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Abstract

This essay concerns Hilbert’s tenth problem. We begin by stating this

problem and describe its origins, moving on to disecting the components of

said statement, the main one being Diophantine equations. After extensive

discussion about Diophantine equations and sets, logic of different forms,

and computability we move on to the chronology of the solution of Hilbert’s

tenth problem. Covering the main events that led to the unsolvability

proof of the problem, the essay culminates in the fact that Diophantine

sets coincide with semidecidable sets. This completes the unsolvability of

Hilbert’s tenth problem.
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1 Introduction

Who was Hilbert? What is his tenth problem, and why is it called the tenth?

Let us begin by giving the topic of this essay a historical context, accompanied

by some philosophical discussion.

1.1 Hilbert’s 23 problems

At the International Congress of Mathematicians in Paris in 1900, David Hilbert

gave a memorable talk entitled “The Problems of Mathematics”. During this

talk he presented a compilation of problems that he predicted would be of

great importance for the upcoming century. In the actual talk he presented ten

problems (though it is a common misconception that all 23 occurred), but the

list was soon to be extended to the legendary 23 problems of Hilbert.

The list became very influential, and is generally reckoned the most successful

and deeply considered list of open problems ever to be produced by an individual

mathematician. Some of these were solved within a short time, some were

discussed throughout all of the 20th century with varying results. Some still

remain a challenge for mathematicians to resolve.

One of these 23 problems, namely the tenth, is about solutions to Diophantine

equations. This is the one with which we shall concern ourselves in this essay.

1.2 Formulation of Hilbert’s tenth problem

Hilbert’s original publication of the 23 problems was in German, but the following

translation of the tenth is one of the more widely spread.

Problem 10. Hilbert’s Tenth Problem

Given a Diophantine equation with any number of unknown quan-

tities and with rational integral numerical coefficients: to devise a

process according to which it can be determined in a finite number

of operations whether the equation is solvable in rational integers.

There are some things with this formulation that needs to be clarified. First

we note that common practise is to consider Hilbert’s reference to “rational

integers” to mean the same numbers we would usually just call integers. So did

those who eventually solved the problem during the 50’s and 60’s, and hence it

is also what we will do here. There has been a lot of research about the analogue

of Problem 10 for other domains, for example the rational numbers Q, but we

will restrict ourselves to the integers.
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Nowadays we would say that Hilbert was asking for an algorithm, but that

word wasn’t in broad use until decades later with the importance of computers

growing rapidly. What he is asking for is, in modern terms, a computer program

that will take any Diophantine equation as input, and output yes if it is solvable

and no if it is not. We will investigate this through the notion of Turing

machines, i.e. very primitive and theoretical, but yet complete, computers in

section 3.5. In fact Hilbert couldn’t really have used the word algorithm, not

merely because the word wasn’t in use but also because there was no rigorous

definition of this word. Instead he proposed the notion of a process with a finite

number of operations, which is a bit vague. It is troublesome to prove something

about a vague statement, which contributed to Problem 10 being open for so

long. The development of Turing machines allowed for a definition of this type

of processes, and enabled mathematics to make universal statements about such.

This was a key factor to be able so solve Hilbert’s tenth problem at all.

1.3 The Hilbert Program

Hilbert is said to have been very optimistic about the future of mathematics.

His ambitious Hilbert Program indicates this, as well as quotations such as

the famous “We must know. We will know.” which is also engraved on his

tombstone. The main purpose of the program was to formalise and axiomatise

all of mathematics — indeed an ambitious goal. This was partially a response

to certain problems arising in mathematics at the time. Unpleasant paradoxes

like the famous one of Russell had arisen and needed to be dealt with.

Example 1. Russell’s Paradox

Mathematician Bertrand Russell made reference to “the set of all sets not

containing themselves”. In symbols this it the set S = {A ∶ A ∉ A}. But then

what happens with the set S itself? Suppose that S ∉ S. Then it doesn’t contain

itself and should be in S — but we just stated that it didn’t! Suppose instead

S ∈ S. By definition S contains only sets which does not contain themselves, so

this also leads to a contradiction. We have encountered a paradox. △

Certainly this was a burden for contemporary mathematicians, and probably

caused many sleepless nights. One had to think twice about how to treat sets

and how not to. In the case of Russell’s paradox, set theory was modified so as

not to include such sets at all to avoid this inconsistency.

With the positive attitude Hilbert held, he certainly expected the process he

was asking for in his tenth problem to exist — though we will see that in fact it
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doesn’t. However he is in spite of this optimism said to have uttered the words

“Occasionally it happens that we seek the solution under insufficient hypotheses

or in an incorrect sense, and for this reason do not succeed. The problem then

arises: to show the impossibility of the solution under the given hypotheses or

in the sense contemplated.”This impossibility is exactly what will be established

in what follows.

1.4 Decision problems

Hilbert’s tenth problem is a so called decision problem. Such problems consist

of countably many individual problems, which can be called subproblems, each

one with a yes- or no-answer. The essence of a decision problem lies in the

search for a general method that provides this yes- or no-answer for any given

subproblem. Each subproblem is specified by a finite amount of information; in

the case of Hilbert’s tenth problem, this is a given Diophantine equation and

the domain in which to search for solutions (here integers).

Obviously we know how to solve some of these subproblems. For example,

linear Diophantine equations (see section 2.2) are very easy to solve, and for

such we have a sufficient algorithm based on the elementary Euclidean algorithm.

But then again, Hilbert asks for a universal method that would work for any

subproblem, and so Euclid’s algorithm certainly will not do.

If there exists a general method that solves every single subproblem, one way

to show this would be to specify that very method. The method might be crazy

or extremely complex, and might not even be possible to find — but if we could

find it, and specify it, we would simply be done. That would be what we call a

direct proof. The other way would be to reduce the decision problem to another

one that has already been solved, which would be more of an indirect proof. If

this would have been the case — that the process Hilbert was asking for would

exist — it is possible that Problem 10 might have been solved much earlier.

However if there doesn’t exist such a general method, or process, or algorithm,

or whatever word you prefer, we have to show that none can ever exist. It will

not do to simply show that, say, Euclid’s algorithm doesn’t suffice. We have

to be able to say that about every possible algorithm, every combination of

instructions — but these are infinitely many! Now this is a universal attempt at

a completely different level: we need to prove that for all algorithms, none will

solve each subproblem. It would, obviously, be futile to try to eliminate them

one at a time since we would never be done.

This is where something called algorithmic unsolvability comes into play.
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The development of the Turing machine suddenly axiomatised algorithms, and

we were enabled to talk about such things as possible and impossible algorithms.

This new notion of computability theory, or recursion theory as it is also called,

was of indispensable importance to the solution of Hilbert’s tenth problem.

Before, there was no definition of algorithm, or of a process with a finite number

of operation to put it the way Hilbert himself did, and therefore impossible to

state anything about algorithms in general. But suddenly we could do such a

thing. It might be worth mentioning that this assertion requires the acceptance

of the Church-Turing Thesis, that we will elaborate in section 3.6.

1.5 Making reductions

When solving a mathematical problem, or constructing or searching for a proof,

it is almost inevitable to make use of reductions. This means that if we want to

solve say problem A , we might first show that if we can solve problem B we

will also be able to solve problem A — and then we move on to trying to solve

problem B instead. This method of reducing one problem to another-technique

was so frequently used during the solving of Hilbert’s tenth problem, that one

suffers a severe risk of losing oneself amongst the different angles and aspects,

and what happened when, and what actually implies what. All we can say

for sure at this point is that everything taken together, apparently provides a

negative solution to Hilbert’s tenth problem!

1.6 Ready, set, solved! Or not?

We conclude this section by asking whether Hilbert’s tenth problem was really

solved after all. This might be considered semantics and disregarded with a

reference to it being of mere “academic interest” — but as the reader probably

will acknowledge, that is not an argument to dismiss it, but rather the opposite!

What would Hilbert himself think? Considering the quotation in section 1.3, he

would probably accept the negative solution as an actual solution. However in

hindsight, he might wish he would have stated it differently. A positive solution

would have yielded a process for determining solutions in rational numbers as well,

and in his optimism he might have thought that his formulation would suffice,

but the negative solution provides no further information about such solutions.

It is reasonable to think that Hilbert would have included a question about

solutions in rational numbers as well if he would have foreseen said outcome.

Problem 10 modified as to ask for rational solutions remains to date an open

problem.
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When we say that Hilbert’s tenth problem given its original statement was

solved, we can’t mean that the decision problem Hilbert’s asked for has been

solved. It hasn’t. It has been proven unsolvable. An unsolvability proof is not

the same as a solution. I would suggest that we distinguish between the tenth

problem Hilbert posed, and “Hilbert’s tenth problem”. Then we could say that

the former has been given an unsolvability proof and the latter has been solved,

in the sense that it is no longer a problem and we know the outcome.
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2 Diophantine equations

To be able to understand the work that led to the unsolvability proof of which

we spoke above we naturally need some theory and some place to start off. We

begin with some simple and familiar examples, before moving on to stating what

Diophantine equations formally are and some properties they possess.

2.1 Diophantine equations in one variable

It might be of pedagogical interest to start by considering some very basic special

cases of Diophantine equations to familiarise with the concept. We can state a

Diophantine equation with only one variable as

anx
n + an−1xn−1 + ⋅ ⋅ ⋅ + a1xn + a0 = 0, where ai ∈ Z. (1)

As one can see, this is essentially a polynomial equation in one variable,

with n complex roots. It becomes Diophantine when we limit the solutions to

integers. No doubt, for n ≤ 4 we could find all solutions via well-known algebraic

formulas, however irrational or complex they would be. Then we could take

these solutions and check one at a time if they are integers, to find all integer

solutions. However as shown by Niels Abel in 1824, when the degree is 5 or

greater there exists no such general formula. Here one is referred to so called

numerical methods to approximately find all solutions.

There is a difference when we are looking only for integer solutions. Consider

a polynomial

p(x) = anxn + an−1xn−1 + ⋅ ⋅ ⋅ + a1x + a0. (2)

If a0 = 0, we can factor an x from the polynomial, and 0 will be a root.

We can do this until the constant term is not 0, and hence we without loss of

generality may consider only polynomials with a0 ≠ 0.

Every integer solution to p(x) will divide a0. Because of this if suffices to

first find the divisors of an, and then input these in p to see if it evaluates

to 0. Surely, factoring integers isn’t always a pleasurable method, but it is

algorithmically manageable.

Example 2. A Diophantine polynomial equation of order 5

Consider the polynomial

p(x) = x5 − 36x3 − 84x2 − 37x − 84. (3)

We find the prime factorisation as 84 = 22 ⋅3 ⋅7 without much trouble. This gives

us 24 (we can have both positive and negative values) possible solutions for
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x ∶ {±1,±2,±3,±4,±6,±7,±12,±14,±21,±28,±42,±84}. Inputting these values in

p one after another and noting when it is equal to 0, we see that the integer roots

of polynomial p are x = −3, x = −4 and x = 7. Hence these are the solutions to

the Diophantine equation p(x) = 0. △

If one wants to avoid factoring the constant term (which is reasonable to

want for large values of a0 ), there are also ways to give an upper bound for the

solutions. We will illustrate one way to do this. Take the polynomial from (2)

and factor out signs from the coefficients so that we may write it in the form

p(x) = anxn − bn−1xn−1 − ⋅ ⋅ ⋅ − b1x − b0 (4)

(where bi = −ai for 0 ≤ i ≤ n − 1). When the absolute value of x is greater than

or equal to 1, we have that ∣xn∣ = ∣x∣n ≥ ∣x∣i = ∣xi∣, for 0 ≤ i ≤ n − 1. Rewriting

the polynomial (4) and applying this inequality as well as the triangle inequality

we get

p(x) = 0 ⇐⇒ anx
n = an−1xn−1 + ⋅ ⋅ ⋅ + a1x + a0

Ô⇒ ∣an∣ ⋅ ∣x∣n = ∣an−1xn−1 + ⋅ ⋅ ⋅ + a1x + a0∣

≤ ∣an−1xn−1∣ + ⋅ ⋅ ⋅ + ∣a1x∣ + ∣a0∣ (5)

≤ ∣an−1xn−1∣ + ⋅ ⋅ ⋅ + ∣a1xn−1∣ + ∣a0xn−1∣

= ∣x∣n−1(∣an−1∣ + ⋅ ⋅ ⋅ + ∣a1∣ + ∣a0∣)

Dividing by ∣an∣ ⋅ ∣x∣n−1 we obtain

∣x∣ ≤ 1

∣an∣
(∣an−1∣ + ⋅ ⋅ ⋅ + ∣a1∣ + ∣a0∣). (6)

Now it is possible to test all integers below this upper bound. Surely if this

number is high, there will be a lot of testing, but evaluating a polynomial for a

specific value is not the hardest thing to do computationally.

2.2 Linear Diophantine equations

Another simple special case is when a Diophantine equation is linear. Then there

exists a simple algorithm to not just decide if the equation has solutions, but

even determine these solutions.

Definition 1. Linear Diophantine equation

A linear Diophantine equation is an equation of the form

ax + by = c, (7)
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with given a, b, c ∈ Z and two unknowns x and y. △

Again, we are looking only for integer solutions. A necessary condition for

the equation ax + by = c to have a solution is that the greatest common divisor

of a and b divides c (in symbols gcd(a, b)∣c ). Therefore we can easily see that,

for example, 6x + 9y = 2 has no (integer) solutions; gcd(6,9) = 3, and 3 ∤ 2.

Moving on to an example where solutions exist.

Example 3. Consider the equation

24x + 9y = 15. (8)

First we compute gcd(24,9) with the Euclidean algorithm;

24 = 2 ⋅ 9 + 6

9 = 1 ⋅ 6 + 3

6 = 2 ⋅ 3 + 0.

(9)

We find that gcd(24, 9) = 3 (this procedure might surely be a bit overkill in this

specific case). If we now divide both sides of (8) by 3, we get

8x + 3y = 5. (10)

Equations (8) and (10) will have the same set of solutions, so in fact we may

always assume that gcd(a, b) = 1 while solving linear Diophantine equations.

This is the case in (10): gcd(8,3) = 1 . Once again we apply Euclid’s algorithm,

but this time not to find the gcd but rather to be able to express 8 and 3 as a

combination of the remainders that occur in the process.

8 = 2 ⋅ 3 + 2

3 = 1 ⋅ 2 + 1.
(11)

Now we can combine the remainders “backwards”, and get

2 = 8 − 2 ⋅ 3

1 = 3 − 1(8 − 2 ⋅ 3) = −1 ⋅ 8 + 3 ⋅ 3.
(12)

We solve the help-equation 8x+ 3y = 1 where the right hand side equals 1 using

(12);
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 = 8x + 3y

1 = −1 ⋅ 8 + 3 ⋅ 3
Ô⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x0 = −1

y0 = 3
(13)

Hence x0 = −1, y0 = 3 is a solution to our help-equation, and multiplying with

the right hand side of equation (10) we obtain one solution to 8x + 3y = 5 (and

to (8) as well) as x′0 = −5, y′0 = 15. It remains to find all solutions. These will

be x = 3 ⋅ (−5) − 3k, y = 3 ⋅ 15 + 8k, k ∈ Z. △
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2.3 General Diophantine equations

A Diophantine equation is an equation in which only integer (or another range

if specified) solutions are allowed. Thus there will be plenty of such equations

with no solutions. As a simple example there is no integer x such that x2 = 2,

so the Diophantine equation x2 − 2 = 0 lacks solutions.

Definition 2. Diophantine equation

A Diophantine equation is an equation of the form

D(x1, ..., xm) = 0, (14)

where D is a polynomial with integer coefficients. △

The questions asked in Diophantine analysis include: Are there any solutions?

Are there any solutions beyond some that are easily found by inspection? Are

there finitely or infinitely many solutions? Can all solutions be found in theory?

Can one in practice compute a complete list of solutions?

Hilbert’s tenth problem concerns itself only with the first of these questions.

But to answer any of the questions for a given Diophantine equation we must

provide a representation of the form in Definition 2 as well as a range of the

unknowns. We have already established that with Hilbert’s tenth problem, that

range is the integers. However as a decision problem, it is equivalent to speak of

the natural numbers as the domain of solutions. For now we accept this as a

fact, and conclude that to establish the unsolvability of Hilbert’s tenth problem

in its original form, it is sufficient to establish it for natural numbers.

We will want to divide the variables of the Diophantine equation into two

different categories: unknowns and parameters. Then we obtain the following

concept.

Definition 3. Parametric Diophantine equation

A parametric Diophantine equation is an equation of the form

D(a1, . . . , an;x1, . . . , xm) = 0, (15)

where D is a polynomial with integer parameters a1, . . . , an and unknowns

x1, . . . , xm. △

Example 4. The linear Diophantine equations as parametric equations

The linear Diophantine equation from Definition 1 may be written in this form:

D(a, b, c;x, y) = ax + by − c

D(a, b, c;x, y) = 0.
(16)
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Then x and y will be unknowns and a, b, c will be parameters that we have

to fix to see if the corresponding linear Diophantine equation has a solution. If

we recall Example 3, we had a = 24, b = 9, c = 15. It is worth mentioning that

the c has switched sides; while it was intuitive to write it on the right hand side

above, we have to transfer it to the left hand side to match our formal definition

of a general Diophantine equation. There is no real difference to be confused by

here. △

Let’s see an example of a Diophantine equation that is neither linear, nor in

only one variable.

Example 5. Lagrange’s four-square theorem

Consider the parametric Diophantine equation

x2 + y2 + z2 +w2 = a. (17)

To correspond to our formal Definition 3 we should write this

D(a;x, y, z,w) = x2 + y2 + z2 +w2 − a

D(a;x, y, z,w) = 0,
(18)

but transposing the parameter a makes it easier to read.

After we fix the parameter a we can ask whether (17) has any solutions in

unknowns (x, y, z,w). Let us try this with a = 21. Clearly 21 = 16 + 4 + 1 =
42+22+12+02, so one solution is x = 4, y = 2, z = 1, w = 0; but we can permute

these values and also negating them since the squaring eliminates the signs.

Hence another solution is x = 0, y = −4, z = −1, w = 2.

The fact that equation (17) is solvable in integers (x, y, z,w) for any natural

number a is called Lagrange’s four-square theorem, and was proved by Lagrange

in 1770. △

2.4 Diophantine sets

Intimately related to the Diophantine equations are the Diophantine sets, which

will be of great importance in this text. Using parametric Diophantine equations,

we can define sets of n -tuples. Suppose we have a parametric Diophantine

equation that defines a set S. We take an n -tuple of natural numbers to be the

parameters and fix these values. Now we have an “ordinary” (non-parametric)

Diophantine equation which may or may not have solutions for its unknowns (we

still don’t care about what these solutions are). If it does have a solution, the

fixed n -tuple is a member of the set S, and if it does not, it is not a member of

the set.
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Definition 4. Diophantine representation

For a parametric Diophantine equation and a set S, we have a Diophantine

representation of S given by

(a1, . . . , an) ∈ S ⇐⇒ ∃x1 . . . xm[D(a1, . . . , an;x1, . . . , xm) = 0]. (19)

△

Definition 5. Diophantine set

A set S of n -tuples which has a Diophantine representation will be called a

Diophantine set. The number n is called the dimension of S. △

Every Diophantine set has infinitely many Diophantine representations, since

Diophantine equations are essentially polynomials, which can be multiplied by a

constant without changing the solutions. They also have the properties of being

closed under union and intersection if the dimension is the same, though it is not

always the case that the complement of a Diophantine set is also a Diophantine

set.

Example 6. A finite set of integers

In Example 2 we saw that the Diophantine equation x5−36x3−84x2−37x−84 = 0

has integer solutions x = −3, x = −4 and x = 7. Hence this equation can be used

as a representation of the set I = {−3,−4,7} ∶

x ∈ I ⇐⇒ x5 − 36x3 − 84x2 − 37x − 84 = 0. (20)

For this example we see that we have no parameters, but merely a set of solutions

to a Diophantine equation. If we want it to look more like Definition 4, we

could consider x here as a parameter and use a random “dummy variable” as

an unknown, e.g.

x ∈ I ⇐⇒ ∃y[x5 − 36x3 − 84x2 − 37x − 84 = 0]. (21)

△

Example 7. The natural numbers

We could take a ∈ N ⇐⇒ ∃x[x = a] and only allow non-negative values of x

and we would have a canonical and trivial Diophantine representation of the set

N. If we wanted to complicate things just for fun we may use the equation (17)

to obtain a representation of the natural numbers. Then we get

a ∈ N ⇐⇒ ∃xyzw[x2 + y2 + z2 +w2 = a]. (22)
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The left implication is because a sum of squared integers will be always be a

natural number and the right implication holds because of Lagrange’s four-square

theorem, stating that every natural number can be written as the sum of four

squares. △

Sometimes it is more convenient to think of Diophantine sets than of Dio-

phantine equations; instead of asking whether a Diophantine equation has a

solution, we can ask if a particular set of n -tuples is Diophantine (i.e., if it has

a Diophantine representation).

2.5 Exponential Diophantine equations

Roughly we can say that if a Diophantine equation has as an additional variable

or variables occurring as exponents, it is an exponential Diophantine equation.

These are equations of the form

E1(x1, . . . , xm) = E2(x1, . . . , xm), (23)

where E1 and E2 are expressions constructed from variables and particular

natural numbers using addition, multiplication, and exponentiation. We don’t

have 0 on the right hand side because we don’t allow subtraction here (so we

can’t shuffle all terms to one side).

Example 8. Fermat’s Last Theorem

A legendary example of an exponential Diophantine equation is the famous

conjecture of Fermat, later to be proven true by Andrew Wiles in 1994 — a

seldom seen success story. Indeed, this now theorem occurs in literature about

Diophantine equations as an example of an open problem that might not be

solved for another century or more (this is the case in for example [3] and [4] in

the Bibliography). How extraordinary then that only decades or less after these

books were published, the solution was fully settled.

Theorem 1. Fermat’s Last Theorem

The equation an + bn = cn has no non-trivial solution in integers

a, b, c for any integer value of n > 2.

This equation is Diophantine in the sense that we are looking only for integer

solutions, and exponential because the unknown (here n ) is an exponent. △

It is reasonable to assume that Hilbert did not include exponential Diophan-

tine equations in his demand for a process to solve any Diophantine equation.
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That is, the process or algorithm we are looking for need not be able to solve

exponential Diophantine equations. In sections 2.1 and 2.2 we talked about how

to find solutions for different types of Diophantine equations, not only about

telling whether there are any. Methods for finding solutions to exponential

Diophantine equations include examining divisibility properties of integers or

numbers over other algebraic fields, numeric approximations, and even trial and

error. Since we’re really not interested in finding particular solutions for any

type of Diophantine equations when discussing Hilbert’s tenth problem, we won’t

develop that further here. In previous sections methods for finding solutions

were discussed so as to gain some familiarity with Diophantine equations, but

here it would more likely have the opposite effect of drawing attention from the

main topic.

Just like with genuine Diophantine equations, exponential Diophantine equa-

tions can be used to form representations of sets (in analogue with Definition 4).

Definition 6. Exponential Diophantine set

If a set is such that it has an exponential Diophantine representation, in other

words if it can be represented by an exponential Diophantine equation, we will

call it an exponential Diophantine set. △

One might think that this would enable us to represent more sets, i.e. there

would be sets which have an exponential Diophantine representation but no

ordinary Diophantine representation. However this turns out to not be the

case, by a far from trivial result. It will become evident in later sections why

exponential Diophantine equations played such an important role for the solution

of Hilbert’s tenth problem.

2.6 Diophantus himself

We conclude this section with a (very) brief historical comment. Why are

these equations called “Diophantine”, you may wonder. Like so many other

mathematical objects of whatever form, the name comes from a person. The

near-mythical Diophantus of Alexandria was a Greek mathematician, sometimes

called “the father of Algebra”, is the name of the person in this case. He wrote

the famous book series known as Arithmetica, many of which are now lost,

dealing with solving algebraic equations. Not much is known of Diophantus’

personal life, and it is even somewhat unclear when he lived, but he is believed

to have made most of his work around 250 CE.
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3 Logic

The solution to Hilbert’s tenth problem is a fascinating interplay between number

theory and logic and computability theory. Working from two different angles,

progress in these separated fields morphed together and formed an unexpected

result. Having talked about the number theoretical background in Chapter 2,

we will now take the other perspective.

Though logic is a broad word spanning from philosophy to mathematics and

perhaps via computer science back again, the aspect with which we will concern

ourselves here is applying logical symbolism and terminology to our Diophantine

sets and representations. We will also talk a bit about Turing machines.

3.1 The logical terminology

Symbolism and logic is intimately related. We have already made use of of

the so called existential quantifier when stating a Diophantine representation

(Definition 4). If the reader did not recognise that symbol, now is the time to

exhale in relief. The existential quantifier is written ∃ in symbols, and spoken

“there exists”. This is hopefully self-explanatory or well-known since before. We

will also make use of the logical connectives conjunction, ∧ , meaning “and”, and

disjunction, ∨ , meaning “or”. These are self-explanatory as well, but we shall

make note of the fact that the “or” is an inclusive or, which might differ from

ordinary language. That is, the statement ”The author of this text is female or

likes logic” is true, even though both of the disjuncts are true (indeed I am both

female and like logic).

These are the only logical symbols we allow in our restriction to Diophantine

language. Alas, we may mention the universal quantifier ∀, that means “for

all”, and the negation connective ¬ that negates a statement and makes true

false, and false true. We will get back to the universal quantifier later when we

discuss the historical step towards the solution of Hilbert’s tenth problem that

is known as the Davis’ normal form.

3.2 Properties

A property P (a) in logic is a predicate such that for some input a ∈ N it is either

true or false. Because of this, each property induces a set of natural numbers,

where a is a member of the set if P (a) is true, an otherwise not. This set may

or may not be Diophantine, and we say that the property is Diophantine if and

only if its corresponding set is.
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Example 9. The even numbers

Let’s consider a very basic example of a Diophantine property — the property

of being an even number. This is by definition the same thing as to say that the

set of even numbers is a Diophantine set, call it, say, E . To establish this we

need to find a Diophantine representation (4) of said set. Take for example the

representation

a ∈ E ⇐⇒ ∃x[2x = a], (24)

where x ranges over the integers. It should be evident that this representation

for the set of even numbers will do. Now instead consider the property Even(a),
and take the following to be a Diophantine representation of property Even .

Even(a) ⇐⇒ ∃x[2x = a]. (25)

△

3.3 Relations

Generalising properties, a relation R(x0, . . . , xn ) is a predicate of arity n, so

that we now allow n -tuples instead of just natural number as input. So, for

some input x0, . . . , xn ∈ N , R(x0, . . . , xn ) is either true or false. In analogue to

properties, each relation induces a set of n -tuples, where tuple (x0, . . . , xn) is a

member of the set if and only if R(x0, . . . , xn) holds. We say that the relation

is Diophantine if its corresponding set is. In fact we do not need to distinguish

between these concepts, but rather consider a relation and the set it induces to

be the very same thing. Thus we may write

(x0, . . . , xn) ∈ R ⇐⇒ R(x0, . . . , xn). (26)

This is of course also the case for properties.

Because of this intimate correspondence, instead of identifying a Diophantine

set with a Diophantine representation, we can represent its corresponding relation

with a Diophantine representation. The following definition is very similar to

Definition 4, with the difference that in the former we are talking about sets and

now we are talking about relations.

Definition 7. Diophantine representation of a relation

For a parametric Diophantine equation and a relation R, we have a Diophantine

representation of R given by

R(a1, . . . , an) ⇐⇒ ∃x1 . . . xm[D(a1, . . . , an, x1, . . . , xm) = 0], (27)

where xi is demanded to be integer. △

17



Example 10. Divisibility

An example of a binary relation between integers a and b would be where b is

divisible by a : a∣b. This relation is so commonly used that it has got its own

symbol, the vertical bar. We also denote this with infix notation, i.e. a∣b rather

than ∣(a, b). This is a common simplification for binary relations (and binary

operations, like + and ⋅ ). A representation for this relation would be

a∣b ⇐⇒ ∃x[ax = b]. (28)

△

Example 11. Inequality

Another example of binary relations are inequalities, “less than” and “greater

than”. Just as with divisibility, these are common enough to have their own

symbols and to be written with infix notation. Their Diophantine representations

would be

a < b ⇐⇒ ∃x[a + x + 1 = b], and

a > b ⇐⇒ ∃x[a = b + x + 1]
(29)

respectively, where x is a non-negative integer. We also have the non-strict

inequalities ≤ (“less than or equal to”) and ≥ (“greater than or equal to”) whose

representations are given by simply removing the 1 ∶ s in the representations

above. △

Example 12. Exponentiation

An interesting relation that is not binary but ternary (3-ary) is exponentiation,

let us denote this Exp(a, b, c). A possible representation is

Exp(a, b, c) ⇐⇒ a = bc. (30)

However this is not a genuine Diophantine representation since it uses exponen-

tiation, but rather an exponential Diophantine representation of the kind we

mentioned in section 2.5. Whether it is able to transform this into a genuine

Diophantine representation was a very important question for the solution of

Hilbert’s tenth problem. △

Basically this difference between representations for sets contra relations lies

in a change of perspective and notation. The use of logical notation will prove to

be more suitable when we later talk about Turing machines and their connection

to Hilbert’s tenth problem.
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3.4 Recursively ennumerable sets

We want to say a bit more about sets. Not very surprisingly, a recursively

enumerable set is a set where you could enumerate the elements via recursion.

An equivalent notion is to call these sets semidecidable, and I think it might be

more intuitive to think of them as such.

Definition 8. Listable set

A set is listable if and only if there exist an effective method that would list in

some order, possibly with repetition, every element of the set sooner or later. △

In other words, we allow this method to go on forever, as long as we know that

for any given element of the set, it will appear on the imagined list eventually.

Here “effective method” is taken to be an algorithm in the same way the process

Hilbert was asking for in his tenth problem was. For a finite set you could

just write down the elements one at a time, the method doesn’t have to be

very effective at all. For an infinite listable set we could imagine that we tell a

computer to give us the elements one at a time and put these in a list.

Example 13. The Fibonacci numbers

A recursion relation is a relation where the next element can be defined by

operating on previous ones. One example of such a relation defines the Fibonacci

numbers, where each number is the sum of the previous two.

φ0 = 0

φ1 = 1

φn = φn−1 + φn−2 for n ≥ 2,

(31)

where φn is the n:th Fibonacci number. This recursive definition provides a

very obvious way to sort of generate the set of Fibonacci numbers, which is

hence an example of a recursively enumerable set, and equally listable since we

can list it using the above process. This can also be thought of as a sequence

rather than a set

0,1,1,2,3,5,8,13,21, . . . (32)

This sequence not only infinite, but also is infinitely cool with enormous

amounts of fascinating properties. I could have written this essay solely on the

Fibonacci number, but since I did not we have to restrain ourselves from saying

too much about them (the interested reader is encouraged to find out more
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about them as soon as they have finished reading this text). However I can’t

resist providing a nice illustration of how these numbers relate — see Figure 1.

Figure 1: The Fibonacci Spiral

△

Definition 9. Decidable set

A set is decidable if and only if there exists an effective method that for every

input yields an output yes if the input is a member of the set, and no if the

input is not a member of the set. △

For example, every finite set is decidable since you can list the elements of the

set, and then check for your input one element at a time if they are equal. This

process will stop since the list is finite. The set of prime numbers is decidable

because for an input n we have a method of telling whether n is prime: we

define 2 to be prime and then for every new number check whether it is divisible

with a smaller number that is already on the list. We only have to try this for a

finite number of numbers (more specific at most up to the integer part of the

square root of n ), so the process is guaranteed to terminate. However, we have

a related notion for the case when the process is not required to terminate.

Definition 10. Semidecidable set

A set is semidecidable if there is a process, or algorithm, that outputs yes if

the input is an element of the set, but is allowed to go on forever if it is not an

element of the set. △

The difference between a decidable set and a semidecidable set therefore

arises when the input is not a member of the set. In the former case we require
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the output no, whilst in the latter we expect no output at all. We will now

motivate that if a set is Diophantine, it will also be semidecidable.

Theorem 2. Every Diophantine set is listable.

Proof. Consider a parametric Diophantine equation

D(a1, . . . , an;x1, . . . , xm) = 0. (33)

One at a time we can input (n +m) -tuples of integers into the equation (33).

If it satisfies the equation, we add the first n numbers as a tuple to the list,

otherwise we move on. If an n -tuple is added to the list more than once, it

is not a problem since we allow repetition according to Definition 8. That we

can range through these (n +m) -tuples to begin with might not be completely

obvious either, but it was proved by Cantor that tuples of integers are countable

and hence immediately listable. Let us omit that proof and accept that this

kind of methodical testing can effectively be done.

Theorem 3. Every listable set is semidecidable.

Proof. Remember the definition of semidecidable. For any input one of the cases

must hold: i) the input is a member of the set, or ii) the input is not a member

of the set. For case i) we require an output yes. We can compare the input to

the one element of the list at a time, and whenever we find a match (which we

sooner or later will, since it is guaranteed to be on there somewhere because the

set was assumed to be listable) we stop and give this output. For case ii) we

do the same procedure, we keep testing our input to each element of the list

but we will never find a match. Hence if the set is finite, we might arrive at the

conclusion that our input is not a member of the set (simply because we have

gone through all of the list), and otherwise the process will go on forever and

never terminate, which is allowed for semidecidable sets.

The following corollary follows immediately from the two theorems above.

Corollary 1. Every Diophantine set is semidecidable.

3.5 Turing machines

In 1928, the same Hilbert as above posed another problem, one to be called

The Entscheidungsproblem. This literally means “decision problem”, so it

may seem that it is no so far from Hilbert’s tenth problem. However the

Entscheidungsproblem has nothing to do with Diophantine equations, but rather
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with logic. Here we are asked for an algorithm that takes as input a logical

statement, and outputs yes if it is (in some sense) “true”, and no if it is (in

the same sense) “false”. I could have written my essay on this decision problem

instead, but since I did not we won’t go further into this.

It happens that the Entscheidungsproblem was solved within fewer years,

and it was solved by the outstanding and fascinating Alan Turing (and, actually,

simultaneously by Alonzo Church). Turing is known for his cracking of Enigma

— a cryptographic device that was used during the World War II, his suicide that

followed a penalty for being homosexual, and that with which we will concern

ourselves here - his famous Turing machines.

Turing developed the notion of automated processes and algorithms in a sense

that he thought of an actual mechanic device, that was capable of performing

calculations. One might say the he invented a (very) primitive computer, though

purely theoretical.

A Turing machine consists of an infinite tape of squares, that is the machine’s

memory. We also have a head that can move along the tape and put symbols

in the squares. In addition the machine can be put into different states, like an

instruction of what to do next. And that is all.

The tape could be infinite in both directions, but we can also fix one end as a

starting point, and let it be infinite only to the right, so let’s do that. The head

can never move left of the initial square. We will need an alphabet of symbols

that the head is allowed to write. This might consist of only 0,1 and empty

squares, or we might add extra symbols. Let us reserve a symbol ⋆ for the initial

square that is not allowed to be changed or written anywhere else on the tape.

We can program the machine with instructions to perform actions in different

steps. For each step the machine will start in a state, then read the square

the head is placed above, then either i) write something else on that square i.e.

change the symbol, ii) move the head to the right, or iii) move the head to the

left, and then put itself in another state (though it might of course be the same

state).

When we start a Turing machine, the tape will be filled with an input, and

the head will be above the star. It will be started in the initial state and since

it is not allowed to change the star or go past it to the left, it will move to the

right. What happens then depends on the instructions for the states and the

initial input on the tape.

A standard question when it comes to Turing machines is whether a certain

machine will halt, i.e. whether it will eventually stop. We could imagine this
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as we input a certain number and a Diophantine set of numbers, we start the

machine and we want to know whether the number is an element of the set. If

the number is a member of the set the machine will halt in a state that means

yes, and if it is not, the machine will either halt in a state that means no, or

never halt at all. This is, of course, depending whether the set it decidable or

semidecidable. As stated above, Diophantine sets are (at least) semidecidable.

3.6 The Church-Turing thesis

In Hilbert’s tenth problem we are asked to provide an effective process that will

satisfy some conditions. To prove that no such process exists we need to be able

to make universal statements about processes. This was possible first when the

algorithms were axiomatised, with the Turing machines discussed above.

To consider Problem 10 solved, we have to accept that what we prove about

Turing machines and such algorithms also holds for processes of the kind Hilbert

asked for. That these notions coincide is known as Church’s thesis, or the

Church-Turing thesis.

Thesis 1. The Church-Turing Thesis

Every set that is decidable in the intuitive sense is Turing decidable.

Here we can easily replace decidable with semidecidable. This thesis states

that every intuitively computable function is Turing computable and vice versa.

This is a bit odd due to the difference in formality: Turing computability is well

defined meanwhile “intuitively computable”, or “effectively calculable” which is

taken to mean the same thing, is rather vague. Hence the label thesis — it’s not

really a theorem or conjecture since it can’t be formally proven. Fortunately it

is very widely accepted by almost all mathematicians. Although if we reject this

thesis, we can’t say anymore that Problem 10 has been solved.
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4 Steps of the solution

Let us repeat that the solution to complicated mathematical problem is seldom

unfolded in chronological order. We will in this chapter try to cover the main

achievements, even though some of them aren’t needed for the unsolvability

proof anymore as the proof has been refined since it was first completed in 1970.

One might say that everything began in 1944 with Emil Leon Post declaring that

Hilbert’s tenth problem “begs for an unsolvability proof”. Upon this followed

decades of work from several brilliant mathematicians all contributing to the

solution.

4.1 Equivalent decision problem

The original statement of Hilbert’s tenth problem concerns integers, but in

section 2.3 we made a claim that it is equivalent to consider natural numbers

(non-negative integers).

A given Diophantine equation may have solutions in integers, but no solutions

in natural numbers. Take for example

D(x) = x + 4

D(x) = 0
(34)

This equation has the obvious solution x = −4 when the range is integers,

but no solution in natural numbers. Hence the claim that while solving Hilbert’s

tenth problem it will be sufficient to investigate it with the range being the

natural numbers needs some motivation.

Take an arbitrary Diophantine equation

D(x1, . . . , xm) = 0 (35)

where we seek integer solutions, and compare to the following Diophantine

equation where we seek only natural number solutions

D(a1 − b1, . . . , am − bm) = 0. (36)

Here a solution to (36) in natural numbers a1, . . . , am, b1, . . . , bm would

automatically yield a solution in integers x1, . . . , xm to equation (35) according

to x1 = a1 − b1, . . . , xm = am − bm. The other way round, for an integer solution

x1, . . . , xm to equation (35), we can find natural numbers a1, . . . , am, b1, . . . , bm

that satisfies (36).
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In this way the question of whether (35) is solvable in integers is reducible

to the question of whether (36) have solutions in natural numbers, and hence

the entire decision problem of solvability of Diophantine equations in integers

reduces to the decision problem of solvability of Diophantine equations in natural

numbers.

It turns out that the converse is also true: take an arbitrary Diophantine

equation

D(a1, . . . , am) = 0 (37)

where we seek solutions in natural numbers, and compare to the equation

D(w2
1 + x21 + y21 + z21 , . . . ,w2

m + x2m + y2m + z2m) = 0. (38)

Finding an integer solution to (38) gives a natural number solution to (37),

and again by Lagrange’s four-square theorem (remember Example 5) a natural

number solution to (37) can easily be transformed into an integer solution to

(38).

Since this reduction applies in both directions, Hilbert’s tenth problem as a

decision problem for integers and for natural numbers respectively, are equivalent.

4.2 Davis’ conjecture and normal form

Eminent mathematician Martin Davis made two conjectures concerning Hilbert’s

tenth problem, according to himself. The first was that “a clever young Russian”

would complete the unsolvability proof of Hilbert’s tenth problem. This turned

out to be true, but that is more of a fun fact. His more substantial conjecture

was this.

Conjecture 1. The Daring Hypothesis

The class of Diophantine sets are identical to the class of semidecidable sets.

We saw in section 3.4 that every Diophantine set is semidecidable, but the

opposite was not at all clear. Hence the attachment “daring”, which seems to have

been something Davis added himself. He had himself proven that Diophantine

sets are not closed under complementation and neither are semidecidable sets:

this similarity was one of the things that led him to Conjecture 1 which he

stated in 1953. Davis’ conjecture had plenty of striking corollaries, why many

researchers held it unlikely to be true.

Making qualified guesses was not the only thing Davis did. He also obtained

what came to be known as Davis’ normal form; a form that all semidecidable

sets could be defined in.
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Theorem 4. Davis’ normal form

Every semidecidable S set can be represented in the following form:

(a1, . . . , an) ∈ S ⇐⇒ ∃z∀y ≤ z∃x1, . . . , xm[D(a1, . . . , an, x1, . . . , xm, y, z) = 0].
(39)

Remember that we are looking to prove that every semidecidable set is

Diophantine — and a set is Diophantine if it has a Diophantine representation.

We mentioned in section 3.1 that the universal quantifier ∀ is not allowed within

our Diophantine language. Apart from this the representation (39) is purely

Diophantine. This means that if we in some way could eliminate the universal

quantifier, we would have proven Conjecture 1. This may sound not too difficult,

but it would be another 20 years before the problem was solved.

4.3 The JR hypothesis

During the 50’s and 60’s the fascinating mathematician Julia Robinson pondered

the connection between the exponential function and Hilbert’s tenth problem.

More specifically, she asked whether exponentiation is Diophantine. In terms of

sets, this is the question whether the set of triples

E = {(a, b, c) ∶ a = bc} (40)

is Diophantine.

Remember that this is the question of whether E has a Diophantine repre-

sentation. She did not succeed to prove this, but instead proposed a hypothesis,

later to be called The J.R. Hypothesis.

Conjecture 2. The J.R. hypothesis

There is a Diophantine set D of pairs (a, b) such that (a, b) ∈D⇒ b < aa and

for every k > 0, there exists (a, b) ∈D such that b > ak.

She then proved that if this hypothesis was true, it would imply that ex-

ponentiation was indeed Diophantine. Here we have a typical example of a

reduction, that we spoke of in section 1.5. Instead of proving something directly,

an implication was proved so that it would be sufficient (though not by any

means easy) to prove the Conjecture 2.

The J.R. hypothesis suggests the existence of a set satisfying some particular

conditions. Following our discussion in Chapter 3, this is equivalent to the

existence of a certain relation; more specifically a relation of exponential growth.

As always when claiming an existence, one needs only to provide one example to
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confirm it — but such a relation proved very hard to find. Even Julia Robinson

herself at one point gave up on her own hypothesis, and instead started to search

for a positive solution to Hilbert’s tenth problem.

4.4 Semidecidable sets are exponential Diophantine

In 1960, Martin Davis, Julia Robinson and Hilary Putnam published a joint paper

in which they proved that every semidecidable set is exponential Diophantine.

By that we mean that it has an exponential Diophantine representation. In their

proof of this they used Davis’ normal form together with methods that Robinson

had discovered while working with her hypothesis and related topics.

Theorem 5. Every semidecidable set S can be represented in the following

form:

(a1, . . . , an) ∈ S ⇐⇒

∃x1, . . . , xm[EL(a1, . . . , an, x1, . . . , xm) =ER(a1, . . . , an, x1, . . . , xm)],
(41)

where EL and ER are exponential polynomials.

This is a proof of the analogue to Conjecture 1 with exponential Diophantine

representations, as opposed to genuine Diophantine representations. Accordingly,

so far we have the Davis’ normal form which gives us a representation that is

almost Diophantine but includes a universal quantifier, and representation 41

which doesn’t have the problem with the universal quantifier but on the other

hand uses exponential rather than ordinary Diophantine equations.

4.5 Semidecidable sets are Diophantine

The “clever young Russian” that Davis had conjectured would complete the

unsolvability proof of Hilbert’s tenth problem, appeared in 1970 and turned out

to be Yuri Matiyasevich. He had been very interested in Hilbert’s tenth problem

and particularly in the J.R. hypothesis, patiently trying to find a Diophantine

relation of exponential growth.

Matiyasevich studied the Fibonacci numbers, and found that the relation

n = φ2m (42)

satisfies the conditions given in Conjecture 2. He then managed to find a

Diophantine representation for this relation, i.e. he found a polynomial such

that

n = φ2m ⇐⇒ ∃x1, . . . , xk[P (n,m,x1, . . . , xk) = 0]. (43)

27



Now there was a given set that was both Diophantine, and of exponential growth,

and through some reductions this proved the J.R. hypothesis, and we have

already mentioned that from the J.R. hypothesis follows that every exponential

Diophantine set is also genuinely Diophantine. Now together with Theorem 5:

that every semidecidable set is exponential Diophantine, we can conclude that

every semidecidable set is indeed Diophantine.

This result became known as Matiyasevich’ theorem, sometimes called the

MRDP-theorem. The latter name honours the four people who made the most

important contributions to the solution of Hilbert’s tenth problem during more

than two decades of mathematics: Yuri Matiyasevich, Julia Robinson, Martin

Davis and Hilary Putnam.

Theorem 6. The MRDP-theorem

Every listable set S of n -tuples of natural numbers has a Diophantine represen-

tation, that is

(a1, . . . , an) ∈ S ⇐⇒ ∃x1, . . . , xm[D(a1, . . . , an, x1, . . . , xm) = 0] (44)

or equivalently every semidecidable set is Diophantine.

Together with the Corollary 1, i.e. the long known fact that every Diophantine

set is semidecidable, this also proves the above Conjecture 1, The Daring

Hypothesis: the classes of Diophantine sets and semidecidable sets coincide.

Now suppose we want to know whether a certain Diophantine equation is

solvable in integers. In short this is semidecidable: if it has a solution, we can

eventually find it by trial and error. If it has no solution, the search for such

would go on forever. But the problem Hilbert proposed was a decision problem,

not a “semidecision problem”, and hence Hilbert’s tenth problem is unsolvable.

Theorem 7. The unsolvability of Hilbert’s tenth problem

There is no algorithm which for every Diophantine equation would tell whether

that equation has a solution or not.

28



References

[1] Andreescu, Titu, Andrica, Dorin and Cucurezeanu, Ion. An Introduction to

Diophantine Equations. Birkhauser, 2010.

[2] Cutland, Nigel. Computability. Cambridge University Press, 1980.

[3] Matiyasevich, Yuri. Hilbert’s tenth problem. The MIT Press, 1993.

[4] Eves, Howard. Introduction to the history of mathematics. 6th ed.

Brooks/Cole, 1990.

[5] Reid, Constance. Hilbert. Springer-Verlag, 1996.

29


