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Abstract

In this thesis, we examine which functions are cyclic with respect to the
shift operators in Dirichlet type spaces on the polydisc. That is, we investi-
gate which functions have the property that the only closed subspace that
contains the function, which is also invariant under the shift operators, is
the entire Dirichlet type space itself.

In particular, we attempt to generalize methods used in the complete char-
acterization of cyclic polynomials in two complex variables to higher di-
mensions. For example, we generalize a theorem from two variables up to
arbitrary dimension, which relates non-vanishing Gaussian curvature of a
certain part of the zero set of a function to non-cyclicity of the same func-
tion. However, whereas in two variables this theorem was almost always
applicable, it turns out that in arbitrary dimension we are not as lucky. Es-
sentially because in two dimensions, the relevant part of the zero set could
only be a hypersurface or a finite set, but in higher dimensions there are far
more possibilities.

Already in three variables we find a family of polynomials for which the
previously mentioned theorem is not applicable, so in the second part of
the thesis we attempt to understand the cyclicity properties of this special
family. Interestingly enough, it turns out that even for the polynomials on
which we could not apply the theorem, we still obtain the same bound on
non-cyclicity.

Finally, for the special family of polynomials we develop a method for com-
paring these polynomials two polynomials in two variables. Using this
method we manage to completely understand the cyclicity properties of
three variable polynomials in this family whose zero set is either a finite set
or a hypersurface, and for polynomials whose zero set is a curve, we show
that the cyclicity properties are indeed better than for hypersurfaces, but
worse than for finite sets.
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Chapter 1

Introduction

In many areas of mathematics, one is interested in studying a set endowed
with some sort of algebraic structure, together with an operation on that
set. In that context, it is of great interest to characterize the invariant
subsets of that operation, that is, the subsets that are contained in their
own image under the operation. In general, understanding these subsets
says a lot about the operation. For example, for linear operators on finite
dimensional spaces, this corresponds to finding the eigenspaces of the oper-
ator. As is seen through the spectral theorem, this knowledge can be used
to better understand how this operator acts on our space. Furthermore,
through the spectral theorem of self-adjoint operators on Hilbert spaces, we
see another example of how this knowledge is concretely used in order to
better understand the operator in question.

In general, it is di�cult to characterize all invariant subsets of an operator.
However, one particular type of invariant subsets are the so called cyclic
subsets corresponding to our operator. These are essentially created by
taking out some fixed element of our set, and then creating a subset by
simply adding all elements that can be obtained by applying our operator
to this element. For example, the orbits of a group action on a set are
exactly subsets of this kind.

In analysis, the structured set is often a Hilbert space of functions, and the
operator is often some linear operator from the Hilbert space to itself. One
of the most fundamental operators in this context is the shift operator, which
is simply the operator of "multiplying by x", that is, the operation

S(f) : f(x) æ xf(x).

The name comes from the fact that this operation simply shifts the sequence
of Taylor coe�cients of a function. In this thesis, we are primarily inter-
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ested in Hilbert spaces of holomorphic functions on the polydisc, that is the
Cartesian product of unit discs. One of the most important such spaces is
the Hardy space, which consists of holomorphic functions on the open unit
disc, for which the Hardy norm

ÎfÎH2 = sup
0<r<1

3 1
2fi

⁄ 2fi

0
|f(reit)|2dt

41/2
,

is finite.

Intuitively, this is the space of holomorphic functions on the unit disc, whose
restriction to the boundary behaves well in the L2-sense. The Hardy space
is important, and has several applications, both in pure mathematics, but
also in other fields, such as control theory, and scattering theory.

Although the above definition is the most intuitive one, it is sometimes easier
to work with another, equivalent norm. Namely, the norm given by

ÎfÎH2 =
A Œÿ

k=0
|ak|2

B1/2
,

where {ak} are the Taylor coe�cients of the function f .

But what is known about the invariant subspaces of the shift operator acting
on this space? Quite a lot actually! Arne Beurling showed that the only
invariant subspaces of the shift operator on the Hardy space are the cyclic
subspaces [11]. He also showed that a function f generates the whole Hardy
space if and only if it is outer, which means that

f(z) = c exp
A

1
2fi

⁄ fi

≠fi

ei◊ + z

ei◊ ≠ z
log(g(ei◊))d◊

B

,

for some c on the unit circle, and some positive measurable function g for
which log(g) is integrable on the circle.

That a function f generates the entire space means that the smallest invari-
ant subspace which contains f is dense in H2. That is

span{zkf(z) : k œ N} = H2.

A function with the property that it generates the entire space is called a
cyclic function.

Although the cyclic subspaces are interesting because they are the easiest
example of an invariant subspace, they are also interesting on their own
since these subspaces inherit a lot of properties from the generator. As an
example, for the shift operator, we know that the entire subspace inherits the
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zeros of the generator. Similarly, it is of course interesting to understand
which functions generate the whole space, since this says a lot about the
space.

Another natural space which is closely related to the Hardy space is the
Dirichlet space. The Dirichlet space is the subspace of the Hardy space
which consists of all functions whose Dirichlet integral is finite, that is

⁄

D
|f Õ(z)|2dA,

where dA is the area measure on the unit disc.

However, the Dirichlet integral is not a norm, since for example all constants
have Dirichlet integral equal to zero. But with the equivalent norm for the
Hardy space in mind, we can endow the Dirichlet space with the norm given
by

ÎfÎD =
A Œÿ

k=0
(k + 1)|ak|2

B1/2
,

where once again {ak} are the Taylor coe�cients of our function.

With this norm, the Dirichlet space is a Hilbert space of holomorphic func-
tions on the unit disk.

Similarly, for fixed – œ R we can define the Dirichlet type space with param-
eter – as the space of holomorphic functions on the unit disc for which the
norm A Œÿ

k=0
(k + 1)–|ak|2

B1/2
< Œ.

Those who have studied partial di�erential equations might notice that these
spaces are related to the Hardy space in a similar way as how the Sobolev
spaces are related to Lp-spaces.

As before, it is of great interest to characterize the invariant subspaces of
the Dirichlet type spaces. For the Dirichlet space, it is known that the
only invariant subspaces are the cyclic ones, however this is not true for all
Dirichlet type spaces. Furthermore, one wants to generalize these results
to higher dimensions, but this turns out to be much more di�cult than
one might expect. For example, for the Hardy space on the bidisc, it is no
longer true that all outer functions generate the whole space. Although,
being outer is a necessary condition for a function to generate the entire
space.

It is considered to be a very di�cult problem to give a complete character-
ization of all invariant subspaces of the shift operator in all Dirichlet type
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spaces. But since all functions generate an invariant subspace, a first step
towards such a characterization is to understand which functions generate
the whole space and not. In order to solve this problem, we begin by thor-
oughly examining polynomials, since understanding which properties of a
polynomial are relevant for cyclicity will surely help in understanding the
phenomena which determine whether or not a general function generates
the whole space.
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Chapter 2

Dirichlet type spaces and

Cyclicity

2.1 Dirichlet-type spaces

First o�, we consider the n-dimensional polydisk

Dn = {(z1, ..., zn) œ Cn : |z1| < 1, ..., |zn| < 1},

and the distinguished boundary of Dn, given by

Tn = {(z1, ..., zn) œ Cn : |z1| = 1, ..., |zn| = 1}.

Note that Tn is not the topological boundary of the polydisk, but for many
applications it is more useful. In this context this is mainly due to the fact
that in several variables, Cauchy’s integral formula translates to an integral
over the distinguished boundary, rather than the topological boundary. See
for example [4].

Next, we consider a family of Hilbert spaces of holomorphic function defined
on the polydisk, namely the so called Dirichlet-type spaces. The Dirichlet-
type space on Dn with parameter – œ (≠Œ, Œ) consists of holomorphic
functions f : Dn æ C whose power series expansion

f(z1, ..., zn) =
Œÿ

k1=0
· · ·

Œÿ

kn=0
ak1,...,knzk1

1 · · · zkn
n

satisfies

ÎfÎ2
– =

Œÿ

k1=0
· · ·

Œÿ

kn=0
(k1 + 1)– · · · (kn + 1)–|ak1,...,kn |2 < Œ.
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We denote by D– the Dirichlet-type space with parameter –.

Since larger values of the parameter – requires faster decay of the Fourier
coe�cients in order to assure convergence, we have that – < — implies
D— µ D–.

Note that the definition of the norm implies that any polynomial in k1, ..., kn œ
C belongs to D–, since the series defining the norm reduces to a finite sum.

Furthermore, the subset of polynomials is a dense subspace of D– for every
–. This can be seen by noting that every f œ D– can be approximated by
polynomials. Since f is holomorphic we have that

f(z1, ..., zn) =
Œÿ

k1=0
· · ·

Œÿ

kn=0
ak1,...,knzk1

1 · · · zkn
n .

And since the series

ÎfÎ2
– =

Œÿ

k1=0
· · ·

Œÿ

kn=0
(k1 + 1)– · · · (kn + 1)–|ak1,...,kn |2 < Œ,

is convergent, we have that for every ‘ > 0, there exists an N such that
Œÿ

k1=N

· · ·
Œÿ

kn=N

(k1 + 1)– · · · (kn + 1)–|ak1,...,kn |2 < ‘.

And so the polynomial p(z1, ..., zn) =
N≠1ÿ

k1=0
· · ·

N≠1ÿ

kn=0
ak1,...,knzk1

1 · · · zkn
n satisfies

Îf ≠ pÎ2
– =

Œÿ

k1=N

· · ·
Œÿ

kn=N

(k1 + 1)– · · · (kn + 1)–|ak1,...,kn |2 < ‘.

Since ‘ > 0 was arbitrary, this proves the statement.

Furthermore, for f œ D– the following bound on point evaluation at z œ Dn

holds

|f(z)| =

------

Œÿ

k1=0
· · ·

Œÿ

kn=0
ak1,...,knzk1

1 · · · zkn
n

------
Æ

Œÿ

k1=0
· · ·

Œÿ

kn=0
|ak1,...,knzk1

1 · · · zkn
n |

=
Œÿ

k1=0
· · ·

Œÿ

kn=0
(k1 + 1)–/2≠–/2 · · · (kn + 1)–/2≠–/2|ak1,...,kn ||z1|k1 · · · |zn|kn

ÆÎfÎ–

Q

a
Œÿ

k1=0
· · ·

Œÿ

kn=0
(k1 + 1)≠– · · · (kn + 1)≠–|z1|k1 · · · |zn|kn

R

b
1/2

,
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where we have used Cauchy Schwarz-inequality to obtain the last inequality.

For z œ Dn, the above series converges, and so it follows that point evaluation
is a bounded linear functional on D–.

This has several interesting consequences. In general, a Hilbert space in
which point evaluation is continuous is called a reproducing kernel space.
Since evaluating at a point z0 is a bounded linear functional, it follows from
Riesz representation theorem that there exists a function g œ D– such that

⁄(f) = f(z0) = Èf, gz0Í.

So we can construct a function g(z, z0) = gz0(z). This function g is called
the reproducing kernel of our Hilbert space. For more on reproducing kernel
Hilbert spaces, see for example [8].

Another interesting consequence of the inequality

|f(z)| Æ ÎfÎ–

Q

a
Œÿ

k1=0
· · ·

Œÿ

kn=0
(k1 + 1)≠– · · · (kn + 1)≠–|z1|k1 · · · |zn|kn

R

b
1/2

,

is that it shows that norm convergence implies uniform convergence on com-
pact subsets of Dn. To see this, note that by the above inequality

|f(z)≠fn(z)| Æ Îf≠fnÎ–

Q

a
Œÿ

k1=0
· · ·

Œÿ

kn=0
(k1 + 1)≠– · · · (kn + 1)≠–|z1|k1 · · · |zn|kn

R

b
1/2

,

and so Îf ≠fnÎ– æ 0 implies that fn converges pointwise to f . Furthermore,
since the above series converges uniformly on compact subsets S µ Dn, this
implies that fn æ f uniformly on compact subsets.
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2.2 Shift operators, invariant subspaces, and cyclic

functions

We now introduce a family of bounded linear operators on D–, called the
shift operators. For i = 1, 2, ..., n, the shift operator Si is defined by

Sif(z1, ...zi, ..., zn) = zif(z1, ...zi, ..., zn).

These operators simply act by shifting the sequence of Fourier coe�cients,
hence the name. That this family of operators is linear is obvious, and by
recalling the definition of the norm on D–, it is clear that the shift operators
are bounded and that they map into D–.

We are interested in characterizing the invariant subspaces of these oper-
ators, that is, the subspaces A such that Si(A) µ A for all Si. For any
f œ D–, we have that

[f ] = span{zk1
1 · · · zkn

n f : ki œ N},

is a closed subspace which is an invariant subspace for all shift operators Si.
As a first step in characterizing all invariant subspaces, we seek to determine
for which f œ D– we have that [f ] = D–. Note that there exists functions
whose span is dense in the entire space.
Example 1. The span of 1 is all (complex) polynomials, which is a dense
subset of D–.

Furthermore, if f vanishes at some point in Dn, then every function in
span{zk1

1 · · · zkn
n f : ki œ N} will inherit this zero, and since convergence in

norm implies uniform convergence on compact subsets (in our case the point
z0 for which f vanishes), it follows that any function in [f ] will also inherit
this zero, and so [f ] ”= D– since for example 1 œ D– but 1 will not vanish at
any point.

To explicitly calculate [f ] and check if [f ] = D– is very di�cult, so a perhaps
easier way of characterizing cyclic functions is the following. Since g œ [f ] ∆
[g] µ [f ], it follows that 1 œ [f ] will imply that [f ] = D–, which is the
definition of f being cyclic. Of course, if 1 ”œ [f ] then [f ] ”= D–, so f is cyclic
if and only if 1 lies in [f ]. This can equivalently be stated as that there
exists a sequence of polynomials (pn)Œ

n=1 such that

lim
næŒ

Îpnf ≠ 1Î– = 0.

This characterization will be frequently used. Note however that since g œ
[f ] ∆ [g] µ [f ], it su�ces to show that any cyclic function is contained in
[f ] in order to show that f is cyclic.
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2.3 Cauchy transforms, and linear functionals on D–

We will now investigate the relationship between cyclicity of a function f
and the zero set of

lim
ræ1≠

f(reiv1 , ..., reivn) µ Tn.

Note that for – Ø 0, D– is contained in H2, and so the radial limits exist
everywhere.

We denote by Z(f) the set

Z(f) = {(eiv1 , ..., eivn) µ Tn : lim
ræ1≠

f(reiv1 , ..., reivn) = 0}.

We showed earlier that no function which vanishes inside the polydisk can
be cyclic, but it may or may not be possible for a function to vanish on the
boundary and still be cyclic. We will show that if the zero set on the bound-
ary is too large (in some sense), then [f ] cannot be the entire space. The idea
of the proof is the following. If the zero set on the boundary is large, then it
will support a measure with certain desired properties. These properties will
allow us to construct a (non-trivial) bounded linear functional based on this
measure that will annihilate every element of span{zk1

1 · · · zkn
n f : ki œ N} as

a consequence of the fact that the measure and f have disjoint supports on
the boundary.

In order to do this, we must first clarify what we mean by the boundary
set being "too large". However, this definition of "too large" is essentially
constructed with the purpose of making our functional bounded, so instead,
it is easier to begin by looking at the functional we want to create, and then
the definition of "too large" will be made so that our arguments go through.

Henceforth, we will use multi-index notation, so z should be interpreted as
(z1, ..., zn), k = (k1, ..., kn), the Fourier coe�cients f̂(k) = f̂(k1, ..., kn), zk =
zk1

1 · · · zkn
n , and eit = ei(t1,...,tn) = (eit1 , ..., eitn) etc. However, sometimes

these expressions will be written out for clarity.

Lemma 1. For every – œ R, every g œ D≠– induces a bounded linear
functional on D– through the pairing

(f, g) =
Œÿ

k1=0
· · ·

Œÿ

kn=0
f̂(k)ĝ(k)

= lim
ræ1≠

1
(2fi)n

⁄ 2fi

0
· · ·

⁄ 2fi

0
f(reit)g(re≠it)dt1 · · · dtn.

for f œ D–. Here af and ag are the Fourier coe�cients of f and g respec-
tively.
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Proof. The linearity is obvious. It remains to show boundedness. We have
that

------

Œÿ

k1=0
· · ·

Œÿ

kn=0
f̂(k)ĝ(k)

------

Æ
Œÿ

k1=0
· · ·

Œÿ

kn=0
((k1 + 1) · · · (kn + 1))–/2≠–/2|f̂(k)||ĝ(k)|

Æ

Q

a
Œÿ

k1=0
· · ·

Œÿ

kn=0
((k1 + 1) · · · (kn + 1))–|f̂(k)|2

R

b
1/2

·

Q

a
Œÿ

k1=0
· · ·

Œÿ

kn=0
((k1 + 1) · · · (kn + 1))≠–|ĝ(k)|2

R

b
1/2

< Œ,

by applying the Cauchy Schwarz inequality and the assumptions on the
norm in D– and D≠–.

Ultimately, we want to induce a linear map of this form from a measure
defined on the boundary, but in order to do so we must first construct a
holomorphic function (which lies in D≠–) using this measure. We do this by
means of the Cauchy transform.

Definition 1. Given a positive Borel probability measure µ defined on Tn,
we construct a function g defined on Dn by

g(z) = C[µ](z) =
⁄

Tn
(1 ≠ eiv1z1)≠1 · · · (1 ≠ eivnzn)≠1dµ(v).

The function g is called the Cauchy transform of the measure µ.

First of all, we need to show that g is indeed holomorphic on D–. Since

(1 ≠ eiv1z1)≠1 · · · (1 ≠ eivnzn)≠1

is holomorphic with respect to z, this will follow if we can di�erentiate
under the integral sign. That this is permissible is a consequence of the
dominated convergence theorem, and the fact that each of the derivatives of
(1 ≠ eiv1z1)≠1 · · · (1 ≠ eivnzn)≠1 with respect to zi is uniformly bounded in v
for every fixed z œ Dn.

Furthermore, in order to allow us to construct a functional on D– by means
of the above pairing, we require g to lie in D≠–, which means that we also
require su�cient decay of the Fourier coe�cients. Since g is closely related to
µ, requirements on g will naturally translate to requirements on the measure
µ.
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Lemma 2. For a Borel probability measure µ supported on Tn, we have

that g(z) = C[µ] =
Œÿ

k1=0
· · ·

Œÿ

kn=0
µ̂(≠k)zk, where µ̂(k) denotes the Fourier

coe�cients of µ.

Proof. By using the power series expansion of (1 ≠ eivz)≠1, we obtain

g(z) =
⁄

Tn
(1 ≠ eiv1z1)≠1 · · · (1 ≠ eivnzn)≠1dµ(v)

=
⁄

Tn

Q

a
Œÿ

k1=0

1
eiv1

2k1
zk1

1 · · ·
Œÿ

kn=0

1
eivn

2kn
zkn

n

R

b dµ(v)

=
⁄

Tn

Q

a
Œÿ

k1=0
· · ·

Œÿ

kn=0

1
eiv1k1

2
zk1

1
1
eivnkn

2
· · · zkn

n

R

b dµ(v)

=
Œÿ

k1=0
· · ·

Œÿ

kn=0

3⁄

Tn

1
eiv1k1

2
· · ·

1
eivnkn

2
dµ(v)

4
zk

=
Œÿ

k1=0
· · ·

Œÿ

kn=0
µ̂(≠k)zk,

where changing orders of integration and summation is permissible because
we have uniform convergence since the factors zk decay rapidly.

Furthermore, note that since µ is (by assumption) a real measure, we have
that

µ̂(≠k) =
⁄

Tn

1
e≠iv·k

2
dµ(v) = µ̂(k),

and so, the requirement that g œ D≠–, i.e.

ÎgÎ≠– =
Œÿ

k1=0
· · ·

Œÿ

kn=0
(k1 + 1)≠– · · · (kn + 1)≠–|ĝ(k)|2 < Œ

is equivalent to the statement
Œÿ

k1=0
· · ·

Œÿ

kn=0
(k1 + 1)≠– · · · (kn + 1)≠–|µ̂(≠k)|2

=
Œÿ

k1=0
· · ·

Œÿ

kn=0
(k1 + 1)≠– · · · (kn + 1)≠–|µ̂(k)|2 < Œ.

Recall that our goal was to use a measure whose support is contained in
Z(f) to construct a functional which annihilates the entire span of f , thus
showing that [f ] ”= D–. We said that this was going to be possible if the set
Z(f) was "large enough", without actually clarifying what that means. By
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the above calculations we see that "large enough" for Z(f) means that the
set supports a measure for which the above norm is finite, i.e. it supports a
measure for which

Œÿ

k1=0
· · ·

Œÿ

kn=0
(k1 + 1)≠– · · · (kn + 1)≠–|µ̂(k)|2 < Œ. (1)

Now we could just use the existence of a measure with this property as our
definition of Z(f) being "large enough", but we can actually give another
definition of size for a set which will imply the existence of such a measure.
Ultimately, we want to find a connection between certain geometric prop-
erties of Z(f) and existence of such measures, but in order to do this, we
must first discuss the concept of capacity of a set.

15



2.4 Capacity of a set and measures of finite energy

Let E µ Tn be a Borel set and µ be a probability measure supported on
E. Let K : [0, Œ)n æ [0, Œ) be a continuous decreasing function. The
potential of µ with respect to K is defined as

Kµ(x) =
⁄

Tn
K(x̨ ≠ y̨)dµ(y̨),

and the energy of µ is defined as

IK [µ] =
⁄

Tn

⁄

Tn
K(x̨ ≠ y̨)dµ(x̨)dµ(y̨).

If E is a compact subset, we define the capacity of E with respect to K as

cK(F ) := 1/ inf{IK [µ] : µ œ P (E)},

where P (E) is the set of probability measures supported in E. If E supports
no probability measure of finite energy, we say that it has capacity zero.

For a general Borel set S we define the capacity of S with respect to K as

sup{cK(F ) : F µ S, F compact}.

Note that if S1 µ S2, then cK(S1) Æ cK(S2) since every probability measure
µS1 on S1 induces a probability measure on S2 of the same energy by

µS2(E) = µS1(E fl S1).

The energy can be seen as a convolution with the kernel K(x̨). It turns
out that this energy can be connected to the Fourier coe�cients of µ under
certain circumstances, which means that finite energy (with respect to some
suitable kernel) will imply that the Fourier coe�cients of µ decays at a
certain rate. Specifically, assuming that K is (2fi-)periodic and that the
Fourier series of K has good enough convergence to allow changing order of
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summation and integration, then

I[µ] =
⁄

Tn

⁄

Tn
K(x ≠ y)dµ(x)dµ(y) (2)

=
⁄

Tn

⁄

Tn

Q

a
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ

„K(k)eik·xe≠ik·y

R

b dµ(x)dµ(y) (3)

=
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ

„K(k)
3⁄

Tn
eik·xdµ(x)

4 3⁄

Tn
e≠ik·ydµ(y)

4
(4)

=
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ

„K(k)µ̂(k)µ̂(k) (5)

=
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ

„K(k)|µ̂(k)|2, (6)

where we have once again used that µ being a real measure implies that
µ̂(k) = µ̂(≠k).

By comparing (1) and (6), we see that if we can find a periodic kernel whose
Fourier coe�cients are proportional to |k1 + 1|≠– · · · |kn + 1|≠–, then having
finite energy with respect to that kernel will imply that (1) holds.

Furthermore, it is known that in one variable, the Riesz potential with
parameter – œ (0, 1), K–(x) = 1/|1 ≠ eix|1≠– satisfies

c(|k| + 1)≠– Æ „K–(k) Æ C(|k| + 1)≠–.

For some 0 < c < C < Œ.

It follows that in n variables, we have that

h–(x1, ..., xn) = 1/|1 ≠ eix1 |1≠– · · · 1/|1 ≠ eixn |1≠–

has Fourier coe�cients which satisfy

c(|k1| + 1)≠– · · · (|kn| + 1)≠– Æ „h–(k) Æ C(|k1| + 1)≠– · · · (|kn| + 1)≠–, (7)

since h– admits separation of variables and so its Fourier coe�cients is a
product of its Fourier coe�cients in each variables separately.

We obtain the notions of Riesz capacity and Riesz energy by using the Riesz
potential in the definitions of energy of a measure and capacity of a set.

By comparing (7), (6), and (1), we see that Z(f) having positive Riesz
capacity, i.e. Z(f) supports a measure with finite Riesz energy, will imply
the existence of a functional that (hopefully) annihilates every function in

17



span{zkf : k œ Nk}. We are now ready to prove our necessary condition for
cyclicity of a function.

For more on capacities, and especially the connection to the Riesz potential,
see for example [6] or [9].
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2.5 A necessary condition for cyclicity

First, we motivated using the Riesz potential by comparing its Fourier co-
e�cient with equation (6). However, for equations (3) ≠ (4) to hold, we
require "good convergence" on the Fourier series of the kernel. But since the
Riesz potential has a singularity at the origin, this is not entirely obvious.
However, this turns out to be manageable.

Lemma 3. Let h– be the Riesz potential with parameter – œ (0, 1), we have
that

Ih– [µ] =
⁄

Tn

⁄

Tn

1
|eix1 ≠ eiy1 |– · · · |eixn ≠ eiyn |– dµ(x)dµ(y)

=
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ

„h–(k)|µ̂(k)|2.

Proof. We need to show that equations (2) ≠ (6) hold, i.e. that the calcula-
tions

Ih– [µ] =
⁄

Tn

⁄

Tn

1
|eix1 ≠ eiy1 |– · · · |eixn ≠ eiyn |– dµ(x)dµ(y)

=
⁄

Tn

⁄

Tn

Q

a
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ

„h–(k)eik·xe≠ik·y

R

b dµ(x)dµ(y)

=
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ

„h–(k)
3⁄

Tn
eik·xdµ(x)

4 3⁄

Tn
e≠ik·ydµ(y)

4

=
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ

„h–(k)µ̂(k)µ̂(k)

=
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ

„h–(k)|µ̂(k)|2,

are valid. The only step that might fail is

⁄

Tn

⁄

Tn

Q

a
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ

„h–(k)eik·xe≠ik·y

R

b dµ(x)dµ(y)

=
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ

„h–(k)
3⁄

Tn
eik·xdµ(x)

4 3⁄

Tn
e≠ik·ydµ(y)

4
,

so that this holds is what we need to show.
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For r œ (0, 1) we have that
⁄

Tn

⁄

Tn

1
|eix1 ≠ reiy1 |– · · · |eixn ≠ reiyn |– dµ(x)dµ(y)

=
⁄

Tn

⁄

Tn

Q

a
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ

„h–(k)eik·xr|k|e≠ik·y

R

b dµ(x)dµ(y)

=
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ
r|k| „h–(k)

3⁄

Tn
eik·xdµ(x)

4 3⁄

Tn
e≠ik·ydµ(y)

4
,

where changing the order of integration and summation is permissible be-
cause of the uniform convergence induced by the factor r|k|.

We now let r æ 1≠ on both sides.

If ⁄

Tn

⁄

Tn

1
|eix1 ≠ eiy1 |– · · · |eixn ≠ eiyn |– dµ(x)dµ(y)

is finite, then we can use that
1

|eix1 ≠ reiy1 |– · · · |eixn ≠ reiyn |– Æ 2n–

|eix1 ≠ eiy1 |– · · · |eixn ≠ eiyn |–

for all r œ (0, 1), and apply the dominated convergence theorem in order to
pass the limit inside the integral. We thus obtain

⁄

Tn

⁄

Tn

1
|eix1 ≠ eiy1 |– · · · |eixn ≠ eiyn |– dµ(x)dµ(y)

= lim
ræ1≠

⁄

Tn

⁄

Tn

1
|eix1 ≠ reiy1 |– · · · |eixn ≠ reiyn |– dµ(x)dµ(y)

= lim
ræ1≠

Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ
r|k| „h–(k)

3⁄

Tn
eik·xdµ(x)

4 3⁄

Tn
e≠ik·ydµ(y)

4

=
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ

„h–(k)
3⁄

Tn
eik·xdµ(x)

4 3⁄

Tn
e≠ik·ydµ(y)

4
.

On the other hand, if it is infinite, we instead use Fatou’s lemma to see that
both sides are infinite. Note that applying Fatou’s lemma is permissible
since the integrand is non-negative.

This finishes the proof.

The following proof is largely analogous to the proof of Theorem 5 in [1]
in which they prove the same result for n = 1, and for – = 1. The main
di�erences lie in the fact that we use Riesz capacity instead of logarithmic
capacity, and minor di�erences due to the change of dimension.
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Theorem 1. If f œ D– for – œ (0, 1), and Z(f) µ Tn has positive Riesz
capacity, then f is not cyclic.

Proof. Since Z(f) has positive Riesz capacity (by assumption), we know that
it supports a measure with finite Riesz energy. However, in a later stage we
will require a pointwise bound on f(reiv1 , ..., reivn) for (eiv1 , ..., eivn) œ Z(f)
in order to apply the dominated convergence theorem. So for that reason,
we decompose Z(f) in the following way:

Consider the sets

Jk = {(eiv1 , ..., eivn) œ Z(f) : |f(reiv1 , ..., reivn)| Æ k, 0 Æ r < 1}.

Clearly Z(f) = fiŒ
n=1Jk. Furthermore, each Jk is a Borel set. This can be

shown as follows:

We have that

Jk = {(eiv1 , ..., eivn) œ Z(f) : |f(reiv1 , ..., reivn)| Æ k, 0 Æ r < 1}
=

‹

qœQfl[0,1)
{(eiv1 , ..., eivn) œ Z(f) : |f(qeiv1 , ..., qeivn)| Æ k}.

Since this is a countable intersection, JK is a Borel set if we can show that
each of these sets is a Borel set. For a fixed q, we have that

{(eiv1 , ..., eivn) œ Z(f) : |f(qeiv1 , ..., qeivn)| Æ k}

=
Œ‹

n=1
{(eiv1 , ..., eivn) œ Z(f) : |f(qeiv1 , ..., qeivn)| < k + 1/n}.

Each of the sets in the above intersection is open since they are inverse
images of open sets for a continuous function, and since

Œ‹

n=1
{(eiv1 , ..., eivn) œ Z(f) : |f(qeiv1 , ..., qeivn)| < k + 1/n}

is a countable intersection the statement follows.

Since Z(f) has positive capacity, and since a countable union of Borel sets
with capacity zero has capacity zero, it follows that for at least one integer,
N , JN must have positive capacity. It follows from the definition of capacity
that there must be a compact subset F µ JN that has positive Riesz ca-
pacity, since if all compact subsets of JN had capacity zero, then JN would
have capacity zero. This implies that there exists a real valued probability
measure µ whose support is contained in F µ JN µ Z(f), that has finite
Riesz energy. That is,
⁄

Tn

⁄

Tn

1
|eix1 ≠ eiy1 |1≠–

· · · 1
|eixn ≠ eiyn |1≠–

dµ(x1, ..., xn)dµ(y1, ..., yn) < Œ.

21



We now construct a function g œ D≠– by means of the Cauchy transform,
namely

g(z) = C[µ] =
⁄

Tn
(1 ≠ eiv1z1)≠1 · · · (1 ≠ eivnzn)≠1dµ(v).

By Lemma 2 we have that

g(z) =
Œÿ

k1=0
· · ·

Œÿ

kn=0
µ̂(≠k)zk. (8)

Note that the convergence is uniform for |z| < 1.

Now consider the pairing of g and pf œ D– from Lemma 1. We need to
show (1), that g œ D≠– so that this pairing is indeed a functional, (2) that
this functional is non-trivial, and (3) that this functional annihilates [f ].

We begin by proving (1). We need to show that
Œÿ

k1=0
· · ·

Œÿ

kn=0
(|k1| + 1)≠– · · · (|kn| + 1)≠–|ĝ(k)|2 < Œ.

From equation (8) and using that µ is a real measure, we have that

ĝ(k) = µ̂(≠k) = µ̂(k),

for k1, ..., kn Ø 0, so we need to show that
Œÿ

k1=0
· · ·

Œÿ

kn=0
(|k1| + 1)≠– · · · (|kn| + 1)≠–|µ̂(k)|2 < Œ. (9)

By applying Lemma 3 and using the assumption that µ has finite energy,
we see that

Ih– [µ] =
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ

„K(k)|µ̂(k)|2

=
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ

„h–(k)|µ̂(k)|2 < Œ.

By using the bound on the Fourier coe�cients of h– from (7), we know that
there exists a constant c > 0 such that

c ·
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ
(|k1| + 1)≠– · · · (|kn| + 1)≠–|µ̂(k)|2

Æ
Œÿ

k1=≠Œ
· · ·

Œÿ

kn=≠Œ

„h–(k)|µ̂(k)|2 < Œ.
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Since all the terms in the sum are positive, this implies that
Œÿ

k1=0
· · ·

Œÿ

kn=0
(|k1| + 1)≠– · · · (|kn| + 1)≠–|µ̂(k)|2 < Œ.

It follows that g = C[µ] œ D≠–.

Since g œ D≠–, it follows that the pairing from Lemma 1

(f, g) =
Œÿ

k1=0
· · ·

Œÿ

kn=0
f̂(k)ĝ(k)

= lim
ræ1≠

1
(2fi)n

⁄ 2fi

0
· · ·

⁄ 2fi

0
f(reit)g(re≠it)dt1 · · · dtn,

Is a functional on D≠–. Since ĝ(k) = µ̂(k), for k1, ..., kn Ø 0, and µ̂(k) >
c(|k1| + 1)≠– · · · (|kn| + 1)≠– > 0 for some c > 0, it follows that the above
pairing is not the zero functional.

We are now ready to prove that this pairing annihilates span{zkf : k œ Nk},
i.e. it maps every function in D– of the form p(z1, ..., zn)f(z1, ..., zn), p a
polynomial, to zero. This shows that span{zkf : k œ Nk} is not dense in
D–, since if this was the case g would vanish on a dense subspace. So by
continuity it vanishes on the entire space, which contradicts that it is not
the zero functional.

Recall that supp(µ) µ F µ JN µ Z(f), where

JN = {(eiv1 , ..., eivn) œ Z(f) : |f(reiv1 , ..., reivn)| Æ N, 0 Æ r < 1}.

For any polynomial p we have that

(p · f(z1, ..., zn), g(z1, ..., zn))

= lim
ræ1≠

1
(2fi)n

⁄ 2fi

0
· · ·

⁄ 2fi

0
p · f

1
reit

2
g

1
re≠it

2
dt1 · · · dtn

= lim
ræ1≠

1
(2fi)n

⁄ 2fi

0
· · ·

⁄ 2fi

0
p · f

1
reit

2

·
3⁄

Tn

1
(1 ≠ eiv1re≠it1) · · · (1 ≠ eivnre≠itn)

2≠1
dµ(v)

4
dt1 · · · dtn

= lim
ræ1≠

1
(2fi)n

⁄

Tn

A⁄ 2fi

0
· · ·

⁄ 2fi

0

p · f
!
reit

"

(1 ≠ eiv1re≠it1) · · · (1 ≠ eivnre≠itn)dt1 · · · dtn

B

dµ(v).
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By applying Cauchy’s integral formula to

p · f
!
reit

"

(1 ≠ eiv1re≠it1) · · · (1 ≠ eivnre≠itn)dt1 · · · dtn

= reit1 · · · reitn · (p · f)
!
reit

"

(reit1 ≠ eiv1r2) · · · (reitn ≠ eivnr2)dt1 · · · dtn

= in(p · f) (z)
(z1 ≠ eiv1r2) · · · (zn ≠ eivnr2)dz1 · · · dzn,

we see that the last equation equals

lim
ræ1≠

⁄

Tn
(p · f)

1
r2eiv

2
dµ(v) = lim

ræ1≠

⁄

F
(p · f)

1
r2eiv

2
dµ(v).

Now finally, since |f(reiv))| Æ N for eiv œ F , p is bounded since it is
polynomial, F is bounded, and µ is a probability measure, the dominated
convergence theorem yields

lim
ræ1≠

⁄

F
(p · f)

1
r2eiv

2
dµ(v)

=
⁄

F
lim

ræ1≠
(p · f)

1
r2eiv

2
dµ(v) = 0,

where the last equality holds since lim
ræ1≠

f(reiv) vanishes on F .

Since span{zkf : k œ Nk} is annihilated by a non-trivial functional, it cannot
be a dense subset of D–.

This finishes the proof.

Although this result seems to be fairly general, it is still unfortunately rather
challenging to determine whether or not a given (or in this case implicitly
given) set has finite Riesz capacity. It is therefore desirable to find some
characteristic which will imply the existence of a measure of finite energy.
By applying a generalization of van der Corput’s lemma, which connects
geometric properties of a set to the rate of decay of the Fourier coe�cients
of certain measures supported on the set, one can apply the above theorem
in order to find a connection between certain geometric properties of Z(f)
and cyclicity.
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2.6 Geometric conditions for non-cyclicity

Definition 2. Let S µ Tn be a smooth m-manifold. Let „ : Im æ Tn be
a smooth parametrization, where I µ R is an interval. We define the type
of a point › = „(x) as the smallest · such that for all unit vectors ÷ œ Rn

there exists a multi-index k œ Nm with |k| Æ · such that
C

dk„

dtk
· ÷

D

t=x

”= 0.

We say that the m-manifold S has type · is the maximum of the types of
› œ S is · .

The following generalization of van der Corput’s lemma from the theory of
oscillatory integrals gives a connection between decay of the Fourier coef-
ficients of absolutely continuous measures on S, and the type of S. See
Theorem 2 on page 351 in [5] for the proof.

Theorem 2. Let S µ Tn is a locally smooth m-manifold of finite type
· œ N and let ‡ be the measure on S induced by pulling back to the Lebesgue
measure using the parametrization of S. If µ is a measure of the form
dµ(x) = „(x)d‡(x), x œ S µ Tn, where „(x) is a non-negative smooth
function with compact support (defined on S), then there exists a constant
C > 0 such that

|µ̂(k1, ..., kn)| Æ C(k2
1 + · · · + k2

n)≠1/2· , k1, ..., kn œ Z \ {0}.

We will now apply the above estimate on the Fourier coe�cients in order to
show that certain geometric properties of Z(f) implies existence of measures
of finite Riesz energy, thus implying non-cyclicity.

Theorem 3. Assume that f œ D– is such that Z(f) µ Tn contains a locally
smooth m-manifold of finite type · . Then f is not cyclic in D– for any
– > 1 ≠ 2/n· .

Proof. Since S µ Z(f) we know that the Riesz capacity of S is less than or
equal to the Riesz capacity of Z(f). So if we can show that S supports a
measure of finite Riesz energy for – > 1 ≠ 1/· , and thus show that S has
positive Riesz capacity, then it follows that Z(f) has positive Riesz capacity.
By applying Theorem 1 the statement follows.

That S supports such a measure will be shown by using Theorem 2 together
with Lemma 3, since these statements prove that all absolutely continuous
measures have Fourier coe�cients which decay quickly.
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Let µ be any absolutely continuous measure on F . From Lemma 3 with
K = h– and the bound on the Fourier coe�cients of the Riesz capacity
from equation (7), we have that

Ih– [µ] =
Œÿ

kn=≠Œ
· · ·

Œÿ

k1=≠Œ

„h–(k)|µ̂(k)|2 (10)

ÆC
Œÿ

kn=≠Œ
· · ·

Œÿ

k1=≠Œ

|µ̂(k)|2
(|kn| + 1)– · · · (|k1| + 1)–

. (11)

Since µ is a probability measure, |µ̂(0, ..., 0)|2 = 1, and so, from Theorem 2
and the assumptions on µ, we have that

(11) Æ C

Q

a1 +
Œÿ

kn=≠Œ
· · ·

Œÿ

k1=≠Œ

1
(|kn| + 1)– · · · (|k1| + 1)–(k2

1 + ... + k2
n)1/·

R

b ,

(12)

where k1, ..., kn are not all equal to zero in the above series. The above
expression is finite if and only if the series is finite. By using that the
summand is even in each ki, we have that

Œÿ

kn=≠Œ
· · ·

Œÿ

k1=≠Œ

1
(|kn| + 1)– · · · (|k1| + 1)–(k2

1 + ... + k2
n)1/·

(13)

Æ2n
Œÿ

kn=0
· · ·

Œÿ

k1=0

1
(|kn| + 1)– · · · (|k1| + 1)–(k2

1 + ... + k2
n)1/·

. (14)

Note that we do not necessarily have equality since terms with at least one
ki equal to 0 are counted several times in the second expression. Further-
more, since the summand is symmetric in all arguments, we can bound the
above expression by a series in which we only take the sum over ascend-
ing chains, and then multiply by the number of elements in the symmetric
group of n elements. I.e., we only take one representative from each class
of (k1, ...kn), were two n≠tuples are considered to be the same if they di�er
by a permutation. We thus obtain

Œÿ

kn=0
· · ·

Œÿ

k1=0

1
(|kn| + 1)– · · · (|k1| + 1)–(k2

1 + ... + k2
n)1/·

(15)

ÆC
Œÿ

kn=0

knÿ

kn≠1=0
· · ·

k2ÿ

k1=0

1
(|kn| + 1)– · · · (|k1| + 1)–(k2

1 + ... + k2
n)1/·

, (16)

where once again not all ki are zero.

We are done if we can show that the above series is finite for – > 1 ≠ 2/n· .
That this is true will (partly) be shown by induction on the dimension. The
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induction step is mainly used for dropping the part where ki = 0, in order
to get around the issue of having to check whether or not we know that a
given ki is zero. Namely, when using certain inequalities we would otherwise
be forced to consider several cases, since some of the inequalities we want
to use would not work since the denominator would become equal to zero.
So the induction step is probably not a necessary part of the proof.

For n = 1 the above series becomes
Œÿ

k1=1

1
(k1 + 1)–k

2/·
1

<
Œÿ

k1=1

1
(k1)–+2/·

< Œ,

since – + 2/· > 1 ≠ 2/· + 2/· > 1.

Now assume that

Œÿ

kn≠1=0

kn≠1ÿ

kn≠2=0
· · ·

k2ÿ

k1=0

1
(|kn| + 1)– · · · (|k1| + 1)–(k2

1 + ... + k2
n)1/·

< Œ,

where once again all ki are not zero at the same time. We have that

Œÿ

kn=0

knÿ

kn≠1=0
· · ·

k2ÿ

k1=0

1
(|kn| + 1)– · · · (|k1| + 1)–(k2

1 + ... + k2
n)1/·

(17)

=
Œÿ

kn=1

knÿ

kn≠1=1
· · ·

k2ÿ

k1=1

1
(|kn| + 1)– · · · (|k1| + 1)–(k2

1 + ... + k2
n)1/·

(18)

+ n ·
Œÿ

kn≠1=0

kn≠1ÿ

kn≠2=0
· · ·

k2ÿ

k1=0

1
(|kn| + 1)– · · · (|k1| + 1)–(k2

1 + ... + k2
n)1/·

.

(19)

The equality is obtained by splitting the series up into two parts, one in
which ki Ø 1 for all i and one in which at least one, but not all ki = 0.
By symmetry all of the series of the second kind are the same, and by the
induction hypothesis they are all finite since – > 1 ≠ 2/n· > 1 ≠ 2/(n ≠ 1)· .
It follows that we are done if we can show that

Œÿ

kn=1

knÿ

kn≠1=1
· · ·

k2ÿ

k1=1

1
(|kn| + 1)– · · · (|k1| + 1)–(k2

1 + ... + k2
n)1/·

< Œ.
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That this is true can be seen in the following way.

Œÿ

kn=1

knÿ

kn≠1=1
· · ·

k2ÿ

k1=1

1
(|kn| + 1)– · · · (|k1| + 1)–(k2

1 + ... + k2
n)1/·

(20)

ÆC
Œÿ

kn=1

knÿ

kn≠1=1
· · ·

k2ÿ

k1=1

1
(|kn| + 1)– · · · (|k1| + 1)–k

2/·
n

(21)

=C
Œÿ

kn=1
k≠2/·

n

knÿ

kn≠1=1
· · ·

k3ÿ

k2=1

1
(|kn| + 1)– · · · (|k2| + 1)–

k2ÿ

k1=1

1
(|k1| + 1)–

(22)

In order to proceed, we need the following inequality. For (m ≠ 1) ≠ m– Æ 0
we have that

lÿ

k=1
(k + 1)(m≠1)≠m– Æ

⁄ l

1
(x + 1)(m≠1)≠m–dx Æ (l + 1)m≠m–. (23)

And if (m ≠ 1) ≠ m– > 0

lÿ

k=1
(k + 1)(m≠1)≠m– Æ

⁄ l

1
((x + 1) + 1)(m≠1)≠m–dx (24)

Æ(l + 2)m≠m– Æ C(l + 1)m≠m–, (25)

For some suitable constant C which is independent of l. That such a constant
C exists is clear since

(l + 2)m≠m–

(l + 1)m≠m–

is bounded, for example by 2m≠m–.

So independently of the parity of the exponent there is an inequality of the
form

lÿ

k=1
(k + 1)(m≠1)≠m– Æ C(l + 1)m≠m–.
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By applying this inductively to (22) we get that

(22) ÆC
Œÿ

kn=1
k≠2/·

n

knÿ

kn≠1=1
· · ·

k3ÿ

k2=1

(k2 + 1)1≠–

(|kn| + 1)– · · · (|k2| + 1)–
(26)

=C
Œÿ

kn=1
k≠2/·

n

knÿ

kn≠1=1
· · ·

k4ÿ

k3=1

1
(|kn| + 1)– · · · (|k3| + 1)–

k3ÿ

k2=1
(k2 + 1)1≠2–

(27)

ÆC
Œÿ

kn=1
k≠2/·

n

knÿ

kn≠1=1
· · ·

k4ÿ

k3=1

(k3 + 1)2≠3–

(|kn| + 1)– · · · (|k4| + 1)–
(28)

... (29)

ÆC
Œÿ

kn=1
k≠2/·

n (kn + 1)(n≠1)≠n– Æ C
Œÿ

kn=1
(kn + 1)(n≠1)≠n–≠2/· . (30)

The last sum is finite if and only if (n≠1)≠n– ≠2/· < ≠1 ≈∆ n≠2/· <
n– ≈∆ 1 ≠ 2/·n < –, which is what we want to show.

The previous theorem generalizes Theorem 5.1 from [2] from dimension 2
to any dimension. The idea of using the generalization of van der Corput’s
lemma in connection to cyclicity was, as far as I know, first used in [2],
and the above proof relies on the same fundamental idea, although the
calculations become significantly longer.

In the "general case", the values of – for which we can determine non-cyclicity
decreases when the dimensionen increases, which of course is not what we
want. However, if we impose stronger assumptions on Z(f), then we can use
the following result from page 348 in [5] in order to determine non-cyclity
of a function.

Theorem 4. Let S µ Tn is a smooth hypersurface of type 2, i.e. it can be
parametrized using n≠1 real parameters and it has non-vanishing Gaussian
curvature, and let ‡ be the measure on S induced by pulling back to the
Lebesgue measure using the parametrization of S. Then for every measure
µ of the form dµ(x) = „(x)d‡(x), x œ S µ Tn, where „(x) is a non-negative
smooth function with compact support (defined on S), there exists a constant
C > 0 such that

|µ̂(k1, ..., kn)|2 Æ C(k2
1 + ... + k2

n)(1≠n)/2

We now use the above estimate in order to get a similar result as Theorem
3.
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Theorem 5. Assume that f œ D– is such that Z(f) µ Tn contains a locally
smooth hyper-surface of type 2. Then f is not cyclic in D– for any – > 1/n.

The proof of the above theorem is completely analogous to the proof of The-
orem 3. Just replace the estimate on the Fourier coe�cients from theorem
2 with the estimate from theorem 4 in all calculations.

The above result will later be applied in order to determine non-cyclicity of
certain polynomials. In general, for functions whose zero set is fairly easy to
understand, it is sometimes possible to apply the previous results in order
to draw conclusions regarding cyclicity.
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2.7 Cyclicity, factorizations, and slices

The proofs in this section are more or less completely analogous to the proofs
of the corresponding statements for n = 2 from [2].

It is often easier to characterize properties of functions in lower dimensions.
With this in mind, it is interesting to determine whether or not properties
such as cyclicity is preserved by fixing some variables or by looking at indi-
vidual factors in some factorization. The factorizations of functions f œ D–

that interest us is the ones in which both factors also lie in D–.

Definition 3. We denote by M(D–) the set of multipliers of D–. A function
g on Dn lies in M(D–) if for every f œ D–, we have that gf œ D–.

Example 2. All polynomials lie in M(D–). To see this, we argue as follows.
Let

p(z) =
ÿ

kœNn

akzk,

be a given polynomial. By the triangle inequality, we have that

ÎpfÎ– Æ
ÿ

kœNn

akÎzkfÎ–.

But since p is a polynomial, and thus has finite degree, this is a finite sum.
So the expression on the right hand side is finite if and only if ÎzkfÎ– is
finite for every fixed k œ Nn. But by definition

ÎzkfÎ2
– =

ÿ

i≠kœNn,i,kØ0
(i1 + 1)– · · · (in + 1)–f̂(i ≠ k).

And this expression is finite since (ij +1) Æ (kj +1)(ij ≠kj +1) for all i, and
since f is by assumption an element of D–. Essentially, multiplying by zk

only shifts the coe�cients in the series defining the norm. We do, however
get a slight mismatch between the weights and the Fourier coe�cients in
the series, but this is only a minor issue since the mismatch is by a finite,
and constant number of steps.

Note that since 1 œ D–, we have that M(D–) µ D–.

Definition 4. Every function g œ M(D–) induces a linear map from D–

to itself through multiplication by g. Namely, Mg : D– æ D– is defined by
f æ gf . Note that since the set of points (f, gf) µ D– ◊ D– is closed, the
closed graph theorem implies that the operator Mg is bounded.

We define the multiplier norm of a function g œ M(D–) as the operator of
the corresponding bounded operator Mg. We denote the operator norm by
ÎgÎM , or simply ÎgÎ if it is unambiguous from the context.
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Note that for g œ M(D–) we have that g[f ] œ [f ] for all f œ D–. Since gf by
assumption lies in D–, and so the tail of the series defining the norm must
become arbitrarily small, it follows that

lim
næŒ

Îpnf ≠ gfÎ– = 0,

if we let pn be the partial sums of the power series expansion of g.

We can now give a result which connects cyclicity of a function with cyclicity
of the factors in a given factorization.

Lemma 4. Let f œ D– and g œ M(D–), then gf œ D– is cyclic if and only
if both f and g are cyclic.

Proof. Suppose that both f and g are cyclic. Since f is cyclic there exists a
sequence of polynomials (pn)Œ

n=1 such that

lim
næŒ

Îpnf ≠ 1Î– = 0.

This implies that

lim
næŒ

Îpngf ≠ gÎ– = lim
ræŒ

ÎMg(pnf ≠ 1)Î– Æ lim
ræŒ

ÎMgÎM Îpnf ≠ 1Î– = 0,

and so g œ [gf ]. This implies that [g] µ [gf ], but since g was cyclic, this
means that D– µ [gf ], and so gf is cyclic.

Suppose next that gf is cyclic. Then there exists polynomials (pn)Œ
n=1 such

that
lim

næŒ
Îpngf ≠ 1Î– = 0.

Since g œ M(D–), we have that gf œ [f ], and so pngf œ [f ]. Since 1 clearly
is a limit point of functions in [f ], we have that 1 œ [f ], and so it follows
that f is cyclic.

Now, let (qn)Œ
n=1 be polynomials for which

lim
næŒ

Îqn ≠ fÎ– = 0,

then
lim

næŒ
Îqng ≠ gfÎ– Æ lim

næŒ
ÎMgÎÎqn ≠ fÎ– = 0.

And so gf œ [g] ∆ [gf ] µ [g]. Since gf is cyclic by assumption, this implies
that [g] is cyclic.
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This has several interesting implications. For example, if f is a polynomial
in Cn, then since all polynomials are multipliers, the above theorem implies
that we only need to check whether or not the irreducible factors of f are
cyclic or not in order to determine if f is cyclic or not.

Moving on, one would want to be able to determine whether or not a given
function is cyclic or not by looking at di�erent restrictions to lower dimen-
sions. From here on we will denote by Dk

– the Dirichlet type space with
parameter – defined on Dk for k < n, and we denote by ÎfÎk,– the norm on
Dk

–. Furthermore, a function on Dk given by fixing n ≠ k of the variables of
f is called a k-slice of f. In general, cyclicity of a function is passed down to
its k-slices. The following holds.

Theorem 6. Let f be a cyclic function in D–. Then every k-slice of f is
cyclic in Dk

–.

Proof. Assume without loss of generality that the k≠slice of f , fk, is given by
fixing the last n≠k variables of f to (ak+1, ..., an) œ Dn≠k, i.e. fk(z1, ..., zk) =
f(z1, z2, ..., ak+1, ..., an).

Recall that a function g is cyclic in Dk
– if and only if there exist a sequence

of polynomials such that

lim
næŒ

Îpng ≠ 1Îk,– = 0.

Now assume that we can find a bound of the form

ÎgkÎk,– Æ CÎgÎ–, (31)

where gk is the function given by restricting the last n ≠ k variables of g to
the point (ak+1, ..., an) œ Dn≠k. Then, since f is cyclic in D–, there exists a
sequence of polynomials (qn)Œ

n=0 such that

lim
næŒ

Îqnf ≠ 1Î– = 0,

the above bound will show that fk is cyclic in Dk
– since

0 Æ lim
næŒ

Îqnkfk ≠ 1Îk,– Æ lim
næŒ

CÎqnf ≠ 1Î– = 0.

It remains to show that a bound like (31) holds.

Since g is holomorphic, we have that

g(z1, ...an) =
Œÿ

ln=0
· · ·

Œÿ

l1=0
ĝ(l)zl1

1 · · · zlk
k a

lk+1
k+1 · · · aln

n (32)

=
Œÿ

l1=0
· · ·

Œÿ

lk=0

Q

a
Œÿ

ln=0
· · ·

Œÿ

lk+1=0
ĝ(l)alk+1

k+1 · · · aln
n

R

b zl1
1 · · · zlk

k (33)
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It follows that

ÎgkÎ2
k,– =

Œÿ

l1=0
· · ·

Œÿ

lk=0
(1 + l1)– · · · (1 + lk)–

------

Œÿ

ln=0
· · ·

Œÿ

lk+1=0
ĝ(l)alk+1

k+1 · · · aln
n

------

2

.

By the Cauchy-Schwarz inequality, we see that
------

Œÿ

ln=0
· · ·

Œÿ

lk+1=0
ĝ(l)alk+1

k+1 · · · aln
n

------

2

(34)

=

------

Œÿ

ln=0
· · ·

Œÿ

lk+1=0
(1 + lk+1)–/2≠–/2 · · · (1 + ln)–/2≠–/2ĝ(l)alk+1

k+1 · · · aln
n

------

2

(35)

Æ

Q

a
Œÿ

ln=0
· · ·

Œÿ

lk+1=0
(1 + lk+1)– · · · (1 + ln)–|ĝ(l)|2

R

b (36)

·
Œÿ

ln=0
· · ·

Œÿ

lk+1=0

|ak+1|2lk+1 · · · |an|2ln

(1 + lk+1)– · · · (1 + ln)–
. (37)

Note that the second series converges for every (ak+1, ..., an) œ Dn≠k, and
furthermore that the series is independent of (l1, ..., lk). By calling this series
C, plugging this into the above expression for ÎgkÎ2

k,–, recalling the definition
of ÎgÎ–, and comparing with (31) finishes the proof.

Unfortunately, the converse statement does not hold, there exists functions
all of whose k-slices are cyclic which are not cyclic themselves.

Example 3. The polynomial 1 ≠ xy is cyclic in D– if and only if – Æ 1/2,
but all of its slices are cyclic for all – Æ 1. These statements will be proved
in the next chapter.

However, if the function is separable, i.e. f(z1, ...zn) = g(z1, ..., zk)h(zk+1, ..., zn),
then f is cyclic if and only if g and h are cyclic. Note that if f admits such
a factorization, then it follows from the definition of the norm on D– that
ÎfÎ– = ÎgÎk,–ÎhÎn≠k,–. Furthermore, it is of course not necessary that f
admits such a factorization in the first k variables only, since we can make
any set of k variables the "first k variables" by simply relabeling them. We
can now prove the following

Theorem 7. Let f(z1, ..., zn) = g(z1, ..., zk)h(zk+1, ..., zn) for g œ Dk
– and

h œ Dn≠k
– . Then f is cyclic in D– if and only if g is cyclic in Dk

– and h is
cyclic in Dn≠k

– .
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Proof. Note that g is a constant multiple of a k-slice of f and that h is a
constant multiple of an n ≠ k-slice of f , so it follows from Theorem 4 that
g and h are cyclic if f is cyclic.

Assume now that both g and h are cyclic in their respective spaces. Let
(pn) and (qn) be sequences of polynomials such that

lim
næŒ

Îpng ≠ 1Îk,– = lim
næŒ

Îqnh ≠ 1În≠k,– = 0.

Since pngh ≠ h = (pn(z1, ..., zk)g(z1, ..., zk) ≠ 1)h(zk+1, ..., zn) is separable,
we have that

Îpnf ≠ hÎ– = Îpng ≠ 1Îk,–ÎhÎn≠k,–,

which tends to 0 as n goes to infinity. It follows that h lies in [f ] µ D–, and
so [h] µ [f ], But since h only depends on the last n ≠ k variables, we have
that

Îqnh ≠ 1Î– = Îqnh ≠ 1În≠k,–,

and the right hand side tends to zero as n goes to infinity. It follows that h
is cyclic in D–, and so [h] µ [f ] implies that f is cyclic.

This finishes the proof.

The above statement shows that under certain circumstances, it is possible
to draw conclusions regarding cyclicity of a function by examining each
factor in a given factorization separately. For example, since it is known
that any polynomial which is non-vanishing in D is cyclic in D1

– for – Æ 1,
it follows that any polynomial of the form p1(z1) · · · pn(zn) is cyclic in D–,
where each pi is non-vanishing in the unit disc.

As a final remark, note that since a function f is cyclic if and only if there
exists a sequence of polynomials pn for which

lim
næŒ

Îpnf ≠ 1Î– = 0,

it is clear that good behavior of the actual inverse of f (that is 1/f) will
imply the existence of such a sequence, which in turn will imply cyclicity.
More precisely, the following holds.

Lemma 5. Given a multiplier f œ M which is nowhere zero in Dn, then f
is cyclic if 1/f œ D–.

Proof. Since f is nowhere vanishing on Dn, 1/f is analytic on Dn. Further-
more, since multiplication by f is a bounded operator, we have that

Îpnf ≠ 1Î– Æ ||f ||M(D–)Îpn ≠ 1/fÎ–.
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And since 1/f œ D– and polynomials are dense in D–, the sequence pn can
be chosen to make the right hand side tend to zero.

This finishes the proof.

The above proof is completely analogous to the proof of the corresponding
statement for n = 2, which is given in [3].

So far, we have drawn several conclusions regarding cyclicity. However,
many of the conditions for cyclicity or non-cyclicity that we have are hard
to check. For example, we are still unable to easily use the above machinery
in order to determine if something as simple as the polynomial 1≠z1z2 œ D–

is cyclic or not. We will now restrict our attention to polynomials and,
characterize certain properties of polynomials that will imply cyclicity or
non-cyclicity.
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Chapter 3

Cyclic Polynomials

3.1 Cyclic Polynomials in one Variable

The main goal of this section is to characterize the cyclic polynomials in D1
–.

We know that a cyclic polynomial cannot vanish in D. But it turns out that
this is our only requirement. We will show that a polynomial on D is cyclic
in D1

– if and only if it has no zeros on D. By the fundamental theorem of
algebra and Lemma 4, it su�ces to prove our claim for polynomials of the
form z ≠ ’. We will first prove that any polynomial which does not vanish
on D is cyclic. This will be done by showing that z ≠ ’ is cyclic if |’| > 1.

Lemma 6. If f = z ≠ ’ for |’| > 1, then f is cyclic in D1
–.

Proof. Since |’| > 1 , 1/(z ≠ ’) has a convergent power series expansion
everywhere on an open disc which contains D. It follows that the successive
partial sums of the power series of 1/(z ≠ ’), denote it by (pn), converges
uniformly on D, and thus on D. It follows that

Îpnf ≠ 1Î– = Îpnf ≠ f/fÎ– Æ CÎpn ≠ 1/fÎ– = C

Q

a
Œÿ

k=n+1

(k + 1)–

|’k|2

R

b
1/2

,

where C is the multiplier norm of f , and the series on the right hand side
clearly tends to zero as n æ Œ. Since 1 œ [f ], this finishes the proof.

The above proof for |’| > 1 was essentially carried out by explicit calculation.
This is however not possible for |’| = 1, since the last sum will not converge.
So in order to prove the corresponding statement for |’| = 1, we use the
following proof due to Brown and Shields.
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Lemma 7. If f = z ≠ ’ with |’| = 1, then f is cyclic in D1
– for all – Æ 1.

Proof. Assume without loss of generality that f = z ≠ 1. If not, we can
factor out ’ and just rename z.

We will argue by contradiction. Assume that span{zkf : k œ N} is not
dense in D–. We will reach a contradiction to a corollary of the Hahn-
Banach theorem by showing that the only element of the dual space of D–

which annihilates span{zkf : k œ N} is the zero functional.

By the Riesz representation theorem, every element of the dual space of
D– can be represented as taking the inner product with some element of
D–. That is, there exists a g œ D– such that f æ Èg, fÍ– is the desired

functional. Assume that this g =
Œÿ

k=0
akzk is such that it annihilates all of

span{zkf : k œ N}. Then in particular

Èg, zk(1 ≠ z)Í– = ak(k + 1)– ≠ ak+1(k + 2)– = 0.

By considering these equalities for all k œ N, we see that

ak(k + 1)– = a0 ≈∆ ak = a0/(k + 1)–

for all k œ N. And so
g(z) =

Œÿ

k=0

a0
(k + 1)–

zk.

Recall however, that g(z) œ D–, and so

ÎgÎ2
– =

Œÿ

k=0

|a0|2

(k + 1)–
< Œ.

But since – Æ 1, this is true if and only if a0 = 0. But this implies that all
coe�cients in the power series expansion of g are equal to 0. It follows that
the zero functional is the only functional which annihilates all of span{zkf :
k œ N}, a contradiction.

Putting these statements together yields the main result of this section.

Theorem 8. A polynomial f œ C[z] is cyclic in D1
– for – Æ 1 if and only if

f has no zeros in D.
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Proof. By the fundamental theorem of algebra, f(z) = C(z ≠’1) · · · (z ≠’n).
If f has no zeros in D, then |’i| Ø 1 for all i = 1, ..., n. It follows from the
previous two lemmas that each factor of f is cyclic. And since all polynomials
are multipliers, it follows from lemma 4 that f is also cyclic.

If however f has zeros in D, then f is clearly not cyclic.

This finishes the proof.

This has some interesting implications. In general, a holomorphic function
defined on Dk can be extended to a holomorphic function on Dn for n Ø k,
by simply regarding it as constant in the last n ≠ k variables. For such a
function, ÎfÎk

– = ÎfÎn
–, and so, if there exist polynomials (pn) such that

fpn æ 1 in Dk
–, then the same polynomials will make fpn æ 1 in Dn

– for
all n > k. Since any polynomial in one variable only, which does not vanish
on D is cyclic in D1

– for – Æ 1, and thus is cyclic in Dn
– for any n Ø 1, it

follows from Lemma 4 that any product of polynomials in one variable only,
is cyclic in D–.

We will now move one to study polynomials in more than one variable.
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3.2 Cyclicity of polynomials with finite zero set on

Tn

By Lemma 4 and the fact that all polynomials are multipliers, it follows
that we only need to prove our results for irreducible polynomials.

The main goal of this section is to prove that any polynomial with only
finitely many zeros on Tn is cyclic in D– for – Æ 1. In order to do this we
will use the following inequality due to £ojasiewicz.

Theorem 9 (£ojasiewicz’s inequality). Let f be a non-zero real analytic
function on an open set U µ Rn. Assume the zero set of f in U , Z(f),
is non-empty. Let E be a compact subset of U . Then there are constants
C > 0 and q œ N, depending on E, such that

|f(x)| Ø C · dist(x, Z(f))q

for every x œ E.

The proof can be found in [10].

When talking about polynomials, we will denote the zero set of f by Z(f).
Note that since any polynomial on Dn is continuous on Dn, we have that
Z(f) fl Tn equals our previous definition of Z(f), namely the points of Tn

for which the radial limit of f as we approach them equals zero.

The idea of our proof is the following. Given a polynomial f with only
finitely many zeros on the distinguished boundary, we will use £ojasiewicz’s
inequality in order to create a polynomial p, which is known to be cyclic,
such that p/f is su�ciently smooth on Tn. The smoothness will imply
rapid decay of the Fourier coe�cients, thus showing that p/f lies in the
appropriate Dirichlet type space. From there we can use that p œ fD–

along with the cyclicity of p in order to conclude that f is cyclic.

To make the proof more transparent, we will put the existence of such a
polynomial in a separate lemma.

Lemma 8. Let f œ C[z1, ..., zn] be an irreducible polynomial with no zeros
in Dn, and only finitely many zeros on Tn. Then, for any positive integer k
there exist polynomials pi œ C[zi] for i = 1, ..., n with zeros only on T such
that the function Q defined by

Q(z1, ..., zn) = p1(z1) · · · pn(zn)
f(z1, ..., zn)

is k times continuously di�erentiable on Tn.
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Since the numerator is a product of one variable polynomials, it follows from
Theorem 7 and the fact that one variable polynomials which do not vanish
in D are cyclic, that the numerator is cyclic in D–.

Proof. Denote by r(x1, ..., xn) the function |f(eix1 , ..., eixn)|2. Since f is a
polynomial (and in particular analytic), and since eiv is analytic, it follows
that r is a real-analytic function defined on all of Rn. Furthermore, r clearly
inherits all of its zeros from the zeros of f on Tn, and so, on every bounded
subset of Rn, r will have finitely many zeros. Now, denote by E the compact
set [0, 2fi]n. By £ojasiewicz’s inequality there is a constant C > 0 and a
positive integer q such that

r(x) Ø C · dist(x, Z(r) fl E)q

for all x œ E. Since Z(r) fl E is a finite set, there is a constant c > 0 such
that

dist(x, Z(r) fl E)2 Ø c
Ÿ

yœZ(r)flE

|x ≠ y|2

for all x œ E. For example setting 1/c to be the length of the diagonal of E
squared, times the number of zero will be su�cient.

By putting this together, we see that for x œ E we have that

r(x) Ø C

Q

a
Ÿ

yœZ(r)flE

|x ≠ y|2
R

b
q/2

,

and so 1r
yœZ(r)flE |x ≠ y|2

2q/2

r(x) =

1r
yœZ(r)flE |x ≠ y|2

2q/2

|f(eix1 , ..., eixn)|2

is bounded.

However, in order to attain a similar inequality as the one above but with
the numerator on the correct form, we proceed as follows.

We have that

|x ≠ y|2 = |x1 ≠ y1|2 + ... + |xn ≠ yn|2 Ø |eix1 ≠ eiy1 |2 + ... + |eixn ≠ eiyn |2.
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By inductively applying that a2 +b2 Ø 2ab on the left hand side, we see that

|eix1 ≠ eiy1 |2 + ... + |eixn ≠ eiyn |2

Ø2|eix1 ≠ eiy1 |
1
|eix2 ≠ eiy2 |2 + ... + |eixn ≠ eiyn |2

21/2

...

Ø2|eix1 ≠ eiy1 |21/2|eix2 ≠ eiy2 |1/2 · · ·
1
|eixn≠1 ≠ eiyn≠1 |2 + |eixn ≠ eiyn |2

21/2n≠2

Ø2|eix1 ≠ eiy1 | · · · 21/2n≠2 |eixn≠1 ≠ eiyn≠1 |1/2n≠2 |eixn ≠ eiyn |1/2n≠2
.

By comparing this to the above quotient, it follows that
Ÿ

yœZ(r)flE

|eix1 ≠ eiy1 |q/2|eix2 ≠ eiy2 |q/22 · · · |eixn ≠ eiyn |q/2n≠1

|f(eix1 , ..., eixn)|2

is bounded for all x œ E. By replacing eixi with z1 and eiyi by ’i we get
that Ÿ

yœZ(r)flE

|z1 ≠ ’1|q/2|z2 ≠ ’2|q/22 · · · |zn ≠ ’n|q/2n≠1

|f(z1, ..., zn)|2
is bounded for all z œ Tn.

The numerator of the above expression, call it Q, is on the correct form, and
has some regularity in the sense that it is continuous, but we promised more.
However, if we exponentiate Q su�ciently many times, we can achieve the
desired regularity. Since both numerator and denominator are polynomials,
the question of di�erentiability is purely about how many times we can
di�erentiate until nothing in the numerator kills the singularities from the
zeros of f on Tn. Since the polynomial Q is separable, and since the factor
in each variable is of the form (zi ≠ ’i)n, the partial derivatives in each
variable will be n(zi ≠ ’i)n≠1, and therefore will inherit all zeros, although
the zeros will be of a lower degree. So for some large integer N , we will
achieve the desired regularity of the expression QN /f . Of course, we consider
the continuous extension of these expressions, so the function obtained by
exponentiating the numerator will be extended to all of Tn by setting it
equal to 0 on the zeros of f . Furthermore, note that after exponentiating,
we still have a numerator of the form p1(z1) · · · pn(zn), where all the zeros
of pi lies on T.

This finishes the proof.

With the above lemma at hand, the proof of the desired result is straight-
forward.
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Theorem 10. Let f œ C[z1, ..., zn] be a polynomial with no zeros in Dn and
only finitely many zeros on Tn. Then f is cyclic in D– for – Æ 1.

Proof. By the previous lemma, there exist one variable polynomials pi œ
C[zi] which vanish only on T, such that

Q(z1, ..., zn) = p1(z1) · · · pn(zn)
f(z1, ..., zn)

is n times continuously di�erentiable on Tn. By integrating by parts, we see
that the Fourier coe�cients of Q satisfies

ÿ

kœZn

| ‚Q(k)|2(1 + k1)n · · · (1 + kn)n < Œ,

and so f œ D– for – Æ n. It follows that p1(z1) · · · pn(zn) œ fD– for – Æ n.
Since f is a polynomial, and thus a multiplier, we have that fD– µ D–, and
so there exists a g in D– such that p1(z1) · · · pn(zn) = fg. But since g is
analytic and fg œ D– (and so the tail of the series that defines the norm of
fg tends to zero), we have that

lim
næŒ

Îp1(z1) · · · pn(zn) ≠ fqnÎ– = 0,

where qn is the partial sums of the power series expansion of g. It follows
that p1(z1) · · · pn(zn) œ [f ]. Since each pi is a polynomial in one variable
which does not vanish on D, it follows that each pi lies in D1

– for – Æ 1, and
so, by Theorem 7, we have that p1(z1) · · · pn(zn) is cyclic in D–. Since [f ]
contains a cyclic function, it follows that f is cyclic.

This generalizes Theorem 3.1 from [2], which is the corresponding statement
for polynomials in C[z1, z2]. The main idea of the proof, namely to use
£ojasiewicz’s inequality in order to compare our polynomial with a product
of polynomials in one variable, originates from the same article in order to
prove the corresponding theorem for n = 2.

An interesting consequence of the above theorem is connected to the Riesz
capacity of certain sets. Recall from Theorem 1, that if Z(f) fl Tn has
positive Riesz capacity with parameter –, then f is not cyclic in D–.

Example 4. Consider the polynomials

fk(z1, ..., zk) = k ≠
kÿ

i=1
zk.
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Since Z(fk) flTk consists of only one point, namely (1, ..., 1), it follows from
the previous theorem that fk is cyclic in Dk

– for all – Æ 1. And so, fk is
cyclic in Dn

– for all – Æ 1 and for all n Ø k.

However, for fk œ Dn
– with n Ø k, we have that

Z(fk) fl Tn = {1} ◊ · · · ◊ {1} ◊ Tn≠k.

But since fk is cyclic in Dn
–, theorem 1 implies that Tn = {1}◊· · ·◊{1}◊Tn≠k

cannot have positive Riesz capacity for any parameter – Æ 1.
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3.3 Some notes on zeros on Dn \ Tn

Let f be a cyclic function in D–. Since f is cyclic, we know that f has no
zeros inside Dn. But now, assume that f has a zero on Dn \ Tn. Assume
without loss of generality that this means that there exist a point (p, q) with
p = (p1, ..., pk) œ Dk and q œ Tn≠k for some 1 Æ k Æ n ≠ 1, such that
f(p, q) = 0. We now create a sequence of functions defined on D by

fn(z) = f

3
p1, ..., pi≠1, z, pi+1, ...pk,

3
(1 ≠ 1

n

4
q

4
.

Since f is non-vanishing in Dn, this means that every fn(z) is non-vanishing
in D. However, as n tends to infinity, the limit will have a zero for z = pi. But
since fn is a sequence of holomorphic functions in one variable, Hurwitz’s
theorem yields that the limit function is either non-zero, or it is constantly
equal to zero. But since we know the limit to have one zero, it follows that
it must be zero everywhere. We now have that f(p1, ..., z, ...pk, q) = 0 for
all z œ D. Note that 1 Æ i Æ k was arbitrary. By pushing z out to the
boundary, we see that f is zero on Dk≠1 ◊ T ◊ Tn≠k, and so, it follows by
induction that f will vanish everywhere on Tk ◊ {q}. As a special case, we
see that f will have zeros on Tn if it has zeros on the topological boundary
of Dn. It is worth noting that the above arguments do not explicitly use that
f is cyclic, only that f is holomorphic and that f is non-zero everywhere on
Dn.

An important consequence of this is that the zero set cannot leave Dn with-
out passing through Tn. This can be used to characterize which polynomials
are candidates for being cyclic.

Let p(z) be any polynomials for which p(0) ”= 0 (if this was the case, then
p(z) is clearly not cyclic). Now define r > 0 as

r = | inf{d œ R : p(dz) has no zeros in Dn}|.

From this definition, it follows that p(rz) is a polynomial with no zeros in
Dn, so it is a candidate for being cyclic. Furthermore, it will have zeros on
Dn, and thus on Tn, and so, it is not obviously cyclic for all –. All interesting
polynomials can therefore be obtained in the way described above. However,
it is still rather challenging to use this "characterization" in order to draw
any conclusions about cyclicity.

However, regarding cyclicity, we can assume without loss of generality that
p(r, r, ..., r) = 0, since we know that p(rz) has zeros on Tn, and since ro-
tations do not a�ect cyclicity. After rescaling again, this implies that the
polynomials which we need to understand are polynomials of the form

1 ≠
ÿ

kœNn

ckzk,
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where
ÿ

ck = 1. By considering real and imaginary parts, this means that
ÿ

Re(ck) = 1 and
ÿ

Im(ck) = 0. Note however, that not every polyno-
mial of the above form whose coe�cients satisfy the previous criteria is a
candidate for being cyclic, since there are possibilities for such a polynomial
to have zeros inside the polydisc. But if we assume that ck are positive real
numbers, then every polynomial of the above form will be a candidate for
being cyclic.
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3.4 Parametrizations and the type of Z(f) flTn
for

n Ø 3

In what follows, we will refer to submanifolds of codimension 2 as curves,
and we will refer to hypersurfaces simply as surfaces.

Recall that if Z(f) fl Tn contains a subset of type 2, then f can not be
cyclic in D– for any – > 1 ≠ 1/n. With this in mind, it is of great interest
to find certain conditions under which the existence of such a subset is
guaranteed. Furthermore, we will introduce a method through which we can
"force" certain curves to be of type 2 locally. This will essentially be carried
out by applying Möbius transformations, m, on each variable separately.
The new curve will be a curve of type 2 on which f ¶ m vanishes. This
implies that f ¶ m is not cyclic, which in turn can be used to show that f is
not cyclic.

The above idea was originally used in [2] in order to characterize the cyclic
polynomials in two variables. However, in higher dimensions several new
issues can arise.

This section will have two main parts. In the first one, we work with func-
tions whose zero set locally looks like a curve, and in the second, we work
with functions whose zero set locally looks like a surface. For concrete func-
tions, it is sometimes possible to find a concrete parametrization of the zero
set, in which case that is probably easier. But for completeness, we will give
certain criteria for when such a parametrization is possible.

Given a function f which extends continuously to Tn, for example a polyno-
mial, we can parametrize f on Tn by f(eiv1 , ..., eivn). This gives us a function
from Rn to C. By splitting f up into real and imaginary parts, that is by
noting that f(eiv1 , ...eivn) = u(v1, ..., vn) + iv(v1, ..., vn), we see that the ze-
ros of f on Tn are exactly the zeros of (u(v1, ..., vn), v(v1, ..., vn)) µ R2. So
assuming that there is some point p œ Z(f) fl Tn, for which some pair of
(vi, vj) satisfy -----

uÕ
vi

(p) vÕ
vi

(p)
uÕ

vj
(p) vÕ

vj
(p)

----- ”= 0, (38)

then we can apply the implicit function theorem in order to parametrize
Z(f) fl Tn locally around p. The above condition essentially means that
there is some point on Z(f) fl Tn where the partial derivatives of f span C
in the sense that every point in C can be written as a linear combination of
the partial derivatives with real coe�cients. Note however that the above
criteria is not always satisfied.
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Example 5. The polynomial

f(z1, ...zn) = n ≠
nÿ

k=1
zi

has only one zero on Tn, namely for z1 = ... = zn = 1. But the partial
derivatives at that point clearly do not span C since they are all parallel due
to symmetry.

But moving on, assuming there is such a point, and furthermore, assume
without loss of generality that the last two variables satisfy the above crite-
ria, then we can apply the implicit function theorem in order to parametrize
Z(f) fl Tn = Z(f(eiv1 , ..., eivn)) around p. The parametrization will be
given by (v1, ..., vn≠2, h(v1, .., vn≠2), g(v1, .., vn≠2)). We will often denote
(v1, ..., vn≠2) œ [0, 2fi]n≠2 by v.

Note that the function f(eiv1 , ..., eih(v1,...,vn≠2), eig(v1,...,vn≠2)) is constantly
equal to zero everywhere in an open neighborhood, and so all partial deriva-
tives vanish there. This means that

f Õ
j + f Õ

n≠1hÕ
j + f Õ

ngÕ
j = 0,

for all j.

But by the above assumption, f Õ
n≠1hÕ

j + f Õ
ngÕ

j ”= 0 at the point p, and so, this
implies that all partial derivatives must vanish at the point p. In particular,
a necessary condition for the above assumption to hold is that all partial
derivatives are non-vanishing at the point p. However, this is not su�cient
since it might be the case that they do all align, and so no pair will span C.

We now ask ourselves under which conditions we can guarantee that the
piece of Z(f) fl Tn that is parametrized above is indeed of type 2. Assume
that the point p = (pÕ, h(pÕ), g(pÕ)) is not of type 2, then this would imply
that there is some ÷ œ Sn for which

÷i + hÕ
i(pÕ)÷n≠1 + gÕ

i(pÕ)÷n = 0, (39)

and

hÕÕ
i,j(pÕ)÷n≠1 + gÕÕ(pÕ)i,j÷n = 0, (40)

for all 1 Æ i, j Æ n ≠ 2.

This is only possible if {(hÕÕ
i,j(pÕ), gÕÕ

i,j(pÕ)} does not span R2, or if they do
span R2, but the unique solution to

hÕÕ
i,j(pÕ)÷n≠1 + gÕÕ

i,j÷n
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and
hÕÕ

iÕ,jÕ(pÕ)÷n≠1 + gÕÕ
iÕ,jÕ÷n = 0,

is also a solution to the corresponding equations for all i and j, and further-
more, the unique solution ÷ given by

÷i = ≠(hÕ
i(pÕ)÷n≠1 + gÕ

i(pÕ)÷n),

has to lie on Sn.

Example 6. Consider the polynomial

2 ≠ xy ≠ xz.

The zero set of this polynomial on the torus is parametrized by (t, ≠t, ≠t).
This zero set does not have type 2 at any point, since for example ÷ =
(2, 1, 1)/

Ô
6 œ S3 satisfies all of the above equations.

It is not entirely clear how big a constraint equations (39) and (40) are.
The above example shows that these equations might have solutions, but
the zero set of the above polynomial is entirely flat. Recall that we can
parametrize around any point, which means that we only have problems if
equations (39) and (40) fail around every point. If this is to happen, then
it will truly imply serious constraints on how the zero set may look.

If we are in any of the unfortunate situations above, then we might still be
able to force the curve to be of type 2 by applying Möbius transformations
to the parameters. Consider the Möbius transformations

ma(z) = a ≠ z

1 ≠ āz
,

where a œ T. Note that ma(z) is its own inverse, that is (ma ¶ ma)(z) = z,
and so if (eiv1 , ..., eif(v), eig(v)) parametrizes Z(f) fl Tn around p, then

1
arg(eima1 (v1)), ..., arg(eiman≠2 (vn≠2)), h(v), g(v)

2

parametrizes Z(f ¶ eiv ¶ m) around m(p), where

m(v) = (ma1(v1), ..., man≠2(vn≠2), vn≠1, vn).

Now assume without loss of generality that p = 0, and denote arg(eimai (z))
by „ai(z). That this assumption is indeed without loss of generality is clear,
since if p ”= 0, then we can simply move it to 0 through a change of variables,
and this will not a�ect the cyclicity of f . Through direct calculations, one
can show that „Õ

ai
(0) > 0 and „ÕÕ

ai
(0) ”= 0 for any ai œ T with Im(a) ”= 0, see

for example Section 2.3 in [2] for some further notes on this method.
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We now ask ourselves under which circumstances this new curve has type 2.

If this curve does not have type 2, then there exists some ÷ œ Sn for which

„Õ
ai

(0)÷i + hÕ
i(0)÷n≠1 + gÕ

i(0)÷n = 0, (41)

and

„ÕÕ
ai

(0)÷i + hÕÕ
i,i(0)÷n≠1 + gÕÕ

i,i(0)÷n = 0, (42)

and

hÕÕ
i,j(0)÷n≠1 + gÕÕ

i,j(0)÷n = 0, (43)

for all 1 Æ i, j Æ n ≠ 2.

The main di�erence between equations (41)≠(43) and the equations (39) and
(40) that were used for determining whether or not our initial parametriza-
tion was of type 2 is the second family of equations, that is equation (42).

We point out that we do not have to apply Möbius transformations on all
parameters. If there is one parameter, vi, on which we do not apply a
Möbius transformation, then this will correspond to „ÕÕ

ai
(0)÷i = 0 in the

above equations.

We now have two major cases, either all pairs {(hÕÕ
i,j(pÕ), gÕÕ

i,j(pÕ)} = 0, or at
least one of them is non-zero.

If all of them equal zero, then equations (42) will force ÷i = 0 for all 1 Æ
i Æ n ≠ 2. It follows that this curve will not be of type 2 if and only if there
exists (÷n≠1, ÷n) œ S2 such that

hÕ
i(0)÷n≠1 + gÕ

i(0)÷n = 0,

for all 1 Æ i Æ n ≠ 2.

If not all pairs {(hÕÕ
i,j(pÕ), gÕÕ

i,j(pÕ)} = 0, then for at least one pair, either hÕÕ
i,j

or gÕÕ
i,j ”= 0. Assume without loss of generality that gÕÕ

i,j ”= 0. If i = j, then
we set the corresponding mai to just be the identity map, and so „ÕÕ

ai
= 0.

In any case, this will force

÷n =
≠hÕÕ

i,j(0)
gÕÕ

i,j(0) ÷n≠1.

Note that ÷n≠1 ”= 0, since this would force all ÷i = 0.

By plugging this into the remaining equations and comparing expressions
given by the first and second family of equations, we get that

÷l = 1
„Õ

al
(0)

A
gÕ

l(0)hÕÕ
i,j(0)

gÕÕ
i,j(0) ≠ hÕ

l(0)
B

÷n≠1 = 1
„ÕÕ

al
(0)

A
gÕÕ

l,l(0)hÕÕ
i,j(0)

gÕÕ
i,j(0) ≠ hÕÕ

l,l(0)
B

÷n≠1,
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for all 1 Æ l Æ n ≠ 2.

We have two possibilities. Either
A

gÕ
l(0)hÕÕ

i,j(0)
gÕÕ

i,j(0) ≠ hÕ
l(0)

B

=
A

gÕÕ
l,l(0)hÕÕ

i,j(0)
gÕÕ

i,j(0) ≠ hÕÕ
l,l(0)

B

= 0

for all 1 Æ l Æ n ≠ 2, and so ÷l = 0 for all l.

Furthermore, this would imply that

hÕ
i(0)/gÕ

i(0) = hÕÕ
i,j(0)/gÕÕ

i,j(0) = c,

for all i, j. Once again, note that gÕÕ
i,j(0) ”= 0.

The second alternative is that either
A

gÕÕ
l,l(0)hÕÕ

i,j(0)
gÕÕ

i,j(0) ≠ hÕÕ
l,l(0)

B

”= 0,

or A
gÕ

l(0)hÕÕ
i,j(0)

gÕÕ
i,j(0) ≠ hÕ

l(0)
B

”= 0.

for some 1 Æ l Æ n ≠ 2. Assume without loss of generality that the second
possibility occurs. This would imply that

„ÕÕ
ai

(0)
„Õ

ai
(0) =

gÕÕ
l,l(0)hÕÕ

i,j(0)
gÕÕ

i,j(0) ≠ hÕÕ
l,l(0)

gÕ
l(0)hÕÕ

i,j(0)
gÕÕ

i,j(0) ≠ hÕ
l(0)

.

However, the left hand side is not constant with respect to ai, whilst the
right hand side is. It follows that we can always choose ai in such a way as
to make this scenario impossible.

In conclusion, given f œ D– which extends analytically to Tn, then if there
is some point p = (eiv1 , ..., eivn) œ Z(f) fl Tn, such that for some pair of
(vi, vj) we have that

-----
uÕ

vi
(p) vÕ

vi
(p)

uÕ
vj

(p) vÕ
vj

(p)

----- ”= 0,

where u(v1, ..., vn) + iv(v1, ..., vn) = f(eiv1 , ..., eivn). Then some neighbor-
hood of Z(f) fl Tn which contains p can be parametrized by

(v1, ..., h(v1, ..., vn≠2), g(v1, ..., vn≠2)).
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Either this set already is of type 2 at the point p. If not, then as long as
there is no (÷n≠1, ÷n) œ S1 for which

hÕÕ
i,j(p)÷n≠1 + gÕÕ

i,j(p)÷n = 0

and
hÕ

i(p)÷n≠1 + gÕ
i(p)÷n = 0

for all 1 Æ i, j Æ n ≠ 2, then we can apply Möbius transformations in order
to make the curve to be of type 2 at the point p.

Once again, even though we have altered the set by applying Möbius trans-
formations, this is still okay. Since if the new set has type 2, then the
function f ¶ m will not be cyclic for – > 1 ≠ 1/n. But as we will see in Sec-
tion 3.7, composition with Möbius transformations turns out to be bounded
operators between Dirichlet type spaces, so the fact that f ¶ m is non-cyclic
will imply that f is non-cyclic.

In some ways the above characterizations are unsatisfactory. We have very
harsh constraint on what type of curve we cannot force to be of type 2
locally, but in general, it is still rather di�cult to verify all of the above
criteria, although it might get a little bit easier if one assumes that all partial
derivatives of order 1 are non-zero, that is, we have we have a non-singular
curve in Tn

Another big problem is that the assumption on the di�erential does not
always hold, which means that we can not necessarily make the above
parametrization at all.

Example 7. For example, there is no such point p in Z(f) fl Tn for either
of our standard polynomials

f(z1, ..., zn) = n ≠
nÿ

i=1
zi and g(z1, ..., zn) = 1 ≠

nŸ

i=1
zi.

For the first polynomial, this makes sense because the intersection consists
of just a single point. For the second polynomial however, the problem is
related to the fact that the zero set is actually much nicer, namely we can
parametrize it through (v1, ..., vn≠1, f(v1, ..., vn≠1)).

In fact for all polynomials which are nice in the same way, the above methods
for parameterizing and transforming Z(f) flTn locally will yield much more
concrete results. That is, we get better control over functions whose zero set
is a surface locally instead of a curve. We give a condition which guarantees
this to happen, provide an example of this, and then move on with the
calculations for the surfaces.
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Let f œ D– be a function which admits an analytic continuation to Dn, and
assume furthermore that f(z) = u(z) + iv(z) is such that u(z) = 0 if and
only if v(z) = 0 for all z œ Tn. It follows that (v1, ..., vn) œ [≠fi, fi]n is a
zero of f ¶ eiv if and only if it is a zero of (u ¶ eiv, v ¶ eiv) µ R2, u ¶ eiv, or
v ¶ eiv. Assume now that there is some point p œ [≠fi, fi]n such that either
u ¶ eip = 0, or v ¶ eip = 0. So if any partial derivative of either u or v is
non-zero at the point p, then we can apply the implicit function theorem,
which yields that (v1, ..., g(v1, ..., vn≠1)) parametrizes the zero set of u ¶ eiv

or v ¶ eiv, and so it parametrizes the zero set of f ¶ eiv locally around the
point p.

Example 8. The polynomial 1 ≠ xyz has this property, since cos(v1 + v2 +
v3) = 1 if and only if sin(v1 + v2 + v3) = 0.

We now ask ourselves if the subset of Z(f) ¶ Tn which is parametrized by
(v1, ..., g(v1, ..., vn≠1)) has type 2. If it does not have type 2, then there exist
some ÷ œ Sn such that

÷i + gÕ
i(p)÷n = 0 (44)

and

gÕÕ
i,j(p)÷n = 0 (45)

for all 1 Æ i, j Æ n ≠ 1.

If not all gÕÕ
i,j(p) = 0, then the only possibility is that ÷n = 0, and so the

first family of equations forces ÷i to be 0 for all i, which is impossible. This
implies that the surface has type 2 if and only if there is some 1 Æ i, j Æ n≠1
such that gÕÕ

i,j(p) ”= 0.

If however all partial derivatives of order 2 are equal to zero, then un-
der certain circumstances, we can still force the surface to be of type 2
by applying Möbius transformations, mai with a œ T and Im(ai) ”= 0,
on all parameters. We can once again assume without loss of generality
that p = 0, otherwise we rotate it there. We get that the the surface
(arg(ema1 (v1)), ..., arg(eman≠1 (vn≠1)), f(v1, ..., vn≠1)) parametrizes the zero set
of Z(f ¶ eiv ¶ m) for m(v) = (ma1(v1), ..., vn). We denote arg(emai (vi)) by
„i(vi) and recall that „Õ

ai
(0) > 0, and „ÕÕ

ai
(0) ”= 0. It follows that this surface

does not have type 2 if and only if there is some ÷ œ Sn such that

„Õ
ai

(0)÷i + gÕ
i(0)÷n = 0 (46)

and

„ÕÕ
ai

(0)÷i + gÕÕ
i,i(0)÷n = 0 (47)
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and

gÕÕ
i,j(0)÷n = 0 (48)

for all 1 Æ i, j Æ n ≠ 1.

Since we assumed that the first surface was not of type 2, gÕÕ
i,j = 0 for all i, j,

and so the second family of equations implies that ÷i = 0 for all i. It follows
that this surface does not have type 2 if and only if gÕ

i = 0 for all i. But if
we know that there exists some point where not all derivatives vanish, then
we can force the surface to be of type 2 locally by the above methods.

Note that if all partial derivatives of g vanish, then every partial derivative,
f Õ

i , of f has to vanish for 1 Æ i Æ n ≠ 1. This is because

f(eiv1 , ..., eivn≠1 , eig(v1,...,vn≠1)) = 0

everywhere in some open neighborhood. In particular, all partial derivatives
must vanish, and so

f Õ
i + f Õ

ngÕ
i = 0

for all i. But since gÕ
i equals zero for all 1 Æ i Æ n ≠ 1, so does f Õ

i . This
implies that this situation occurs if and only if all but one of the partial
derivatives of f vanish at the point p. Furthermore, note that since f Õ

n(p) is
assumed to be non-zero, we know that f Õ

n is non-zero everywhere in an open
neighborhood containing p. Since (v1, ..., g(v1, ..., vn≠1)) parametrizes Z(f)fl
Tn in another open neighborhood around p, we see that in the intersection
of this neighborhood and the neighborhood in which f Õ

n ”= 0, either we have
that f Õ

i = 0 for all 1 Æ i Æ n ≠ 1 everywhere in this intersection, or there is
some other point pÕ in this neighborhood for which f(pÕ) = 0, around which
we can apply the above methods to construct a surface of type 2.

Example 9. Once again, consider the polynomial

f(z1, ..., zn) = 1 ≠
nŸ

i=1
zi.

This polynomial satisfies the above criteria, since a point v œ [≠fi, fi]n
is a zero of f ¶ eiv if and only if v = (v1, ..., vn≠1, ≠(v1 + ... + vn≠1)) =
(v1, ..., f(v1, .., vn≠1)). Although all partial derivatives of f of order 2 are
equal to 0 everywhere, no first order derivative is zero anywhere, and so we
can force this curve to be of type 2 locally by the above methods.
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3.5 Some notes on Lifts

A frequently discussed example so far has been the polynomial

p(z1, ..., zn) = 1 ≠
nŸ

i=1
zi.

The discussion in the previous section implies that this polynomial is not
cyclic in for any – > 1 ≠ 1/n. However, we have not yet concluded anything
regarding when it for sure is cyclic. The goal of this section will be to
determine cyclicity for certain functions by comparing their norms with the
norm of a related one-variable function.

Given f œ D1
–, we define its lift corresponding to k = (k1, ..., kn) with

ki œ N \ {0}, Lk : D1
– æ D— by

Lk(f)(z1, ..., zn) = f(zk1
1 · · · zkn

n ).

We require ki Ø 1 for all 1 Æ i Æ n in order to assure that the lift is truly a
function in n≠variables. Otherwise we could just consider the corresponding
lift to a lower-dimensional space, and then expand up in dimension through
our previous methods.

The norm of the lift can be bounded by the norm of f in the following way,
which, as a consequence, lets us relate — to –.

Theorem 11. For f œ D1
–, and Lk(f) œ D— for — Ø 0, we have that

ÎLk(f)Î2
— Æ CÎfÎ2

n—,

for some C > 0. In particular, if f œ D– then Lk(f) œ D–/n.

Proof. Since f is analytic in D, we have that

f(z) =
Œÿ

l=0
alz

l,

and so

Lk(f)(z1, ..., zn) =
Œÿ

mn=0
· · ·

Œÿ

m1=0
bmzm1

1 · · · zmn
n =

Œÿ

l=0
al(zk1

1 · · · zkn
n )l.

It follows that bm = al if m = (m1, ..., mn) = (k1l, ..., knl) for some l œ N,
and zero if there is no such l.
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From this we get that

ÎLk(f)Î2
— =

Œÿ

mn=0
· · ·

Œÿ

m1=0
|bm|2(m1 + 1)— · · · (mn + 1)—

=
Œÿ

l=0
|al|2(1 + k1l)— · · · (1 + knl)—

Æ
Œÿ

l=0
|al|2(1 + (k1 · · · kn)l)— · · · (1 + (k1 · · · kn)l)—

Æ
Œÿ

l=0
|al|2((k1 · · · kn) + (k1 · · · kn)l)— · · · ((k1 · · · kn) + (k1 · · · kn)l)—

=C
Œÿ

l=0
|al|2(1 + l)— · · · (1 + l)— = C

Œÿ

l=0
|al|2(1 + l)n— = CÎfÎ2

n—,

where C = k1 · · · kn. This finishes the proof.

Note that if k1 = ... = kn = 1, then the above inequalities are in fact
equalities, i.e. ÎL(1,..,1)(f)Î– = ÎfÎn–.

The above result can be used to find certain parameters – for which our
standard polynomials are cyclic. Let

fk(z1, ..., zn) = 1 ≠
kŸ

i=1
zk,

for k Æ n. This function is cyclic in D– if and only if 1 ≠
kŸ

i=1
zk is cyclic

in Dk
–. Since this is simply the lift of the function 1 ≠ z corresponding to

k = (1, ..., 1), that is

1 ≠
kŸ

i=1
zk = L(1,...,1)(1 ≠ z)(z1, ..., zk),

and 1≠z is a one variable polynomial with no zeros in D, and hence is cyclic
for all – Æ 1, the above theorem yields that fk(z1, ..., zn) œ D– is cyclic for
all – Æ 1/k, since if pn is a sequence of one variable polynomials for which

lim
næŒ

Îpn(1 ≠ z) ≠ 1Î– = 0,

then L(1,..,1)(pn) will provide the corresponding sequence of polynomials for
fk(z1, .., zn).

In particular

f(z1, ..., zn) = 1 ≠
nŸ

i=1
zi

is cyclic for all – Æ 1/n.
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3.6 An application of the Brown and Shields re-

cursion

We have previously used a method, originally due to Brown and Shields, in
order to characterize the parameters – for which one variable polynomials
are cyclic. In this section, the same idea will be applied in order to give an
alternative proof for the statement that

f(z1, ..., zn) = 1 ≠
nŸ

i=1
zi

is cyclic for 1 Æ – Æ 1/n, and non-cyclic if 1/n < – Æ 1.

As a consequence of the Hahn Banach theorem, f(z) is cyclic if and only
if the only element in the dual space of D– that annihilates p(z)f(z) for
all polynomials p is the zero functional. Since D– is a Hilbert space, every
bounded linear functional can be represented as f æ Èg, fÍ for some g œ D–.
Henceforth we will write k̃ = (k, ..., k).

Assume now that g(z) =
ÿ

kœNn

ĝ(k)zk annihilates pf for every polynomial p.

Then in particular Èg, zk̃+nfÍ = 0 for n œ Nn, and so

Èg, zn≠zk̃+nÍ = Èg, (zn≠z1̃+n)+(z1̃+n+z2̃+n)≠z2̃+n+...+zk̃+nÍ =
kÿ

i=1
Èg, z ĩ+nfÍ = 0.

By plugging this into the definition of the inner product, the above equality
yields that

ĝ(n)
nŸ

i=1
(1 + ni)– = ĝ(n + k̃)

nŸ

i=1
(1 + ni + k)–.

Any g œ D– which satisfies the above recursion will annihilate pf for all
polynomials p, because it will annihilate monomials, and by linearity of the
inner product.

It remains to investigate for which parameters – there exists a non-zero
function whose Fourier coe�cients satisfy the above recursion will have finite
norm.

Note that every n œ Nn can be written as nÕ + k̃. for some k œ N and
for nÕ with at least one component equal to zero. This will be used in
order to represent the norm on D– in a way which allows us to use the
above recursion. When investigating finiteness of the sum over Nn, we only
need to consider the part of the sum whose indexes are of the form n + k̃ for
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n = (nÕ, 0) with nÕ œ Nn≠1. This is due to symmetry and the fact that we are
free to choose ĝ(nÕ, 0). That is, if there is no choice of ĝ(nÕ, 0) which makes
the sum over (nÕ, 0) + k̃ converge, then the entire series will not converge.
And if there is come choice that makes the partial sum converge, then we
can set ĝ(0, n1, ..., nn≠1) = ... = ĝ(n1, ..., nn≠1, 0) and thus make the entire
sum converge.

Now consider the series given by the norm on D–

ÿ

nÕœNn≠1
|ĝ(nÕ, 0)|2

n≠1Ÿ

i=1
(1 + ni)2–

ÿ

kœN

1
rn

j=1(1 + nj + k)–
.

For every fixed value of (nÕ, 0), the series
ÿ

kœN

1
rn

j=1(1 + nj + k)–

will diverge if n– Æ 1. So the only possibility for ĝ(nÕ, 0) to save the con-
vergence is if they are all equal to zero. But this implies that g is the zero
functional. Since this is the only g for which the series converges, and thus
the only element in the dual space of D– which annihilates all pf , it follows
that f is cyclic. If however – > 1/n, then the series

ÿ

kœN

1
rn

j=1(1 + nj + k)–

converges for every (nÕ, 0). Furthermore, the series is bounded for every
(nÕ, 0), and so, by choosing ĝ(nÕ, 0) small enough, for example by setting
it equal to 0 everywhere except for at the origin, then we get a non-trivial
functional which annihilates all pf , and so f is not cyclic.

The above method can be used in order to get slightly more general results
about cyclicity of certain polynomials. For example, consider polynomials
of the form 1 ≠ p(z), where p(z) = czn for n œ Nn. We will always assume
that c = 1, since if c < 1 the polynomial will always be cyclic. And if c > 1,
then the polynomial will never be cyclic. Furthermore, we assume that all
variables are represented in p. Otherwise we just consider the polynomial as
a polynomial of fewer variables, determine cyclicity there, and then finally
we use that cyclicity is passed on upwards in dimension. This means that
ni Ø 1 for all i.

Again, assume that there is a g œ D– such that Èg, q(1 ≠ p)Í = 0 for all
polynomials q. Then by the same methods as above, we see that this g
annihilates all q(1 ≠ p) if and only if

ĝ(k)
nŸ

i=1
(1 + ki)– = ĝ(k + ln)

nŸ

i=1
(1 + lni + ki)–,
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for every l œ N. We now want to determine if such a g can indeed lie in
D–. Denote by S the smallest subset of Nn such that for every m œ Nn,
there exists l œ N for which m ≠ ln œ S. Furthermore, note that for every
m œ Nn, the pair s œ S and l œ N is unique. That we lose this property is
one of many reasons for why this argument is di�cult to generalize to p(z)
consisting of more than one term.

Using the above recursion formula we now see that

ÎgÎ2
– =

ÿ

sœS

ÿ

lœN
|ĝ(s+ln)|2(1+si+lni)– =

ÿ

sœS

nŸ

i=1
(1+si)2–|ĝ(s)|2

ÿ

lœN

1
(1 + si + lni)–

.

Just as before, we note that
ÿ

lœN

1
(1 + si + lni)–

diverges for all – Æ 1/n, and so g œ D– if and only if all of its Fourier
coe�cients are equal to zero, which in turn will imply that f is cyclic. If
however the series converges, as is the case for – > 1/n, then by choosing
ĝ(s) small enough, it follows that there are non-trivial functional which
annihilate all q(1 ≠ p), and therefore f cannot possibly be cyclic.
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3.7 An equivalent norm and Möbius transforma-

tions

Recall that the norm on D– is given by

ÎfÎ2
– =

Œÿ

k1=0
· · ·

Œÿ

kn=0
(k1 + 1)– · · · (kn + 1)–|ak1,...,kn |2 < Œ.

If one splits the above series up into parts, one in which no variables are
zero, one in which exactly one variable is zero, one in which exactly two are
equal to zero etc, then by manipulating power series and applying Parseval’s
identity, it can be shown that the above norm is equivalent to the norm given
by

|f(0, 0)|2 +
nÿ

i=1

⁄

D
|f Õ

i(0, ..., zi, ..., 0)|2(1 ≠ |zi|2)1≠–dA(zi)

+
nÿ

1ÆiÆj

⁄

D2
|ˆiˆjf(0, ..., zi, ..., zj , ...0)|2(1 ≠ |zi|2)1≠–(1 ≠ |zj |2)1≠–dA(zi)dA(zj)

+
⁄

Dn
|ˆ1 · · · ˆnf(z1, ..., zn)|2(1 ≠ |z1|2)1≠– · · · (1 ≠ |zn|2)1≠–dA(z1) · · · dA(zn),

where A(z) is the normalized Lebesgue measure.

See for example [7] for a thorough discussion on how to endow the Dirichlet
type spaces with norms, and on the equivalence of di�erent such norms.

We will mainly focus in the last term of the sum. The point of introducing
this equivalent norm is to show that composing with Möbius transforms is
a bounded operator from D– to itself. This is easily seen by plugging f ¶ ma

into the above norm, make a change of variables, and comparing with the
norm of f . Boundedness will follow since the Jacobian, |mÕ

a(z)|2, is bounded
and since there exist c > 0 such that (1 ≠ |z|2) Æ c(1 ≠ |ma(z)|2), for all
z œ D. We will denote the operator norm of the operation of composing
with ma simply by ÎmaÎ.

We can now give a partial result, which in itself is mainly interesting since
it shows a lot of the machinery that we have built up in action.
Lemma 9. Given f œ D– which extends continuously to D, which has the
property that Z(f) flTn contains a hyper-surface S, and that for some point
p œ S, we have that f Õ

i(p) ”= 0 and f Õ
j(p) ”= 0. Then f is not cyclic in D– for

any – > 1/n.

Proof. We have two possibilities. Either S has type 2, or it does not have
type 2. If S has type 2, then the statement follows immediately from The-
orem 5.
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Let S be parametrized by (v1, ..., vn≠1, g(v1, ..., vn≠1)). Assume now that
p œ S does not have type 2 and assume without loss of generality that
p = 0. From the discussion in the section about Parametrizations and the
type of Z(f) fl Tn, we can apply Möbius transformations to the parameters
in the parametrization in order to obtain a new curve that is of type 2 at
the point p = 0. This new curve will parametrize Z(f) flTn for the function
f ¶ m, where m(v) = (ma1(v1), ..., man≠1(vn≠1), vn). By applying Theorem
5, we can conclude that f ¶ m is not cyclic for any – > 1/n. This in turn
implies that f is not cyclic, since assume that f was cyclic, then there exists
a sequence of polynomials pn for which

lim
næŒ

Îpnf ≠ 1Î– = 0.

But this is not possible since this would imply that

Î(pn ¶ m) · (f ¶ m) ≠ 1Î– Æ ÎmÎÎpnf ≠ 1Î–,

where the right hand side tends to zero as n æ Œ. But by approximating
pn ¶ m by polynomials qn, this implies that

lim
næŒ

Îqnf ¶ m ≠ 1Î– = 0,

and so f ¶ m would be cyclic, a contradiction.

The above result gives a fairly good condition for determining whether or
not a function whose zero set is a surface or non-cyclic, but on its own it is
still not entirely satisfactory. Mainly because it requires Z(f) fl Tn to have
real dimension n ≠ 1, whilst the generic case is probably for the zero set to
have as low dimension as possible, since we only allow it to hit the torus,
but not enter the polydisc. Furthermore, the assumption that two partial
derivatives are non-vanishing at some point is necessary for the proof to
hold. The case, in which Z(f) fl Tn has real dimension n ≠ 2 is seemingly
more di�cult, but we can still say the following.

Lemma 10. Given f œ D– which extends continuously to Dn, which has
the property that Z(f) fl Tn contains a point p, such that

(v1, ..., h(v1, ..., vn≠2), g(v1, ..., vn≠2))

parametrizes Z(f)flTn locally around p. and furthermore that no (x, y) œ S1

has the property that

hÕ
i(0)x + gÕ

i(0)y = hÕÕ
i,j(0)x + gÕÕ

i,j(0)y = 0,

for all 1 Æ i, j Æ n ≠ 2. Then f is not cyclic in D– for – > 1 ≠ 1/n.
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The proof is analogous to the previous one, with the minor di�erence that
one has to use Theorem 3 instead of Theorem 5, and that the requirements
for forcing the set to be of type 2 changes.

Note that the criteria for non-vanishing derivatives concerns the function f
in Lemma 9, but that the corresponding requirement for Lemma 10 regards
the derivatives of the functions in the parametrization. In both cases, the
requirements originates from the requirements for being able to force the
parametrized set to be locally of type 2. In the first case, we saw that this
was possible if and only if not all other derivatives of f vanished at the point.
In the second case, this is not possible.

In general, one would want to find similar criteria for subsets of any real
dimension. We can provide several polynomials whose cyclicity is still hard
to determine.

Example 10. Once again, consider the polynomial

p(x, y, z) = 2 ≠ xy ≠ xz.

This polynomial does not satisfy the criteria of Lemma 10, and so we do not
know anything regarding whether or not it is cyclic.

Furthermore, consider any polynomial in C[z1, ..., zn] of the form

p(z) = a ≠
lÿ

i=1
ciz

bi , (49)

where bi œ Nn and
ÿ

ci = a where ci are positive real numbers.

A polynomial of the above form will not have any zeros in Dn, and so is a
candidate for being cyclic. Furthermore, since Z(p) fl Tn is given by eiv for
which p(eiv1 , ..., eivn) = 0, we see that solving the equation

a ≠
lÿ

i=1
ci cos(bi,1v1 + ... + bi,nvn) + i

lÿ

i=1
ci sin(bi,1v1 + ... + bi,nvn) = 0,

will give a parametrization of the zero set. Note that for this particular kind
of polynomials, the real part is zero if and only if all cos(bi,1v1+...+bi,nvn) =
1, which means that all equations

bi,1v1 + ... + bi,nvn = 0,

must hold for 1 Æ i Æ l. Furthermore, if the above equations hold, then the
imaginary part will automatically be zero, and so the solutions to the above
system of equations yields the entire zero set. Since the above system of
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equations can be arbitrarily big, we can not in general expect to parametrize
the set with either n ≠ 1 or n ≠ 2 parameters. In fact, since we are free
to choose bi,j , we can create polynomials whose zero set has arbitrarily
many parameters (between 0 and n of course). Furthermore, we can create
polynomials whose zero sets are parametrized by

(v1, ..., vn≠2, g(v1, ..., vn≠2), h(v1, ..., vn≠2))

where g and h are linear functions. Since all second derivatives of linear
functions vanish, and since we can construct polynomials for which h and
g are parallel, we see that the requirements on the parametrization in the
previous lemma are not always automatically satisfied. However, it is still
not clear if the fact that we can not force the set to be of type 2 by applying
Möbius transformations means that the polynomial is cyclic, or if it is just
that our current machinery is not powerful enough.

To round of this section, we will give examples which shows that the re-
quirements we have for being able to force the zero set to be of type 2 are in
fact necessary. That is, there are functions whose zero sets do not meet this
criteria, and so we can not use the above machinery in order to determine
non-cyclicity.

Example 11. Consider the following parametrization with n≠2 parameters.

≠vn = ≠vn≠1 =
n≠2ÿ

i=1
vi.

The corresponding equations are b1 = (1, ..., 1, 0, 1) and b2 = (1, ..., 1, 0), and
so, the corresponding polynomials are

p(z) = a ≠ c1z1
1 · · · z1

n≠2z1
n ≠ c2z1

1 · · · z1
n≠1,

where a = c1 + c2.

The above polynomial has a zero set whose intersection with Tn is parametrized
with n ≠ 2 parameters. However, it is not possible to apply Möbius trans-
formations in order to force it to be of type 2 locally.

Next, we will consider polynomials of the above form whose zero set is a
hypersurface, but which do not satisfy the above criteria for determining
non-cyclicity. Assume that

(v1, ..., vn≠1, g(v1, ..., vn≠1))

parametrizes the zero set of a polynomial on the distinguished boundary. If
we are not able to apply the above results in order to determine non-cyclicity,
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then this means that gÕ
i = 0 for all 1 Æ i Æ n ≠ 1 and all v œ [≠fi, fi]n≠1.

Since g is a linear function, this means that g is constant with respect to all
variables, that is, it is constant. But for a polynomial of the above form, this
is only possible if it does not depend on any of the variables z1, ..., zn≠1. This
means that any polynomial of the form (49) which depends on all variables,
and for which Z(p) fl Tn is a hypersurface, is non-cyclic for all – Ø 1/n.

In general, we are only interested in polynomials which depend on all vari-
ables, since otherwise we can examine the same polynomial in a lower di-
mensional space and use that cyclicity is preserved under embedding into
Dirichlet type spaces of more variables. It is now natural to ask if the above
result holds for all polynomials which depend on all variables, and for which
Z(f) fl Dn = Z(f) fl Tn ”= ÿ. That is, if Z(f) fl Tn contains a hypersurface,
will this imply that the polynomial is non-cyclic for – > 1/n?

The above problems do not occur in lower dimensions. For n = 2, we have
that either the zero set is finite, which we can handle in general, or it can be
parametrized with n≠1 = 1 parameters, which is also a fairly nice situation.
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3.8 Polynomials in C[z1, z2, z3]

The previous section indicates that cyclicity for polynomials is more di�cult
in higher dimensions than in 2 dimensions. In 2 dimensions, we always have
that the zero set is finite, or a hypersurface, both of which are situations
that can be handled even in higher dimensions. The problem in higher di-
mensions is mainly related to the fact that there are far more possibilities
for the dimension of the zero set, namely the zero set can be an embed-
ded manifold of every dimension less than or equal to n, not only a finite
set and a hypersurface, and all of these di�erent possibilities seem to be-
have di�erently. The goal of this section is to consider the special kind of
polynomials constructed in the previous section, and determine cyclicity for
them. In general, these polynomials will either have a finite zero set, a one-
dimensional zero set, or a two dimensional zero set. If it is finite, then we
now that they are all cyclic. If it is two dimensional, then we know that they
are never cyclic for – > 1/3. But what happens if it is one-dimensional?

One tool which we will use in order to determine this is by comparing
our polynomials to other polynomials whose cyclicity properties are already
known. The following proof is similar to the final arguments in the proof of
Theorem 10. A proof for a slightly more general statement for the Dirichlet
space in one dimension was originally given in [1].

Lemma 11. Let f and g œ D– be polynomials such that |f(z)| > |g(z)| for
z œ Dn, and where g is cyclic in D– for – Æ 1. Then f is cyclic in D–.

Proof. Since |f | > |g|, we have that g/f is bounded and continuous in D3.
In particular, this implies that g2/f is continuously di�erentiable, and so, by
integrating by parts and applying Parsevals equality, we see that g2/f œ D–

for all – Æ 1. This means that there exists h œ D– such that g2 = fh.
Denote by pn the partial sums of the Fourier series of h. We get that

Îg ≠ fpnÎ Æ Îg ≠ fhÎ + Îfh ≠ fpnÎ Æ cÎh ≠ hnÎ,

where c is the multiplier norm of f (recall that f is a polynomial and that
polynomials are multipliers). The right hand side tends to zero has n æ Œ
since h œ D–, and so g2 œ [f ]. Since g2 = g · g, and g is cyclic, it follows
that g2 is cyclic. This implies that [f ] contains a cyclic function, and so f
is cyclic.

In the previous section, we discovered a large class of polynomials for which
our previous methods did not apply. In what follows, we will try to thor-
oughly understand these specific polynomials.
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The polynomials we are interested in are polynomials of the form

p(z) = a ≠
kÿ

i=1
ciz

bi (50)

where bi œ N3 and ci are positive real numbers whose sum equals a. These
polynomials have no zeros inside the tridisc, and eiv is a zero on T3 if and
only if (v1, v2, v3) is a solution to

bi,1v1 + bi,2v2 + bi,3v3 = 0

for all i. In this context, we are primarily interested in the situation where
Z(f)flT3 is parametrized by one parameter, that is polynomials on the above
form for which Z(f) fl T3 = (eit, eibt, eict), and where b and c are rational
numbers (as a consequence of bi œ N3). Furthermore, we can assume without
loss of generality that both b and c are negative rational numbers. If they
were both positive, then (v1, bv2, cv3) cannot possibly be a solution to the
above system of equations. If only one of them is non-negative, then we can
get the desired situation by simply switching parameter.

Why is this of interest? What we will now try to accomplish is to compare
polynomials in three variables whose zero set is a line, with polynomials
in two variables, and then use the Lemma 11 to determine cyclicity. In
the general situation this is hard do achieve directly, so what we do is the
following. Every line which is the zero set of a polynomial in three variables
is also the zero set of a polynomial of the form

p(x, y, z) = 2 ≠ xayb ≠ xczd (51)

Assume that the zero set is parametrized by (v1, ≠bv1/a, ≠dv1/c), with
a, b, c, d œ N. Then the above polynomial will have the same zero set, and
by the previous discussion the only lines that are of relevance are the lines
of that form.

This can also be seen through basic linear algebra. When solving the system
of equations which determine the zero set of a polynomial of the form (50),
we end up with a system of linear equations with integer coe�cients. Every
term kxaybzc contribute with an equation

ax + by + cz = 0

to the system of linear equations.

If we assume that the zero set is a curve, we know that we will have a one-
parameter solution to the system of equations, and so we can use Gauss elim-
ination with the first two equations (corresponding to the first two terms)
and clear all other equations. But the system of equations we end up with
then will have a zero set coming from a polynomial with only two terms.
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Example 12. Consider the polynomial

3 ≠ 2xyz ≠ x2yz/2 ≠ x3y2z2/2.

The zero set of this polynomial on T3 will be parametrized by the solution
to the system of equations

x + y + z = 2x + y + z = 3x + 2y + 2z = 0.

After Gauss elimination, we get that

x = y + z = 0,

which is the corresponding system of equations for the polynomial

1 ≠ x/2 ≠ yz/2.

We give one more example which is slightly more complicated.

Example 13. Consider the polynomial

3 ≠ x2yz ≠ xy2z ≠ x3y3z2.

The corresponding system of equations is given by

2x + y + z = x + 2y + z = 3x + 3y + 2z = 0,

which after Gauss elimination becomes

3y + z = ≠x + z = 0,

which is not a system of equations coming from one of our polynomials,
since we have a minus sign.

However, the zero set is parametrized by (t, ≠3t, t), and by setting v = ≠3t,
we get a parametrization of the form (≠v/3, v ≠ v/3). But this zero set is
clearly the zero set of the system of equations

y = ≠x/3, y = ≠z/3 ≈∆ x + 3y = z + 3y = 0,

which is the system of equations from the polynomial

2 ≠ xy3 ≠ zy3.

Since every polynomial in our class has the same zero set as a polynomial
on the above form, it su�ces to understand cyclicity of these polynomials
(the details of how this comparison will be carried out will be made clear
later).
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Now, these polynomials are of a particularly easy form. What we will do is
to generalize the lift which was used earlier. Generalizing it in such a way to
cover all polynomials is probably not possible, due to technical reasons which
will become apparent later. But for the lifts associated with polynomials of
the above form, a lot can be said.
Definition 5. For k = (a, b, 0) and l = (c, 0, d), with a, b, c, d œ N, we
introduce the 2-3 lift Lk,l defined by Lk,l(f(x, y))(z) = f(zk, zl), where x, y
and z œ D.

For these lifts, we can say the following
Lemma 12. Let f be a holomorphic function on the bidisc, and Lk,l be a
2-3 lift. Then

cÎfÎ3–/2 Æ ÎLk,l(f)Î– Æ CÎfÎ2–,

if – Ø 0, and
CÎfÎ3–/2 Ø ÎLk,l(f)Î– Ø cÎfÎ2–,

if – < 0.

In this section, we are primarily interested in positive –, however, the result
for negative – will be applied later.

Proof. We know that

f(x, y) =
ÿ

m,nœN
f̂(k, l)xmyn,

and so

Lk,l(f)(z) =
ÿ

pœN3
Apzp =

ÿ

m,nœN
f̂(k, l)zmk+nl =

ÿ

m,nœN
f̂(k, l)z(ma+nc,bm,cn).

It follows that Ap = f̂(m, n) if p = mk + ln for m, n œ N, and 0 if there are
no such m, n. This is one of the reasons for why we need to restrict ourselves
to particular k and l. For arbitrary choices, there might not be a one to one
correspondence.

For – Ø 0, we have that

ÎLk,l(f)Î2
– =

ÿ

pœN3
|Ap|2(1 + p1)–(1 + p2)–(1 + p3)–

=
ÿ

m,nœN
|f̂(m, n)|2(1 + ma + nc)–(1 + mb)–(1 + nc)–

Æ
ÿ

m,nœN
|f̂(m, n)|2(1 + ma)–(1 + nc)–(1 + mb)–(1 + nc)–

ÆC
ÿ

m,nœN
|f̂(m, n)|2(1 + m)2–(1 + n)2– = CÎfÎ2

2–.
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By using that (1+ma+nc) = ((1+2ma)+(1+2nc))/2 Ø (1+2ma)1/2(1+
2nc)1/2 in the above calculations instead of replacing it by (1+ma)–(1+nc)–,
we get that

cÎfÎ2
3–/2 Æ ÎLk,l(f)Î2

–.

Finally, for negative – the above inequalities are just reversed.

This finishes the proof.

This result has several interesting implications for our specific polynomials.
In particular, we can say the following.

Lemma 13. Every polynomial in C[z1, z2, z3] of the form

p(z1, z2, z3) = 2 ≠ za
1zb

2 ≠ zc
1zd

3

is cyclic in D3
– for all – Æ 1/2.

Proof. A polynomial of the above form is simply a 2-3 lift of the polynomial
2 ≠ x ≠ y. This polynomial has only one zero on T2, and therefore is cyclic
for all – Æ 1. This means that there exists a sequence of polynomials qn

such that
lim

næŒ
Îpn(2 ≠ x ≠ y) ≠ 1Î1 = 0.

By applying the previous lemma, this implies that

lim
næŒ

ÎLl,k(qn)p ≠ 1Î1/2 = 0,

and so p is cyclic for all – Æ 1/2.

The motivation for studying this particular kind of polynomials is because
every line which is the zero set of any polynomial of the form

a ≠
nÿ

i=1
ciz

bi ,

for ci > 0 such that
ÿ

ci = a, is also the zero set of one of the easier
polynomials of the form (51). This can be used to compare every polynomial
with one of the easier polynomials.

For any polynomial q(z1, z2, z3), with no zeros in D3, and whose zero set on
T3 is a curve, there is a polynomial of the form

p(z1, z2, z3) = 2 ≠ za
1zb

2 ≠ zc
1zd

3 ,
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such that Z(q) fl T3 = Z(p) fl T3. And furthermore there exists c > 0 and
d œ N such that

|q(z)| > c|p(z)|d,

everywhere in D3.

This can be seen by splitting D3 up into parts, one neighborhood u close to
Z(p) fl T3 in which p is smaller than ‘ with 1 > ‘ > 0, and the complement
of this neighborhood. First, choose d large enough so that the inequality
|q(z)| > |p(z)|d holds everywhere in this neighborhood u. Next, choose
0 < c < 1 such that |q(z)| > c|p(z)|d holds everywhere in D3. This is
possible since we have a continuous function on a compact set, since once
again, the polynomials are continuous on D3, which is compact.

We are now ready to prove the main results of this section.

Lemma 14. Every polynomial in C[z1, z2, z3] of the form

p(z) = a ≠
nÿ

i=1
ciz

bi ,

for ci > 0 such that
ÿ

ci = a, for which Z(f) fl T3 is a curve, is cyclic in
D– for all – Æ 1/2.

Proof. Let p(z) be a polynomial with the above properties. Then there
exists a polynomial q(z) of the form

q(z) = 2 ≠ za
1zb

2 ≠ zc
1zd

3 ,

such that Z(q) fl T3 = Z(p) fl T3. By the previous lemma q(z) is cyclic for
all – Æ 1/2. It follows that cq(z)d is cyclic for all – Æ 1/2. Since c and d
can be chosen such that

|p(z)| > c|q(z)|d

for all z œ D3, the first lemma of this section implies that p(z) is cyclic for
all – Æ 1/2.

This finishes the proof.

We can actually use the same technique as above in order to determine
cyclicity for polynomials, q(z1, z2, z3), of the above form whose zero set is a
hyperplane. In fact, it is actually easier, since in this case, the zero set will
be of the form (eiv1 , eiv2 , ei(≠av1/c≠bv2/c)), where a, b and c are non-negative
integers (well, c is even positive). It is easily seen that the polynomial

p(z1, z2, z3) = 1 ≠ za
1zb

2zc
3,

70



has the same zero-set. But this polynomial is simply a standard lift of the
polynomial 1 ≠ z, which we know to be cyclic for all – Æ 1. It follows that
p(z) is cyclic for all – Æ 1/3. By the same arguments as above, we can find
c > 0 and q œ N such that |q(z)| > |p(z)| for all z œ D3, which in turn
implies that q is cyclic for all – Æ 1/3. We state this as a theorem.

Theorem 12. Every polynomial in C[z1, z2, z3] of the form

p(z) = a ≠
nÿ

i=1
ciz

bi ,

for ci > 0 such that
ÿ

ci = a, for which Z(f) fl T3 is a hyper-surface, is
cyclic in D– for all – Æ 1/3.

In conclusion, we now know the following about polynomials of the form

p(z) = a ≠
nÿ

i=1
ciz

bi ,

for which all variables are represented.

(1) If Z(p) fl T3 is a finite set, then p(z) is cyclic for all – Æ 1.

(2) If Z(p) fl T3 is a curve, then p(z) is cyclic for all – Æ 1/2.

(3) If Z(p) flT3 is a hyper-surface, then p(z) is cyclic if and only if – Æ 1/3.

We end this section by discussing the remaining problems in order to obtain
a full characterization of the cyclic polynomials in 3 variables.

First of, even for the class of polynomials which we have primarily worked
with so far, we do not yet know anything about when we can say for sure that
a polynomial for which Z(p) flT3 is not cyclic. It is worth emphasizing that
the previous results regarding non-cyclicity of functions whose zero set has
real dimension n ≠ 2 is never applicable for these polynomials. Essentially
since we have only one equation which must hold in order to conclude that
we do not have type 2, and we have one degree of freedom for points in S1.
However, if one tries to generalize this to higher dimensions, then that result
might be useful, since we will then have a lot of equations which must hold
in order for the curve not to be of type 2, but we still only have one degree
of freedom.

Second, it is still not clear if these methods are possible to generalize to all
polynomials that are candidates for being cyclic. If it turns out that the
zero set of the general polynomial is a union between straight lines, points,
and hyper-planes, then it should be possible to find a polynomial which is
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a product of polynomials which we understand well, whose zero set is the
same as that of the general polynomial. In this case, we can use the above
results in order to determine cyclicity for each factor, and then finally use
the above methods to compare our well understood polynomial with the
general one. There is however, a possibility that the zero set is not a union
of points, straight lines, and hyperplanes, in which case the characterization
will be much harder.
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3.9 Integration currents and Z(f) fl T3

The goal of this section is to use find conditions under which polynomials
for which Z(f) fl T3 is a curve, can be determined to be non-cyclic. The
idea is the following.

Recall from Section 2.5, that if there exist a measure µ, whose support is
contained in Z(f) fl T3, for which C[µ] µ D≠–, then f is not cyclic in D–.
As usual, C[µ] denotes the Cauchy transform of the measure µ. Also, note
that if C[µ] œ D≠–, then C[µ] œ D≠— for all — > –, and so f will not be
cyclic in D— for any — > –.

We will mainly restrict our attention to a certain type of measure supported
on Z(f)flT3, and attempt to conclude for which – we have that C[µ] œ D≠–

for these specific measures.

Given Z(f) fl T3 which can be parametrized by (eiv1 , eibv1 , eicv1), where b
and c are negative rational numbers, we consider the probability measure µ
that has constant density on Z(f) fl T3 with respect to the pullback of the
Lebesgue measure, and whose density is zero everywhere else. Note that
since b and c are rational numbers, we only need to go a finite number of
periods (of v1) until we have covered the entire zero set. In particular, this
is important since this curve will not be space filling or anything unpleasant.
Furthermore, for the sake of making the calculations easier, we note that the
zero set can be parametrized by (eias, eibs, eics) where a, b, c œ Z and where
s œ [0, 2fi).

Example 14. Not all polynomials in our family have a zero set of this form,
since it may be the case that a, b, c or d is zero. For example, the zero set of

p(x, y, z) = 2 ≠ x ≠ yz

is given by (0, v, ≠v).

However, since this zero set is truly two dimensional, one might expect this
polynomial to behave like a polynomial in two variables. Although, nothing
has been proved yet.

But moving on, for the above parametrization of the zero set, the Cauchy
transform of µ is given by

C[µ](z1, z2, z3) = 1
2fi

⁄ 2fi

0

1
(1 ≠ eiasz1)(1 ≠ eibsz2)(1 ≠ eicsz3)ds.

We illustrate this method through an example. The general case for our
special polynomials is in fact shown in more or less exactly the same way.
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Example 15. Consider the polynomial

p(z1, z2, z3) = 2 ≠ z1z2 ≠ z1z3.

The zero set of this polynomial is parametrized by (s, ≠s, ≠s), and so, the
corresponding Cauchy transform is given by

C[µ](z) = 1
2fi

⁄ 2fi

0

1
(1 ≠ eisz1)(1 ≠ e≠isz2)(1 ≠ e≠isz3)ds.

By replacing the factors in the integral by their power series expansions
and changing orders of integration and summation, we get that the Fourier
coe�cients of C[µ] are given by

‚C(k, l, m)zk
1 zl

2zm
3 = 1

2fi

⁄ 2fi

0
eikszk

1 e≠ilszl
2e≠imszm

3 ds.

By orthonormality, we have that the above expression equals zk
1 zl

2zm
3 if k =

l + m and zero otherwise. It follows that

C[µ](z1, z2, z3) =
ÿ

l,mœN
(z1z2)l(z1z3)m = 1

1 ≠ z1z2

1
1 ≠ z1z3

.

If the above function lies in D≠–, then C[µ] will induce a bounded linear
functional on D– which annihilates the entire span of p(z), and so p(z) is
not cyclic in D–.

We have that C[µ] lies in D– if and only if

ÎC[µ]Î2
– =

Œÿ

l=0

Œÿ

m=0
(1 + l + m)–(1 + m)–(1 + l)– < Œ.

The above series is clearly divergent if – is non-negative, so from here on we
assume that – < 0.

By symmetry, the above series is finite if and only if
Œÿ

l=0
(1 + l)–

lÿ

m=0
(1 + l + m)–(1 + m)– < Œ.

Since m Æ l, we have that
lÿ

m=0
(1 + l + m)–(1 + m)– Ø (1 + 2l)–

lÿ

m=0
(1 + m)– Ø c(1 + 2l)–(1 + l)–+1.

By plugging this into the above series, we see that
Œÿ

l=0
(1 + l)–

lÿ

m=0
(1 + l + m)–(1 + m)– Ø c

Œÿ

l=0
(1 + l)–(1 + 2l)–(1 + l)–+1,
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and the last expression is finite if and only if 3– + 1 < ≠1, which implies
that – < ≠2/3.

In fact, by using that (1 + l + m)– < (1 + l)– instead, we get that

Œÿ

l=0
(1 + l)2–

lÿ

m=0
(1 + m)– Æ C

Œÿ

l=0
(1 + l)3–+1,

which is finite if and only if – < ≠2/3.

It follows that C[µ] œ D– if (and only if) – Æ ≠2/3, and so 2 ≠ z1z2 ≠ z1z3
is not cyclic for any – > 2/3.

We know from earlier results that this polynomial is cyclic if – Æ 1/2,
however, we do not yet know what happens for – œ (1/2, 2/3].

Independently, the above example shows that there is indeed harder for a
polynomial whose zero set is a curve to be cyclic than it is for a polynomial
whose zero set is just a finite set.

But how does this method work for other polynomials whose zero set can be
parametrized as (as, ≠bs, ≠cs) where a, b, c œ N? Well, actually exactly the
same. The Cauchy transform of the corresponding measure has previously
been expressed, and by once again using the power series expansion av each
factor, and then change orders of integration and summation, we get that
C[µ] œ D– if and only if

Œÿ

l=0

Œÿ

m=0
(1 + b

a
l + c

a
m)–(1 + m)–(1 + l)– < Œ.

Clearly, the same results regarding convergence will hold, we can in fact use
the same approximations. We state this as a theorem.

Theorem 13. Every polynomial in C[z1, z2, z3] of the form

p(z) = a ≠
nÿ

i=1
ciz

bi ,

for ci > 0 such that
ÿ

ci = a, for which Z(f)flT3 is a 3 dimensional curve,
is non-cyclic in D– for all – > 2/3.

As previously stated, we have now shown cyclicity for all – Æ 1/2, and
shown non-cyclicity for all – > 2/3 for this special family of polynomials.
But what happens in between?
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Chapter 4

Summary and some open

problems

In this thesis, we have primarily attempted to generalize results regarding
cyclicity in Dirichlet type spaces in one and two variable up to higher di-
mensions. By using a method originally developed in [1] , we started by
proving that a function with a large zero set on the distinguished boundary
in the sense of having positive Riesz capacity, cannot be cyclic in certain
Dirichlet type spaces. Although this result is very nice and quite general,
it is unfortunately very di�cult to check whether or not a set has positive
Riesz capacity or not. To remedy this, we use known results from the the-
ory of oscillatory integrals in order to show that a su�cient condition for
a set to have positive Riesz capacity is for it to contain a point with non-
vanishing Gaussian curvature. This idea was originally developed in [2] with
the purpose of determining cyclicity for polynomials in two complex vari-
ables. However, whereas in two dimensions, every submanifold of the zero
set on the distinguished boundary will have dimensions one or zero, there
are far more possibilities in higher dimensions. When generalizing this re-
sult to arbitrary dimension, we get two di�erent results, one weak result
which works for submanifolds of any dimension, and one strong result which
only works for hypersurfaces. But it is especially when trying to apply these
results to concrete functions that things start to behave di�erently from the
situation in two variables. In two variables, every polynomial whose zero set
was a curve could be compared to a function whose zero set has a point of
non-vanishing Gaussian curvature, but this turns out to be false in higher
dimensions. The strong result which is related to functions whose zero set is
a hypersurface is usually applicable, all we require is that the zero set con-
tains a point in which two partial derivatives do not vanish. However, for
polynomials whose zero set is a curve, we can not apply the above theorem
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for any polynomial whose zero set is in some sense flat. Furthermore, this
condition turns out not to be empty, in fact, we can construct a rather large
family of polynomials for which this condition does not hold.

In order to understand cyclicity of this particular family of polynomials for
which the previously established methods do not work, we are forced to de-
velop new methods. We begin by generalizing a result from [2] regarding
cyclicity for finite zero sets from two variables to any dimension. By using
the same proof idea, we show that every polynomial whose zero set consists
of finitely many points is cyclic for all –. After that, we notice that all
polynomials in this family whose zero set is either a curve or a hypersurface
can be compared to other, slightly simpler polynomials in this family. In
order to understand these polynomials, we generalize the concept of a lift
developed in [3], and through this method it becomes possible to compare
these polynomials to polynomials in lower dimension. In the situation where
the zero set is a hypersurface, this method together with the methods us-
ing curvature gives us sharp results regarding cyclicity. But for the curves,
the results we obtain are probably not sharp. Nevertheless, they are still
very interesting, because the results we obtain show us that the cyclicity
properties are truly di�erent for polynomials whose zero sets have di�erent
dimensions! Finally, for the polynomials in our family whose zero set is a
three dimensional flat curve, we explicitly construct bounded linear func-
tionals which annihilate the entire generated set of the polynomial. We do
this by applying Cauchy transforms of induced Lebesgue measures on the
zero set, thus proving non-cyclicity for certain parameter values.

Several questions still remain unanswered. The most obvious question is
whether or not the bound on cyclicity for our special polynomials whose
zero set is a curve, is in fact sharp. Another thing which is interesting
to understand is how big a constriction the requirements for applying the
method of non-vanishing Gaussian curvature really are. The requirements
clearly impose severe restrictions on how the curve may look, more precisely,
it demands that the second derivative is parallel to the first derivative in all
points. When showing non-cyclicity for the polynomials with flat zero set,
we never actually used that they were polynomials, just that the zero set
could be parametrized by a straight line with rational coe�cients. If it turns
out that the only zero sets of polynomials which do not satisfy the curvature
conditions are the flat zero set, then this will imply that we already have
su�cient tools for completely understanding the situation. This is probably
very optimistic, but it will for sure help our understanding of the problem
to understand in which situations our current methods are applicable.
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