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Abstract

A greedoid is a combinatorial structure which arose from another combinato-
rial structure, the matroid. In this thesis, we go through some basic greedoid
theory supplemented by various examples. After a short introduction to
the concept, we look at a greedoid both in terms of a set system and in
terms of a formal language. Later on, we explore various classes such as the
Gaussian greedoids and the interval greedoids, among which, for example,
matroids and antimatroids are included. In the final part, we examine the
rank function and the closure operator of a greedoid more closely. Further,
the operations known as truncation, restriction and contraction are presented
and finally, the relationship between greedoids and optimization problems is
briefly discussed.
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1 Introduction

To introduce the greedoid concept in an instructive manner, it seems natural
to start with some words of the matroid concept from which it originated.
Matroids were invented in 1935 by Hassler Whitney as a certain combinato-
rial structure. Later, in 1959, modern matroid theory started when William
Thomas Tutte established deep connections between matroid theory, graph
theory and matrix algebra. The utility of matroids has then lead to several
generalizations of the concept [1]. A formal definition will be presented later
in the text but in short one can say that a matroid structure generalizes
linear independence in vector spaces.

However, Otakar Bor̊uvka presented a structure equivalent to matroids back
in 1926 using an algorithmic approach. This is interesting since the algo-
rithmic way of looking at matroids, which is certainly not the most frequent
way, leads us to the greedoid concept. It turned out that a greedy algorithm
gives optimal solutions to combinatorial problems satisfying the properties
of matroids. However, in 1981, Bernhard Korte and László Lovász observed
that often the optimality of a greedy algorithm not needed the combinato-
rial structure of a matroid. Instead, another combinatorial structure was
sufficient, and by combining the words greedy and matroid they named it
a greedoid [1]. So, a greedoid is a generalization of a matroid, and as such
it can be distinguished from the latter by being modeled on the algorithmic
construction of certain sets, thus making the ordering of elements in a set
important [2].

With a couple of different graphs as our main guiding examples, this thesis
will introduce some basic theory and properties of the greedoid concept. We
will however not limit this presentation of greedoids to its connections with
graphs, but also include different applicabilities where it is appropriate.
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2 Definitions and guiding examples

In this part we will see that a greedoid can be defined in different ways, and
we will also prove the equivalence of these definitions. Further, a couple of
graphs will be introduced that will recur along the way. The purpose is to
visualize clearly how differences among these lead to different classifications
of greedoids. We assume that the reader is familiar with basic graph theory
terms, and if not, a useful glossary can be found at [4]. Theory and use of
notation are taken from [1] and [2] throughout this thesis unless otherwise is
stated.

2.1 Greedoids in terms of set systems

As the title here tells us, greedoids can be defined as set systems. Therefore,
lets first of all be clear of what we mean with a set system.

Definition 2.1 We say that a pair (E,F ), where E is a nonempty finite
set and F is a family of subsets of E, is a set system. Further, we will
denote the set of all subsets of E by 2E.

Example 2.1 Let T = (V,E), where V = {a, b, c, d} and E =
{
{a, c}, {b, c},

{c, d}
}

be the tree in Figure 1 below. Further, let F =
{
{∅}, {a, c}, {b, c}, {c, d},

{
{a, c}, {b, c}

}
,
{
{a, c}, {c, d}

}
,
{
{b, c}, {c, d}

}}
be a family of subsets of the

set of edges E. Then, the pair (E,F ) is a set system.

a

c db

Figure 1

Now that we have become acquainted with the definition as well as an ex-
ample of a set system, we take a look at what turns a set system into a
greedoid.
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Definition 2.2 We say that a greedoid is a set system (E,F ) satisfying

(G1) ∅ ∈ F ;
(G2) If X, Y ∈ F and |X| > |Y |, then there is an x ∈ X \Y with Y ∪x ∈ F .

As can be verified, the pair (E,F ) in Example 2.1 satisfies both (G1) and
(G2), so not only is it a set system but also a greedoid. However, Definition
2.2 is not the only way to define a greedoid as a set system. It is possible
to drop the axiom (G1) but first we have to define what an accessible set
system is.

Definition 2.3 Given a set system (E,F ), we say that a set in F is fea-
sible and a set not in F is infeasible. An accessible set system is a set
system where there exists some element x in every nonempty feasible set X
with X \ x ∈ F .

From this, we see that for every nonempty feasible set in F we can succes-
sively remove elements and get new feasible sets. For a new feasible set the
cardinality will be strictly less than the cardinality of the previous feasible
set and since E is finite we will eventually arrive at the conclusion that the
empty set must be in F as well. Thus, (G1) follows from the accessible prop-
erty and therefore an accessible set system satisfying (G2) meets the criteria
of a greedoid. In fact, every greedoid is an accessible set system. We can see
this if we start with the empty set, which is feasible, and then apply (G2)
repeatedly to get a sequence of feasible sets where the cardinality of these
sets increases by one for each repetition. This knowledge is very useful since
it turns out that (G2) also can be replaced from the greedoid definition if we
assume an accessible set system.

Proposition 2.1 Let (E,F ) be an accessible set system. Then the follow-
ing two statements are equivalent:

(G2) If X, Y ∈ F and |X| > |Y |, then there is an x ∈ X \Y with Y ∪x ∈ F ;
(G2’) If X, Y ∈ F and |X| = |Y | + 1, then there is an x ∈ X \ Y with
Y ∪ x ∈ F .

Proof. (G2)⇒ (G2’) is trivial, since if Y has cardinality strictly less than the
cardinality of X this includes the case |Y | = |X|−1. To prove (G2’)⇒ (G2),
let X, Y ∈ F with |X| > |Y |. Now, either |X| = |Y |+ 1 or |X| > |Y |+ 1. In
the first case we are done, so we assume that the latter holds. Since (E,F )
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is accessible there is an x ∈ X with X \x ∈ F . Now, either |X \x| = |Y |+ 1
or |X \ x| > |Y | + 1, and if the latter holds we can repeat the argument
above. However, X has finite cardinality, so eventually we will arrive at a
feasible set Z ⊆ X with |Z| = |Y |+ 1. Now, (G2’) says there is an x ∈ Z \Y
with Y ∪ x ∈ F and since Z ⊆ X we must have x ∈ X \ Y with Y ∪ x ∈ F .
Hence, (G2’) ⇒ (G2). �

We have now looked at some different ways in which a greedoid can be defined
as a set system. Before moving on to view greedoids as formal languages we
will look at an example where a set system satisfies axioms (G1) and (G2’)
but fails to be a greedoid.

Example 2.2 LetG = (V,E), where V = {a, b, c, d} and E =
{
{a, b}, {a, d},

{b, c}, {c, d}
}

be the graph in Figure 2 below, and let F =
{
{∅}, {a, b},

{
{a, b},

{b, c}, {c, d}
}
,
{
{a, b}, {a, d}, {b, c}, {c, d}

}}
be a family of subsets of E. Thus,

the pair (E,F ) is a set system. The empty set is in F so (G1) is satisfied.
Further, we can add {a, b} to the empty set and get a feasible set, and we can
add {a, d} to

{
{a, b}, {b, c}, {c, d}

}
and again get a feasible set. Hence, (G2’)

is also satisfied. However, if we remove an edge from
{
{a, b}, {b, c}, {c, d}

}
,

no matter which one, we get an infeasible set, showing that (E,F ) is not
accessible. Since adding any other edge to {a, b} results in an infeasible
set, (G2) is not satisfied and we can conclude that the set system is not a
greedoid.

a

c db

Figure 2

2.2 Greedoids in terms of formal languages

Before we proceed with the definition of a greedoid language we will go
through some terminology and notation that will be used. The finite nonempty
ground set E that we work in will be called an alphabet and its elements
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will be called letters, for which we will use x, y, z from the Latin alpha-
bet. We will denote the set of all sequences of letters in the alphabet by E∗

and its elements will be referred to as words. Words will be appearing as
α, β, γ from the Greek alphabet. A language over the alphabet E will be a
nonempty set L ⊆ E∗ of words. If no letter is repeated in a word, the word
will be called simple and in the same way a language will be called simple if
every word in it is simple. The number of letters in a word α will be referred
to as the length of α and will be denoted by |α|. Further, the support α̃ of
a word α will be the set of distinct letters in α. Thus, if α is simple we have
|α̃| = |α|. Lastly, the concatenation of the word α followed by the word
β will be denoted αβ and in the same way the concatenation of the word α
followed by the letter x will be denoted αx.

Definition 2.4 We say that a greedoid language is a pair (E,L ), where
E is an alphabet and L is a simple language over E, satisfying

(L1) ∅ ∈ L
(L2) If αβ ∈ L , then α ∈ L ;
(L3) If α, β ∈ L and |α| > |β|, then there exists a letter x in α with βx ∈ L .

We note that since L is simple it follows that βx is simple and therefore that
x can not be in β̃. The axioms (L1) and (L2) together defines a hereditary
language while (L3) is referred to as an exchange axiom. The hereditary
language has its set system counterpart in the accessible property. The equiv-
alence of the exchange axioms (G2) and (G2’) for an accessible set system
can analogously be translated to a greedoid language. Likewise, a feasible
word has the same meaning in a greedoid language as a feasible set has in a
set system.

Example 2.3 Let E = {x, y, z} be an alphabet and define a function, that
assigns values to the letters corresponding to the alphabetical order according
to the Latin alphabet, as follows: val(x) = 1, val(y) = 2, val(z) = 3. The set
E∗ consists of the three possible one-letter words, the nine possible two-letter
words and the 27 possible three-letter words. Now, let L be the language
over E where a word α is feasible if it is simple and if its first letter has value
less than or equal to 2. That is, L = {∅, x, y, xy, xz, yx, yz, xyz, xzy, yxz, yzx}.
Further, let L ′ be the language over E where a word α is feasible if it
is simple and does not contain a letter with value greater than |α|. That
is, L ′ = {∅, x, xy, yx, xyz, xzy, yxz, yzx, zxy, zyx}. Since the languages are
simple, they are greedoid languages if they satisfy (L1), (L2) and (L3). The
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empty set is in both L and L ′, so (L1) holds. Furthermore, one can verify
that both languages satisfies (L3). However, in L , every initial substring
of letters in a feasible word form a feasible word. This is not the case in
L ′. For example, neither z or zx is a feasible word although zxy is feasible.
Thus, only L satisfies (L2), so we can conclude that it is a greedoid language
whilst L ′ is not. This shows that the ordering of letters is crucial.

Now that the greedoid definitions have been introduced, it is time to look at
how they are related to each other.

Proposition 2.2 The following statements hold true for the relation be-
tween a greedoid and a greedoid language:

(i) If (E,L ) is a greedoid language, then (E,F (L )) is a greedoid, where

F (L ) = L̃ = {α̃ : α ∈ L }.
(ii) If (E,F ) is a greedoid, then (E,L (F )) is a greedoid language, where
L (F ) = {x1...xk : {x1, ..., xi} ∈ F for 1 ≤ i ≤ k}.

Proof. (i) Suppose (E,L ) is a greedoid language. Since α̃ is the set of dis-

tinct letters in α, L̃ is a family of subsets of E. Hence, (E,F (L )) = (E, L̃ )

is a set system. Assume that a nonempty feasible set α̃ ∈ L̃ does not contain

an element x with α̃ \ x ∈ L̃ . Since L is simple, |α̃| = |α| and since α̃ is
nonempty |α| > 0. But (E,L ) is a greedoid language, so there also exists a

β ∈ L (possibly β = ∅) with |α| = |β| + 1 and β̃ ∈ L̃ . This implies that
there exists a letter x ∈ α with βx ∈ L . Thus, x ∈ α̃ and with β simple we
must have |α̃| = |β̃ ∪ x|, contradicting the assumption of the feasible set α̃.

Hence, (E,F (L )) = (E, L̃ ) is an accessible set system. Now, let α̃, β̃ ∈ L̃

and |α̃| > |β̃|. Then α, β ∈ L and since L is simple we have |α| > |β|, so
from (L3) we know there exists a letter x ∈ α with βx ∈ L . But βx is simple

so x ∈ α̃ \ β̃ and β̃ ∪ x ∈ L̃ . Hence, (E,F (L )) = (E, L̃ ) is an accessible
set system satisfying (G2), so it is a greedoid.

(ii) Suppose (E,F ) is a greedoid. Since ∅ ∈ F we have ∅ ∈ L (F ), so
(L1) is satisfied. Now, let αβ = x1...xk ∈ L (F ) where α = x1...xj and
β = xj+1...xk, and assume that α /∈ L (F ). We have that {x1, ..., xi} ∈ F
for 1 ≤ i ≤ k and since (E,F ) is an accessible set system we can remove
xk from X = {x1, ..., xk} and have X \ xk ∈ F . If we continue the removal
of elements in this manner we can conclude that X \ {xk, ..., xj+1} ∈ F .
From here, we see that {x1, ..., xj} ∈ F for 1 ≤ i ≤ j, so we must have
α = x1...xj ∈ L (F ) contradicting our assumption. Hence, (L2) is satisfied.
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Now, let α = x1...xi ∈ L (F ), β = y1...yj ∈ L (F ) with |α| > |β|. We must
then have a set X = {x1, ..., xj+1} ∈ F and since (E,F ) is a greedoid, it fol-
lows from (G2) that there is an x ∈ X with {y1, ..., yj}∪x ∈ F . Hence, there
is an x ∈ α with βx ∈ L (F ). This means (L3) is satisfied, so (E,L (F )) is
a greedoid language. �

2.3 Graph examples

In this section, we will present some graphs from which we will form gree-
doids or greedoid languages that will be used illustratively later in this thesis.

r

a b c d

e

f g

Figure 4

We let E1 be the set of all vertices, except the vertex r, of the graph in
Figure 4. Further, we let F1 be a family of subsets of E1, in which the
empty set is included and a subset is feasible if it, together with the root
r, induce a connected subgraph of the graph in Figure 4. It can be verified
that the set system (E1,F1) is accessible. For example, let X = {a, b, d, e}.
This is a feasible set and we can remove any vertex from X and get an-
other feasible set. In figure 5, we find the induced connected subgraphs of
the graph in Figure 4 for X∪r,X∪r\e,X∪r\d,X∪r\b,X∪r\a depicted.

12



r

a b d
e

(a) X ∪ r

r

a b d

(b) X ∪ r \ e
r

a b
e

(c) X ∪ r \ d

r

a d
e

(d) X ∪ r \ b
r

b d
e

(e) X ∪ r \ a

Figure 5

It can also be verified that this set system satisfies (G2’). For example, with
X as before and with Y = X \ e, we have |X| = |Y |+ 1 for the feasible sets
X and Y . Now, there is an x ∈ X \Y with Y ∪x ∈ F1, namely when x is the
vertex e. So, we have that (E1,F1) is a greedoid and from now on we will
refer to it as Greedoid 1. Viewed as a greedoid language, L (F1) consists of
simple words corresponding to the ordering in which vertices of a feasible set
can be visited when starting at r.

Again, we consider the graph in Figure 4, but this time we ignore that r
is a root and instead treat it as an ordinary vertex. We let E2 be the set
of all edges of the graph in Figure 4. Further, we let F2 be a family of
subsets of E2, in which the empty set is included and a subset is feasi-
ble if it is the edge set of a forest of the graph in Figure 4. For example,
the edge set X =

{
{r, a}, {d, g}, {e, f}, {f, g}

}
is feasible but the edge set

X ′ =
{
{r, a}, {e, f}, {e, g}, {f, g}

}
is infeasible. It can be verified that also

(E2,F2) is an accessible set system. For instance, we can remove any edge
in X and get another feasible set. Similarly, it can be verified that this set
system satisfies (G2’). For example, with Y =

{
{r, a}, {d, g}, {e, f}

}
we have

|X| = |Y | + 1 for the feasible sets X and Y . It then holds that there is an
x ∈ X \ Y with Y ∪ x ∈ F2, namely when x is the edge {f, g}. So, (E2,F2)
turns out to be a greedoid as well and it will further on be referred to as
Greedoid 2. The graphs derived from the edge sets X,X ′ and Y can be seen
in Figure 6. Viewed as a greedoid language, L (F2) consists of all the simple
words that can be formed from edges (letters) of a feasible set.
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r

a d

e

f g

(a) X

r

a

e

f g

(b) X ′
r

a d

e

f g

(c) Y

Figure 6

Now, we associate a direction with every edge of the graph in Figure 4, re-
sulting in the directed graph presented in Figure 7.

r

a b c d

e

f g

Figure 7

We let E3 be the set of all directed edges of the graph in Figure 7. Further,
we let F3 be a family of subsets of E3, in which the empty set is included and
a subset is feasible if it is the edge set of a directed subtree rooted at r and
such that the edges are directed away from r. In every nonempty feasible set
we can identify a leaf vertex of the directed subtree, and by removing it we
get another directed subtree rooted at r. Thus, (E3,F3) is an accessible set
system. For two feasible sets X, Y with |X| = |Y |+1 it follows that the edges
in X reach a vertex of the graph in Figure 7 which the edges in Y do not
reach. But then we can add the edge in X that reaches this specific vertex
to Y and get another feasible set. This shows that the set system satisfies
(G2’) and therefore is a greedoid. We will refer to (E3,F3) as Greedoid 3
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further on. Viewed as a greedoid language, L (F3) consists of simple words
corresponding to the ordering in which edges of a feasible set are travelled
through when starting at r.

Our final example differ somewhat from the previous ones and this time we
consider a bipartite graph. We let E4 be the disjoint set of vertices to the
left of the graph in Figure 8, that is E4 = {u1, u2, u3, u4, u5}. Further, we let
v1, v2, v3, v4, v5 be an ordering on the disjoint set of vertices to the right. From
this, we obtain F4 as a family of subsets of E4, in which the empty set is
included and a subset X is feasible if the subgraph induced by X and the first
|X| vertices of {v1, v2, v3, v4, v5} has a perfect matching. Specifically, F4 ={
∅, {u1}, {u2}, {u1, u2}, {u1, u5}, {u2, u5}, {u1, u2, u4}, {u1, u4, u5}, {u2, u4, u5},
{u1, u2, u3, u4}, {u1, u2, u4, u5}, {u1, u3, u4, u5}, {u2, u3, u4, u5}, {u1, u2, u3, u4, u5}

}
,

so it can be verified that (E4,F4) is an accessible set system satisfying (G2’).
This set system will be referred to as Greedoid 4 from now on. Viewed as a
greedoid language, we have that L (F4) = {∅, u1, u2, u1u2, u1u5, u2u1, u2u5,
u2u1u4, u1u5u4, u2u5u4, u2u1u4u3, u1u5u4u2, u1u5u4u3, u2u5u4u3, u2u1u4u3u5}.

u1 v1

u2 v2

u3 v3

u4 v4

u5 v5

Figure 8
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3 Some classes

In this part we will take a look at some classes of greedoids, including fun-
damental properties that some but not all classes share.

3.1 Interval greedoids

The first class to be explored is the class of interval greedoids. These gree-
doids are characterized by having the interval property which we now define
in terms of a greedoid language.

Definition 3.1 We say that a greedoid language (E,L ) has the interval
property if αx, αβγx ∈ L , then αβx ∈ L .

According to [1], interval greedoids behave better than general greedoids in
many ways, and sometimes the interval property is even necessary to obtain
meaningful results. We will now take a look at which of the greedoids from
section 2.3 that possess this property.

Example 3.1 It can be verified that Greedoid 1, Greedoid 2 and Greedoid
3 all have the interval property. Consider Greedoid 1, defined on page 12-13,
with the letters in its simple language corresponding to the vertices in feasible
sets. For example, since adg, adefg ∈ L (F1) we must have adeg ∈ L (F1)
for the interval property to hold. This is indeed a feasible word, since it is
a possible order to visit the vertices in the induced connected subgraph for
the feasible set {a, d, e, g} and the root r. More generally, that Greedoid 1
possess the interval property follows from the fact that the corresponding
induced subgraphs are connected. For Greedoid 2, since the feasible words
αx and αβγx correspond to edge sets of forests, αβx must also correspond
to an edge set of a forest. Regarding Greedoid 3, consider an arbitrary edge
x. If this is a possible edge to travel along to an unvisited vertex at an early
stage, i.e. if αx is a feasible word, and if it is still a possible edge to travel
to the same unvisited vertex at a later stage, i.e. if αβγx is a feasible word,
then it must also be a possible edge to travel to this unvisited vertex at any
stage between those stages already mentioned, i.e. then αβx is a feasible
word. However, if we consider Greedoid 4 defined on page 15, we see that it
does not possess the interval property. We have, for example, that u1u2 and
u1u5u4u2 are feasible words while u1u5u2 is infeasible.

As noted above, three out of four greedoids can be classified as interval
greedoids. Yet we can distinguish these three from each other. The class
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of interval greedoids is a generalization of several other classes and can be
further divided as can be seen in the following definition.

Definition 3.2 We say that a greedoid language (E,L ) is a matroid if
it has the interval property without lower bounds. That is, if αβx ∈ L , then
αx ∈ L .

Example 3.2 From Example 3.1, we know that adg ∈ L (F1). However,
ag /∈ L (F1) since the induced subgraph for {a, g} ∪ r is not connected, and
therefore Greedoid 1 can not be a matroid. Neither is Greedoid 3, defined on
page 14-15, a matroid. We can, for example, travel along the edge from r to
a, then further along the edge from a to e and finally along the edge from e to
g. On the other hand, there are no single directed edge to travel along from
a to g, so the interval property without lower bounds is not fulfilled. It can
be verified, however, that Greedoid 2 is a matroid. We can also argue that
since a feasible word in this greedoid language corresponds to an edge set of a
disjoint union of unrooted trees, the removal of any edge will also result in a
disjoint union of unrooted trees, and therefore the interval property without
lower bounds holds. Greedoid 2 is specifically known as a graphic matroid.

A more common way to define a matroid is through the combinatorial struc-
ture known as an independence system.

Definition 3.3 We say that an independence system is a set system
(E,F ) satisfying

(M1) ∅ ∈ F ;
(M2) If X ⊆ Y ∈ F , then X ∈ F .

Further, the elements of F are called independent and the elements of
2E \F are called dependent.

Definition 3.4 We say that a matroid is an independence system satis-
fying

(M3) If X, Y ∈ F and |X| > |Y |, then there is an x ∈ X \Y with Y ∪x ∈ F .

We see that (M1) and (G1) are identical and this also applies to (M3) and
(G2). Thus, from this perspective we get a matroid from a greedoid by
requiring (M2). The independent sets are the matroid counterpart of the
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feasible sets for greedoids. To show that greedoids is not merely a concept
of graphs we now look at two other examples.

Example 3.3 Consider a matrix A over an arbitrary field and let E denote
the set of columns of A. Further, let F be all subsets of E in which the
columns are linearly independent over this field. Clearly, (E,F ) satisfies
(M1) and (M2) and hence, is an independence system. From linear algebra
we are familiar with the fact that every set of linearly independent vectors
can be completed to a basis. Using this fact on the independent sets of F
we see that (M3) holds, so we can conclude that (E,F ) is a matroid.

Example 3.4 Let E be a finite set and let the independent sets of F be
all subsets of E with cardinality less than or equal to some positive integer
k. Again, (M1) and (M2) obviously holds, so (E,F ) is an independence sys-
tem. Further, for X, Y ∈ F with |X| > |Y | there exists at least one element
x ∈ X \ Y . Now, since |X| ≤ k we must have |Y ∪ x| ≤ k and therefore
Y ∪x must be an independent set. Thus, (M3) holds, so (E,F ) is a matroid.

After these two examples, it is time to leave the world of matroids and
refer interested readers to available literature on the subject. At this point,
it seems suitable to proceed with the case where the interval property is
without upper bounds.

Definition 3.5 We say that a greedoid language (E,L ) is an antimatroid
if it has the interval property without upper bounds. That is, if αx, αβ ∈ L
with x /∈ β̃, then αβx ∈ L . In terms of set systems, we say that a greedoid
(E,F ) is an antimatroid if X, Y ∈ F , X ⊆ Y, x ∈ E \ Y and X ∪ x ∈ F ,
then Y ∪ x ∈ F .

Example 3.5 We know that a feasible set of Greedoid 1 together with the
root r induce a connected subgraph of the graph in Figure 4 on page 12. Thus,
if we consider L (F1) and let αx and αβ be two feasible words, where the
letter x is not a part of the latter, it follows, since the corresponding graphs
are connected, that αβx must also be a feasible word. Since the interval
property without upper bounds holds we can conclude that Greedoid 1 is an
antimatroid. This particular type of a greedoid is known as a vertex search
greedoid. Regarding Greedoid 2, which we now know is a matroid, there are
plenty of examples where the interval property without upper bounds does
not hold. Let, for example, α be the edge between r and a, x be the edge
between a and b and β be the edge between r and b. Clearly, αx and αβ are
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feasible words but the concatenation of αβ followed by x produces a cycle
of the edge set, which shows that Greedoid 2 can not be an antimatroid.
In the same manner we can find counterexamples that Greedoid 3 is not an
antimatroid. We get one such example if we let α equal the edge from r to
b followed by the edge from b to c, β equal the edge from r to d and finally
x equal the edge from c to d.

The following proposition is helpful when we want to check if a set system is
an antimatroid.

Proposition 3.1 Let (E,F ) be a set system. Then the following state-
ments are equivalent:

(i) (E,F ) is an antimatroid.
(ii) (E,F ) is an accessible set system and F is closed under union.
(iii) ∅ ∈ F and for X, Y ∈ F such that X * Y , there is an x ∈ X \ Y such
that Y ∪ x ∈ F .

Proof. (i) ⇒ (ii) Let (E,F ) be an antimatroid. Then it is also a greedoid
and every greedoid is an accessible set system. Further, let X, Y, Z ∈ F with
X ⊆ Z ⊆ X ∪ Y . Now, if Y \ Z = ∅, we must also have X ∪ Y ⊆ Z, so
X ∪ Y ∈ F . On the other hand, if Y \ Z 6= ∅, we can repeatedly remove
elements from Y until we get a feasible set Y ′ with Y ′ ⊆ Z. We know there
exists an element y ∈ Y \ Z with Y ′ ∪ y ∈ F and since (E,F ) is an anti-
matroid, we must have Z ∪ y ∈ F . Now, either X ∪ Y ⊆ Z ∪ y or else there
exists an element y′ ∈ Y \ (Z ∪ y) and since E is a finite set we can repeat
the same argument and eventually conclude that X ∪ Y ∈ F .

(ii) ⇒ (iii) Let (E,F ) be a set system and suppose there exists some ele-
ment x in every nonempty feasible set X with X \ x ∈ F . Further, suppose
that for all X, Y ∈ F we also have X ∪ Y ∈ F . Now, let A,B ∈ F with
A * B. Since A is a nonempty feasible set we can repeatedly remove el-
ements and get other feasible sets. Let A′ ∈ F arise this way, where A′

has least possible cardinality such that A′ * B still hold. Then there exists
an x ∈ A′ \ B ⊆ A \ B and since F is closed under union we must have
B ∪ A′ = B ∪ x ∈ F .

(iii) ⇒ (i) Let (E,F ) be a set system and suppose statement (iii) is true.
If X, Y ∈ F with |X| > |Y |, then X * Y , so both (G1) and (G2) are
satisfied and therefore (E,F ) is a greedoid. Further, suppose that A,B ∈
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F , A ⊆ B, x ∈ E \ B and A ∪ x ∈ F . Now consider the set (A ∪ x) \ B.
This must be equal to the set {x}, so (A ∪ x) * B and clearly there is an
x ∈ (A ∪ x) \B = {x} with B ∪ x ∈ F . Since the interval property without
upper bounds is satisfied, we conclude that (E,F ) is an antimatroid. �

We will use Proposition 3.1 in the next example where we show that a poset
greedoid is an antimatroid. First we need some definitions, which are taken
from [3].

Definition 3.6 We say that a partially ordered set (poset) is an or-
dered pair (P,≤) of a set P and a binary relation ≤ contained in P × P
called the partial order on P , such that

(i) The relation ≤ is reflexive, i.e. each element of the ordered set is re-
lated to itself.
(ii) The relation ≤ is antisymmetric, i.e. if p is related to q and q is related
to p, then p must equal q.
(iii) The relation ≤ is transitive, i.e. if p is related to q and q is related to r,
then p is related to r.

Definition 3.7 Let (P,≤) be a poset. We say that a subset I ⊆ P is an
ideal of P if y ∈ I and x ≤ y implies x ∈ I.

Example 3.6 Let P = (E,≤), where E is finite, be a poset and let F be
the set of ideals of E. Then (E,F ) is called the poset greedoid of P . For
an arbitrary ideal X ⊆ E, we can remove a maximal element x ∈ X and get
a new ideal X \ x ∈ F . Thus, (E,F ) is an accessible set system. Further,
for two ideals X, Y ∈ F , we see that X ∪ Y satisfies the definition of an
ideal as well. Hence, we can conclude from Proposition 3.1 that (E,F ) is an
antimatroid.

At this point we know that Greedoid 1 and Greedoid 2 are interval greedoids,
and where the former is also an antimatroid while the latter is a matroid.
As for Greedoid 3, we know it is also an interval greedoid. Nevertheless,
it is not a matroid nor an antimatroid. However, it has many similarities
with Greedoid 2 which becomes apparent if we remove the directions from
the edges of the graph in Figure 7 on page 14 and stop treating r as a
root. In fact, Greedoid 2 and Greedoid 3 both belong to a class called local
poset greedoids, which we will return to later. A subclass to the local poset
greedoids are the branching greedoids, and Greedoid 3 is known as a directed
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branching greedoid. According to [1], this is a class of well behaved greedoids
that often serve as standard examples.

3.2 Gaussian greedoids

Not all greedoids possess the interval property, as could be seen in Example
3.1. One class in which the greedoids are not interval greedoids in general
is the class called Gaussian greedoids. A formal definition of this class will
be postponed to section 4.2, where we have acquired the necessary prerequi-
sites. Instead, we will now consider a subclass of it with close connections to
matrices.

Definition 3.8 Let M = (mij) be an m × n matrix over an arbitrary
field. Further, let M{1,...,|X|},X be an |X| × |X| submatrix of M , consisting
of the columns in a subset X of the set of columns of M and the |X| first
rows of M . We say that a set system (E,F ), where E = {1, ..., n} and
F = {A ⊆ E : the submatrix M{1,...,|A|},A is invertible}, is a Gaussian
elimination greedoid.

The possible sets of column indices for the pivot elements when performing
Gaussian elemination form the maximal feasible sets of this greedoid,
hence the name Gaussian elimination greedoid. A feasible set is maximal if
it is not a proper subset of any feasible set, and such a set is also called a
basis. Next, we will look at an example of a Gaussian elimination greedoid
and verify that it really is a greedoid.

Example 3.7 Let a 5× 5 matrix M be given by

M =




1 1 0 0 0
1 0 0 0 1
0 0 0 1 0
0 1 1 1 0
0 0 0 0 1




.

We have that E = {1, 2, 3, 4, 5} and F =
{
∅, {1}, {2}, {1, 2}, {1, 5}, {2, 5},

{1, 2, 4}, {1, 4, 5}, {2, 4, 5}, {1, 2, 3, 4}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5},
{1, 2, 3, 4, 5}

}
. From this, we can verify that (E,F ) is an accessible set sys-

tem satisfying (G2’), so it is indeed a greedoid. The feasible sets here can
of course be obtained in many different ways, including calculating determi-
nants and finding inverses. Another way is to, with a slightly different label,
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reuse the feasible sets of F4 on page 15. Why is that?

We have already concluded that Greedoid 4 can not be an interval greedoid.
In fact, it is a type of greedoid known as bipartite matching greedoid or
medieval marriage greedoid, where the latter name refers to that the oldest
daughter must be married first, and so on. Every such greedoid is a Gaussian
elimination greedoid, and in this case M in Example 3.7 is the incidence
matrix of the graph in Figure 8 on page 15. Here, the rows correspond to
v1, ..., v5, the columns correspond to u1, ..., u5 and the entry in place (i, j) is
1 if vi and uj are connected, for 1 ≤ i, j ≤ 5.
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4 Structural properties and optimiza-
tion

In this part we will take a closer look at the rank function, the closure
operator and examine the meaning of rank and closure feasibility. Further,
we will examine some basic operations on greedoids and briefly explore its
relation with optimization.

4.1 Rank function

With the rank function of a greedoid, we can associate the size of a maximal
feasible subset of every set. We will first formally define the rank function
and then state and prove a theorem which shows that it uniquely determines
a greedoid.

Definition 4.1 For a subset X ⊆ E in a greedoid (E,F ) we define the
rank function as r(X) = max{|A| : A ⊆ X,A ∈ F}. We say that the
rank of the greedoid (E,F ) is equal to max{|A| : A ∈ F}.

Theorem 4.1 A function r : 2E 7→ N is the rank function of a greedoid if
and only if for all X, Y ⊆ E and all x, y ∈ E:

(i) r(X) ≤ |X|,
(ii) X ⊆ Y implies r(X) ≤ r(Y ),
(iii) r(X) = r(X ∪ x) = r(X ∪ y) implies r(X) = r(X ∪ x ∪ y).

Further, the rank function uniquely determines the greedoid.

Proof. Suppose that r is the rank function of a greedoid (E,F ). Then
both (i) and (ii) are consequences of Definition 4.1. For (iii), the case where
x = y is trivial so we look at the case where x 6= y. Now, let r(X) =
r(X ∪x) = r(X ∪y). This implies that X,X ∪x and X ∪y all have the same
maximal feasible subset A. Now, assume that r(X) < r(X ∪ x ∪ y). Then
for B, the maximal feasible subset of X ∪ x ∪ y, we must have |B| > |A|.
Since (E,F ) is a greedoid, (G2) holds. Thus, either X ∪ x or X ∪ y is a
feasible set with cardinality strictly larger than |X|. But this contradicts
r(X) = r(X ∪ x) = r(X ∪ y), so (iii) holds. Now, suppose (i),(ii) and (iii)
holds for r and let (E,F ) be a set system with F = {X ⊆ E : r(X) = |X|}.
Since r(∅) = |∅| = 0 implies ∅ ∈ F , (G1) holds. Now, let X, Y ∈ F with
|X| > |Y |, and assume that (G2) does not hold, i.e. there is no x ∈ X \ Y
with Y ∪ x ∈ F . Then we can apply (iii) for all the |X| − |Y | elements in
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X \ Y and arrive at the conclusion r(Y ) = r(Y ∪ (X \ Y )) = r(X). But
since X and Y are feasible sets we must have |X| = |Y |, contradicting our
assumption. Thus (G2) holds, which shows that (E,F ) is a greedoid. At
last, since X is feasible if and only if r(X) = |X|, we have that r uniquely
determines the greedoid. �

Example 4.1 We examine the rank function for Greedoid 4 defined on
page 15. This greedoid is of rank 5 with E4 as the only maximal feasible set.
Let X = {u2, u5} and Y = {u1, u2, u4, u5}. We have that r(X) = |X| = 2, so
(i) holds in this case. Further, X ⊆ Y and r(Y ) = |Y | = 4, so (ii) holds in
this case as well. Moreover, we have that r(X) = r(X ∪ u1) = r(X ∪ u3) = 2
since {u1, u2, u5}, {u2, u3, u5} /∈ F4 and that r(X) = r(X ∪ u1 ∪ u3) = 2,
which shows that (iii) holds in this case. One can also verify that all feasible
sets A ⊆ E satisfies r(A) = |A| while all infeasible sets A′ ⊆ E satisfies
r(A′) < |A′|.

Corollary 4.1 The rank function r of a greedoid is the rank function of an
antimatroid if and only if for all X ⊆ E and all x, y ∈ E, x 6= y:

r(X ∪ x) > r(X) and r(X ∪ y) > r(X) implies r(X ∪ x ∪ y) > r(X) + 1.

Proof. Suppose r is the rank function of an antimatroid and let A ⊆ X be a
maximal feasible subset of X ∈ E. Further, suppose r(X ∪x) > r(X). Now,
since (E,F ) is an antimatroid, Proposition 3.1 tells us F is closed under
union, and therefore A∪ x is a feasible set with |A∪ x| = |A|+ 1. If we also
suppose that r(X ∪ y) > r(X), we get by the same reasoning that A ∪ y is
a feasible set with |A ∪ y| = |A| + 1. Again, since F is closed under union,
A ∪ x ∪ y must be a feasible set satisfying |A ∪ x ∪ y| = |A|+ 2. Now, from
Theorem 4.1 we have that |A| + 2 = |A ∪ x ∪ y| ≤ r(X ∪ x ∪ y) and with
r(X) + 1 = |A| + 1 we get r(X ∪ x ∪ y) > r(X) + 1. This time, suppose
that r is the rank function of a greedoid and that the statement in Corollary
4.1 is satisfied for all X ⊆ E and all x, y ∈ E, x 6= y. Moreover, let X be a
feasible set with r(X) = |X| and let r(X ∪x) > r(X) for x ∈ E. Then X ∪x
must be a feasible set with cardinality |X|+ 1. Clearly, X ⊆ X ∪x. Now, let
y ∈ E \ (X∪x) be such that r(X∪y) > r(X). Then X∪y must be a feasible
set with cardinality |X| + 1. Since r(X ∪ x) > r(X) and r(X ∪ y) > r(X)
implies that r(X ∪ x ∪ y) > r(X) + 1 = |X|+ 1 we have that also X ∪ x ∪ y
is a feasible set. This means (E,F ) has the interval property without upper
bounds. Hence, it is an antimatroid. �
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Example 4.2 Consider Greedoid 1 defined on page 12-13, and let X ⊆ E1

be an arbitrary set. From Definition 4.1, we know that r(X) is the size of
a maximal feasible subset of X. Hence, such a maximal feasible subset, to-
gether with the root, induce a connected subgraph of the graph in Figure 4.
Let x and y be two distinct vertices of this graph with r(X ∪ x) > r(X) and
r(X ∪ y) > r(X). Then we must have x, y /∈ X and further, r(X ∪ x) and
r(X ∪ y) must give rise to two different maximal feasible subsets. Thus, if
we can add either x or y to a connected subgraph and get a new connected
subgraph, then we can as well add both x and y and get a new connected
subgraph. The rank function of its corresponding maximal feasible subset
must then satisfy r(X ∪ x ∪ y) > r(X ∪ x), r(X ∪ y) > r(X) which implies
r(X ∪ x ∪ y) > r(X) + 1. Since the rank function uniquely determines the
greedoid we can conclude from Corollary 4.1 that (E1,F1) is an antimatroid.

We will now revisit the matroids. For any set system (E,F ) it follows from
greedoid axiom (G2) that for any subset X ⊆ E all maximal feasible subsets
of X have the same cardinality. On the other hand, for an accessible set
system (E,F ), the fact that for any subset X ⊆ E all maximal feasible
subsets of X have the same cardinality does not imply (G2). However, for
an independence system (E,F ), axiom (M3) is equivalent with the fact that
for any subset X ⊆ E all maximal feasible subsets of X have the same
cardinality.

Example 4.3 If we consider Greedoid 2 defined on page 13, we know that
∅ ∈ F2, so (M1) is satisfied. Further, if Y is a feasible set, it corresponds
to a disjoint union of unrooted trees and every subset of Y will also corre-
spond to a disjoint union of unrooted trees, so (M2) is satisfied as well. Now,
take an arbitrary subset X ⊆ E2 and consider the subgraph associated with
this subset. This subgraph consists of, say, k vertices. If the subgraph is
connected, the maximal feasible subsets of X will have cardinality k− 1, ac-
cording to a famous theorem about the number of edges and vertices in a tree.
If the subgraph consists of two components, the maximal feasible subsets of
X will have cardinality k − 2. If three components, cardinality k − 3 and so
on. In any case the maximal feasible subsets of X will have the same car-
dinality. From this, we can once again conclude that Greedoid 2 is a matroid.

Before closing this section, we will introduce the concept of rank feasibility.

Definition 4.2 For a subset X ⊆ E in a greedoid (E,F ) we define the
basis rank as β(X) = max{|X ∩ A| : A ∈ F}. Further, we say that X is
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rank feasible if β(X) = r(X).

We know that for a subset X ⊆ E, if X is feasible we have r(X) = |X|.
Further, the basis rank of X is bounded from above by the cardinality of
X and, since X is a feasible set, bounded from below by the cardinality of
the intersection with itself. Thus, β(X) = |X|. On the other hand, if X is
infeasible we have r(X) = |A| < |X|. The basis rank of X is then bounded
from below by |X ∩A| = |A| and from above by min(|X|, |B|), where B is a
basis. So, in any way, we have r(X) ≤ β(X) for all X ⊆ E. If we denote the
family of all rank feasible sets by R we have, since F = {X ⊆ E : r(X) =
|X|}, F ⊆ R. Equality between F and R must hold if E ∈ F since then
β(X) = |X| for all X ⊆ E. Regarding the equality r = β, the following
proposition tells us when it occurs.

Proposition 4.1 We have that r(X) = β(X) for all X ⊆ E if and only if
(E,F ) is a matroid.

Proof. Suppose r(X) = β(X) for all X ⊆ E of a greedoid (E,F ). For a
feasible set B we have that r(B) = |B| and β(B) = |B|. Now, if A ⊆ B with
A /∈ F , then r(A) < |A| while β(A) = |A| since A is a subset of B. Since
this contradicts the assumption, we must have A ∈ F . Thus, (M2) holds
which shows that (E,F ) is a matroid. Instead, suppose now that (E,F ) is
a matroid and let A ⊆ E be an arbitrary set. We know that r(A) = |A′| for
some A′ ∈ F . If A′ is a basis, then β(A) = |A′|. Otherwise, since (E,F )
is a matroid, A′ can be completed to a basis B and thus, A′ ⊆ B. But then
we have β(A) = |A ∩B| = |A′ ∩B| = |A′|, so r(A) = β(A). This shows that
only when a greedoid is a matroid, all sets in 2E are rank feasible. �

4.2 Closure operator

In this section we will, with the help of the rank function, define the closure
operator of a greedoid and then have a look at some of its behaviour.

Definition 4.3 For a subset X ⊆ E in a greedoid (E,F ) we define the
(rank) closure operator σ : 2E 7→ 2E as σ(X) = {x ∈ E : r(X ∪ x) =
r(X)}. Further, we say that a set X ⊆ E is closed if X = σ(X).

Example 4.4 We examine the closure operator for Greedoid 4 defined on
page 15. Let X = {u3, u4, u5}, Y = {u2, u4, u5} and Z = {u1, u2, u5}, then
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r(X) = 0, r(Y ) = 3 and r(Z) = 2. The two elements in E4 \ X are both
feasible singleton sets so we can not add any of them to X without increasing
the rank. Thus, X = σ(X) and therefore closed. Similarly, if we add u1 or
u3 to Y we will get another feasible set and thus increase the rank, so Y is
also a closed set. However, Z is not a closed set since σ(Z) = Z ∪ u3.

Before we proceed any further with the closure operator, it is time to go back
to the greedoid classes, as was treated earlier. We now have all the necessary
tools to define the Gaussian greedoid from section 3.2.

Definition 4.4 Let Mi = (E,Fi), i = 0, 1, ...,m be a sequence of matroids
satisfying:

(i) if A ⊆ E is closed in Mi−1, then it is closed in Mi, for 1 ≤ i ≤ m,
(ii) the rank of Mi is equal to i, for 0 ≤ i ≤ m.

We say that a greedoid (E,F ) of rank m, where F = {A ⊆ E : A is a basis
of M|A|}, is a Gaussian greedoid.

Example 4.5 Recall the Gaussian elimination greedoid (E,F ) in Exam-
ple 3.7, which is Greedoid 4 transcoded. Let Mi = (E,Fi), i = 0, 1, ..., 5 be
a sequence of set systems with F0 = {∅}, F1 = F0 ∪

{
{1}, {2}

}
, F2 =

F1 ∪
{
{1, 2}, {1, 5}, {2, 5}

}
, F3 = F2 ∪

{
{1, 2, 4}, {1, 4, 5}, {2, 4, 5}

}
, F4 =

F3∪
{
{1, 2, 3, 4}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}

}
, F5 = F4∪{1, 2, 3, 4, 5}.

The Mi:s have the interval property without lower bounds, so this is a se-
quence of matroids. Further, it can be verified that property (i) of Definition
4.4 holds. For example {3, 4, 5} is closed in M1 and we can check that it is
closed in M2, ...,M5 as well. Moreover, we have rank Mi = i for all i. Now,
since (E,F ) is a greedoid of rank 5 and its feasible sets is exactly those that
satisfy the condition in Definition 4.4, we know that it is a Gaussian greedoid.

We will now state a theorem that shows the characterization of closure oper-
ators of greedoids. However, the proof will be omitted but interested readers
can find it in [2].

Theorem 4.2 A function σ : 2E 7→ 2E is the closure operator of a greedoid
if and only if for all X, Y, Z ⊆ E and x, y ∈ E \X:

(i) X ⊆ σ(X),
(ii) σ(σ(X)) = σ(X),
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(iii) if σ(X) = σ(Y ), then σ(X) = σ(X ∪ Y ),
(iv) if X ⊆ Y ⊆ Z and σ(X) = σ(Z), then σ(X) = σ(Y ),
(v) if σ(X ∪y) = σ(X ∪x∪y) but σ(X ∪x) 6= σ(X ∪x∪y), then there exists
a z ∈ X ∪ x with σ((X ∪ x) \ z) = σ(X ∪ x).

We see that the closure operator of a greedoid is extensive, (i), and idempo-
tent, (ii). However X ⊆ Y does not imply σ(X) ⊆ σ(Y ) so it is, in general,
not monotone and therefore not a closure operator in the formal sense. Next,
we will examine the closure operator of our vertex search greedoid.

Example 4.6 Consider Greedoid 1 defined on page 12-13 and let X = {b}.
We then have σ(X) = {b, e, f, g}, which shows that (i) holds for this set.
Further, we can not add a, c or d to {b, e, f, g} without increasing the rank
function, so (ii) holds for this set as well. Now, if we let Y = {a, b} we
find out that σ(Y ) = {a, b, g}. This shows that X ⊆ Y but σ(X) * σ(y).
Hence, the closure operator is not monotone. If we instead consider the sets
{a, b, d} and {a, b, e} we can check that they are both closed sets. However
their intersection equals {a, b} which we have seen is not a closed set.

We close this section with another feasibility concept, namely closure feasi-
bility.

Definition 4.5 Let (E,F ) be a greedoid. We say that a subset X ⊆ E is
closure feasible if X ⊆ σ(A) implies X ⊆ σ(B) for all A ⊆ B ⊆ E.

If we denote the family of all closure feasible sets by C , it can be shown
that C ⊆ R and that C is closed under union. Further, it can be shown
that C = R if and only if (E,F ) is an interval greedoid, and in this case
(E,C ) = (E,F ) is an antimatroid. For proofs, see [2].

4.3 Operations

In this section we will introduce the three operations truncation, restriction
and contraction, and further, apply these to our greedoid examples. We start
with defining truncation.

Definition 4.6 Let (E,F ) be a greedoid of rank r. Then the k-truncation,
where 0 ≤ k ≤ r, is defined as F (k) = {X ∈ F : |X| ≤ k}.

28



Example 4.7 Recall the Gaussian elimination greedoid (E,F ) in Example
3.7 and the sequence of matroids Mi = (E,Fi), 0 ≤ i ≤ 5 in Example 4.5.
Then Fi = F (i), that is, the i-truncation defined above.

We have that the empty set is included in every k-truncation. Further, (G2)
implies that if X, Y ∈ F (k) ⊆ F and |X| > |Y | then there is an x ∈ X \ Y
with Y ∪ x ∈ F (k), which shows that (E,F (k)) is a greedoid as well.

Example 4.8 Consider Greedoid 3 defined on page 14-15. We have that the
2-truncation is equal to F (2)

3 =
{
∅, {(r, a)}, {(r, b)}, {(r, d)}, {(r, a), (a, e)},

{(r, a), (a, f)}, {(r, a), (r, b)}, {(r, a), (r, d)}, {(r, b), (b, a)}, {(r, b), (b, c)}, {(r, b),
(r, d)}, {(r, d), (r, g)}

}
. It can be verified that (G1) and (G2) are satisfied, so

(E,F (2)
3 ) is a greedoid.

Next, we move on to the operation known as restriction, which also gives rise
to a new greedoid. That (G1) and (G2) hold in the restricted set system is
obvious from the definition below.

Definition 4.7 Let (E,F ) be a greedoid and let T ⊆ E be an arbitrary
subset. Then the restriction of (E,F ) to T is defined as the set system
(T,FT ), where FT = {X ∈ F : X ⊆ T}.

In Example 3.6, we became acquainted with the poset greedoid. We saw that
it was a subclass to the class of antimatroids and it turns out that it is also
a subclass of the previously mentioned class called local poset greedoids. In
fact, we have that (E,F ) is a local poset greedoid if and only if the restriction
of (E,F ) to any feasible set is a poset greedoid.

Example 4.9 Again, consider Greedoid 3 and let T = {(r, a), (r, b), (a, e))}.
The restriction of (E3,F3) to T is the greedoid (T,FT ), where FT =

{
∅,

{(r, a)}, {(r, b)}, {(r, a), (r, b)}, {(r, a), (a, e)}, {(r, a), (r, b), (a, e)}
}

. The fea-
sible sets are precisely the ideals of T for the poset (T,⊆). It can be verified
that the restriction of Greedoid 3 to any feasible set is a poset greedoid.
Therefore, as mentioned in section 3.1, Greedoid 3 belongs to the class of
local poset greedoids.

We know from before that matroids also belong to the class of local poset
greedoids, and are precisely those that satisfy the interval property without
lower bounds. A way to distinguish which local poset greedoids that are also
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directed branching greedoids is given by the following proposition, where we
refer to [2] for the proof.

Proposition 4.2 A local poset greedoid (E,F ) is a directed branching gree-
doid if and only if for all A,B ∈ F :

σ(A) ∩ σ(B) ⊆ σ(A ∪B) ⊆ σ(A) ∪ σ(B).

Example 4.10 Consider Greedoid 2 defined on page 13. We have seen that
this is a matroid and it can therefore not satisfy the condition in Proposi-
tion 4.2. For example, let A =

{
{r, a}, {r, b}, {r, c}, {r, d}, {e, g}, {f, g}

}
and

B =
{
{r, a}, {r, b}, {a, e}, {a, f}, {c, d}, {d, g}

}
. Then we get that σ(A) =

A∪
{
{a, b}, {b, c}, {c, d}, {e, f}

}
, σ(B) = B∪

{
{a, b}, {e, f}

}
and σ(A∪B) =

E2. So far so good, but σ(A) ∪ σ(B) = E2 \ {d, e} which shows that
σ(A ∪B) * σ(A) ∪ σ(B).

The next proposition makes use of the restriction operation to show the
relationship between interval greedoids and antimatroids.

Proposition 4.3 Let (E,F ) be a greedoid. It is an interval greedoid if and
only if the restriction of (E,F ) to each feasible set X ∈ F is an antimatroid.

Proof. Suppose (E,F ) is an interval greedoid and let T be an arbitrary fea-
sible set. The restriction of (E,F ) to T is the greedoid (T,FT ), where
FT = {X ∈ F : X ⊆ T}. Suppose that for A,B,C ∈ FT we have
A ⊆ B ⊆ C, and for x ∈ T \C we have A∪ x ∈ FT and C ∪ x ∈ FT . Then,
since FT ⊆ F , we have A,B,C ∈ F , x ∈ E \C,A∪ x ∈ F and C ∪ x ∈ F .
But this implies that B ∪ x ∈ F since (E,F ) has the interval property, and
since B∪x ⊆ C∪x ⊆ T we also have B∪x ∈ FT . Thus, (T,FT ) inherits the
interval property. Now, if A,B ∈ FT , A ⊆ B, x ∈ T \B,A∪ x ∈ FT implies
B∪x ∈ FT , we know that (T,FT ) is an antimatroid. Well, (T,FT ) is acces-
sible and every feasible set is a subset of T , so C ∪x ∈ FT for every C and x
such that B ⊆ C, x ∈ T \C. Further, x ∈ T \C implies x ∈ T \B for every C
such that B ⊆ C. This shows that (T,FT ) has the interval property without
upper bounds, so it is an antimatroid. On the other hand, suppose that
(T,FT ) is an antimatroid where T is a feasible set in the greedoid (E,F ).
We know that every antimatroid is also an interval greedoid, so the interval
property holds for (T,FT ) for all T ∈ F . But F = {∪FT : T ∈ F}, so
the interval property holds for all feasible sets. Thus, (E,F ) is an interval
greedoid. �
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The third and final operation that will be presented, contraction, is defined
as follows.

Definition 4.8 Let (E,F ) be a greedoid and let B ⊆ E be a feasible set.
Then the contraction of B is defined as the set system (E\B,F/B), where
F/B = {X ⊆ E \B : X ∪B ∈ F}.

From the definition we see that ∅ ∈ F/B. Further, if X, Y ∈ F/B with
|X| > |Y | we also have |X ∪ B| = |X| + |B| > |Y | + |B| = |Y ∪ B|. Since
X ∪ B and Y ∪ B are feasible sets there exists an x ∈ (X ∪ B) \ (Y ∪ B)
such that Y ∪B ∪ x ∈ F , which implies that there exists an x ∈ X \ Y such
that Y ∪ x ∈ F/B. Hence, (E \ B,F/B) is also a greedoid. We close this
section with an example of the contraction operation.

Example 4.11 Consider Greedoid 4 defined on page 15. We have that
B = {u1, u4, u5} is a feasible set and the contraction of B is equal to
the set system (E3 \ B,F4/B), where E3 \ B = {u2, u3} and F4/B ={
∅, {u2}, {u3}, {u2, u3}

}
. We can see that this set system satisfies the gree-

doid axioms.

4.4 Optimization

In this final section of the thesis we will briefly look at how greedoids are
related to optimization problems via the greedy algorithm. We let (E,L )
be a simple hereditary language over a finite alphabet E, in which we call
a maximal feasible word basic. The optimization problem to solve is as
follows: Given an objective function ω : L 7→ R, we want to find a basic
word α that maximizes ω(α). The greedy algorithm, with which we tackle
this problem, seeks the best option at each stage in hope to find the optimal
solution. It can be described as follows:

(1) Set α = ∅.
(2) Choose an x ∈ E with αx ∈ L such that ω(αx) ≥ ω(αy) for all y ∈ E
with αy ∈ L .
(3) Set α = αx.
(4) If α is basic, then stop. Otherwise, go to (2).

The suitable question to ask now is: Will the greedy algorithm produce an
optimal solution in this setting? The rest of the thesis is devoted to answer
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that question. First, we need to specify a certain relationship between the
objective function and the language.

Definition 4.9 We say that an objective function ω : L 7→ R is compat-
ible with L if it, for αx ∈ L such that ω(αx) ≥ ω(αy) for every αy ∈ L ,
satisfies

(i) αβxγ ∈ L and αβzγ ∈ L imply that ω(αβxγ) ≥ ω(αβzγ),
(ii) αxβzγ ∈ L and αzβxγ ∈ L imply that ω(αxβzγ) ≥ ω(αzβxγ).

What this definition says is that if x is the best option after α then x should
also be the best option at every later stage (i), and it should always be a
better option to choose x before z than vice versa (ii). If so, the objective
function is compatible with the language. After this definition it is possible
to characterize greedoid languages algorithmically.

Theorem 4.3 Let (E,L ) be a simple hereditary language. Then it is also
a greedoid language if and only if the greedy algorithm produces an optimal
solution for every compatible objective function on L .

Proof. For interval greedoids, see [1]. For greedoids in general, see [2].

Now, let us study the objective function a bit closer. Let u : E 7→ R be
some given weight function. Then a linear objective function ω : L 7→ R
is a function of the form ω(x1x2...xn) =

∑n

i=1
u(xi). All linear objective

functions are compatible if (E,L ) is a matroid but not necessarily if (E,L )
is a greedoid. Recall the family of all rank feasible sets R ⊆ 2E of a greedoid
(E,F ). Further, let a level set of the weight function u be a set of the
form {x ∈ E : u(x) ≥ c}. The linear objective function described above
is called R-compatible if the level set {x ∈ E : u(x) ≥ c} ∈ R for any
given constant c ∈ R. It can then be proven that for a greedoid (E,F ),
the greedy algorithm produces an optimal solution for every R-compatible
objective function. From Proposition 4.1, we know that all sets in 2E are
rank feasible if and only if (E,F ) is a matroid. Thus, (E,F ) is a matroid
if and only if every linear objective function is R-compatible.

We have now reached the end of this glimpse into greedoid theory. For more
of optimization on greedoids and of greedoids in general, [1] and [2] are highly
recommended.
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