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The inability of Spekkens’ epistemic view of quantum

states to reproduce the solution to the mean king’s problem

Ali Leylani

Department of Mathematics, University of Stockholm

For the significant part of the past century, the familiar Copenhagen interpretation, an inherently proba-
bilistic stance, has been the dominant vantage point for research on quantum mechanics. Lately, however,
new experimental results once again fuel debate and contending interpretations make their claim. Most
notably, perhaps, being the pilot wave formulation, an inherently deterministic viewpoint. A recurring,
more specific, front of this debate is whether quantum mechanics behaves in a manner described by an
ontic or an epistemic theory. Spekkens, to the defence of the latter, outlines in his paper [1] a toy theory
explicitly rooted in a belief that there exists fundamental limits to an observers knowledge of a particle’s
state. The argument the author, very reasonably, makes for epistemology is that an extension of the
pile of experiments covered and explained by it, while failing for the contenders, continuously adds to its
plausibility. In this paper, however, we present a failure of the toy theory to replicate the solution to the
mean king’s problem as presented by Vaidman, Aharonov and Albert [2]. Strictly speaking, this is not
evidence against all of epistemology, rather an argument only against this toy theory which sets a seemingly
arbitrary restriction on its foundation. A restriction Spekkens refers to as the knowledge balance principle.

I. The mean king’s problem

A scholar is challenged by the king. The king will
measure the observable spin-value of either ‡

x

, ‡
y

or
‡

z

on a particle, but the scholar doesn’t get to know
which of these the king will make. While lacking
this seemingly crucial bit of information, the scholar
is nonetheless challenged to ascertain the value the
king obtained on his measurement, with unit prob-
ability. The rules are such that before the king’s
measurement, the scholar gets to prepare the par-
ticle in any state of her choosing. After the king’s
measurement, she herself gets to do one final mea-
surement on the particle.

As pointed out in the original paper [2], one solution
is, with the aid of an external particle alongside the
king’s, to prepare the entangled state 1Ô

2(|00Í+|11Í).
After the king’s measurment, the scholar performs
her measurement on the particle w.r.t an observable
A, which has nondegenerate eigenvectors

|„1Í =
Ô

2
2 |00Í + 1

2(e≠i

fi
4 |01Í + ei

fi
4 |10Í),

|„2Í =
Ô

2
2 |00Í ≠ 1

2(e≠i

fi
4 |01Í + ei

fi
4 |10Í),

|„3Í =
Ô

2
2 |11Í + 1

2(ei

fi
4 |01Í + e≠i

fi
4 |10Í),

|„4Í =
Ô

2
2 |11Í ≠ 1

2(ei

fi
4 |01Í + e≠i

fi
4 |10Í), (1)

with corresponding eigenvalues a1, a2, a3 and a4.
Now, since A is an observable, she is certain to get
one, and only one, of these values upon measure-
ment. The scholar can now, depending on the out-
come, infer the precise result from the king’s mea-
surement in all three cases in accordance with Table
1.

The value
of A ‡

x

‡
y

‡
z

a1 ø ø ø
a2 ¿ ¿ ø
a3 ø ¿ ¿
a4 ¿ ø ¿

Table 1. Infered ‡-values from outcomes of A.

As an example, this implies that obtaining a1 from
the measurement of A would ascertain ø in all three
cases of the king’s measurement. This procedure
solves the challenge.

Preliminary quantum theory and basic algebra,
alongside details of this scheme, is outlined in Ap-
pendix I and II, respectively.



II. Aspects of the toy theory

A. Ontology and epistemology

Seemingly against common intuition, quantum be-
haviour has since discovery proved to be a serious
challenge for theorists seeking a satisfactory inter-
pretation of it. During the heated debates of the
1920’s, a major turn of the tides occurred when
Born first suggested that physics should be under-
stood by means of probability distributions, rather
than of casual cause. This new notion of indeter-
minism was met with very vocal resistance, perhaps
most by Einstein. He refused the implication of
randomness to events, with no underlying cause.
Nonetheless, an indeterministic theory emerged as
victorious and remained dominant for the rest of
the century. However, recent new experiments have
once again sparked debate and renewed interest in
deterministic theories.

Deterministic theories are rooted in ontological ide-
ology. Notable examples being the many-worlds in-
terpretation and various branches of hidden variable
theories. The latter of which the pilot wave formu-
lation is a variety of. It was introduced 1927 by
Broglie. Although dismissed at first, recent findings
has garnered new experimental support. Determin-
istic theories actively try to avoid notions such as
the wave-particle duality, wave collapses and para-
doxes associated with the thought experiment of
Shroedinger’s cat. Attributes typically inherent in
probabilistic theories.

Indeterministic, and thus probabilistic, theories be-
long to the school of epistemology. Notable exam-
ples are the consistent histories interpretation and
the Copenhagen interpretation. The latter being the
base to most quantum research for the majority of
the past century.

An ontic state, in contrast to an epistemic one,
is a state of determined reality. If an observer knows
the ontic state of a particle, then she has factual
information about its position and momentum, and
its past and future can therefore be calculated and
predetermined. This notion should be familiar from
classical mechanics.

In the toy theory provided by Spekkens, epistemic
states are defined in terms of ontic states. It is sim-
ply a matter of introducing an ambiguity in what
precise ontic state a particle resides in, at all times.
The observer can never have su�cient information
to deduce the ontic state of a particle, and has to
settle for the fact that the particle is in one of sev-
eral possible ontic states. This state of knowledge is
called an epistemic state.

B. The knowledge balance principle

Spekkens’ toy theory is moulded by epistemic ide-
ology and thus requires a limit to the amount of
knowledge an observer can have of a particle, at any
given time. Epistemology in itself does not, how-
ever, define this limit. The hypothesis by Spekkens,
in this particular toy theory, is referred to as the
knowledge balance principle. In plain text, it explic-
itly states that

If one has maximal knowledge, then for every sys-
tem, at every time, the amount of knowledge one
possesses about the ontic state of the system at that
time must equal the amount of knowledge one lacks.

From this hypothesis, a symmetry between knowl-
edge and ignorance follows. There can be no im-
balance between these quantities when the observer
has maximal knowledge of a given system. This,
as we will see shortly, has profound impact on the
mathematical aspects of the toy theory.

C. Elementary systems

To quantitatively understand the notion of an ele-
mentary epistemic state, we begin by introducing
the concept of a canonical set of yes-no questions.
This is the set of yes-no questions about a system
that is su�cient to identify its true ontic state. The
questions should also be formulated in such a manner
that the set contains a minimal amount of elements.

Elementary systems in the toy theory can, as a
consequence of the knowledge balance principle, re-
side in a possibility of four di�erent ontic states. No
more, no less. Thus, an observer currently in the
state of least amount of knowledge about a particu-
lar system would describe its state as 1 ‚ 2 ‚ 3 ‚ 4,
where ‚ is notation for the logical or.



The most e�cient canonical set of questions for
these kind of systems is one in which the questions
divides the set of possible ontic states by two, with
each question. Since there are four possible ontic
states, the number of questions in the canonical set
is two. For instance, one example of a pair of ques-
tions is "Is it in the set {1, 4}, or not?" and "Is it in
the set {1, 3}, or not?".

Now, and this is key for the toy theory, application
of the knowledge balance principle on the canonical
set of questions infers that we are only allowed to
obtain the answer to one of the two questions. The
principle clearly states that while an observer is in
a state of maximal knowledge, her knowledge about
the system must be equal to the amount of igno-
rance.

As a concrete example, consider an observer in a
state of least amount of knowledge about a system,
given by 1 ‚ 2 ‚ 3 ‚ 4. Further, assume she asks "Is it
in the set {1, 2}, or not?" regarding the ontic state
of the system, and is returned with the value true.
In that case, she has su�cient information to reject
the ontic states 3 and 4. Thus, from this point on-
ward, she would describe the epistemic state of the
system as 1 ‚ 2, and she now has as much knowl-
edge about the true ontic state of the system as she
has ignorance. According to the knowledge balance
principle, this is as much as she is allowed to have.
Hence, this epistemic state, i.e 1 ‚ 2, is an example
of one of maximal knowledge in the toy theory.

Although the conclusion of the preceding paragraph
indeed stands, it does not tell the whole story. Physi-
cally, there are no barriers limiting the observer from
proceeding to ask another question about the sys-
tem, now described as 1 ‚ 2. The observer might
conduct a subsequent measurement as to whether
the system is in the set {1, 3}, or not. By coupling
the result with the previously obtained information,
one might believe to be in a position to deduce the
true ontic state of the system. But this is not the
case, as each measurement imposes a disturbance
on the system, e�ectively nullifying the results from
previous measurements, unless it is the same mea-
surement. We discuss this further in SEC. II E.

There are
!4

2
"

= 6 di�erent elementary epistemic
states of maximal knowledge. Visually, they are
represented as

1 ‚ 2 ¡
1 ‚ 3 ¡
1 ‚ 4 ¡
2 ‚ 3 ¡
2 ‚ 4 ¡
3 ‚ 4 ¡ (2)

There are, of course, other forms of elementary sys-
tems. States of non-maximal knowledge are given
by

1 ‚ 2 ‚ 3 ¡
1 ‚ 2 ‚ 4 ¡
1 ‚ 3 ‚ 4 ¡
2 ‚ 3 ‚ 4 ¡ (3)

And lastly, the state of least amount of knowledge is
given by

1 ‚ 2 ‚ 3 ‚ 4 ¡ (4)

D. Analogies with quantum mechanics

Physically measurable quantities are in mechanics
called observables. Generally speaking, quantities of
interest are most often position and momentum, but
not always. In quantum mechanics, a quantity of
significant importance is the intrinsic spin of parti-
cles. In fact, Spekkens directly defines a 1-to-1 cor-
relation between the elementary states of maximal
knowledge and the eigenvectors of three orthogonal
spin-directions. Specifically, we have the following
correlations

|0Í ¡
|1Í ¡

|+Í ¡
|≠Í ¡

|+iÍ ¡
|≠iÍ ¡ (5)

where |0Í and |1Í corresponds, respectively, to the
spin-ø and spin-¿ eigenvectors of the ‡

z

-operator.
Similarly, |+Í and |≠Í corresponds to those of ‡

x

.
And lastly, |+iÍ and |≠iÍ to the eigenvectors of ‡

y

.



Using these correlations and having the knowledge
balance principle as a staple for the toy theory,
Spekkens is able to reproduce a wide range of quan-
tum phenomenon within his framework. Examples
include non-commutativity of measurements, tele-
portation, entanglement, the impossibility of a uni-
versal state inverter, no-cloning and many others.

E. Measurements

A measurement on an elementary system can be de-
fined as a physical action which distinguishes the
state in question to one, out of two possible, epis-
temic states. There are only three such possible
measurements, and we represent them in terms of
the di�erent epistemic states they have as possible
outcomes. These are

{1 ‚ 3, 2 ‚ 4}, (6)

{2 ‚ 3, 1 ‚ 4}, (7)

{1 ‚ 2, 3 ‚ 4}. (8)

For starters, by combining this with the correlations
of the previous subsection, we note that each one of
these simply correspond to a spin measurement in
a di�erent direction. Its clear that (6), (7) and (8)
measures spin in the x, y and z-direction, respec-
tively.

To find the probability of a given outcome, we need
only take note of the amount of ontic states the
outcome in question, and the state being measured
upon, has. As some concrete examples, assume first
we measure {1 ‚ 2, 3 ‚ 4} on the state 1 ‚ 2. The
probability distribution in this case is (1,0), i.e the
first outcome is certain to occur. Now, assume we
conduct the same measurement on the state 2 ‚ 3.
This will instead yield the distribution (1

2 , 1
2). Both

outcomes thus has the same probability to occur.

In the toy theory, we only consider reproducible
measurements. Reproducible in the sense that if
repeated on a system, it must yield the same result.
In order to satisfy this axiom, it is assumed that the
state being measured upon always transforms into
the outcome state of the measurement. Clearly, this
ensures that repeated measurements yield the same
results. From this, it follows that spin measurements
in di�erent directions do not commute.

F. Bipartite systems

Combined systems in the toy theory are defined in a
natural manner. The epistemic state of the compos-
ite system AB is simply defined to be the possible
combinations of ontic states from system A and B,
respectively. As an example, consider A to be in the
state 1‚2‚3‚4 and B to be in 2‚4. The composite
system AB is then said to be in

(1 ‚ 2 ‚ 3 ‚ 4) · (2 ‚ 4) = (9)

= (1 · 2) ‚ (1 · 4) ‚ (2 · 2) ‚ (2 · 4) ‚ (3 · 2) ‚ (3 · 4) ‚ (4 · 2) ‚ (4 · 4), (10)

where ·, as per Spekkens’ convention, represents log-
ical and. To clarify, since the true ontic state of A
is in {1, 2, 3, 4} and B in {2, 4}, the true ontic state
of AB is given by an element of {1, 2, 3, 4} ◊ {2, 4}.

Fortunately, bipartite systems also have simple vi-
sual manifestations. The example just given is
graphically represented by

A

4

3

2

1

(11)

1 2 3 4

B

As seen, the rows of this figure represent the di�er-
ent ontic states of A, while columns represent those
of B. Marked intersections are possible true ontic
states for AB.

Expression (9) and (10) are logically equivalent, but
it is of fundamental importance to point out that
not all composite systems can be written in the form
given by (9). More specifically, not all systems AB
can be decomposed in the form A·B. The states that
can are called product states. Clearly, if both states
of system A and B individually are described by an
arbitrary choice amongst those given by (2), (3) or
(4), then AB will be a product state. An example
of a composite state which is not a product state is



(12)

This can only be expressed in the form given by
(10), which explicitly is

(1 · 3) ‚ (1 · 4) ‚ (2 · 3) ‚ (2 · 4) ‚ (3 · 1) ‚ (3 · 2) ‚ (4 · 1) ‚ (4 · 2). (13)

States that are not product states are called entan-
gled states. This ordeal is analogous to a notion in
vector algebraic quantum mechanics, where a bipar-
tite system |ÂÍ

AB

is said to be a product state if it
can be expressed as

|ÂÍ
AB

=
ÿ

i

c
i

|iÍ
A

¢
ÿ

j

c
j

|jÍ
B

, (14)

where {|iÍ
A

} is a base for H
A

, the Hilbert space of
A, and {|jÍ

B

} is a base for H
B

. If |ÂÍ
AB

cannot be
decomposed as in (14), it is said to be an entangled
state.

G. Bipartate systems of particular significance

A combined system AB is said to be in an uncorre-
lated state of maximal knowledge if as much as possi-
ble is known about the true ontic state of its subsys-
tems, individually. Therefore, a bipartite system AB
is in an uncorrelated state of maximal knowledge if
A and B both are represented by an arbitrary choice
among the elementary states of maximal knowledge
given by (2). An example of such a state is

(15)

which in logical notation is described as

(2 · 2) ‚ (2 · 3) ‚ (3 · 2) ‚ (3 · 3). (16)

These states are uncorrelated in the sense that fur-
ther information (although disallowed by the knowl-
edge balance principle) about system A (or B) does
not imply the same about system B (or A).

From this discussion, and the fact that the true
ontic state of an elementary system can at most be
pinpointed to two di�erent possibilities, we deduce
that the true ontic state of bipartite systems can at
most be pinpointed to four di�erent possibilities.

A second type of state of particular importance are
the perfectly correlated states of maximal knowledge,
also called maximally entangled states. An example
of such a state is

(17)

which in logical notation is described as

(1 · 4) ‚ (2 · 3) ‚ (3 · 1) ‚ (4 · 2). (18)

We can understand the perfect correlation (or max-
imal entanglement) by analysing (18). Clearly, we
see that the di�erent ontic states of subsystem A are
bound to a unique ontic state of B, and thus vice-
versa. This is not true with e.g. the states described
by (13) or (16).

In perfectly correlated states of maximal knowl-
edge, we do not know as much as possible about
the subsystems individually, but instead we know
everything about the relation between them.

H. Mathematical formalism

For the purposes of this paper, the most impor-
tant states are uncorrelated and perfectly correlated
states of maximal knowledge, and there are many
such states. It would be quite ine�cient and clunky
to explicitly write out all of them. To simplify our
work, we will in this section introduce an underlying
mathematical structure for bipartite states. Using
this, we will be able to surgically identify all states of
interest. This new structure will also aid in defining,
amongst other things, measurements for composite
systems.

Bipartite quantum states in the toy theory can be
represented by elements of a certain set, hereby de-
noted as B4◊4{0, 1}. This is the set of 4 ◊ 4 boxes
containing a single binary digit, in each box. The
graphical representation of these elements are, for
the sake of consistency, such that the boxes contain-
ing 0’s are shown empty, while those containing 1’s
are fully marked with blue color. For a œ B4◊4{0, 1},
the binary digits in each of its boxes are naturally
referred to as a

ij

, where i signifies the row and j the
column, in an orientation consistent with (11).



Following this new definition, we say that an el-
ement b œ B4◊4{0, 1} is an uncorrelated state of
maximal knowledge if it has precisely four non-zero
elements b

ij

, b
kl

, b
mn

, b
op

which together satisfies

i = k, j = n, l = p, m = o, j ”= l and n ”= p. (19)

The state described by (15), which has non-zero
elements b22, b23, b32 and b33, is a clear example of
this. Further, and this might not be obvious at first
glance, we see from condition (19) that all other un-
correlated states of maximal knowledge can be ob-
tained e.g. from the state (15) either through a per-
mutation of its rows, a permutation of its columns,
or any combination of these operations.

Analogously, we have that c œ B4◊4{0, 1} is a per-
fectly correlated state of maximal knowledge if it
has precisely four non-zero elements c

ij

, c
kl

, c
mn

, c
op

which together satisfies

i ”= k ”= m ”= o and j ”= l ”= n ”= p. (20)

The state described by (17) with non-zero elements
c14, c23, c31 and c42, clearly satisfies these conditions.
All other maximally entangled states can be ob-
tained from this state via the same permutations
described above.

I. Orthogonality

Using this new formalism, we can define orthogonal-
ity. We begin by defining the size, |z|, of a bipartite
element z œ B4◊4{0, 1}. It is given by

|z| ©
ÿ

i,j

z
ij

, (21)

which simply corresponds to the amount of non-zero
digits of z. Using this, we can now define a measure
f of distance between x, y œ B4◊4{0, 1}. This is a
function

f : B4◊4{0, 1} ◊ B4◊4{0, 1} æ {0, 1
n

, 2
n

, 3
n

, ..., n≠1
n

, 1},

defined as

f(x, y) © 1
n

q
i,j

x
ij

y
ij

, (22)

where n = max(|x| , |y|).

From the definition of f , we see that

f(x, y) = 0 ∆ x
ij

y
ij

”= 1 ’ i, j œ {1, 2, 3, 4}. (23)

In other words, implying that x and y have no non-
zero digits in common, and thus are orthogonal in
this sense. Further, we see that f(x, y) = 1 ∆ x = y.

If x and y are any combination of uncorrelated and
perfectly correlated states of maximal knowledge,
then n = 4 and the image of f becomes {0, 1

4 , 2
4 , 3

4 , 1}.

J. Observables

Physically measurable quantities are in mechanics
called observables, as previously mentioned. In the
vector algebraic language of quantum mechanics, ob-
servables are represented by hermitian elements of
Cn◊n. According to the spectral theorem, hermitian
matrices can be decomposed as a linear sum in terms
of its eigenvectors, weighted by their corresponding
eigenvalues. See Appendix I for further details.
The observable A, used in SEC. I by the scholar,
lives in C4◊4 and can in this manner be rewritten in
the form

A =
4ÿ

i=1
a

i

|„
i

Í È„
i

|. (24)

Similar to (24), there is an analogous manner to de-
scribe observables in the toy theory, in terms of their
eigenstates. For starters, just as with the eigenvec-
tors of A, the eigenstates of observables in the toy
theory must be pairwise orthogonal.

Further, the eigenvectors of hermitian matrices con-
stitute a base for the space in which they live. Since
the eigenvectors of A live in C4, there are therefore,
as expected, precisely four of them. While the notion
of a base is not as clear in the toy theory, the max-
imum amount of eigenstates a bipartite observable
can have is also four. This occurs when the eigen-
states are uncorrelated or perfectly correlated states
of maximal knowledge, or a combination of both. It
can not, however, simply be any combination, since
the condition of pairwise orthogonality applies. We
call a measurement of a bipartite observable, with
four eigenstates, a maximally informative measure-
ment. An example of a set of four eigenstates, which
together compose an observable, is



(25)

A sometimes more convenient manner to illustrate
observables, similar to the left-hand side of (24), is
to incorporate the eigenstates into a single 4 ◊ 4
figure. In order to distinguish the eigenstates from
one other, we mark the non-zero digits of each eigen-
state di�erently. We can use Greek letters for this
purpose. Following this, the observable given by the
eigenstates in (25) can graphically be represented as

„1 „2 „3 „3

„2 „1 „3 „3

„4 „4 „1 „2

„4 „4 „2 „1

(26)

K. Outcome probabilities for maximally
informative measurements

In general, epistemic theories give statistical, and
not definite, predictions on measurement outcomes.
There are a few exceptions to this, such as repeated
measurements. But in general, this is not the sit-
uation at hand. In vector algebraic language, an
observer can find the probability of an outcome that
results in |„

i

Í, when conducting a measurement on a
system in the state |–Í, by calculating |È„

i

|–Í|2. One
can repeat this calculation for the di�erent eigenvec-
tors of an observable to find the probability for each
outcome.

Similarly, we can find the probability for each out-
come of a maximally informative measurement in
the toy theory simply by calculating f , once for
each eigenstate, with the state with being measured
upon as the other argument of the function. More
concretely, if we want to find the probability distri-
bution P (�, –) for a measurement of an observable
�, with eigenstates „

i

, on a system in the state –,
we calculate

P (�, –) = (f(„1, –), f(„2, –), f(„3, –), f(„4, –)). (27)

As an example, assume we’d like to find out the out-
come probabilities of the observable given by (26)
when measuring on the state given by (12). The
probability distribution would in this manner be
(1

2 , 1
2 , 0, 0). If the same observable were to be mea-

sured on the state given by (15), we would instead
have the distribution (1

2 , 0, 1
4 , 1

4).



III. Proof of inability

A. The king’s action

The main strategy of the proof will be to show that
there exist no observable capable of reproducing the
algebraic solution provided by Vaidman, Aharonov
and Albert. We will do this by systematically de-
ducing, by a case-by-case basis, that there exist no
eigenstate in the toy theory capable of ascertaining
three orthogonal spin-outcomes, as the eigenvectors
of A in SEC. I evidently are capable of.

The challenge begins by the scholar being handed
the particle which the king will conduct a measure-
ment on. By convention, we denote the system of
this particle A. She is now allowed to prepare it
in any state of her choosing. With the aid of an
external particle, the system of which we denote as
B, she prepares the entangled state 1Ô

2(|00Í + |11Í).
In the toy theory, this state, explicitly according to
Spekkens, corresponds to the perfectly correlated,
or maximally entangled, state

(28)

which in logical terms is described as

(1 · 1) ‚ (2 · 2) ‚ (3 · 3) ‚ (4 · 4). (29)

The king subsequently retakes control and conducts
a spin measurement, on system A, in a direction
(x, y or z) of his choosing. He keeps the decision,
and the result of the measurement, hidden from the
scholar.

It is now important to deconstruct and understand
the king’s action since it does not leave the state
(29) unaltered. To see this, assume that he chooses
to conduct a spin measurement, on system A, in
e.g. the x-direction. As discussed in SEC. II E, this
corresponds to the measurement given by (6). The
measurement has the possible outcomes 1 ‚ 3 and
2 ‚ 4. Assume that 1 ‚ 3 (or spin-ø, or just ø for
shorts) is obtained. As mentioned in the same sub-
section, the original state of A will then transform
to this state. And, as explained in SEC. II G, since
(29) is perfectly correlated, this transformation will
have consequences on system B.

To see how, bear in mind that A is now known
to be in the ontic state 1 or 3, which means that
we must reject the possibilities of 2 and 4. We must
also reject the ontic states of B correlated with these.
Duo to the relations of (29), the ontic states of B
which must be rejected happens to be the same, 2
and 4. Thus the composite system AB, after the
king measures ø in the x-direction, would now be

A · B = (1 ‚ 3) · (1 ‚ 3). (30)

If instead the king would have obtained the result
2 ‚ 4 (¿), in the x-direction, the state AB would in-
stead transform into

A · B = (2 ‚ 4) · (2 ‚ 4). (31)

These new states can, respectively, be graphically
represented as

(32)

Analogously, the transformed state AB, for a result
of either ø or ¿ in the y-direction, will respectively
be

A · B = (2 ‚ 3) · (2 ‚ 3), (33)
A · B = (1 ‚ 4) · (1 ‚ 4). (34)

These are graphically represented as

(35)

Lastly, we have the case of a spin measurement in
the z-direction. The results ø or ¿ will respectively
alter the state AB into

A · B = (1 ‚ 2) · (1 ‚ 2), (36)

A · B = (3 ‚ 4) · (3 ‚ 4), (37)
which can be graphically represented as

(38)



B. Eigenstate analysis

In the previous subsection, we were able to quan-
titatively understand how the prepared state (29)
transformed during di�erent actions of the king. It
is also important to understand that even though
we (acting as the scholar) were able to outline all
the di�erent transformations, we do not know which
one actually occurred since the king keeps that in-
formation to himself. Nonetheless, the knowledge
we actually did obtain about the transformed states
will be crucial in our attempt to create an observ-
able with eigenstates capable of distinguishing them
and thus pinpoint the king’s actual result with unit
probability.

We now commence our pursuit of a potent observ-
able. To maintain a close analogue to the observable
A of SEC. I, our initial aim will be an observable
with four eigenstates. The other cases are left to
the subsequent subsection. From the discussion in
SEC. II J, we know that an observable with four
eigenstates is only possible if the eigenstates are un-
correlated or perfectly correlated states of maximal
knowledge, or some suitable combination of both.

The outcomes of A in SEC. I are, individually, ca-
pable of ascertaining precisely one outcome of each
spin measurement alongside the three orthogonal
directions. As an example, the outcome a1 (corre-
sponding to the eigenvector |„1Í), guarantees that
the king measured (ø, ø, ø) in (x, y, z). The state
|„1Í accomplishes this by having zero probability of
being the outcome if the state being measured upon
is any of those consistent with the opposite results,
in this case being (¿, ¿, ¿). More specifically, this is
done by ensuring that the eigenvector is orthogonal
to these states.

The probability, in the toy theory, of an eigenstate
„

i

to be the outcome upon measurement on a sys-
tem in the state –, as seen in SEC. II K, is given by
f(„

i

, –). Thus, in order for an eigenstate to guar-
antee e.g. (ø, ø, ø), this product must be zero with
the states consistent with the outcomes (¿, ¿, ¿).
By the definition of f given in SEC. II I, we see that
this is only possible if this hypothetical eigenstate,
just as the eigenvector |„1Í of A, is orthogonal to the
these states, i.e does not have any non-zero digits in
common with them.

The states consistent to the result (¿, ¿, ¿) are
given by (31), (34) and (37), respectively. It is clear
from their graphical representations where the non-
zero digits reside.

If we forbid the union of their non-zero digits, the
remaining allowed boxes to construct our eigenstate
can be found. These boxes are marked as X below

X X

X X

X X

(39)

But by considering the structural conditions for un-
correlated and perfectly correlated states of maximal
knowledge, given respectively by (19) and (20), we
see that such states are not possible in the space
illustrated in (39).

To see this, we can analyse both conditions sepa-
rately. We start with the simplest one, given by (20)
for perfectly correlated states. This is simply a con-
dition requiring that the four non-zero digits each
reside in a unique row and column. Compare with
(17) and (28). Now, since (39) explicitly forbids
access to one of its rows and columns, we deduce
that no perfectly correlated state is possible in the
available space.

We move on to condition (19) for uncorrelated states
of maximal knowledge. This condition imposes a re-
quirement of rectangular symmetry for the non-zero
digits. Compare with (15), (32), (35) and (38), all
of which are states of the desired type. This can
further be reinforced by, as discussed in SEC. II H,
the fact that that states of this type can be obtained
from (15) by either a permutation of its rows, its
columns or any combination of these permutations.
From this, we see that a rectangular symmetry, in
the available space of (39), is not possible either.

We have thus deduced that there exists neither an
uncorrelated or perfectly correlated state of maximal
knowledge capable of rejecting (¿, ¿, ¿), and hence
possibly guaranteeing (ø, ø, ø). Since we have now
shown that an eigenstate corresponding to atleast
one of the eigenvectors of A is not possible, we can
also conclude that a 1-to-1 correlation of the scheme
is not possible. However, one might argue that there
exist a di�erent set of combinations we might be able
to create suitable eigenstates for.



Each spin measurement has two outcomes and there
are three such measurements. Therefore, we have
in total 23 di�erent combinations which we can at-
tempt to reject, including the one we have already.
These eight combinations are

(¿, ¿, ¿), (¿, ø, ø), (ø, ø, ¿), (ø, ¿, ø), (40)
(ø, ø, ø), (ø, ¿, ¿), (¿, ¿, ø), (¿, ø, ¿). (41)

The first combination of (40) is the one we have
already dealt with. However, visually lining up the
allowed boxes, for each of these first four combina-
tions, yields valuable insight. Respectively, these are

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X
(42)

As seen, these combinations give rise to some notable
patterns of allowed boxes. In particular, they all for-
bid access to one of their rows and columns, and we
can therefore immediately deduce that no perfectly
correlated state can possibly be constructed. By
further review, we also see, as in the case for (39),
that a rectangular symmetry is not possible in any
of them either.

We now turn our attention to the combinations
given by (41). These, respectively, have the allowed
boxes

X X X X

X

X

X

X

X

X X X X

X

X

X X X X

X

X

X

X

X

X X X X

(43)

For them, a much more obvious pattern emerge.
The allowed boxes constitute a full row, and a full
column. However, non-zero digits of perfectly cor-
related systems need to reside in a unique row and
column, thereby making it impossible for one to be
constructed in any of the spaces in (43). Following
the same line of argument, rectangular symmetries,
at bare minimum, require access to space in two
di�erent rows and columns, which we do not have.

We can thus conclude that no combination, whatso-
ever, of spin-outcomes is able to be guaranteed using
eigenstates of maximal knowledge, which in turn im-
plies that all maximally informative measurements
fails for this purpose. Close, but no cigar.

C. Non-maximally informative measurements

The scheme proposed by Vaidman, Aharonov and
Albert has been shown to not be possible, in the toy
theory, using observables consisting of eigenstates of
maximal knowledge. It remains to show likewise for
eigenstates of non-maximal knowledge. There are
two, non-trivial, types. Examples of both of these,
which we already have encountered, are

(44)

a. b.

The first type, given by (44a), are called mixed
uncorrelated states. States of this type are prod-
uct states. The second type, given by (44b), are
called mixed correlated states (or entangled states).
These, as stated in SEC. II F, are not product states.

Although the structural conditions for these are not
as straightforward, they all have one thing in com-
mon. The amount of non-zero digits in each valid
state is strictly eight [ ]. But the spaces illustrated
in (42) and (43) was independent of the kind of
eigenstate we planned to utilize, and they all allow
for less than eight non-zero digits. We can therefore
conclude that observables consisting of these types
of eigenstates also fails the scheme, since an overlap
with forbidden space inevitably occurs.



Lastly, we have the remaining case of the trivial ob-
servable consisting of only one eigenstate. This is
the least-informative measurement and its sole eigen-
state is given by

(45)

This least-informative state is the bipartite counter-
part to (4). It is unable to distinguish any state from
another and a measurement of this kind is therefore
futile.

This concludes the proof of the inability of Spekkens’
toy theory to solve the mean king’s problem, as done
by Vaidman, Aharonov and Albert.

IV. Conclusion

In the prelude of this paper, we reiterated Spekkens’
claim about theories gaining traction as phenomena
consistently are explained by it. This is at the very
heart of scientific methodology. And many quantum
phenomenon do find, mathematically speaking, an
explanation in this epistemic toy theory. But others
do not. In his paper, Spekkens explicitly highlights
various other phenomena not covered, and suggest
that these provide insight on how to proceed with
this research programme.

Analysing the eigenvectors of A in SEC. I might
provide clues on why this scheme failed in the toy
theory. All four eigenvectors consist of very specific
linear weights of the standard basis for C4. In vector
quantum mechanics, one is in general allowed to con-
struct arbitrary linear weights. The sole condition
is that the given vector is of unit length. Nonethe-
less, this provides for uncountably many valid states,
even for elementary systems. By contrast, in the toy
theory, we are not in control over the weights. A
system is strictly defined in terms of its ontic states
and they are assumed to be of equal weight, at all
times. Elementary systems can only be described
by eleven states in total, and bipartite systems not
even an order of magnitude more than that [3]. This
imposes a severe limit to the variety of this theory.

The solution to the problem provided by Vaidman,
Aharonov and Albert, is closely tied to the con-
cept of mutually unbiased bases (MUBs). These are
two sets of orthonormal bases {e1, e2, ... , e

d

},
{f1, f2, ... , f

d

} s.t Èe
i

, f
j

Í = 1
d

, where È·, ·Í is the
inner product of the space and d its dimension.

Spekkens defines a similar concept, mutually unbi-
ased partitionings (MUPs), for the toy theory. These
all involve states of maximal knowledge, of which use
we have already proven ine�ective, possibly due to
the reason explained above.



Appendix I

A. Preliminary quantum theory

Quantum mechanics is the theory of dynamics of na-
ture at low scale and low energies of atomic and sub-
atomic particles. As particles, in the classical limit,
are governed by Newton’s laws, quantum particles
evolve according to the Schrödinger equation, which
for one dimensional systems is

5
≠ }2

2m

ˆ2

ˆ2x
+ V (x, t)

6
�(x, t) = i} ˆ

ˆt
�(x, t), (46)

where } is the Planck constant and V (x, t) the poten-
tial of which the particle, described by �(x, t), is sub-
ject to. The bracketed terms are often, for shorts, de-
noted as H(x, t). This is the time-dependent Hamil-
tonian operator and corresponds to the total energy
of the system, in most cases. The equation can be
separated if we make the ansatz �(x, t) = Â(x)f(t)
and V (x, t) = V (x). The resulting equations are

5
≠ }2

2m

ˆ2

ˆ2x
+ V (x)

6
Â(x) = EÂ(x), (47)

d

dt
f(t) = ≠ iE

} f(t), (48)

where E is interpreted as the total energy of the
solution Â(x)f(t). The former is called the time-
independent Schrödinger equation. The latter can
be integrated to yield the normalized solution

f(t) = e≠iEt/}. (49)

Evolution in time of �(x, t) is determined by this
factor. Note that f(0) = 1 implies that Â(x) fully
describes the system at t = 0.

The space spanned by the set of solutions
{Â1f1, Â2f2, ... } is called Hilbert space, and is
denoted H. Mathematicians more commonly know
it as L2(a, b). It may be finite or infinite [4], but
we will only consider the finite case. The elements
of this set are mutually orthonormal w.r.t the inner
product of the space, as follows

ÈÂ
k

f
k

, Â
l

f
l

Í = fú
k

f
l

⁄
b

a

Âú
k

Â
l

dx = ”
kl

, (50)

where * denotes complex conjugation.

In the Copenhagen interpretation, which is an inher-
ently epistemic view, one can only make probabilistic
claims on a particle’s whereabouts. The probabil-
ity distribution for elementary systems is given by
ÂúÂ = |Â|2. The normalisation condition for proba-
bilities is implicitly stated by (50) for the case k = l.
This ensures that they add to unity in the interval
in which the system is contained, in this case [a, b].

The general solution to a linear di�erential equa-
tion is a linear sum of solutions. Hence, if
{Â1f1, Â2f2, ... , Â

n

f
n

} is a set of solutions, then

� =
nÿ

i=1
⁄

i

Â
i

f
i

, ⁄
i

œ C, (51)

is also a solution. It is a valid physical solution if
the normalization condition is fulfilled. For this, we
require

1 = È�, �Í =
⁄

b

a

1 nÿ

i=1
⁄

i

Â
i

f
i

2ú1 nÿ

j=1
⁄

j

Â
j

f
j

2
dx =

= |⁄1|2
⁄

b

a

|Â1|2 dx + |⁄2|2
⁄

b

a

|Â2|2 dx + ... =

= |⁄1|2 + |⁄2|2 + ... + |⁄
n

|2, (52)

where we in the second line utilized relation (50). By
this result, we see that that the explicit condition on
the constants is

nÿ

i=1
|⁄

i

|2 = 1. (53)

Further, we interpret (51) as |⁄
i

|2 being the proba-
bility of � to reside in Â

i

f
i

, upon a suitable measure-
ment. Therefore, it is natural to require that these
probabilities add to unity. By once again using (50),
one can find |⁄

i

|2 through �. We have that

ÈÂ
i
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⁄

b
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Â
j

f
j

2
dx = ⁄

i

, (54)

from which it follows that

|ÈÂ
i

f
i

, �Í|2 = |⁄
i

|2. (55)

The set of elementary solutions are complete in the
sense that any general solution in the space can be
described uniquely as a linear combination of them.



B. Transition to linear algebra

The inherent linearity of the Schrödinger equation
makes linear algebra a suitable language, for practi-
cal purposes. As we have seen in (51), and further
discussed in the same subsection, the general solu-
tions can be described uniquely by a set of constants
corresponding to the weight of each elementary solu-
tion. In Cn, these elementary solutions correspond
to the standard basis and the general solution can
thus be uniquely described as

� =

Q

ccca

⁄1
⁄2
...
⁄

n

R

dddb . (56)

Furthermore, this complex vector space is equipped
with the standard inner product. For x, y œ Cn,
we have

Èx, yÍ =
!
x1 x2 ... x

n

"ú

Q

cca

y1
y2
...
y

n

R

ddb =
nÿ

i=1
x

i

úy
i

. (57)

The property of mutual orthonormality of elemen-
tary solutions, as given by (50), implicitly follows
from (56) and (57). Explicitly, we can reiterate this
as

ÈÂ
k

f
k

, Â
l

f
l

Í = fú
k

f
l
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i=1
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ik

”
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= ”
kl

. (58)

The normalization requirement for general solutions
manifests itself analogously as

È�, �Í =
nÿ

i=1
⁄ú

i

⁄
i

=
nÿ

i=1
|⁄

i

|2 = 1. (59)

Lastly, (55) follows from
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i

f
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j=1
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⁄
j

= ⁄
i

,

which implies that

|ÈÂ
i

f
i

, �Í|2 = |⁄
i

|2. (60)

C. Bra-ket notation

For further e�ciency in many situations, Dirac’s bra-
ket notation is often adopted to be the standard of
describing quantum states. For – œ Cn, we denote

È–| =
1
–1 –2 ... –

n

2ú
and |–Í =

Q

ccca

–1
–2
...
–

n

R

dddb . (61)

The notation for the conjugated row vector È–| is
what we call a bra, and the notation for the column
vector |–Í is called a ket. It is clear that

È–| = |–Í† , (62)

where † denotes the combination of vector transpo-
sition and complex conjugation. The inner product
of Cn, shown in (57), is re-denoted as

Èx, yÍ æ Èx|yÍ . (63)

When a bra and a ket joins together for an inner
product, as in (63), we say that they form a braket.

As a further note on the inner product, we have,
in this notation, that the square of the absolute
value of it, i.e

| Èx|yÍ |2 (64)

is interpreted to be the probability of |yÍ to be found
in |xÍ, or vica-versa, upon a suitable measurement,
given that both states are initially normalized.

Furthermore, the time-independent Schrödinger
equation, given by (47), can in this notation be
rewritten as

H |ÂÍ = E |ÂÍ , (65)

where the time-independent Hamiltonian H is rep-
resented by a suitable square matrix. It is clear from
this result that our initial problem of solving a linear
di�erential equation has, in the language of linear al-
gebra, translated into an eigenvector and eigenvalue
problem.



D. Hermitian matrices and observables

An element A œ Cn◊n is called hermitian (or self-
adjoint) if

A† = A. (66)

It is but a simple exercise to show that the eigen-
values of hermitian matrices are real, and that the
corresponding eigenvectors are orthogonal.

Now, given (66), we see that hermitian matrices
are also normal matrices since clearly A†A = AA†.
And since A is normal, we can apply the Spectral
theorem [5]. The theorem, in this case, states that
there exists an orthonormal basis for Cn consisting
of the eigenvectors of A. Further, A is diagonal in
this basis and can be written as a linear combination
of pairwise orthogonal projections, in the following
manner

A =
nÿ

i=1
a

i

|„
i

Í È„
i

| , (67)

where {|„1Í , |„2Í , ... , |„
n

Í} is the set of orthonor-
mal eigenvectors of A, {a1, a2, ... , a

n

} their cor-
responding eigenvalues and |·Í È·| notation for the
vector outer product.

Physically measurable quantities (such as position
and momentum) are called observables by physi-
cists. In the properties of hermitian matrices stated
above, we see some examples of why observables, in
the language of mathematics, are necessarily repre-
sented by them. We e.g. have that the eigenvalues
are real, which is what the outcome of physical mea-
surements are as well.

The Hamiltonian H, as discussed previously, is
the observable corresponding to energy. Following
equation (65), we can express the time-independent
Hamiltonian as

H =
nÿ

i=1
E

i

|Â
i

Í ÈÂ
i

| , (68)

where E
i

is the (energy) eigenvalue of the eigenvec-
tor |Â

i

Í. To prove this, we calculate
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i
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Í . (69)

E. Composite quantum systems

If an arbitrary system A is described by the state
|–Í, and another system B by |—Í, we say that the
composite system AB is described by |–Í¢|—Í, where
¢ is the tensor product. For convenience, one often
denotes |–Í ¢ |—Í = |–—Í.

The tensor product has several interesting prop-
erties. First of, it is both associative and bilinear,
i.e

a |vÍ ¢ |wÍ = |vÍ ¢ a |wÍ = a(|vÍ ¢ |wÍ), a œ C. (70)

|uvÍ + |wvÍ = (|uÍ + |wÍ) ¢ |vÍ ,

|uvÍ + |uwÍ = |uÍ ¢ (|vÍ + |wÍ). (71)

Secondly, if u, uÕ œ U and v, vÕ œ V , then the inner
product for elements of the composite system UV is
given by

Èuv|uÕvÕÍ = Èu|uÕÍ Èv|vÕÍ , (72)

i.e, a simple multiplication between the inner prod-
ucts of the di�erent spaces. Now, assume that the
set {|e1Í , |e2Í , ... , |e

n

Í} is an orthonormal basis
for U , and {|f1Í , |f2Í , ... , |f

m

Í} an orthonormal
basis for V . It follows, from (72), that the set
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orthonormal basis for UV , as confirmed by
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Another important property of the tensor product
is that if X : U æ U and Y : V æ V , then

(X ¢ Y )(|uÍ ¢ |vÍ) = X |uÍ ¢ Y |vÍ , (74)

from which we deduce that X ¢ Y : UV æ UV .

In the context of quantum mechanics, U and V
are substitutes for the Hillbert spaces of the indi-
vidual systems in question. Thus, UV is the Hilbert
space of the composite system.



F. Projective measurements

The wave collapse hypothesis, shared by many epis-
temic views of quantum mechanics, is an attempt to
explain the experimental phenomenon of identical
results following repeated measurements. In mathe-
matical terms, this translates to a projection of the
state in question onto the state corresponding to the
outcome of the measurement.

As an example, say that we have a system in the
state |–Í and that we intend to conduct a measure-
ment of an arbitrary quantity on it. As described
in APP. I D, measurable quantities are necessarily
represented by hermitian matrices. The normalized
eigenvectors of a hermitian matrix are an orthonor-
mal basis for the space in which they live, and since
|–Í lives in the same space, it can be expressed as
a linear combination of them. Assuming the eigen-
vectors in question are |„1Í , |„2Í , ... , |„

n

Í, we can
write

|–Í = –1 |„1Í + –2 |„2Í + ... + –
n

|„
n

Í , (75)

where |–
i

|2 is interpreted to be the probability of the
measurement to yield the outcome that corresponds
to the eigenvector |„

i

Í.

Now, assume that we did obtain the outcome |„
i

Í.
In order to satisfy the wave collapse hypothesis, we
act on |–Í with the projector |„

i

Í È„
i

|, followed by a
normalisation. This process yields
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Í æ |„
i

Í . (76)

The clear result is that our initial state is fully trans-
formed into the outcome state, an operation which
will guarantee the outcome upon repeated measure-
ment since the probability for all others is now zero.

We can extend this procedure for composite sys-
tems. Assume we have two Hilbert spaces, U and
V . Let |–Í œ U , and let the state be defined as in
(75). Further, let |vÍ œ V be some normalized state.
The composite state is then described by |–Í ¢ |vÍ.
Although the system is now composite, we can still
conduct a separate measurement on |–Í, if we wish.
Assume we do. In this case, the appropriate projec-
tor will instead be |„

i
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i

| ¢
V

, where
V

is the
identity on V . Acting with this operator on our
state, and using property (74), we get
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i

Í ¢ |vÍ . (77)

These update rules imply that measurements of sev-
eral observables commute i� they have the same
eigenvectors. More generally, if A and B represent
observables, measurements commute i� [A, B] = 0.

G. Spin

A quantity of utmost interest in quantum mechanics
is the spin of a system, which is a form of intrinsic
angular momentum. Usually, one is interested in its
directions alongside three orthogonal axes, usually
denoted as x, y and z. In each, the spin can point
in two di�erent directions, up (ø) or down (¿). For
elementary systems, the hermitian matrices corre-
sponding to each of these is denoted ‡

x

, ‡
y

and ‡
z

,
where
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0 1
1 0

4
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4
. (78)

The standard basis for C2 is also the eigenvectors of
‡

z

. By convention, we denote

|0Í =
3

1
0

4
and |1Í =

3
0
1

4
, (79)

where |0Í corresponds to spin-ø while |1Í to spin-
¿ on the z-axis. Also by convention, we express the
eigenvectors of the other two matrices by linear com-
binations of these. Doing so, we have that spin-ø and
spin-¿ on the x-axis are respectively given by

|0Í + |1ÍÔ
2

and |0Í ≠ |1ÍÔ
2

. (80)

Analogously, we have that spin-ø and spin-¿ on the
y-axis are given by

|0Í + i |1ÍÔ
2

and |0Í ≠ i |1ÍÔ
2

. (81)

For convenience, as in the general case described in
APP. I E, we denote |iÍ ¢ |jÍ = |ijÍ , i, j œ {0, 1}.
Therefore, e.g.

|0Í ¢ |0Í ≠ i |1ÍÔ
2

= |00Í ≠ i |01ÍÔ
2

. (82)



Appendix II

A. The scheme

In this subsection, and in the following, we expand
upon the details omitted in the article by Vaidman,
Aharonov and Albert [2]. Familiarity with the pre-
requisites provided by APP. I is su�cient for an
adequate understanding of the process.

The king presents his challenge to the scholar. As
per the rules she is, before the king’s measurement,
allowed to prepare the particle in question in an
initial state of her choosing. We denote the system
of this particle A. Now, alongside an external parti-
cle, of which system we denote B, she prepares the
entangled state

|ÂÍ = 1Ô
2

(|0ÍB ¢ |0ÍA + |1ÍB ¢ |1ÍA) =

= 1Ô
2

(|00Í + |11Í). (83)

From now on we shall stick to the authors conven-
tion that the first argument of the tensor product
is information on system B, while the second is of
system A, and thereby scraping the need for sub-
notations.

As the kings retakes control, he conducts a sin-
gle spin measurement on system A alongside one
of the three orthogonal axes denoted as x, y and z.
However, he keeps the nature of his measurement,
and its result, secret.

The scholar, now unaware of the state of the system
since it has been altered by the king’s measurement,
is again handed control. By the rules, she is now
allowed to do one last measurement of her choosing.
Thereafter, she is to present to the king the result
of his own measurement. The authors propose that
she conducts a measurement w.r.t the observable A,
with eigenvectors
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2
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2(e≠i

fi
4 |01Í + ei

fi
4 |10Í),
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2 |00Í ≠ 1

2(e≠i

fi
4 |01Í + ei

fi
4 |10Í),

|„3Í =
Ô

2
2 |11Í + 1

2(ei

fi
4 |01Í + e≠i

fi
4 |10Í),

|„4Í =
Ô

2
2 |11Í ≠ 1

2(ei

fi
4 |01Í + e≠i

fi
4 |10Í),

and with corresponding eigenvalues a1, a2, a3 and
a4. By doing this, the claim is that the results of
Table 1, from SEC. I, follows. In order to see this,
we need to get into the details of the probability
function given by

p(C = c
n

, i) = | È„
i

| P
C=cn |ÂÍ |2

q
j

| È„
i

| P
C=cj |ÂÍ |2 , (84)

where C œ {x, y, z}, c
n

œ {ø, ¿} and i œ {1, 2, 3, 4}.

As an example, we interpret p(x = ø, 3) to be
the probability of the king having measured spin-ø
in the x-direction, given that the scholar obtained
a3 in her subsequent measurement. We can un-
derstand this clearly by analysing the probability
function, term-by-term.

The initial state is, as previously stated, |ÂÍ. Mea-
surements alter the state being measured upon, and
the king’s is no exception. P

C=cn therefore rep-
resents a projector that alters the initial state in
di�erent ways, depending on the king’s choice of
measurement axis C, and the result c

n

. Thus,
P

C=cn |ÂÍ is the altered state handed back to the
scholar. Usually, a projection must be followed by
a normalisation but since the denominator of the
probability function does that for us, we do not
have to worry about that here.

The scholar now performs her measurement on the
altered state P

C=cn |ÂÍ. Although this altered state
is unknown to her, she can still find the probabil-
ity of each outcome a

i

by calculating p(C = c
n

, i).
Usually, it would be su�cient to simply calculate
| È„

i

| P
C=cn |ÂÍ |2, but since we did not normalize

the system after the projection, we need to go one
step further. In any case, since she does not know
the nature of the altered state, she has to calculate
the product for each possible case and from that
see if there are any conclusions to be made. This is
indeed the case, which we will see in the next sub-
section. We will find that certain outcomes of her
measurement are not possible given certain results
of the king’s measurement, in a way that allows her
to deduce, with probability one, the actual result
from the king’s action, for every possible case.



B. The detailed procedure

In order to establish quantitative conclusions, the
scholar needs to analyse every possible situation in
this experiment, case-by-case. The observable she is
conducting a measurement with has four outcomes.
She is, by definition, guaranteed to obtain one, and
only one of these. The king, on the other hand, is
free to choose between three di�erent measurements.
He can measure spin along the x-, y- or z-axis. Each
of these has two di�erent outcomes, ø and ¿. These
six di�erent cases of the king’s measurement alters
the initial state |ÂÍ in di�erent ways. The scholar,
while analysing the probabilities for each one of her
outcomes, therefore has to take each of these six in
account.

The six possible altered states she may receive
from the king are P

C=cn |ÂÍ, for C œ {x, y, z} and
c

n

œ {ø, ¿}. In each case, the projector is given by

P
z=ø = ¢ |0Í È0| , (85)

P
z=¿ = ¢ |1Í È1| , (86)

P
x=ø = ¢ 1

2(|0Í + |1Í)(È0| + È1|), (87)

P
x=¿ = ¢ 1

2(|0Í ≠ |1Í)(È0| ≠ È1|), (88)

P
y=ø = ¢ 1

2(|0Í + i |1Í)(È0| ≠ i È1|), (89)

P
y=¿ = ¢ 1

2(|0Í ≠ i |1Í)(È0| + i È1|). (90)

It follows e.g. that the altered state received by the
scholar, given that the king measured spin-ø along-
side the z-axis, is

P
z=ø |ÂÍ = ( ¢ |0Í È0|)( 1Ô

2
(|0Í ¢ |0Í + |1Í ¢ |1Í) =

= 1Ô
2

(|0Í ¢ |0Í È0|0Í + |1Í ¢ |0Í È0|1Í =

= 1Ô
2

|0Í ¢ |0Í = 1Ô
2

|00Í . (91)

Similarly, we can calculate the altered states for the
remaining cases. These are

P
z=¿ |ÂÍ = 1Ô

2
|11Í , (92)

P
x=ø |ÂÍ = 1

2
Ô

2
(|00Í + |01Í + |10Í + |11Í), (93)

P
x=¿ |ÂÍ = 1

2
Ô

2
(|00Í ≠ |01Í ≠ |10Í + |11Í), (94)

P
y=ø |ÂÍ = 1

2
Ô

2
(|00Í + i |01Í ≠ i |10Í + |11Í), (95)

P
y=¿ |ÂÍ = 1

2
Ô

2
(|00Í ≠ i |01Í + i |10Í + |11Í). (96)

For each of the four possible outcomes of her mea-
surement, the scholar can now proceed to calculate
the product | È„

i

| P
C=cn |ÂÍ |2. Let us begin by, say,

i = 1. We obtain

| È„1| P
z=ø |ÂÍ |2 = | È„1| P

y=ø |ÂÍ |2 =

= | È„1| P
z=ø |ÂÍ |2 = 1

4 , (97)

while on the other hand

| È„1| P
z=¿ |ÂÍ |2 = | È„1| P

y=¿ |ÂÍ |2 =

= | È„1| P
z=¿ |ÂÍ |2 = 0. (98)

The former is not yet normalized and can therefore
not be interpreted as a probability. Inserting the re-
sults from (97) and (98) into the probability function
(84), which normalizes them for her, yields

p(x = ø, 1) = p(y = ø, 1) = p(z = ø, 1) = 1, (99)

p(x = ¿, 1) = p(y = ¿, 1) = p(z = ¿, 1) = 0. (100)

The conclusion here is that is that the outcome a1
for the scholar is not even possible in the cases where
the king obtained spin-¿ alongside any direction. In-
stead, she can rest assured that the king measured
spin-ø.

Analogously, she can repeat this procedure for the
cases i = 2, 3, 4. By doing so, it can be shown that

p(x = ¿, 2) = p(x = ø, 3) = p(x = ¿, 4) = 1, (101)

p(y = ¿, 2) = p(y = ¿, 3) = p(y = ø, 4) = 1, (102)

p(z = ø, 2) = p(z = ¿, 3) = p(z = ¿, 4) = 1. (103)

In a straightforward manner, it can be shown that
for the remaining cases, which are precisely those
not included in (99)-(103), the probabilities are all
zero. As expected, these results are consistent with
Table 1.

As a last comment, note that while the scholar,
with this scheme, is able to infer, with probability
one, the result of the king’s measurement in the
three di�erent measurement cases, she is never able
to deduce the actual direction of said measurement.
Fortunately for her though, that was not part of the
challenge.
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