
the coloring is 1-improper, all bivalent vertices receive the other color. The
third tetravalent vertex is adjacent to two vertices of both colors. Hence, G̃
has no (2, 1)-coloring. Figure 4.6 shows that G̃ − e is (2, 1)-colorable for all
edges e.

4.3.2 Completeness

Lemma 16. Every minimal non-(2, 1)-colorable graph G with six vertices fulfills
8 ≤ m(G) ≤ 12.

Proof. Every vertex in a graph in G has degree at least two and the neighbors
of a bivalent vertex have degree at least three. Thus, at most four vertices in
G are bivalent. In this case, onlyK2,4 fulfills these properties andm(K2,4) =
8. If less than four vertices are bivalent, the graph has at least eight edges.
In a minimal non-(2, 1)-colorable graph on six vertices, every subgraph on
five vertices may not contain W5. All graphs with five vertices and at least
nine edges are supergraphs of W5, as shown in Figure 4.5. Thus, G− v has
at most eight edges for all v ∈ V (G). The vertex v has degree at most five
in G. If G had all these 13 edges, the graph G − w had at least 13 − 4 = 9
edges for all w with dG(w) ≤ 4. Thus, G has at most 12 edges.

Now, let us consider the structure of W5 to find all graphs G of order six
which are edge-maximal with the property W5 6⊆ G. Every minimal non-
(2, 1)-colorable graph is a subgraph of such a graph.

Lemma 17. A graph G with n(G) ≥ 5 contains no W5 if and only if any set of
five vertices in its complement graph G induces a supergraph of P3.

Proof. Let G′ be an induced subgraph of G with n(G′) = 5. We claim that
G′ is a supergraph of W5 if and only if δ(G′) ≥ 3. If W5 ⊆ G′, then δ(G′) ≥
δ(W5) = 3. On the other hand, δ(G′) ≥ 3 implies m(G′) ≥ 8. The only
graph with five vertices, eight edges and minimal degree at least three is
W5. Moreover, the graphs K5 and K5 − e are the graphs of order five with
more than eight edges. Both have minimal degree at least three and contain
W5. Thus,G′ contains noW5 if and only if there is a vertex v with dG′(v) ≤ 2.
This vertex v has degree at least 2 in G′. Therefore, v is the inner vertex of
a P3 in G′. If ∆(G′) ≤ 1, the complement graph G′ contains no P3. This
proves the lemma for graphs of order five. As W5 is no subgraph of G if
and only if W5 6⊆ G′ for all G′ ⊆ G with n(G′) = 5, the lemma follows.

This result enables us to show the completeness of the set in Lemma 15.

Theorem 3. The graphs W6 and G̃ are the only minimal non-(2, 1)-colorable
graphs with six vertices.
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Proof. All minimal non-(2, 1)-colorable graphs of order six are contained in
an edge-maximal graph G of order six with W5 6⊆ G. Thus, we want to find
all minimal graphs G on six vertices fulfilling the property of Lemma 17.
Apart from the number of vertices in G, this equals property (∗) in Section
4.1. The graphs satisfying (∗) are the graphs G′i with i ≤ 4 in Figure 4.1 and
Figure 4.2. As all G′i have at most six vertices, the minimal graphs of order
six which fulfill the condition of Lemma 17, are the graphs H i := G′i + V ′

where V ′ is a set of 6 − n(G′i) isolated vertices. These graphs are shown in
Figure 4.7.
Any minimal non-(2, 1)-colorable graph of order six is a subgraph of one
complement graph Hi := H i. The complements of the graphs H1 and H2

are (2, 1)-colorable: in H1, we can color the vertices v1, v2 and v3 in color 1
and the vertices v4, v5 and v6 in color 2. In H2, the vertices v1, v2, v3 and v4

receive one color and the further vertices the other. Therefore, they contain
no minimal non-(2, 1)-colorable subgraph.
The complement of H3 is the graph W6 which is a minimal non-(2, 1)-
colorable graph as shown in Subsection 4.3.1. The graph H4 is shown in
Figure 4.8 (a). The graph G̃ is a proper subgraph of H4. Thus, H4 is not
(2, 1)-colorable but does not fulfill minimality either. Let us consider sub-
graphs of H4 with six vertices. These are the graphs H4 − E′ for an edge
set E′ ⊆ E(H4). The wheel graph W6 is the only graph on six vertices with
a central vertex and no subgraph of H4. Hence, there is an edge e ∈ E′

with v6 ∈ e. It holds δ(G) ≥ 2 and H4 − v3v6 is (2, 1)-colorable, compare
Figure 4.8 (b). Therefore, v1v6 ∈ E′. The graph H − v1v6 is the minimal
non-(2, 1)-colorable graph G̃ and hence the only such subgraph of H4.

v1 v2

v3

v6v5

v4

(a) H1

v1 v2

v3

v6v5

v4

(b) H2

v1 v2

v3

v6v5

v4

(c) H3

v1 v2

v3

v6v5

v4

(d) H4

FIGURE 4.7: Minimal graphs of order six with property (∗)

v1 v3

v6v5

v4

v2

(a) H4 (b) H4 − v3v6 (c) H4 − v1v6

FIGURE 4.8: H4 and its considered subgraphs

We can conclude following:

Lemma 18. Let G be a graph with at least six vertices which is no supergraph of
W5,W6 and G̃. Then for any induced subgraph G′ with n(G′) = 6, the comple-
ment graph G′ contains either two vertex-disjoint paths of length two or a 4-cycle.
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Proof. We know that if W5 6⊆ G, the complement of G′ is a supergraph of a
graph H i, i ≤ 4. The graphs H1 and H2 are two vertex-disjoint P3 (write
P 2

3 ) and C4 + {v5, v6} for isolated vertices v5 and v6. Thus, if H i ⊆ G′ for an
i ≤ 2, the lemma holds.
Now, consider the case H3 ⊆ G′ ⇔ G′ ⊆ H3 ' W6. The graph G does
not contain W6. Hence, G′ is a proper subgraph of H3 and G′ a proper
supergraph of H3. The graph H3 is a 5-cycle with an isolated vertex v6. It
has two minimal proper supergraphs H3 + e. Either e is a chord in C5 or
v6 ∈ e. If e is a chord, H3 + e contains C4 and if v ∈ e, it contains P 2

3 .
It remains to treat H4 ⊆ G′ ⇔ G′ ⊆ H4. The graph G̃ is a subgraph of H4

and does not arise inG. Thus,G′ 6= H4. We consider the complement graph
G′ which is a proper supergraph of H4. It contains H4 and an additional
edge. All such graphs are shown in Figure 4.9. The complement of the first
graph is G̃ and the other graphs contain either C4 or P 2

3 .
Hence, a graph G′ of order six which does not contain the graphs W5, W6

and G̃ fulfills C4 ⊆ G′ or P 2
3 ⊆ G′. This gives the lemma as the graphs W5,

W6 and G̃ have at most six vertices.

FIGURE 4.9: H4 + e

4.4 Graphs with Seven Vertices

In this section, we present the four minimal non-(2, 1)-colorable graphs of
order seven. We prove that they belong to G but no further graph with
seven vertices does.

4.4.1 Minimal Non-(2,1)-Colorable Graphs of Order Seven

Lemma 19. The graph G1 is minimal non-(2, 1)-colorable.

Proof. The graph has no (2, 1)-coloring by Section 4.1. The picture shows
(2, 1)-colorings for all G1 − e.
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FIGURE 4.10: The graph G1

Lemma 20. The graph G2 is minimal non-(2, 1)-colorable.

v

w

FIGURE 4.11: The graph G2

Proof. Let v be the vertex of degree five and w the vertex of distance two
to v. Say w.l.o.g. that v has color 1. There is a unique (2, 1)-coloring of
G − w. In this coloring, the middle vertex of the P5 which is induced by
N(v), has color 1. For both colors, the vertex w is adjacent to a vertex in a
monochromatic edge. Thus, the coloring of G− w is not extendable to G.
Now, consider G2 − e for an edge e ∈ E(G2). If w ∈ e, we can extend
the unique (2, 1)-coloring of G2 − w. If e = vx for an x ∈ N(v), color v, x
and one neighbor of v in color 1 such that G2 − {v, w} does not contain a
monochromatic P3 and the neighbors of w receive the same color. This is
extendable to a (2, 1)-coloring of G2− e. If e is an edge of the P5 induced by
the neighborhood of v, color v, w and one vertex in N(v)\N(w) in color one
and the other vertices in color 2 such that every P3 contains both colors.

Lemma 21. The graph G3 is minimal non-(2, 1)-colorable.

v

w

FIGURE 4.12: The graph G3

Proof. Let again v be the vertex of degree five and w the other vertex which
is not in the neighborhood of v. Similar to G2, there is a unique (2, 1)-
coloring c of G3 − w because exactly one vertex belongs to all P3 in N(v).
The vertex w is in an edge incident to a monochromatic edge for both col-
ors. Thus, we cannot extend this coloring to G3.
To show the minimality of G3, we consider all G3 − e. If w ∈ e or e is one
of the monochromatic edges in c, the coloring c of G3 − e−w is extendable
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to G3 − e. If e is another edge of v, color the vertices in e and one neighbor
of v in color 1 such that there is no monochromatic P3 in G − {v, w} and
the neighborhood of w is monochromatic. Such a coloring is extendable to
G3 − e. If e joins two neighbors of v and is not considered yet, we color v
and w in color 1 and the vertices in N(w) in color 2. This coloring can be
extended to G3 − e

Lemma 22. The graph G4 is minimal non-(2, 1)-colorable.

u

v

w

(a) G4 (b) H (c) G4

FIGURE 4.13: The graph G4

Remark 5. Adjacent vertices x and y with P3 ⊆ G[N({x, y})] have different
colors in any (2, 1)-coloring.

Proof. Consider the vertices u, v and w as denoted in the picture. The graph
G4 has no (2, 1)-coloring as any two of these vertices fulfill the property of
Remark 5.
To show minimality, we look at the graph H in Figure 4.13 (b). Its comple-
ment admits a (2, 1)-coloring as shown in the picture. Every subgraph of H
is also (2, 1)-colorable. Adding an arbitrary edge to the complement of G4

(see Figure 4.13 (c)) gives a supergraph of H . Thus, every proper subgraph
of G4 is a subgraph of H and hence (2, 1)-colorable.

4.4.2 Completeness

Lemma 23. Every graph with seven vertices which does not contain W5,W6 and
G̃ as a subgraph has at most 15 edges.

Proof. Let G be such a graph and v a vertex in G. By Lemma 18, the graph
G− v contains either C4 or P 2

3 and therefore at least four edges. There is a
vertex w of degree at least two in G− v. The graph G− w has also at least
four edges and therefore,G has at least six edges. This givesm(G) ≤ 15.

The upper bound for m(G) can be improved as follows:

Lemma 24. A minimal non-(2, 1)-colorable graph with seven vertices has at most
eleven edges.
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Proof. We employ the property shown in Lemma 18 and hence, consider
complementary graphs. A minimal non-(2, 1)-colorable graph G contains
no W5, W6 or G̃. For all vertices v, the graph G − v contains C4 or P 2

3 . By
inspection, we see that seven graphs of order seven with at most nine edges
are edge-minimal with this property: C4∪̇P3, C7, G′1 and G′2 in Figure 4.14
(a) and G′3, G′4 and G′5 whose complements are shown in Figure 4.14 (b).
The complements of C4 and of P3 have maximum degree one. Hence, col-
oring the vertices of C4 in color 1 and the vertices of P3 in color 2 is a (2, 1)-
coloring of C4∪̇P3. Moreover, Figure 4.13 shows that the complement of G4

is a proper supergraph of C7 and therefore, G4 a proper subgraph of C7.
It follows that C7 is non-(2, 1)-colorable, but not minimal. One can check
that all non-(2, 1)-colorable subgraphs of C7 are supergraphs of G4. Fur-
thermore, the complement of G′1 is (2, 1)-colorable as shown in the picture.
The graph G′2 consists of one isolated vertex and a connected compontent
with two stable sets of size three. Thus, its complement is a proper super-
graph of the graphG1 in Figure 4.10. Therefore, it is not minimal non-(2, 1)-
colorable. One can verify that every subgraph of its complement is either
(2, 1)-colorable or a supergraph of G1. Figure 4.14 (b) displays the comple-
ments of the graphs G′3, G′4 and G′5. They are proper supergraphs of G2 or
G3 and thus not minimal non-(2, 1)-colorable.
Hence, the complement of any graph with seven vertices and at most nine
edges is not minimal non-(2, 1)-colorable. As the 7-clique has 21 edges, all
minimal non-(2, 1)-colorable graphs of order seven fulfill m(G) ≤ 11.

(a) The graphs G′1 and G′2

(b) Complements of G′3, G′4 and G′5

FIGURE 4.14: Lemma 24

Theorem 4. The graphs G1, G2, G3 and G4 are the only minimal non-(2, 1)-
colorable graphs of order seven.

Proof. By inspecting the edge-minimal (w.r.t. the property that every graph
G−v contains C4 or P 2

3 ) graphs of order seven, we see that the complement
of every graph with more than nine edges is (2, 1)-colorable. Therefore, the
proof of Lemma 24 shows that all minimal non-(2, 1)-colorable graphs with
seven vertices are either G1 orG4 or a proper subgraph of a graph in Figure
4.14 (b). Analyzing all their subgraphs shows that G2 and G3 are the only
further minimal non-(2, 1)-colorable graphs.
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Chapter 5

Unbounded Maximum Degree

The odd cycles are the minimal non-(2, 0)-colorable graphs. All graphs in
this set have maximum degree two. In the introduction, we concluded from
Gerencsér [10] and Lovász [16], that minimal non-(2, 1)-colorable graphs
have maximum degree at least four. In Section 4.1, we displayed a minimal
non-(2, 1)-colorable graph with maximum degree seven. In fact, the degree
of a vertex in a minimal non-(2, 1)-colorable graph can be arbitrarily large.
We prove this by presenting a set G∆ of minimal non-(2, 1)-colorable graphs
with unbounded maximum degree.

5.1 The Graph Set G∆

The general structure of the graphs in G∆ is shown in Figure 5.1. The sub-
graphs Gi for i ∈ {1, 2, 3, 4} are described below. Their choice allows an
arbitrarily large degree of the vertex v.

v1

v2
v3

v

w

w2 w3
w4w1

G2 G3

G1 G4

FIGURE 5.1: Structure of graphs in G∆

Let G be a graph in G∆. We call the subgraph induced by the vertices
v, v1, v2 and v3 the basic flag Gb of G. In any (2, 1)-coloring of Gb, the vertex
v is in a monochromatic edge. All neighbors of v in aGi have thus the other
color. We will choose graphs Gi such that any (2, 1)-coloring c of G − w
fulfills c(w1) = c(w2) = c(v) and c(w3) = c(w4) 6= c(v). It follows that G is
non-(2, 1)-colorable.
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5.2 The Sets G= and G 6=

Let G′ be the set of all triples (G′, v′, w′) such that G′ is a graph and v′ and
w′ are distinct vertices in V (G′). The sets G= and G 6= are subsets of G′. Later
on, we will define G∆ by means of G= and G 6=.

We specify G= and G 6= via a mapping which connects triples in G′:

Definition 5. Let f : G′ × G′ → G′ be the function which maps (G′1, v
′
1, w

′
1)

and (G′2, v
′
2, w

′
2) onto (G′, v′, w′) such that G′ is the union of G′1 and G′2, in

which V (G′1) and V (G′2) intersect exactly in v′ := v′1 = v′2, together with an
additional vertex w′. The vertex w′ has neighborhood {w′1, w′2}.

w′1 w′2

v′

w′

G′1 G′2

FIGURE 5.2: The function f

We characterize G= and G 6= recursively: the recursion starts with (P2, v
′, w′)

in G 6= where V (P2) = {v′, w′}. Furthermore, a triple (G′, v′, w′) is in G 6=
if and only if there are triples (G′1, v

′
1, w

′
1) and (G′2, v

′
2, w

′
2) in G= such that

f((G′1, v
′
1, w

′
1), (G′2, v

′
2, w

′
2)) = (G′, v′, w′). Complementary, G= is the image

of G 6= × G 6= under f . Figure 5.3 shows examples for graphs in G= and G 6=.

v′

w′

v′

w′

(a) Triples in G=

v′

w′

v′

w′

(b) Triples in G 6=

FIGURE 5.3: G 6= and G=

We define G∆ as the set with the structure of Figure 5.1 and (G1, v, w1),
(G2, v, w2) ∈ G= and (G3, v, w3), (G4, v, w4) ∈ G 6=.

Lemma 25. The set G∆ has unbounded maximum degree.

Proof. Both sets G 6= and G= contain triples (G′, v′, w′) such that dG′(v′) >
n for any n ∈ N. Thus, there are graphs G ∈ G∆ with arbitrarily large
maximum degree ∆(G) ≥ dG(v) > dGi(v).
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5.3 Homo- and Heterochromatic Graphs

Definition 6. Let G be a graph and v ∈ V (G). A coloring of G such that v
is in no monochromatic edge is called v-isolated.

Definition 7. Consider a graph with two specified vertices v and w which
allows a v-isolated (2, 1)-coloring.
We call the graph v-w-homochromatic if following properties hold:
(1) Every v-isolated (2, 1)-coloring c fulfills c(v) = c(w).
(2) Every v-isolated (2, 1)-coloring is also a w-isolated (2, 1)-coloring.
(3) G admits a (2, 1)-coloring c′ with c′(v) 6= c′(w).
The graph is v-w-heterochromatic if:
(1) Every v-isolated (2, 1)-coloring c fulfills c(v) 6= c(w).
(2) Every v-isolated (2, 1)-coloring is also a w-isolated (2, 1)-coloring.
(3) G admits a (2, 1)-coloring c′ with c′(v) = c′(w).

In this case, we slightly adjust the definition of minimality:

Definition 8. A graph G is minimal v-w-homochromatic if it is v-w-homo-
chromatic but every proper subgraph H with v, w ∈ V (H) has a v-isolated
(2, 1)-coloring with c(v) 6= c(w). Minimal v-w-heterochromaticity is defined
symmetrically.

Lemma 26. Graphs G′ with (G′, v′, w′) ∈ G= are minimal v′-w′-homochromatic
and graphs G′ with (G′, v′, w′) ∈ G 6= are minimal v′-w′-heterochromatic.

Proof. The graph P2 is minimal v′-w′-heterochromatic. Let G′ be a graph
with distinct vertices v′, w′ ∈ V (G′) and

(G′, v′, w′) = f((G′1, v
′
1, w

′
1), (G′2, v

′
2, w

′
2))

for either
(G′1, v

′
1, w

′
1), (G′2, v

′
2, w

′
2) ∈ G= (case A)

or
(G′1, v

′
1, w

′
1), (G′2, v

′
2, w

′
2) ∈ G 6= (case B).

In case A, (G′, v′, w′) is in G 6= and in case B, (G′, v′, w′) is in G=. By the induc-
tion hypothesis, the graphsG′i are v′i-w

′
i-homochromatic in case A and v′i-w

′
i-

heterochromatic in case B for i ∈ {1, 2}. If c is a v′-isolated (2, 1)-coloring
of G′, the coloring c|G′i is a v′i-isolated (2, 1)-coloring of G′i. By induction,
any v′-isolated (2, 1)-coloring c of G′ fulfills therefore c(w′1) = c(w′2). As the
vertices w′1, w

′ and w′2 induce a P3, c(w′) 6= c(w′i). Thus, there are v′-isolated
(2, 1)-colorings of G′ and property (2) is fulfilled. Property (1) holds as
c(v′) = c(w′i) 6= c(w′) in case A and c(v′) 6= c(w′i) 6= c(w′) in case B.
Now, let us show property (3). Let c1 be a (2, 1)-coloring of G′1 which wit-
nesses property (3) forG′1 and c2 a v′2-isolated (2, 1)-coloring ofG′2. The ver-
tex sets V (G′1) and V (G′2) intersect only in v′. The colors are symmetric and
v′ is in one monochromatic edge of G′1 and in none of G′2. Thus, c := c1 ∪ c2

is a (2, 1)-coloring of G′ − w′. In this coloring, it holds c(w′1) 6= c(w′2) and
w′2 is in no monochromatic edge as c2 is w′-isolated by property (2). Hence,
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c(w′) := c(w′2) gives a (2, 1)-coloring of G′ which fufills c(w′) = c(v′) if
(G′, v′, w′) ∈ G 6= and c′(w′) 6= c′(v′) if (G′, v′, w′) ∈ G=.
The only condition left to be proven is minimality. For this purpose, we
show by induction that the v′-isolated (2, 1)-coloring of a graph G′ in G= or
G 6= is unique apart from interchanging colors. Obviously, this holds for P2.
Now, consider a graphG′with (G′, v′, w′) = f((G′1, v

′
1, w

′
1), (G′2, v

′
2, w

′
2)) and

either (G′, v′, w′) ∈ G 6= or (G′, v′, w′) ∈ G=. If c is a v′-isolated (2, 1)-coloring
of G′, the colorings c|G′i are v′i-isolated (2, 1)-colorings of G′i. By induction,
these colorings are unique. As G′1 and G′2 intersect exactly in v′, there is a
unique v′-isolated coloring ofG′−w′. It colorsw′1 andw′2 alike. Thus, choos-
ing the other color for w′ gives the only v′-isolated (2, 1)-coloring of G′.
With this result, we can show the minimality of G′. First, consider the case
w′ ∈ e, w.l.o.g. say e = w′w′1. We color all vertices but w′ as in the unique v′-
isolated coloring of G′. The vertex w′2 is in no monochromatic edge. Hence,
coloring w′ in either color gives a (2, 1)-coloring of G′. For the second case,
assume w.l.o.g. that e ∈ E (G′1). We apply induction and suppose that
there is a v′1-isolated (2, 1)-coloring c1 of G′1 − e such that c1(w′1) 6= c1(v′)
if (G′1, v

′
1, w

′
1) ∈ G= and c1(w′1) = c1(v′) if (G′1, v

′
1, w

′
1) ∈ G 6=. Furthermore,

there is a v′2-isolated (2, 1)-coloring c2 of G′2 such that c2(w′2) = c2(v′) if
(G′2, v

′
2, w

′
2) ∈ G= and c2(w′2) 6= c2(v′) if (G′2, v

′
2, w

′
2) ∈ G 6=. If we color w′

in c2(w′2) and the other vertices in c1 ∪ c2, we obtain a v′-isolated (2, 1)-
coloring c of G′ − e because w′2 is in no monochromatic edge. It holds
c(w′) = c(v′) if (G′, v′, w′) ∈ G 6= and c(w′) 6= c(v′) if (G′, v′, w′) ∈ G= which
gives minimality.

5.4 Minimal Non-(2,1)-Colorability of Graphs in G∆

Lemma 27. Let G be a graph with the structure in Figure 5.1. Moreover, the
subgraphsG1 andG2 are minimal v-wi-homochromatic and the subgraphsG3 and
G4 minimal v-wi-heterochromatic. Then G is minimal non-(2, 1)-colorable.

Proof. To prove this Lemma, we have to show that G is not (2, 1)-colorable
but G − e is so for any e ∈ E(G). Assume that there is a (2, 1)-coloring c
of G. The vertex v is in a monochromatic edge of Gb and thus, c|Gi is v-
isolated for all i ≤ 4. It follows c(w1) = c(w2) 6= c(w3) = c(w4). The vertices
{w1, w, w2} and the vertices {w3, w, w4} induce a P3. Therefore, G is not
(2, 1)-colorable.
First, let us study the graphs G− e with w ∈ e. Color the subgraph G−w as
above. No neighbor of w is in a monochromatic edge and the degree of w in
G − e is three. Hence, one color occurs only once in NG−e(w) and coloring
w in this color gives a 1-improper 2-coloring of G − e. If e is an edge in
the basic flag Gb, the graph Gb − e admits a v-isolated (2, 1)-coloring. We
color G2, G3 and G4 also v-isolated. By property (3) for G1, there is a non-
v-isolated (2, 1)-coloring of G1 which colors w1 in the other color from v.
The union of all these colorings is a (2, 1)-coloring of G − e − w as Gb and
the Gi intersect just in v and v has only a same-colored neighbor in G1.
We follow from property (2) for G2 that c(w) := c(w2) provides a (2, 1)-
coloring of G − e. The only remaining case to look at is e ∈ E (Gj) for a



5.5. Infinity of G 35

j ≤ 4. The graph Gj is minimal vj-wj-homochromatic or minimal vj-wj-
heterochromatic. Thus, if j ∈ {1, 2}, there is a v-isolated coloring of Gj − e
such that wj does not have the color of v and if j ∈ {3, 4}, there is a v-
isolated coloring of Gj − e such that wj has the color of v. It follows that
there is a (2, 1)-coloring of G − e − w such that three neighbors of w are
colored alike. The fourth neighbor does not belong to a monochromatic
edge. Therefore, this is extendable to G− e.

Theorem 5. The set G has unbounded maximum degree.

Proof. Graphs in G∆ fulfill the properties of Lemma 27 and hence G∆ is a
subset of G. Together with Lemma 25, this shows the theorem.

5.5 Infinity of G

The set G∆ is an infinite subset of G. This gives the following theorem:

Theorem 6. There are infinitely many minimal non-(2, 1)-colorable graphs.

As mentioned in the introduction, there is a polynomial reduction from 3-
SAT to (2, 1)-COLORABILITY. Already the NP-completeness enables us to
conclude that there are infinitely many minimal non-(2, 1)-colorable graphs
if P 6= NP holds. To see this, we consider that one can test in polynomial
time if a graph contains a certain subgraph. This can be simply done by
brute force (cf. also [20]). If G were finite, we could check polynomially if
a certain graph contains any graph in G as a subgraph. If and only if this
is the case, the graph is not (2, 1)-colorable. Hence, we could solve (2, 1)-
COLORING in polynomial time which would contradict P 6= NP.

Cowen, Goddard and Jesurum [8] proved that even for planar graphs and
graphs with maximum degree four, it is NP-complete to determine whether
or not a graph is (2, 1)-colorable. Recall that graphs with maximum de-
gree smaller than four are not (2, 1)-colorable. Both, planarity and upwards
bounded maximum degree, are closed under taking subgraphs. Hence, a
planar graph is (2, 1)-colorable if and only if none of its subgraphs is a pla-
nar graph in G. The respective holds for graphs of maximum degree at most
four. Therefore, even the set of planar graphs in G and the set of graphs with
maximum degree four in G are infinite if P 6= NP holds. In Subsection 6.2.1,
we present an infinite set of minimal non-(2, 1)-colorable graphs which are
all planar and have maximum degree four. Thus, also the infinity of this set
is proven independently of P vs. NP, see Corollary 5.
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Chapter 6

Extension of Odd Cycles

This chapter shows properties of G and presents families of minimal non-
(2, 1)-colorable graphs. Most of these families contain one central odd cycle
Ck and graphs which are glued to it, i.e., intersect with Ck in at least one
vertex, but in no edge. The number k denotes the length of the odd cycle
and k′ := (k − 1)/2.

6.1 Composition of Odd Cycles

In this section, we prove that the graphs in G only consist of odd cycles.

Theorem 7. In a minimal non-(2, 1)-colorable graph, every edge belongs to an
odd cycle.

Let G be a graph in G with an arbitrary edge e = {v, w}. By Lemma 2, e is
not separating and hence lies in a cycle. Assume for a contradiction, that e
only belongs to even cycles. It follows that every v-w-path in G− e is odd.

Claim 1. There is a (2, 1)-coloring c of G− e with the property c(v) 6= c(w).

Since such a coloring is also a (2, 1)-coloring of G, indeed this yields the
sought contradiction. Therefore, a proof of Claim 1 shows Theorem 7.

We define E′ as the set of all edges which belong to a v-w-path of G− e and
G′ as the graph G [E′].

Lemma 28. The graph G′ is bipartite.

Proof. Assume for a contradiction that there is an odd cycle C in G′. Let P
be a v-w-path which contains an edge of C. Let v′ be the first and w′ the
last vertex of P which lie in the cycle. We call Pv the v-v′-subpath and Pw

the w′-w-subpath of P . Let P1 and P2 be the two v′-w′-paths in C. As C
is odd, one of these paths is odd and one is even. It follows that the path
unions Pv ∪ P1 ∪ Pw and Pv ∪ P2 ∪ Pw are v-w-paths in G′ whereof one is
even. Together with e, this path forms an odd cycle in C which contradicts
the assumption.
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v w

v′

w′

C

Pv

P

Pw

P1

P2

FIGURE 6.1: Proof of Lemma 28

Now, consider the further edges. Let E′′ be the edge set E(G)\ (E′ ∪ {e})
and C1, . . . , Ck the components of G[E′′] for a k ≥ 0.

Lemma 29. Any component Ci intersects with G′ in exactly one vertex vi.

Proof. The intersection is not empty as otherwise, G were disconnected.
Suppose that there are two distinct vertices x and y in V (Ci)∩V (G′). Let Pxy

be an x-y-path in Ci. If there are more than two vertices in V (Ci) ∩ V (G′),
choose x and y such that all inner vertices of Pxy do not belong toG′. Let Px

and Py be v-w-paths containing x and y. Let Pvx be the subpath of Px with
the end vertices v and x and Pxw the x-w-subpath of Px. Define Pvy and
Pyw analogously for Py. If there is a v-w-path containing x and y, we choose
Px = Py. This is in particular the case if x or y is one of the vertices v and
w. If Px = Py, we can assume w.l.o.g. that x ∈ V (Pvy) by the symmetry of
x and y. This is shown in Figure 6.2 (a). Then Pvx ∪ Pxy ∪ Pyw is a v-w-path
which contains edges of E′′. This contradicts the choice of E′′.
Thus, neither Px contains y nor Py contains x. Let u0, . . . , ul be the vertices
in V (Px) ∩ V (Py) and Pi the ui−1-ui-subpath of Py. It holds l ≥ 1 as u0 = v
and ul = w. Let j be the integer 1 ≤ j ≤ l such that y ∈ V (Pj). As
y /∈ V (Px), the vertex y is in inner vertex of Pj .
Consider at first the case l = 1, i.e., V (Px) ∩ V (Py) = {v, w}. In this case,
Pvx ∪ Pxy ∪ Pyw is a v-w-path as shown in Figure 6.2 (b).
Let l ≥ 2. This situation is illustrated in the Subfigures (c), (d) and (e). The
straight path represents Px and the oscillating path represents Py. For the
case that y is either in V (P1) or in V (Pl), it is sufficient to consider y ∈ V (Pl)
as the vertices v and w are symmetric. The inner vertices of Pyw do not
intersect with Px and Pvx ∪ Pxy ∪ Pyw is again a v-w-path.
Now, consider the case that Pvy and Pyw both intersect with Px, i.e., l ≥ 3
and 2 ≤ j ≤ l − 1, see Figure 6.2 (d) and (e). Denote the vertex uj by u and
the y-u-subpath of Py by Pyu. The paths Pyu and Px intersect only in u. Call
Pvu the v-u-subpath of Px and Puw the u-w-subpath of Px. If x ∈ V (Puw),
the union Pvu ∪ Pyu ∪ Pxy ∪ Pxw is a v-w-path. The paths Pyu and Pxy are
here considered in the other direction, i.e., as an u-y-path and as a y-x-path.
If x lies in Pvu, the union Pvx ∪ Pxy ∪ Pyu ∪ Puw is a v-w-path.
All these v-w-paths contain Pxy, i.e., edges of E′′ and thus contradict the
choice of E′′.
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(e) y ∈ V (Pj), j /∈ {1, l} and x ∈ V (Pvu)

FIGURE 6.2: Proof of Lemma 29

Proof of Theorem 7. We show Theorem 7 by means of a coloring of G − e
which fulfills the properties of Claim 1 and employ the Lemmas 28 and 29.
Let us color all vertices of the bipartite graph G′ in a proper 2-coloring c′.
This coloring fulfills c′(v) 6= c′(w) as all v-w-paths are odd. Every com-
ponent Ci is a proper subgraph of G and thus obtains a (2, 1)-coloring
ci. Let vi be the unique vertex in V (G′) ∪ V (Ci). We assume w.l.o.g. that
ci(vi) = c′(vi). Therefore, the coloring c(v) := c′ ∪

⋃
i≤k ci is well-defined.

A vertex vi does not belong to a monochromatic edge in c′ and only to
one component Ci. Hence, c is a 1-improper 2-coloring of G − e with
c(v) 6= c(w).

6.2 Addition of P3

This section describes minimal non-(2, 1)-colorable graphs which contain
an odd cycle Ck = v1 . . . vk and k paths of length two. These paths are
glued to Ck in their end vertices. We identify vi and vi′ iff i ≡ i′ mod k.
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6.2.1 Odd Cycle with k Triangles

Consider the following graphs Gk for any odd integer k ≥ 3:

V (Gk) = {v1, . . . , vk, w1, . . . , wk}
E(Gk) = {{vi, vi+1}, {vi, wi}, {vi, wi+1} | 1 ≤ i ≤ k}

We denote this set of graphs by GT . Figure 6.3 shows the graph G7:

v7 v1

v2

v3

v4

v5

v6

w1

w2

w3

w4w5

w6

w7

FIGURE 6.3: The graph G7 ∈ GT

Lemma 30. The graphs Gk ∈ GT are not (2, 1)-colorable.

Proof. Assume for a contradiction that c is a (2, 1)-coloring of Gk. The ver-
tices v1, . . . , vk induce an odd cycle Ck ⊆ Gk. Every 2-coloring of Ck con-
tains a monochromatic edge e. By symmetry, we can assume w.l.o.g. that
e = v1vk and c(v1) = c(vk) = 1. As c is 1-improper, all vertices inN({v1, vk})
have color 2. We claim that for all i with i ≥ 2, the edge viwi is monochro-
matic and the edge vi−1vi dichromatic.
We show this claim by induction. The vertices v2 and w2 are in N({v1, vk})
and thus have both color 2 whereas v1 has color 1. Consider an integer i
with i ≥ 3. The edge vi−1wi−1 is monochromatic by the induction hypothe-
sis. As c is 1-improper, all vertices in N({vi−1, wi−1}) have the other color.
Both vi and wi are in this neighborhood. Hence, viwi is monochromatic
and vivi−1 dichromatic. It follows in particular c(wk) = c(vk) = 1. This
contradicts the fact that all vertices in N({v1, vk}) have color 2.

vk v1

v2

v3vk−2

vk−1

w1

w2

w3wk−1

wk

· · ·
FIGURE 6.4: Non-(2, 1)-colorability of the graphs in GT

Theorem 8. The set GT is a subset of G.
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Proof. By Lemma 30, all Gk ∈ GT are non-(2, 1)-colorable. We have to show
for all e ∈ E(Gk), that Gk − e admits a (2, 1)-coloring. By isomorphy, it
is sufficient to consider the cases e1 := v1vk and e2 := vkwk. We color
the vertices vi and wi with even index i and the vertex w1 in color 1 and
all other vertices in color 2. In Gk, only the edges viwi, i ≥ 2, and v1vk
are monochromatic. Among the monochromatic edges, only e1 and e2 are
incident. Thus, neitherGk−e1 norGk−e2 contains a monochromatic P3.

Corollary 5. There are infinitely many planar minimal non-(2, 1)-colorable graphs
with maximum degree four.

6.2.2 Non-Planar Graphs in G

All previously studied minimal non-(2, 1)-colorable graphs are planar. Fig-
ure 6.5 shows a graph G which extends the C7 by paths of length two. We
will show that this graph is not planar and minimal non-(2, 1)-colorable.
Thus, G is no subset of the planar graphs.

v7 v1

v2

v3

v4

v5

v6

w1

w2

w3

w4w5

w6

w7

FIGURE 6.5: GraphG consisting of theC7 and seven 3-paths

Lemma 31. The graph G is minimal non-(2, 1)-colorable.

Proof. Suppose that there is a (2, 1)-coloring of G. By symmetry and as the
vertices vi induce a C7, we assume w.l.o.g. that v1 and v7 both receive color
1. Thus, all vertices in N({v1, v7}) = {v2, v6, w2, w3, w6, w7} have color 2.
Each of the vertices v3, v4 and v5 has two neighbors in this set and hence,
has color 1. This contradicts the assumption as v3, v4 and v5 induce a P3.
There are two isomorphic types of graphs G − e for e ∈ E(G). Figure 6.6
shows 1-improper 2-colorings for both. Therefore, the graph fulfills mini-
mality.

Lemma 32. The graph G is not planar.

Proof. This follows from Kuratowski’s Theorem (see, e.g., [9]) since G con-
tains K3,3 as a topological minor: the graph G− {w4, w5, w6, w7} is a subdi-
vion of K3,3. The partition classes are {v1, v3, v6} and {v2, v4, v7}.

Theorem 9. Minimal non-(2, 1)-colorability does not imply planarity.
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FIGURE 6.6: (2, 1)-Colorings of G− e

FIGURE 6.7: Non-planarity of G

6.3 Addition of Building Blocks

6.3.1 Building Blocks

Definition 9. A building block is a graph G with a specified base b ∈ V (G)
such that:
(1) G is 1-improper 2-colorable.
(2) G has no b-isolated (2, 1)-coloring.
(3) Every proper subgraph of G has a b-isolated (2, 1)-coloring.

b b

FIGURE 6.8: Examples of building blocks

Following [5], the first graph in Figure 6.8 is called a flag. It is the building
block with the smallest order. Let G be a graph with a vertex v and B a
building block with base b. We say B is glued to v and v holds B if we unite
B and G in such a way that they intersect exactly in v = b. The second
graph in Figure 6.8 is a flag glued to a triangle.

Corollary 6. Let B1 and B2 be building blocks. If we glue B1 to the base of B2,
we obtain a minimal non-(2, 1)-colorable graph.
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Proof. We call b the vertex which is the base of B1 and of B2. In any 2-
coloring such that all vertices but b have impropriety at most one, the vertex
b has two monochromatic edges by property (2) in Definition 9. Minimality
follows directly from property (3).

Remark 6. Let G be a graph with a vertex v and B a building block glued to
v. In any (2, 1)-coloring of G∪B, the vertices in NG(v) have the other color
from v because v is in a monochromatic edge of B.

6.3.2 Odd Cycles with Building Blocks

Let GB be the set of all graphs which consist of an odd cycle Ck = v1 . . . vk
and k′ + 1 building blocks such that each vi with an odd index i holds one
building block. Figure 6.9 shows the example where k is seven and the
building blocks are flags.

FIGURE 6.9: Example of a graph in GB

Lemma 33. The graphs in GB are non-(2, 1)-colorable.

Proof. Assume for a contradiction that there is such a coloring. Every edge
of Ck is incident to a vertex which holds a building block. Thus, they are all
dichromatic by Remark 6. This contradicts the fact that Ck is an odd cycle
and hence not bipartite.

Theorem 10. The set GB is a subset of G.

Proof. LetG be a graph in GB. We need to show that every proper subgraph
of G is (2, 1)-colorable. The graph G− e is (2, 1)-colorable if e belongs to Ck

as a proper 2-coloring of the path Ck−e is extendable to G−e. Let e belong
to a building block B which is glued to a vertex vi. Color one edge of Ck

which contains vi and no further base of a building block monochromatic
and all other edges of Ck dichromatic. The graph B − e is a proper sub-
graph of B and thus obtains a vi-isolated (2, 1)-coloring. All other building
blocks receive an arbitrary (2, 1)-coloring. The union of these coloring is
well-defined and a (2, 1)-coloring of G.
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6.3.3 Examples of Building Blocks

Recall the graphs Gk ∈ GT in Subsection 6.2.1 which consist of an odd cycle
and k triangles. Let G′k be the graph Gk−{w1, wk}. Figure 6.10 shows these
graphs for k ≤ 7.

v1

v1 v1

FIGURE 6.10: The graphs G′k for k ≤ 7

Lemma 34. The graphs G′k are building blocks with base v1.

Proof. The (2, 1)-colorability ofG′k follows directly from Theorem 8 sinceG′k
is a proper subgraph of Gk ∈ GT . Let us show that in any (2, 1)-coloring,
v1 lies in a monochromatic edge. Assume for a contradiction that there is a
(2, 1)-coloring c ofG′k such that v1 is in no monochromatic edge, say c(v1) =
1 and c(v2) = c(vk) = c(w2) = 2. Similarly to the proof of Lemma 30, it
follows by induction for all i with 2 ≤ i ≤ k−1, that viwi is monochromatic
and vi−1vi dichromatic. Thus, wk−1 and vk−1 both have color 2 since k − 1
is even. Also vk is a neighbor of vk−1 and has color 2. Hence, c is no (2, 1)-
coloring.
To prove minimality, we show a v1-isolated (2, 1)-coloring of G′k− e for any
edge e in G′k. First, consider the case e = vj−1vj . The following coloring is
even a (2, 1)-coloring of the supergraphGk−e: color the vertices in the path
Ck − e alternating and the vertex wj in the other color from its neighbors
vj−1 and vj . Say w.l.o.g. that v1 has color 1. A vertex wi with i 6= j receives
color 2 if and only of its distance to v1 is odd. Figure 6.11 (a) shows an
example. In this coloring, no monochromatic edges are incident and all
neighbors of v1 have color 2. If wj ∈ e for a j ∈ {2, . . . , k − 1}, color vk−1vk
monochromatic and all other edges of the cycle dichromatic. For i < j, color
wi in the color of vi and for i > j, color wi in the color of vi−1. The vertex wj

receives the other color from its neighbor. Figure 6.11 (b) demonstrates an
example. There is no monochromatic P3 in G′k − e and the edges of v1 are
dichromatic.

In a similar manner, the graphs in GB contain building blocks as proper
subgraphs. Consider the set G′B of all graphs G′ := G − (B − v1) such that
G ∈ GB andB is the building block glued to v1. These graphs are illustrated
in Figure 6.12.

Lemma 35. The graphs in G′B are building blocks with base v1.

Proof. Every graph G′ ∈ G′B is a proper subgraph of a G ∈ GB and thus
(2, 1)-colorable. In any such coloring, the vertices which hold a building
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(a) G5 − v4v5
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(b) G′7 − v3w4

FIGURE 6.11: Minimality of the building blocks G′k
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FIGURE 6.12: The graphs in G′B

block are in no monochromatic edge of Ck. Hence, v1v2 is monochromatic
and the coloring not v1-isolated.
Let us consider G′ − e for an edge e of Ck. The proper 2-coloring of the
path Ck − e is extendable to G′ − e. The vertex v1 is in no monochromatic
edge because all its neighbors belong to Ck. If e belongs to a building block
B′ glued to vi, the graph B′ − e obtains a vi-isolated coloring by the mini-
mality of building blocks. We color the edge vi−1vi monochromatic and the
remaining edges of Ck dichromatic. This coloring is extendable to G′ − e
and the vertex v1 in no monochromatic edge since i− 1 ≥ 2.

FIGURE 6.13: Examples of building blocks in G′B
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6.4 Combination of P3 and Building Blocks

This Section presents subsets of G which contain both, building blocks and
paths with three vertices.

6.4.1 Odd Cycles with Triangles and Building Blocks

Let G be a graph which consists of an odd cycle Ck = v1 . . . vk, building
blocks B1, . . . , Bl for an l ∈ {1, . . . , k′} and 3-paths P 1, . . . , P k−2l. Further-
more, the graph fulfills the following:
(1) The building blocks are glued to distinct vertices of Ck.
(2) The end vertices of the P i are glued to neighboring vertices of Ck.
We call them triangles on Ck and a continous set of such triangles a sequence.
Let vi′ and vi′′ be bases of building blocks such that i′ < i′′ and there is no
base on the vi′-vi′′-path P := vi′vi′+1 . . . vi′′ .
(3) The length lP of P is at least two.
(4) There are exactly lP − 2 triangles on P . The two edges which do not
belong to triangles are incident.

We call the set of these graphs GBT . Figure 6.14 shows some examples:

Building
Block I

Building
Block I

Building
Block II

Building
Block I

Building
Block II

Building
Block I

Building
Block II

Building
Block III

FIGURE 6.14: Graphs in GBT

Lemma 36. The graphs in GBT are not (2, 1)-colorable.

Proof. Assume there is a (2, 1)-coloring of G. We show for each edge e =
vivi+1 in Ck, that it is dichromatic. This leads to contradiction as k is odd.
If either vi or vi+1 holds a building block, it has a same-colored neighbor
outside Ck and thus, e is dichromatic. Otherwise, let vi′ and vi′′ be bases of
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building blocks such that there is no base on the vi′-vi′′-path that contains
vi. The two consecutive edges of this path that do not belong to triangles,
are w.l.o.g. in the vi-vi′′-subpath. Hence, every edge in the vi′-vi-subpath is
in a triangle. One can see by induction along the vi′-vi-subpath, that in any
(2, 1)-coloring of G, the vertex vi has the same color as its bivalent neighbor
in the triangle on vi−1vi. Thus, vi is in a monochromatic edge outside Ck

and e is dichromatic.

Theorem 11. The set GBT is a subset of G.

Proof. It remains to show that G − e is (2, 1)-colorable for all G ∈ GBT and
e ∈ E(G). The proof is illustrated in Figure 6.15.
Case 1: e = vjvj+1 ∈ E(Ck). Let c be a proper 2-coloring of the k-path
Ck − e. It holds c(vj) = c(vj+1). If there is a triangle on e in G, color its
bivalent vertex in the other color from vj and vj+1. Extend this coloring to
the building blocks. Let Vb be the set of all bivalent vertices in the triangles
onCk−e. Any maximal sequence of triangles contains at most one base of a
building block. Color a vertex w ∈ Vb in the same color as this base vi if and
only if its distance to vi is even. One of the vertices vj and vj+1 is either in
no sequence or in a sequence which contains no base. Let us assume w.l.o.g.
that this is the vertex vj . There is no further sequence without a base. Color
a vertex w ∈ Vb which belongs to this sequence in the same color as vj if
and only if its distance to vj is even.
Let us show that no vertex has two same-colored neighbors in c. This holds
for the vertices in the building blocks which are not the base. The path
Ck − e is colored alternating and thus, no vertex in Vb has more than one
same-colored neighbor. If there is a bivalent vertex in the triangle on e in
G, it has impropriety zero. Moreover, no vertex vi of the cycle has a same-
colored neighbor in Ck−e. If vi is a base and adjacent to vertices in Vb, these
vertices have the other color since their distance to vi is one and hence odd.
Therefore, vi is only in the monochromatic edge of the building block. If vi is
no base and has two neighbors outsideCk, these neighbors belong to Vb and
to the same sequence of triangles. Their distance to the base respectively to
vj differs exactly by one. Thus, they have different colors and vi is only in
one monochromatic edge. Hence, no vertex has more than one neighbor of
the same color. Furthermore, it holds that vj is in no monochromatic edge.
Case 2: e ∈ E(Bi) for i ≤ l. Let vi be the base of Bi and e′ := vi−1vi.
Consider the (2, 1)-coloring of G−e′ introduced in Case 1. If we color G−e
analogously, any monochromatic P3 contains the edge e′. The vertex vi−1

is the vertex vj of Case 1. Hence, it has no neighbor of the same color in
G−{e, e′}. By the minimality of building blocks, we can recolor the vertices
in Bi− e such that vi is in no monochromatic edge of G−{e, e′} either. This
gives a (2, 1)-coloring of G− e.
Case 3: w ∈ e for a w ∈ Vb. We consider w.l.o.g.G−w. Let vi and vi+1 be the
neighbors of w. Let vi′ and vi′′ be bases of building blocks such that i′ ≤ i <
i′′ and that there is no base between vi′ and vi′′ . The two edges which do not
belong to triangles are w.l.o.g. in the vi+1-vi′′-subpath. It follows i′′ ≥ i+ 3.
Let e′ := vi+1vi+2 and consider the coloring of G − e′ treated in Case 1.
By symmerty, we can choose vi+2 as the vertex vj of Case 1 which is in no
monochromatic edge of G − e′. The vertex vi+1 is in the monochromatic
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edge wvi+1. Thus, it has no same-colored neighbor of G−w−e′. As neither
vi+1 nor vi+2 is in a monochromatic edge ofG−w−e′, this is a (2, 1)-coloring
of G− w.

B

vj+1 vj· · ·

(a) Case 1: e = vjvj+1

Bi

vi vi−1· · ·
e′

(b) Case 2: e ∈ E(Bi)

Bi′
Bi′′

vi′ vi vi+1 vi+2 vi′′

w

· · ·

(c) Case 3: w ∈ e

FIGURE 6.15: Proof of the minimality

6.4.2 Generalization to 3-Paths and Building Blocks

Remark 7. Let e = vw be an edge in a (2, 1)-colored graph and v a vertex of
color 1. Furthermore, let e′ be a monochromatic edge of color 2. If there is
a vertex x adjacent to a vertex of e and to a vertex of e′, it has color 1. Since
v, w and x induce a P3, w has color 2, i.e., e is dichromatic.

vw

x

e

e′

vw

x

e

e′

FIGURE 6.16: Dichromaticity of e

We can apply Remark 7 to construct minimal non-(2, 1)-colorable graphs.
For this purpose, replace the triangles in a graph G ∈ GBT by suitable 3-
paths with one end vertex in a monochromatic edge. These end vertices
might not belong to the cycle Ck. Figure 6.17 shows examples of such
graphs. One can prove minimal non-(2, 1)-colorability in a similar way as
in Subsection 6.4.1.

6.4.3 Paths with 3-Paths and Building Blocks

In this section, we consider a graph set GP . It contains the graphs which are
a sequence of k − 1 triangles on the path P := v1v2 . . . vk, united with two
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FIGURE 6.17: Generalization of GBT

building blocksB1 andB2 which are glued to v1 and vk. We call the bivalent
vertices in the triangles w2, . . . , wk. Figure 6.18 shows these graphs.

B1 B2

v1 v2 vk

w2 w3 wk

FIGURE 6.18: Graphs in GP

Lemma 37. The graph B := G − (B2 − vk) is a building block with base vk for
all G ∈ GP .

Proof. We show by induction that any (2, 1)-coloring c of B fulfills c(vi) =
c(wi) for all i ≥ 2. By the definition of building blocks, the vertex v1 is in
a monochromatic edge of B1. Thus, c(v1) 6= c(v2) and c(v1) 6= c(w2), i.e.,
c(v2) = c(w2). Assume c(vj−1) = c(wj−1) for a j ≥ 2. As wj−1 is a neighbor
of vj−1, all further vertices in N(vj−1) have the other color. Both vj and wj

are in N(vj−1) and therefore, c(vj) = c(wj). It follows in particular that
c(vk) = c(wk) and that B is 1-improper 2-colorable.
It remains to show the minimality. First, consider B − e for a edge e in B1.
We can color all vertices vi and wi+1 in color 1 iff i is even and B1 − e in
a v1-isolated coloring. This is a (2, 1)-coloring of B − e such that all edges
of vk are dichromatic. If wj ∈ e, we consider w.l.o.g. B − wj . The graph
B − wj − vj−1vj has two components. The component containing v1 has
the same structure as B and thus admits a (2, 1)-coloring c1. The second
component is a sequence of triangles. We again color the vi and the wi+1 in
color 1 iff i is even. Hence, no edge of vk is monochromatic. Then c1 ∪ c2

fulfills the requirements as we can assume w.l.o.g. c1(vj−1) 6= c2(vj). Lastly,
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if e = vj−1vj , color the components of B − e − wj as in Case 2. Assume
w.l.o.g. that c1(vj−1) = c2(vj), consider c1 ∪ c2 and color wj in the other
color from its neighbors.

Together with Corollary 6, this gives the following theorem:

Theorem 12. The graphs in GP are minimal non-(2, 1)-colorable.

We can extend this set of minimal non-(2, 1)-colorable graphs by Remark 7.
Figure 6.19 shows examples of graphs where not all 3-paths create triangles.

B1 B2

B1 B2

FIGURE 6.19: Extension of GP

6.5 Order of Minimal Non-(2,1)-Colorable Graphs

This chapter presents a variety of graphs in G. The order of these graphs
depends on the size of the central odd cycle or the central path and partly
on the choice and number of building blocks. We want to employ this to
find graphs of every order greater than four in G.

Theorem 13. The set of minimal non-(2, 1)-colorable graphs contains a graph
with n vertices if and only if n ≥ 5.

First consider following graph G with eight vertices:

v′

v

P

FIGURE 6.20: Graph G with n(G) = 8

Lemma 38. The graph in Figure 6.20 is minimal non-(2, 1)-colorable.

Proof. Let v and v′ be as in the picture and denote the P3 in G[N(v)] by P .
Assume that G is (2, 1)-colorable. As P is dichromatic in such a coloring,
one vertex x ∈ V (P ) has the same color as v, say color 1. All further neigh-
bors of v have color 2. Since v′ has a same-colored neighbor in N(v), the
vertices in G − v − N(v) have color 1. One of them is adjacent to x which
contradicts the condition that x has not more than one neighbor of color 1.
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To show minimality, we consider G − e for all edges e ∈ E(G). Consider
the vertex-coloring of G − P shown in the figure. Coloring all vertices in
P blue gives a (2, 1)-coloring of G − e if e ∈ E(P ). Any vertex y in P has
exactly two red neighbors. Thus, if y ∈ e and e /∈ E(P ), coloring y red and
V (P )\{y} blue gives a (2, 1)-coloring. If e = vz for a z /∈ V (P ), let us recolor
z and the vertex drawn on the lowest position. This coloring is extendable
to G − e by coloring the rightmost vertex red and the others blue. If e is
one of the remaining edges, i.e., incident to v′ but not to v, we can recolor a
vertex of distance 2 to v and extend this coloring to G− e.

Proof of Theorem 13. The graphsGk ∈ GT have 2k vertices for an odd integer
k ≥ 3. A graph in GBT with exactly two flags as building blocks and hence
k − 4 paths of length two has k + 2 · 3 + k − 4 = 2k + 2 vertices for an odd
k ≥ 5. The graphs in GP have 2k + n(B1) + n(B2) − 1 vertices. Choosing
flags as building blocks gives graphs of order 2k + 7 for k ∈ N.
It follows that there are minimal non-(2, 1)-colorable graphs with n vertices
for all n ≥ 9. Chapter 4 shows minimal non-(2, 1)-colorable graphs with
5, 6 and 7 vertices and proves that there are no such graphs with less than
five vertices. Together with Lemma 38, this proves the theorem.





53

Chapter 7

Average Degree

A graph with relatively few edges is called sparse. If all subgraphs of a
graph G are sufficiently sparse, G obtains a (2, 1)-coloring. Borodin, Kos-
tochka and Yancey showed in their article “On 1-improper 2-coloring of
sparse graphs” [5] that any non-(2, 1)-colorable graph has a subgraph with
average degree greater than 14/5. This leads to the question whether one
of these subgraphs is also non-(2, 1)-colorable. This would imply that a
minimal non-(2, 1)-colorable graph has average degree at least 14/5 as its
unique non-(2, 1)-colorable subgraph is the graph itself.
In this chapter, we analyze the average degree of minimal non-(2, 1)-colo-
rable graphs and study their lower bounds. As an introduction, we present
a coloring of a connected graph with n vertices and n+ 1 edges.

7.1 Coloring of Graphs with n+ 1 Edges

Let G be a connected graph with n vertices, n + 1 edges and a spanning
tree T . Let e1 and e2 be the edges outside T and c a coloring of G without
monochromatic edges in T . This is no (2, 1)-coloring of G if and only if e1

and e2 are monochromatic and incident. If so, let e1 := v1v2 and e2 := v2v3

and root the tree T in v1. Let Tv be the subtree of T with root v. We denote
the parent of v by vp for all v 6= v1. If v3 /∈ V (Tv2), color the vertices in Tv2
in the other color from c and all remaining vertices as in c. This is a (2, 1)-
coloring of G as only the edge v2v

p
2 is monochromatic. If v3 ∈ V (Tv2), color

only the vertices in Tv2 − Tv3 differently from c and all other vertices as in
c. Only the edges v2v

p
2 and v3v

p
3 are monochromatic. They have different

colors as c(v2) = c(v3) but just v2 sits in Tv2 − Tv3 .

v1

v2

v3

e1

e2

Tv2
Tv3

v1

v2

v3

e1

e2

Tv2
Tv3

FIGURE 7.1: Coloring c and (2, 1)-coloring if v3 ∈ V (Tv2)
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7.2 Lower Bound for the Average Degree

We prove that minimal non-(2, 1)-colorable graphs have average degree
greater than 8/3. First, we show that a graph, which fulfills some prop-
erties of minimal non-(2, 1)-colorable graphs, cannot have average degree
smaller than 8/3. Afterwards, we consider all graphs with these proper-
ties and average degree exactly 8/3. We prove that these graphs obtain a
(2, 1)-coloring. Hence, the average degree of a minimal non-(2, 1)-colorable
graph exceeds 8/3.

For this purpose, let H be a connected graph without separating edges and
hence, minimal degree at least two. We denote the set of d-valent vertices
in H by Vd. Let the set V2 be independent and any component of H − V2

whose vertices are in V3 contain at least two odd cycles. We denote these
properties by (∗).

Lemma 39. The graph H has average degree at least 8/3.

We apply discharging for the proof of Lemma 39. This method of proof
works with an initial charge on each vertex. Afterwards, we discharge be-
tween the vertices, i.e., transfer some of the initial charge, and use the fact
that the sum over all charges stays the same.

Proof. Each vertex gets initial charge d(v). In the discharging, every biva-
lent vertex receives charge 1/3 from its neighbors. Hence, bivalent vertices
have final charge 2 + 2 · 1/3 = 8/3 since both neighbors have degree at least
three.
Let v be a vertex of degree at least 3 and H ′ the component of H −V2 which
contains v. We set n′ := n(H ′), m′ := m(H ′) and V ′ := V (H ′). Let V ′2 be the
set of bivalent vertices whose neighbors are both in V ′. The neighborhood
of H ′ has the size

|N(H ′)| =
∑
v∈V ′

d(v)− 2m′ − |V ′2 |.

We show that the total final charge ch(H ′) of H ′ is sufficient for its vertices.
That means that ch(H ′) ≥ 8/3n′. The total final charge is

ch(H ′) :=
∑
v∈V ′

d(v)− 1

3
|N(H ′)| − 1

3
|V ′2 | =

2

3

(∑
v∈V ′

d(v) +m′

)
.

If V (H ′) ⊆ V3, it contains two odd cycles and hence, m′ ≥ n′+ 1. This gives

ch(H ′) ≥ 2

3

(
3n′ + (n′ + 1)

)
>

8

3
n′.

Otherwise, there is a vertex of degree at least four inH ′. AsH ′ is connected,
m′ ≥ n′ − 1 and thus,

ch(H ′) ≥ 2

3

((
3n′ + 1

)
+ (n′ − 1)

)
=

8

3
n′.
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Therefore, the graph H has in total charge at least 8/3n(H). We conclude
that its average degree is at least 8/3.

Lemma 40. A graph H with the properties (∗) and average degree exactly 8/3 is
(2, 1)-colorable.

Proof. Let Vd be the set of d-valent vertices inH andXi the set of all vertices
which have i bivalent neighbors. The proof above shows that H only has
average degree 8/3 if every component ofH ′ := H−V2 is a tree with exactly
one vertex in V4 and all other vertices in in V3. In particular, ∆(H) = 4 and
thus, Xi = ∅ for all i ≥ 5. A vertex in X3 has degree 4 in H as, otherwise, it
were isolated in H ′ and hence, contradicted the last property in (∗). It fol-
lows that such a vertex is unique in its component of H ′. Vertices in X4 are
isolated in H ′. Paths of length two whose inner vertex is bivalent are called
double-edges and its end vertices 2-neighbors. A double-edge is monochro-
matic if their end vertices have the same color and dichromatic otherwise.
Let c′1 be a 2-coloring of H ′ such that all components in H ′ − X4 are col-
ored properly and the vertices in X4 have at most two different-colored
2-neighbors.
Let us deduce a coloring c′ ofH ′ where no vertex has more than two dichro-
matic double-edges. If this holds for c′1, set c′ := c′1. Otherwise, let x1, . . . , xk
be the vertices with more than two dichromatic double-edges and Cxi their
respective component in H ′. It holds xi ∈ X3 and dCxi

(xi) = 1. The com-
ponents Cxi are considered one after the other. We call c′i+1 the coloring
obtained after treating Cxi . All vertices outside Cxi have the same color in
c′i and c′i+1. Furthermore, the vertex xi has color c′i(xi) in c′i+1. Let y1

i be the
unique neighbor of xi in Cxi . If y1

i ∈ X2, the component Cxi consists only
of xi and y1

i . In c′i+1, we color y1
i in c′i(y

1
i ) if and only if both double-edges

of y1
i are dichromatic in c′i. If y1

i sits in X0, we color all vertices in Cxi − xi
as in c′i.
Trivalent vertices inX1 have degree two inH ′. If y1

i ∈ X1, letP := y1
i . . . y

l−1
i

be a maximal path of vertices in X1. Let ymi be the first vertex in P whose
double-edge is monochromatic in c′i. In c′i+1, we color the vertices y1

i , . . . ,

ym−1
i differently from c′i and all remaining vertices of Cxi − xi as in c′i. If

no such ymi exists, color all vertices in P in the other color from c′i and let yli
be the trivalent neighbor of yl−1

i which does not belong to P . This vertex is
either in X0 or in X2. If it is in X2 and has two dichromatic double-edges
in c′i, color yki in c′i+1 differently from c′i. Otherwise, color yki in c′i+1 as in
c′i. All further vertices of Cxi − xi receive the same color as in c′i. Let P ′ be
the path of vertices with different colors in c′i and c′i+1. Figure 7.2 shows an
example.
Subsequently, we remove the vertices xj with j > i, which do not have three
different-colored 2-neighbors in c′i+1, from the sequence xi+1, . . . , xk. Only
vertices whose 2-neighbors are all different-colored in c′i fulfill c′i+1 6= c′i.
Thus, a monochromatic double-edge in any coloring c′i is monochromatic in
all colorings c′j with j ≥ i. Hence, all vertices with three different-colored 2-
neighbors in c′i+1 are in the sequence xi+1, . . . , xk. We can choose c′ := c′k+1.
Now, let us consider a vertex v which is in a monochromatic edge of c′.
It is either an end vertex of P ′ or the unique neighbor of P ′ in Cxi for an
i ≤ k. If v ∈ X0, it has no 2-neighbors. If v belongs to X3, all double-edges
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are monochromatic in c′. If v is in X1, its double-edge is monochromatic
since it holds c′i+1(v) 6= c′i(v) if and only if the double-edge is dichromatic
in c′i. If v ∈ X2, it has at most one different-colored 2-neighbor. If there is a
different-colored 2-neighbor, we call v evil. An example is the vertex y4

i in
Figure 7.2.
Let c be the following coloring of H : inner vertices of monochromatic dou-
ble-edges in c′ receive the other color from their neighbors. Let H ′′ be the
graph induced by the dichromatic double-edges in c′. All non-bivalent ver-
tices outsideH ′′ are colored as in c′. As no vertex has more than two dichro-
matic double-edges in c′, H ′′ has maximum degree two. Hence, it consists
of disjoint paths and cycles. The cycles have an even number of double-
edges as in c′, the colors of the (in H) non-bivalent vertices alternate.
Let Y be a component ofH ′′. If none of the vertices in Y sits in a monochro-
matic edge in c′, color the (in H) non-bivalent vertices as in c′ and the biva-
lent vertices alternating along the path or cycle. If a vertex a in H ′′ sits in
a monochromatic edge of c′, it is evil. Hence, only one of its double-edges
is dichromatic and Y is a path with end vertex a. Let b be the second end
vertex of Y . We color the non-bivalent vertices in Y − b as in c′ and the
bivalent vertices alternating such that a is in no monochromatic edge of Y .
Color b as in c′ if and only if it is not evil.
If no component of H ′′ contains more than one evil vertex, all vertices w
in H ′ fulfill c(w) = c′(w) and the bivalent vertices have at most one same-
colored neighbor. All vertices of degree at least three have no same-colored
neighbor in V2 if they are in a monochromatic edge in c′ and at most one
otherwise. Therefore, it is a (2, 1)-coloring of H .
If there are paths inH ′′ with two evil end vertices, one of them has different
colors in c′ and in c. An evil vertex is a leaf in H ′ and sits in a monochro-
matic edge in c′. Hence, its component in H ′ is properly 2-colored in c.
Moreover, its edge in Y is dichromatic in c. Thus, it has only one same-
colored neighbor in c. This is the inner vertex of its double-edge which is
monochromatic in c′. It follows that the only vertices in H , whose num-
ber of monochromatic edges is higher than in the case without components
with two evil vertices, are inner vertices of monochromatic double-edges
with two evil end vertices. Hence, all centers of monochromatic S3 in c are
bivalent vertices with two neighbors of the same color. Recoloring these
vertices gives a (2, 1)-coloring of H . This is illustrated in Figure 7.3.

Cxi

xi y1
i y2

i y3
i y4

i

FIGURE 7.2: Coloring ci+1: P ′ = xiy
1
i y

2
i y

3
i

We showed in Chapter 3 that minimal non-(2, 1)-colorable graphs fulfill the
properties (∗). Therefore, Lemma 39 and Lemma 40 give following theo-
rem:

Theorem 14. The average degree of a minimal non-(2, 1)-colorable graph is strictly
greater than 8/3.
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(a) The coloring c′

(b) The coloring c

(c) The final coloring

FIGURE 7.3: Paths in H ′′ with two evil endvertices

Corollary 7. A minimal non-(2, 1)-colorable graph G fulfills

m(G) ≥
⌈

4

3
n(G) +

1

3

⌉
= n(G) +

⌈
1

3
(n(G) + 1)

⌉
.

It follows that any minimal non-(2, 1)-colorable graph G with n(G) ≥ 6 has
at least n(G)+3 edges. This holds for all graphs in G asW5 is the only graph
with less than six vertices and it has eight edges. Figure 7.4 shows graphs
of order n with n+ 3 edges. We proved in Chapter 4 that they are minimal
non-(2, 1)-colorable.

FIGURE 7.4: Graphs in G with m(G) = n(G) + 3

7.3 (2,1)-Density of Minimal Graphs

Definition 10. The (2, 1)-density of minimal graphsm∗ is the maximum num-
ber such that all graphs in G have average degree at least m∗.

Consider the minimal non-(2, 1)-colorable graphs in the set GBT , introduced
in Subsection 6.4.1, with k′ = (k − 1)/2 flags as building blocks. This set of
graphs is presented in [5]. The graphs have k + 3k′ + 1 = 5k′ + 2 vertices
and k + 5k′ + 2 = 7k′ + 3 edges. Thus, they have average degree

2(7k′ + 3)

5k′ + 2

k′→∞−→ 14

5
.
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It follows that there are minimal non-(2, 1)-colorable graphs with average
degree arbitrarily close to 14/5. Together with Theorem 14, this gives

8

3
≤ m∗ ≤ 14

5
.

We can replace the flag in the considered graphs by any building block B.
Such a graph has average degree

2((m(B) + 2)k′ + 3)

(n(B) + 1)k′ + 2

k′→∞−→ 2(m(B) + 2)

n(B) + 1
.

The flag F fulfills 7n(F )−5m(F ) = 3. So far, we only know building blocks
with 7n(B)− 5m(B) ≤ 3. However, if B would fulfill 7n(B)− 5m(B) > 3,
then it follows

2(m(B) + 2)

n(B) + 1
<

14(m(B) + 2)

5m(B) + 3 + 7
=

14

5
.

In this case, the average degree were smaller than 14/5 for all sufficiently
large k′.

7.4 Conjecture: ad(G) > 14/5

The already mentioned article “On 1-improper 2-coloring of sparse graphs”
[5] shows that graphs with maximum average degree at most 14/5 are
(2, 1)-colorable. We apply similar ideas aiming for a proof of ad(G) > 14/5
for minimal non-(2, 1)-colorable graphs. This statement is not shown yet.
However, the proof of Conjecture 1 follows if the Conjectures 2 and 3 hold.

Conjecture 1. Every minimal non-(2, 1)-colorable graph has average degree grea-
ter than 14/5.

We prove that graphs with specified properties have average degree greater
than 14/5, see Theorem 15 in Subsection 7.4.5. We show that these proper-
ties hold or follow from Conjectures 2 and 3 for the graphs we consider in
this section.

To simplify the calculations, we define the potential of a graph as

p(G) := 7n(G)− 5m(G).

A graph has non-negative potential iff its average degree is at most 14/5.
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7.4.1 Order on the Set of Graphs

As in [5], we employ a partial order on the set of all graphs.

Definition 11. We call a vertex v unimportant if either d(v) ≤ 1 or d(v) =
2 and v sits in a triangle. All other vertices are important. We denote by
ni(G) the number of important vertices in G.

Definition 12. The configurations in Figure 7.5 are called order-configurations.
For a graph G, let o1(G) be the number of order-configurations CO

1 in G,
o2(G) the number of order-configurationsCO

2 inG and o(G) the sum o1(G)+
o2(G).

y

x

w

a z

v

c

b

(a) CO
1

y

x

w

a z

b
c

d

(b) CO
2

FIGURE 7.5: The order-configurations

Definition 13. Let H and G be graphs. We call H smaller than G and G
greater than H , write H ≺ G, if one of following conditions holds:
(1) n(H) < n(G)
(2) n(H) = n(G) ∧ ni(H) < ni(G)
(3) n(H) = n(G) ∧ ni(H) = ni(G) ∧ o(H) < o(G)
(4) n(H) = n(G) ∧ ni(H) = ni(G) ∧ o(H) = o(G) ∧ o1(H) < o1(G)

The binary relation “≺” defines a strict partial order on the set of all finite
simple graphs. The empty graph is its least element.

It would be nice to prove Conjecture 1 by contradiction. Thus, assume that
there is a graph which is minimal non-(2, 1)-colorable and has average de-
gree at most 14/5. This is equivalent to a non-negative potential. If further-
more, the graph is smallest with respect to the partial order “≺”, we call it
critical. Throughout this section, we assume that G is a critical graph.

As G is a minimal non-(2, 1)-colorable graph, it fulfills the properties of
Chapter 3 such as connectivity, the absence of separating edges and hence,
minimum degree at least two. No bivalent vertices are adjacent and any
induced subgraph, whose vertices are trivalent in G and whose neighbors
are bivalent in G, contains two odd cycles. Moreover, the configurations in
Figure 3.4 and Figure 3.5 in Section 3.3 do not occur.
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7.4.2 Flags and Superflags

We call the configuration

F := (K4 − xy, {deg : x 7→ 2, y 7→ 2, z 7→ 3}, {v})

a flag, compare Subsection 6.3.1. A flag is a building block with base v.
The configuration obtained by gluing a flag to a triangle with a bivalent
vertex, which does not hold the flag, is called a superflag, as in [5]. Only the
base of the flag and one vertex of the triangle have neighbors outside the
superflag. This second unbounded vertex is called the secondary base.

Base

Base

Secondary base

FIGURE 7.6: Flag and superflag

Remark 8. In any (2, 1)-coloring of a superflag, the secondary base has the
same color as its bivalent neighbor.

Remark 9. A flag has potential three and a superflag potential two. The
graph which is a flag glued to a vertex of H has potential p(H)− 4.

Lemma 41. In a minimal non-(2, 1)-colorable graph H with p(H) ≥ 0, flags and
superflags are either vertex-disjoint or intersect in an entire flag.

Proof. Let A and B be flags or superflags such that their intersection A ∩B
is no flag. Suppose that A ∩ B 6= ∅. A vertex v in A ∩ B is either the
base or the secondary base in A and in B. If we color A ∪ B such that all
vertices except for v have impropriety at most one, v has two same-colored
neighbors by Remark 8 and as flags are building blocks. Hence, A ∪ B is
not (2, 1)-colorable. The minimality of H gives H = A ∪B. There are three
graphs which are minimal with the property that they consist of exactly
two (super)flags. These graphs are shown in Figure 7.7. As p(H1) = −1,
p(H2) = −2 and p(H3) = −3, all of them have negative potential. This
gives the sought contradiction.

(a) H1 (b) H2 (c) H3

FIGURE 7.7: Intersecting flags and superflags
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Lemma 42. In any minimal non-(2, 1)-colorable graph, the base v of a flag has
degree at least five.

Proof. Flags are (2, 1)-colorable and hence, d(v) ≥ 4. If the base had one
edge outside the flag, this were a separating edge and inconsistent with
Lemma 2.

Lemma 43. In any minimal non-(2, 1)-colorable graph, the secondary base of a
superflag has degree at least three.

Proof. This follows directly from Lemma 3 as the secondary base has a bi-
valent neighbor.

7.4.3 Open Conjectures

We shall reduce Conjecture 1 to following two conjectures:

Conjecture 2. Let G be a critical graph with a trivalent vertex v whose set of
bivalent neighbors V2 is not empty. Then V2 ∪ {v} has at most two neighbors.

Remark 10. The set V2 has size at most two by Lemma 4.

We call a triangle with a bi- and a trivalent vertex which does not belong to
a flag a semiflag. The third vertex has degree at least four by Lemma 8.

The property of Conjecture 2 does not hold for all minimal non-(2, 1)-co-
lorable graphs. Figure 7.8 shows two examples of graphs in G which do
not fulfill this property. The red vertices are trivalent. Together with their
bivalent neighbors, they have a neighborhood of size three. However, these
graphs are not critical as their potential is −3.

FIGURE 7.8: Minimal non-(2, 1)-colorable graphs which do
not fulfill the poperty of Conjecture 2

We will see in Lemma 47 in the next subsection, that if |V2| = 2 and the
vertices in V2 share the second neighbor a, the vertex a also is a neighbor of
v. Hence, the vertices in V2∪{v, a} induce a flag with base a. Together with
Conjecture 2, we conclude that in critical graphs, any trivalent vertex with
a bivalent neighbor sits in a flag or a semiflag.

Definition 14. We define a supercross as the configuration which consists of
a tetravalent vertex - the center - and its neighbors who are all bivalent.
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FIGURE 7.9: Supercross

The average degree of a supercross is 12/5. Thus, its neighbors need to have
sufficient large degree. Therefore, we have to forbid some structures in G.

Conjecture 3. A critical graph G does not contain any of the configurations
shown in Figure 7.10.

(a) C1 (b) C2

(c) C3 (d) C4

(e) C5 (f) C6

FIGURE 7.10: Conjecture 3: Forbidden configurations

To bound the average degree, we have to show that vertices of small degree
imply high degree on other vertices. Instead of proving the Conjectures 2
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and 3, it is sufficient to show that vertices close to the edge or the configu-
rations have sufficiently large degree.

7.4.4 Forbidden Subgraphs

In the following, we show that some subgraphs do not occur in the critical
graph G. The applied method of proof was used by Borodin, Kostochka
and Yancey.

We want to show that a graph A is not an induced subgraph of G in such a
way that only vertices in a specified subset VA have neighbors in G−A. We
call the vertices in VA frontier vertices. For a contradiction, assume that such
a subgraph A exists. Let A′ be a graph and σ : VA → V (A′) an injection
such that xy ∈ E(A) if and only if σ(x)σ(y) ∈ E(A′). The set V ′A := σ(VA)
are the frontier vertices ofA′. We defineG′ as the graph which occurs when
we replace A in G by A′ such that a vertex in G′ −A′ is adjacent to a vertex
σ(x) ∈ V ′A if and only if it is adjacent to x in G. We denote this replacement
by ϕ : G 7→ G′ and G − (A − VA) by Ĝ. The graph Ĝ is also a subgraph of
G′. The mapping ϕ is illustrated in Figure 7.11:

A G−AVA

ϕ
A′ G′ −A′V′A

Ĝ Ĝ

FIGURE 7.11: Mapping ϕ : G 7→ G′

Lemma 44. With the notations from above, let A be an induced subgraph of a
critical graph G. Then A′ fulfills at most three of following conditions:
(1) p(A) ≤ p(A′)
(2) G′ ≺ G
(3) A (2, 1)-coloring of Ĝ is extendable to G iff it is extendable to G′.
(4) Any proper minimal non-(2, 1)-colorable subgraph H ′ of G′ fulfills A′ ⊆ H ′.

Proof. Assume for a contradiction that G contains A and that a graph A′

with the properties (1)−(4) exists. The graphG′ has potential p(G)−p(A)+
p(A′). This is at least p(G) ≥ 0 by property (1). The graph G is a smallest
(w.r.t. ≺) minimal non-(2, 1)-colorable graph with non-negative potential.
Since G′ is smaller as G and p(G′) ≥ 0, either G′ is (2, 1)-colorable or it
contains a proper non-(2, 1)-colorable subgraph. The graphG′ has no (2, 1)-
coloring c′ because c′|

Ĝ
were extendable to G by property (3). Therefore, G′
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contains a proper non-(2, 1)-colorable subgraph. Let H ′ be a minimal such
graph. By property (4), this graph contains A′. The graph H := ϕ−1(H ′)
is a proper subgraph of G. Hence, H has a (2, 1)-coloring c. This leads to
contradiction as c|

Ĥ
is extendable to H ′ by property (3).

Borodin, Kostochka and Yancey study non-(2, 1)-colorable graphs in gen-
eral. They consider a graph G which is smallest (w.r.t. a certain partial or-
der ≺) among all non-(2, 1)-colorable graphs with non-negative potential.
In this case, any graph G′ with p(G′) ≥ 0 and G′ ≺ G has a (2, 1)-coloring.
Thus, showing that for any (2, 1)-coloring c of G′, c|

Ĝ
is extendable to G

already gives the contradiction. The conditions (1), (2) (for their order) and
the if-part of condition (3) are therefore sufficient.

Nevertheless, one subgraphA′ used in the proofs of [5] fulfills all properties
of Lemma 44. This graph is employed in Lemma 47. For the further sub-
graphsA in this subsection, we found graphsA′ fulfilling the requirements.
All statements in this subsection apply to a critical graph G. We employ the
notations from Lemma 44.

Lemma 45. The base of a superflag has a neighbor outside the superflag.

Proof. A superflag B whose base has no neighbors outside B is an induced
subgraph where only the secondary base is a frontier vertex. We claim that
a flag F with the base as frontier vertex fulfills the properties of Lemma
44. It holds p(F ) = 3 > p(B) = 2. Furthermore, G′ ≺ G because n(G′) =
n(G) − 2. Superflags and flags are building blocks. Thus, for G and G′

holds that a (2, 1)-coloring of Ĝ is extendable iff the frontier vertex is in
no monochromatic edge. Let H ′ be a proper minimal non-(2, 1)-colorable
subgraph of G′. As every proper subgraph of G is (2, 1)-colorable, it holds
H ′ 6⊆ G. Since H ′ is minimal, it contains the entire flag F . Therefore, by
Lemma 44, the base of any superflag in G has degree at least six.

(a) B ⊆ G (b) F ⊆ G′

FIGURE 7.12: Superflags are no building blocks

Lemma 46. Let F be a flag with base v and d(v) = 5. Then one neighbor of v
outside F has degree at least three.

Proof. Let x and y be the neighbors of v outside F . By the way of contra-
diction, assume N(x) = {v, a} and N(y) = {v, b}. As G is minimal non-
(2, 1)-colorable, these four vertices are distinct. Our proof applies Lemma
44 and shows that the P3 with its end vertices as frontier vertices fulfills the
required conditions. The subgraphA is induced by the vertices x, y, a, b and
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the vertices in F , compare Figure 7.13. The vertices a and b are drawn non-
adjacent, which does not hold in general. The graphs P3 and A both have
potential 11 and G is greater than G′ by their order. Any (2, 1)-coloring c

of A fulfills c(x) = c(y) 6= c(v). Thus, a coloring of Ĝ is not extendable to
G if and only if c(a) 6= c(b) and both vertices are in monochromatic edges.
The same holds for G′. Condition (4) of Lemma 44 is also fulfilled as any
subgraph H ′ of G′ which has minimal degree two and is no subgraph of G
contains v′ and its edges. Therefore, G cannot contain the subgraph A.

v

y x
ab

(a) A ⊆ G (b) P3 ⊆ G′

FIGURE 7.13: Pentavalent base of a flag

Remark 11. The graph in Figure 6.9 is a minimal non-(2, 1)-colorable graph
which contains A as a subgraph. Thus, it cannot be critical. In fact, its
potential is −2.

Lemma 47. Let N(v) = {x, y, z} and N(x) = N(y) = {v, a}. Then a = z, i.e.,
the vertices v, x, y and z induce a flag with base z.

Proof. For a contradiction, we assume that a 6= z, i.e., G contains the sub-
graph A := G [{v, x, y, z, a}] as shown in Figure 7.14 (a). The graph A pos-
sibly contains the edge az which is not drawn. Replacing the vertex y by a
vertex y′ which is adjacent to v and z gives a graph A′ with n(A′) = n(A)
and m(A′) = m(A). Thus, p(A′) = p(A). The vertex y is important and y′

is unimportant. All other vertices keep their importance, hence, G′ ≺ G. In
both graphs, the non-frontier vertices form a P3. Therefore, a coloring of Ĝ
is extendable iff either a and z have different colors or one of them is in no
monochromatic edge. A proper subgraph H ′ of G′ which is minimal non-
(2, 1)-colorable contains y′, as any proper subgraph of G is (2, 1)-colorable.
It holds δ(H ′) ≥ 2 and no adjacent vertices in H ′ have both degree two.
Thus, the whole subgraph A′ is in H ′. Together with Lemma 44, we can
conclude that the graph A is no induced subgraph of G.

a

xy

zv

(a) A ⊆ G

a

x

y′
zv

(b) A′ ⊆ G′

FIGURE 7.14: Forbidden subgraph

Together with Conjecture 2, we have following statement:
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Corollary 8. In a critical graph, any trivalent vertex with a bivalent neighbor
belongs to a flag or a superflag.

A configuration represents a set of induced subgraphs with specified fron-
tier vertices. Recall the order-configurations CO

1 and CO
2 in Figure 7.5 in

Subsection 7.4.1. We consider all induced subgraphs which they represent
and call the vertices as in the picture.

Lemma 48. The order-configurations do not occur in G if the Conjectures 2 and
3 hold.

Proof. For a contradiction, we assume that G contains CO
1 . First, consider

the subgraphs with a = b. They are in no minimal non-(2, 1)-colorable
graph, as any coloring of G\CO

1 were extendable to G. The same holds for
a = c. Thus, a /∈ {b, c}. Let A be the configuration subgraph of CO

1 together
with the vertices a, b and c and their induced edges and A′ the graph which
arises when we replace the vertexw by a vertexw′ withN(w′) = {a, z}. The
vertices a, b and cmight be adjacent and b and c even identified. The graphs
G and G′ have the same number of vertices, edges and important vertices.
This implies p(G′) = p(G) ≥ 0. If the vertex a has degree three in G, its
neighbors outside CO

1 form a semiflag by Corollary 8. Hence, the graph G
would contain the configuration C3 in Figure 7.10 which is conjectured not
to happen. Thus, dG(a) ≥ 4 and G contains the first order-configuration
once more than G′. As G′ contains CO

2 at most once more than G, we have
o(G′) ≤ o(G) and o1(G′) < o1(G). This gives G′ ≺ G. In both graphs G
and G′, a coloring c of Ĝ is not extendable if and only if c(a) 6= c(b) = c(c)
and these three vertices are in monochromatic edges of c. A subgraph of G′

which is no subgraph of G contains w′ and therefore, A′ ⊆ H ′ by δ(H ′) ≥ 2
and Lemma 3. This shows that the configuration CO

1 does not occur inG by
means of Lemma 44.
In a similar manner, we prove that G does not contain CO

2 . If CO
2 is in G, we

consider the graph G′ which arises from replacing w by a vertex w′ which
is adjacent to a and z. Again, p(G′) = p(G) ≥ 0 and both graphs G and G′

have the same order and the same number of important vertices. If d(a) =
3, the two further neighbors build a semiflag by Corollary 8. This is the
configuration C4 in Figure 7.10 and believed not to occur in G. Therefore,
dG(a) ≥ 4 and o1(G′) = o1(G). If a is not the center of a supercross, then
o2(G′) < o2(G). This gives o(G′) < o(G) and thus, G′ ≺ G. Suppose a were
in a supercross. The configurationsC5 andC6 in Conjecture 3 do not appear
and hence, w.l.o.g. either a and b are adjacent or a = b = c. Both cases are
not possible, compare C ′2 and C ′3 in Lemma 10. Therefore, the graph G′ is
smaller than G. Let A be the configuraton subgraph of CO

2 together with
the vertices a, b, c and d and their edges. These are the frontier vertices
whereof some might be identified or adjacent. Both graphs G and G′ fulfill
that a coloring of Ĝ is not extendable if and only if all frontier vertices are in
monochromatic edges and a has the same color as exactly two other frontier
vertices. Any proper minimal non-(2, 1)-colorable subgraphH ′ ofG′ which
is no subgraph ofG containsw′ and by the properties in Chapter 3 the entire
graph A′. The requirements of Lemma 44 are fulfilled and hence, CO

2 is not
in G.
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7.4.5 Proof by Discharging

In this section, we consider a graph H which fulfills some of the proper-
ties showed and conjectured for G. First, we prove that H has average
degree at least 14/5. Afterwards, we study all graphs with those properties
which have average degree exactly 14/5. We show a (2, 1)-coloring of these
graphs. Therefore, H has average degree greater than 14/5. The properties
ofH hold for critical graphs if the Conjectures 2 and 3 are true. Hence, these
conjectures yield Conjecture 1.

Let H be a graph which fulfills the following properties:
(i) Connectivity and absence of separating edges.
(ii) No adjacent bivalent vertices.
(iii) Any trivalent vertex has a neighbor of degree at least three.
(iv) H does neither contain the configurations C ′1, C

′
4, C

′
5, C

′
6 and C ′7 in the

Lemmas 8 and 10, nor the order-configurations, nor the configurations C1

and C2 of Conjecture 3.
(v) (Super)flags only intersect in an entire flag.
(vi) Any trivalent vertex with a bivalent neighbor belongs to a (semi)flag.
(vii) The base of a flag has degree at least five. If so, it has at most one
bivalent neighbor outside the flag.
(viii) In a superflag, the base has degree at least six and the secondary base
degree at least three.

Now, let us prove that H has average degree at least 14/5. We apply the
method of discharging. Let µ(v) := 5d(v) − 14 be the initial charge of each
vertex v ∈ V (H). The total charge of all vertices in H is non-negative iff
the average degree of H is at least 14/5. The following rules give the final
charge µ∗(v):
(1) In a flag, the vertices of degree two get each charge 4 from the base.
(2) In a superflag, the base gives charge 4 to all bivalent vertices and charge
1.5 to the secondary base.
(3) In a semiflag on the vertices w, x and y whereof w is bivalent and y
trivalent, we shift as follows:
(3.1) If z, the neighbor of y outside the triangle, has degree at least three, w
gets charge 3 from x and charge 1 from y.
(3.2) If z has degree two, x gives charge 4 to w and charge 1.5 to z. Further-
more, z receives charge 1 from y and charge 1.5 from its second neighbor.
In the case that both neighbors of z are trivalent and in a semiflag, x charges
as above but z only receives charge 0.5 from each neighbor.
Figure 7.15 illustrates this discharging rule.
Consider the case that x is the base of a flag, i.e., the flag and the semiflag
build a superflag. If d(z) ≥ 3, then we charge as in a superflag, i.e., the biva-
lent vertex w receives charge 4 from x and no charge from y and y receives
charge 1.5 from x. If d(z) = 2, we charge among rule (3.2).
(4) The bivalent vertices in a supercross get charge 1.5 from the center and
charge 2.5 from their second neighbor (or from x and y together if the con-
ditions of Rule (3.2) are fulfilled).
(5) Vertices of degree two which do not belong to a flag, a superflag, a su-
percross or a configuration as in (3), receive charge 2 from both neighbors.
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These discharging rules are well-defined as superflags and flags only inter-
sect in an entire flag and no vertex sits in two supercrosses, see configura-
tion C1.

y

x

w

z

3

1

(a) Configuration C7:
d(z) ≥ 3

y

x

w

v z

4

11.5

1.5

(b) Config. C8: d(z) = 2
It holds v 6= x.

y

x

w

v z

44

0.50.5

1.5 1.5

(c) Configuration C9: Spe-
cial case of C8

FIGURE 7.15: Discharging rule (3)

We want to show that all vertices inH have non-negative final charge. First,
let us consider vertices which belong to C7 or C8.

Lemma 49. If a vertex belongs to exactly one configuration isomorphic to C7 or
C8 and to no flag or superflag, it has final charge at least zero.

Proof. We call the vertices as in the picture. First, consider the configura-
tion C7. The vertex w receives in total charge 4 from its neighbors. Thus,
µ∗(w) = 5 · 2 − 14 + 4 = 0. The vertex y has initial charge 1 and therefore
final charge 0. Outside the configuration, only bivalent neighbors receive
charge. They get charge 2.5 if they are in a supercross and charge at most 2
otherwise.
The vertex x has degree at least four as the configuration C ′1 is not in H . If
d(x) = 4, its initial charge is 6. The absence of C ′4 implies that one neighbor
of x outside C7 is not bivalent and thus gets no charge from x. Therefore,
µ∗(x) ≥ 5 · 4− 14− 3− 2.5 = 0.5. If d(x) ≥ 5,

µ∗(x) ≥ 5d(x)− 14− 3− 2.5(d(x)− 2) = 2.5d(x)− 12 ≥ 0.5.

If the vertex z has degree three, either none of its neighbors is bivalent and
therefore, µ∗(z) = 1, or the two neighbors form a semiflag by property (vi).
In this case, x is in two configurations isomorphic to C7. If d(z) = 4 and all
neighbors outside C7 are bivalent, none of them can be in a supercross as
this would contain C1. Thus, it gives at most charge max{3 · 2, 2 · 2.5} = 6
and has final charge at least 0. If d(z) ≥ 5, the final charge is at least

µ∗(z) = 5d(z)− 14− 2.5(d(z)− 1) = 2.5d(x)− 11.5 ≥ 1.

In C8, the vertices w, y and z have final charge 0. If d(x) = 4, it has no
bivalent neighbor outside C8 as this were CO

1 . Hence, µ∗(x) = 6− 4− 1.5 =
0.5. If d(x) = 5, at most two neighbors outside C8 have degree 2 since CO

2

is not in H . It follows µ∗(x) ≥ 11 − 4 − 1.5 − 2 · 2.5 = 0.5. If d(x) ≥ 6, the
vertex has final charge

µ∗(x) ≥ 5d(x)− 14− 4− 1.5− 2.5(d(x)− 2) = 2.5d(x)− 14.5 ≥ 0.5.
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Consider v, the second neighbor of z. If it is trivalent, it sits in a semiflag
since d(z) = 2. In this case, v belongs to two configurations C8. If d(v) = 4
and all its neighbors are bivalent, it has final charge 6 − 4 · 1.5 = 0 by
discharging rule (4). If d(v) = 4 and two further neighbors are bivalent,
none of them is in a supercross, as this gaveC1. Thus, µ∗(v) ≥ 6−1.5−2·2 =
0.5. If at most one further neighbor is bivalent, µ∗(v) ≥ 6−1.5−2.5 = 2. If v
has five bivalent neighbors, the absence of C2 shows that at most two of its
neighbors are in supercrosses. Therefore, v gives at most charge 2·2.5+2·2 =
9 to the vertices outside C8. It follows µ∗(v) ≥ 11−9−1.5 = 0.5. If d(v) = 5
and v has a neighbor of degree at least three, µ∗(v) ≥ 11− 3 · 2.5− 1.5 = 2.
If v has degree greater than five,

µ∗(v) ≥ 5d(v)− 14− 1.5− 2.5(d(v)− 1) = 2.5d(v)− 13 ≥ 2.

Remark 12. The vertex x has strictly postive final charge.

Lemma 50. A vertex which belongs to at least two configurations isomorphic to
C7 or C8 and to no flag or superflag has non-negative final charge.

Proof. First, we treat the verticesw, y and z in configurationC7. As d(x) ≥ 4,
the vertex w does not belong to any further configuration isomorphic to Ci

for an i ∈ {7, 8}. The vertex z has a neighbor of degree 3 in the configu-
ration and gives no charge. The same would happen if z and zy were in
no configuration C7. Thus, if z belongs to another configuration Ci, we can
treat z as in Lemma 49. The vertex y can only belong to a second configu-
ration Ci if z is trivalent and in a semiflag. In the second configuration, y
does not give charge to any other vertex. Therefore, µ∗(y) ≥ 0.
Now, consider the configuration C8. The vertex w again cannot belong to
any other configuration Ci. The vertex v gives charge 1.5 to its bivalent ver-
tex in the configuration. If v were in no C8, it gave charge at least 1.5 to
a bivalent neighbor. Hence, we can treat v as in Lemma 49. No bivalent
vertices are adjacent in G. Thus, the vertices y and z are only in a further
configuration Ci if v is trivalent and in a semiflag. This is the special case
of rule (3.2), i.e., C9 in Figure 7.15. One can see that any vertex without
neighbors outside C9 has non-negative final charge.
Lastely, let us consider x, i.e., the case that a vertex belongs to at least two
semiflags. Let k be the number of its semiflags and l := d(x)− 2k the num-
ber of its further neighbors. If k = 2, the absence of C ′5 gives d(x) ≥ 5. If
both triangles belong to a configuration of type C7, the vertex x has final
charge at least

µ∗(x) ≥ 5d(x)− 14− 2 · 3− 2.5l = 2.5d(x)− 10 ≥ 2.5.

If one triangle belongs to C8 and d(x) = 5, the neighbor of x outside the
configuration has degree greater than two as otherwise, this were the con-
figuration C ′6. Thus, µ∗(x) ≥ 11− 2 · (4 + 1.5) = 0. If d(x) ≥ 6, it follows

µ∗(x) ≥ 5d(x)− 14− 2 · (4 + 1.5)− 2.5l = 2.5d(x)− 15 ≥ 0.
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If k = 3, the final charge of x is

µ∗(x) ≥ 5d(x)− 14− 3 · (4 + 1.5)− 2.5l = 2.5d(x)− 15.5 ≥ 2.

The last inequality follows from l ≥ 1, see configuration C ′7. If k ≥ 4,

µ∗(x) ≥ 5(2k + l)− 14− (4 + 1.5)k − 2.5l = 4.5k + 2.5l − 14 ≥ 4.

Remark 13. In a semiflag, which does not intersect with a flag or a superflag,
the vertex with degree at least four has only final charge zero if it belongs
to one of the configurations in Figure 7.16. If this vertex x fulfills µ∗(x) = 0
in C11, the bivalent neighbors of x, that have a neighbor outside the config-
uration subgraph, are in supercrosses.

x

(a) C10

x

(b) C11

FIGURE 7.16: Configurations with µ∗(x) = 0

Lemma 51. Vertices in flags and superflags have non-negative final charge.

Proof. Consider a flag on the vertices x, y, z and v whereof x is the vertex of
degree three, y and z are bivalent and v is the base. It holds µ∗(x) = µ(x) =
1 and µ∗(y) = µ∗(z) = 0. If the flag does not belong to a superflag and
thus, v in particular not to a semiflag, the base has final charge at least 0.5
because by property (vii), either d(v) = 5 and µ∗(v) ≥ µ(v)−2 ·4−2.5 = 0.5
or the base has degree at least six and hence,

µ∗(v) ≥ 5d(v)− 14− 2 · 4− 2.5(d(v)− 3) = 2.5d(v)− 14.5 ≥ 0.5.

Now, let the base v belong to a superflag, i.e., to k ≥ 1 triangles with a
bivalent vertex, which might be semiflags. The base gives charge 4 + 1.5 =
5.5 to each such configuration. In the case k = 1, the fact d(v) ≥ 6 gives

µ∗(v) ≥ 5d(v)− 14− 2 · 4− (4 + 1.5)− 2.5(d(v)− 5) = 2.5d(v)− 15 ≥ 0.

If v is in k ≥ 2 triangles with a bivalent vertex, we have

µ∗(v) ≥ 5d(v)− 14− 2 · 4− (4 + 1.5)k − 2.5(d(v)− 3− 2k)

= 2.5d(v)− 14.5− 0.5k ≥ 4.5k − 7 ≥ 2.

The second inequality follows from d(v) ≥ 2k + 3. The vertices of degree
two in the superflag receive charge 4 in every case and thus, all have fi-
nal charge 0. If the secondary base w has degree three, it is the trivalent
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vertex of a semiflag. Hence, it receives at least as much charge as if the
semiflag would not belong to a superflag and therefore, has non-negative
final charge. If the secondary base has degree at least four and sits in no
semiflag outside the superflag, it has final charge

µ∗(w) ≥ 5d(w)− 14 + 1.5− 2.5(d(w)− 2) = 2.5d(w)− 7.5 ≥ 2.5.

If the secondary base is in k ≥ 1 semiflags outside the superflag, it has final
charge

µ∗(v) ≥ 5d(v)− 14 + 1.5− (4 + 1.5)k − 2.5(d(v)− 2− 2k)

= 2.5d(v)− 7.5− 0.5k ≥ 4.5k − 2.5 ≥ 2.

This follows from d(v) ≥ 2k + 2.

Remark 14. The trivalent vertex in a (super)flag has positive final charge.

With these lemmas, we show that no vertex in H has negative final charge
and hence, the average degree of H is at least 14/5.

Lemma 52. Every vertex v in a graph H with the properties (i) − (viii) has
non-negative final charge.

Proof. If the vertex v belongs to a flag, a superflag, a configuration C7 or
C8, it has non-negative final charge by the Lemmas 49, 50 and 51. Now,
consider a vertex which does not belong to any of these configurations.
Such a vertex gives only charge to bivalent vertices. If d(v) = 2, it gets
in total charge 4 from its neighbors. As no two vertices of degree two are
adjacent, v has final charge 0. If v has degree three, none of its neighbors is
bivalent by property (vi). Thus, v has final charge 1. Let d(v) = 4. Either
v gives only charge 1.5 to every neighbor or there is a neighbor of v which
has degree at least three. If v gives charge 2.5 to a neighbor, it has at most
two neighbors of degree two as C1 does not arise in H . Thus,

µ∗(v) ≥ µ(v)−max{4 · 1.5, 3 · 2, 2 · 2.5} = 0.

If v has degree five and gives at most charge 2 to every neighbor, it fulfills

µ∗(v) ≥ µ(v)− 2d(v) = 11− 10 = 1.

If v has degree five and gives charge 2.5 to a neighbor, then the absence of
C2 implies that it gives in total at most charge

max{3 · 2.5 + 1 · 2, 2 · 2.5 + 3 · 2} = 11 = µ(v).

Vertices of degree at least six fulfill

µ∗(v) ≥ 5d(v)− 14− 2.5d(v) ≥ 1.
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Let us consider a graph H̃ with the properties (i) − (viii) such that each
vertex has final charge 0. We will show that such a graph is (2, 1)-colorable.

Lemma 53. A graph H̃ with the properties (i) − (viii) and µ∗(v) = 0 for all
v ∈ V (H̃) is (2, 1)-colorable.

Proof. The Remarks 12, 13 and 14 show that the graph H̃ contains neither
flags, nor superflags, nor C7. If it contains C8, this configuration belongs to
C10 or C11 in Figure 7.16. The proof of Lemma 52 shows that any vertex v
in H̃ , which is not in C10 or C11, has degree two, four or five. Let H̃ ′ be the
subgraph of H̃ which arises by deleting all configurations C10 and C11.
Claim: Coloring the vertices in H̃ ′ in color 1 if they are bivalent in H̃ and
in color 2 otherwise gives a (2, 1)-coloring of H̃ ′ which is extendable to H̃ .
First, we show that this is a (2, 1)-coloring of H̃ ′. By property (ii), H̃ [V2]
is a stable set, i.e., the vertices in the first color class are independent. Fur-
thermore, the final charge of a vertex v of degree five is only zero if all its
neighbors are bivalent because µ(v) = 11 > 4 · 2.5. Thus, every vertex of
degree five has no neighbor of color 2. If d(v) = 4 and µ∗(v) = 0, the vertex
v has at least three neighbors of degree two. Hence, in H̃ ′, each component
in color class 2 contains at most two vertices.
If the configuration C10 occurs in H̃ , we (2, 1)-color a vertex in its configu-
ration subgraph in color 1 if and only if it belongs to a dashed edge. For all
these vertices, the neighbor outside the configuration subgraph is not biva-
lent and has thus color 2, see Figure 7.17 (a). If C11 is in H̃ , color the vertices
as in Figure 7.17 (b). The neighbors of the configuration subgraph have all
degree at least four and hence, color 2. We know from Remark 13 that the
vertices of distance two to x, which do not belong to the configuration sub-
graph, are centers of supercrosses. Thus, they have no further neighbor in
V4 ∪ V5 and the colorings in the picture extend above coloring to the entire
graph H̃ .

(a) C10

x

(b) C11

FIGURE 7.17: (2, 1)-Coloring of C10 and C11

Theorem 15. Non-(2, 1)-colorable graphs with the properties (i) − (viii) have
average degree strictly greater than 14/5.

A critical graph G is non-(2, 1)-colorable. We showed and conjectured that
it fulfills the properties of H . This gives the following:

Theorem 16. If Conjectures 2 and 3 hold, every minimal non-(2, 1)-colorable
graph has average degree strictly greater than 14/5.
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Proof. We can conclude from Conjecture 2 and Conjecture 3, that a critical
graphG fulfills the properties (i)−(viii). By Theorem 15,G has average de-
gree greater than 14/5. This contradicts p(G) ≥ 0. Hence, there are no criti-
cal graphs. The binary relation “≺” is a partial order on the set of all graphs.
This poset has a least element. The set of all minimal non-(2, 1)-colorable
graphs with non-negative potential contains no smallest elements. Hence,
it is the empty set. It follows that minimal non-(2, 1)-colorable graphs have
negative potential and their average degree is strictly greater than 14/5.

7.5 Remark on “On 1-Improper 2-Coloring of Sparse
Graphs”

In the previous section, we employed different ideas and results of the ar-
ticle “On 1-improper 2-coloring of sparse graphs” [5] from Borodin, Kos-
tochka and Yancey. This is an important paper in the field of improper
colorings. It proves that the infimum of the maximum average degree of
non-(2, 1)-colorable graphs is 14/5 which was conjectured in 1994 by Kurek
and Ruciński [15]. The writing of the thesis at hand required a careful study
of this paper. Doing so, we noticed a few formal incorrectnesses. Apart
from minor printing errors, we detected two mathematical mistakes which
are presented in this section. Nevertheless, all main statements of the pa-
per hold. The incorrectnesses have no substantial impacts on the proofs.
Moreover, we give suitable rectifications.

7.5.1 On the Partial Order

Comparable to the proof in Section 7.4, the authors work with a partial
order on the set of all graphs. This order is defined differently from our
order ≺. To prevent confusion, we denote this order by ≺′ albeit the article
uses ≺. It is stated in the paper that any proper subgraph H of G fulfills
H ≺′ G. We assume that the authors refer to proper induced subgraphs as
there are non-induced subgraphs which are greater thanG. This subsection
introduces the order ≺′, gives examples for greater subgraphs but also a
proof that proper induced subgraphs are indeed smaller. All conclusions in
the paper follow already from this restricted statement.

Flags, superflags, bases and secondary bases are defined as in Subsection
7.4.2. However, unimportant and important vertices are characterized slight-
ly different and the authors additionally call some vertices semi-important:

Definition 15. We call a vertex v unimportant if d(v) ≤ 1 or d(v) = 2 and v
is in a triangle or d(v) = 3 and v is in a flag. A vertex of degree two which
is not in a triangle is called semi-important. All other vertices are important.
The numbers nu(G), ns(G) and ni(G) denote the number of unimportant,
semi-important and important vertices in a graph G.
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Definition 16. A graph H is smaller than a graph G (and G greater than H),
write H ≺′ G, if one of following conditions holds:
(1) ni(H) < ni(G)
(2) ni(H) = ni(G) ∧ ns(H) < ns(G)
(3) ni(H) = ni(G) ∧ ns(H) = ns(G) ∧ nu(H) < nu(G)
(4) ni(H) = ni(G) ∧ ns(H) = ns(G) ∧ nu(H) = nu(G) ∧∑

v∈V (H) d(v)2 >
∑

v∈V (G) d(v)2

Following proper non-induced subgraphs are greater w.r.t. ≺′:

• G − E′ for any edge subset E′ 6= ∅ such that the importance of all
vertices is the same in G and G− E′ (by condition (4)).

• G− xy if x and y are the neighbors of an unimportant bivalent vertex
and do not have degree three in G. In G − xy, the bivalent vertex is
semi-important and x and y stay (un)important.

• G − e for an edge e in a flag which contains the base. The trivalent
vertex has a higher importance in G− e and all other vertices at least
the same.

Figure 7.18 illustrates the second and the third case. The yellow vertices
are unimportant, the orange vertices semi-important and the red vertices
important.

yx

FIGURE 7.18: Greater non-induced subgraphs

Nevertheless, the restiction to proper subgraphs gives H ≺′ G:

Lemma 54. Any proper induced subgraph H of G fulfills H ≺′ G.

Proof. We may assume w.l.o.g. that n(H) = n(G)−1. We claim that deleting
one vertex either does not increase the importance of any vertex or that the
deleted vertex was important and we just increased the importance of one
other vertex from unimportant to semi-important. As n(H) < n(G), this
claim implies the lemma. For all vertices v ∈ V (H), it holds dH(v) ≤ dG(v).
If a vertex has degree at most one in G or is semi-important, it is not more
important in H . If v is already important in G, it cannot be more important
in H either.
Thus, we only have to consider bivalent vertices in a triangle and trivalent
vertices in a flag. Their importance can only be higher in H if the graph H
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does not contain the triangle respectively the flag. Removing another ver-
tex of the triangle decreases the degree of the regarded vertex. Hence, this
vertex has degree one in H and is unimportant in both graphs. Let us con-
sider a trivalent vertex v in a flag. Its importance can only be influenced if
H does not contain one of the bivalent vertices in the flag or the base. In the
first case, v is bivalent in H and sits in a triangle. Therefore, it is also unim-
portant in H . In the second case, v becomes semi-important. However, the
base is an important vertex in G and thus H ≺′ G.

Let us now analyze why Lemma 54 is sufficient to conclude the statements
in the paper. The article treats graphs with potential at least zero. Differ-
ently from Section 7.4, the potential of a graph is defined as

ρG := min
H⊆G, H induced

7n(H)− 5m(H).

A graph has non-negative potential if and only if its maximum average
degree is at most 14/5. Similarly to the considerations in this thesis, the au-
thors work with a graph G which is non-(2, 1)-colorable, has non-negative
potential and is smallest w.r.t. ≺′ with these properties.

Lemma 55. Every subgraph H ⊆ G has non-negative potential. If furthermore
n(H) < n(G), the graph H is (2, 1)-colorable.

Proof. The potential is chosen minimal over all subgraphs. This gives di-
rectly ρH ≥ ρG ≥ 0. Let Hi := G [V (H)] be the induced subgraph on the
vertices in H . If n(H) < n(G), i.e., Hi 6= G, the choice of G and Lemma 54
yield that Hi is (2, 1)-colorable and hence, also its subgraph H is so.

If V (H) = V (G), H is not necessarily smaller than G and hence, possibly
non-(2, 1)-colorable. Thus, G might have proper non-(2, 1)-colorable sub-
graphs. Nevertheless, Lemma 55 is sufficient to show that G fulfills the
properties specified in Chapter 3 of [5], as for instance 2-edge-connectivity.
Also the further statements in the article can be concluded from this lemma.

7.5.2 Lemma 25

In Lemma 25, the authors state that any two distinct vertices in G, which
are bases or secondary bases and do not belong to the same superflag, have
distance at least three. In the proof, a graph consisting of two flags or su-
perflags A1 and A2 and a shortest path P between their bases or secondary
bases is considered. It is shown that this graph has potential at most three
if P has length smaller than three. The authors assume for a contradic-
tion, that G contains such a graph as a subgraph. Lemma 13 in the paper
says that every non-empty proper induced subgraph with potential at most
two is a superflag. The graph A1 + P + A2 is (2, 1)-colorable and hence a
proper subgraph of G. Furthermore, it is induced, non-empty and no su-
perflag. Thus, it has potential three. Lemma 23 states that a subset of po-
tential three is either a flag of has at least n(G)− 1 vertices. Only flags and
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A1 + P + A2 = G are considered in the article. One might add the case
n(A1 + P + A2) = n(G) − 1 to the proof: we know from Lemma 13, that
A1 + P +A2 has potential three. This is only possible if A1 and A2 are flags
and P has length two. Suppose there is a vertex v outside A1 + P + A2.
As ρG ≥ 0 and δ(G) ≥ 2, the vertex v has exactly two neighbors. These
neighbors are vertices of P . Both such graphs are (2, 1)-colorable, compare
Figure 7.19. Hence, the lemma holds.

v v

FIGURE 7.19: Lemma 25, Case A1 + P +A2 = G− v
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Appendix A

Illustration of Lemma 5

Figure A.1 demonstrates the proof of Lemma 5. The picture shows G′ to-
gether with its neighborhood N(G′) in Ĝ or G. Due to the comparatively
high number of vertices, we do not use the usual representation of config-
urations. G′ is drawn as a graph with continous edges. Furthermore, the
vertices in N(G′) are joint to their neighbors in G′ by dashed edges. Re-
call that these vertices are bivalent and that their edges to vertices outside
G′ are dichromatic in ĉ. Two leaves in Ĝ which replace the same vertex in
V ′2 ⊆ V (G) are drawn close to each other.

Subfigure (a) shows the coloring ĉ|
Ĝ−G′ . Red represents color 1 and blue

color 2. The black vertices are V (G′). The second picture shows the colors
of all vertices in Ĝ′. We can see that the vertices which are colored in the sec-
ond subfigure but not in the first are in no monochromatic edge. A vertex is
black in Subfigure (b) if no color occurs more than once in its neighborhood.
The Subfigures (c) and (d) show the (2, 1)-colorings of Ĝ and G.
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(a) Coloring of Ĝ−G′

(b) Coloring of Ĝ′

(c) Coloring of Ĝ

(d) Coloring of G

FIGURE A.1: Exemplification of the proof of Lemma 5
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List of Symbols

G Graph 9
V (G) Vertex set 9
E(G) Edge set 9
n(G) Number of vertices; |V (G)| 9
m(G) Number of edges; |E(G)| 9

dG(v), d(v) Degree of v 10
NG(v), N(v) Neighborhood of v 10
NG(V ′), N(V ′) Neighborhood of V ′ ⊆ V (G) 10
NG(G′), N(G′) Neighborhood of V (G′) for G′ ⊆ G 10
δ(G) Minimum degree 10
∆(G) Maximum degree 10
ad(G) Average degree 10
mad(G) Maximum average degree 10

G[V ′] Graph induced by V ′ ⊆ V (G) 9
G[E′] Graph with edge set E′ ⊆ E(G) 9
G− V ′ Graph induced by V (G)\V ′ 9
G−G′ Graph induced by V (G)\V (G′) 9
G− E′ Graph without E′ ⊆ E(G) 9
G+ F Graph with added edge set F 9
G− v Graph induced by V (G)\{v} 9
G− e Graph without e ∈ E(G) 9
G+ f Graph with added edge f 9
G Complement graph 9
G1 ∪G2 Graph union 9
G1∪̇G2 Disjoint graph union 9
G1 ∩G2 Graph intersection 9
G1 +G2 Graph join 9

Pk Path on k vertices 9
Ck Cycle on k vertices 9
Kk Clique on k vertices 9
Kn1,n2 Complete bipartite graph 9
Sk Star on k vertices 9
Wk Wheel on k vertices 9

χ(G) Chromatic number 3
χj(G) j-Defective chromatic number 3
G Set of minimal non-(2, 1)-colorable graphs 5
m∗ (2, 1)-Density of minimal graphs 57
λ(G) Minimum size of an edge cut 15

N Natural numbers (including 0) 17
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