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Abstract

In this thesis, we will present two theorems with similar structures from the
fields of algebra and topology. These theorems are commonly referred to as
the Galois correspondence and focus on field extensions and covering spaces.
Both field extensions and covering spaces can be assigned a group of automor-
phisms. The Galois correspondence then means that there is a 1-1 correspon-
dence between subgroups of the automorphism group, and intermediate field
extensions/covering spaces. The objective of this thesis is to highlight the sim-
ilar background of both of these topics.

In the last section, the inverse Galois problem for C(t) will be solved as an
application where the Galois correspondence of topology is used for results in
the algebric counterpart.
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Introduction

The field of Galois theory is situated in the topic of algebra. The name orig-
inates from the French mathematician Evariste Galois (1811-1832) who made
this specific theory evolve. Galois theory originates in the study of fields and
polynomial equations. Polynomials which do not have any roots in a given
field exist. This naturally leads to the question whether larger fields exist that
contain these roots. The answer to this question is yes. Hence as long as polyno-
mials exist in a given field without roots, then there must be bigger fields that
extend the original one. An additional question might be if fields exist that
cointain the original field, but that are still is contained in the first extension. If
so, how many intermediate fields are there and how do they structure? The Ga-
lois correspondence is the groundwork on which the whole Galois theory builds
upon and answers these questions. The theorem uses sufficiently large field ex-
tensions called Galois extensions. These extensions are obtained by adding all
the solutions of a polynomial without any multiple roots to a field. It is for these
extensions that the theorem holds. Further on, this theorem will be referred to
as theorem A.

Theorem 0.0.1 (Theorem A). Let F be a field and f(z) some polynomial
in F[z] without any multiple roots. Let K be the field obtained by adding
all the roots of f(z) to F. Then we can associate a group Gal(K/F) to K
as an extension of F. Let A = {Fields M such that ¥ € M C K}. Then
there is a 1-1 correspondence between the subgroups of Gal(K/F) and A. This
correspondence has the properties that if My, My are fields in A corresponding
to the subgroups H;, Ho respectively, then M; C My if and only if H; D Hs.

Chapter 1 will be devoted to thoroughly introduce the topic of Galois theory
and to prove the Galois correspondence. In order to understand the concepts
better, this study focuses on a relatively small number of proofs, and instead
uses many examples.

The second part of this thesis is about a theorem in topology wich has a
striking resemblance to theorem A. The main study of topology is topological
spaces and what maps exist between them. Our interest here will be of open
covers. They consist of two spaces X,Y with a continuous and surjective map
p:Y — X with a certain property. Namely, each point in X has a neighbour-
hood such that its preimage consists of disjoint open sets in Y, so that each of



these sets is homeomorphic to the neighbourhood in X. An illustrative example
is the real numbers and the circle with the exponential map p(z) = e?™@.

0=

Figure 1. The real line projected down on a circle.

The real line is here presented as the upper spring-like curve and it is projected
downwards onto the circle by the map p. It is easy to see that these spaces
would satisfy the definition of a covering space. The theorem in topology that
resembles theorem A will be called theorem B, and involves special covering
spaces called Galois covers (by the resemblance to Galois theory). It is for these
covers that the following hold.

Theorem 0.0.2 (Theorem B). Let p: Y — X be a Galois cover. Then we can
associate a group Gal(Y/X) to the open cover. Let B be the set of spaces Z so
that the diagram below commutes and that each of the maps is an open cover.

Y

Z/p
\X

Figure 2. A commutative diagram of open covers.

Then there is a 1-1 correspondence between the subgroups of Gal(Y/X) and
the set B. This correspondence has the property that if Z;, Z, are spaces in
B corresponding to the subgoups Hi, Hs respectively, then there is a covering
map f : Z1 — Zo if and only if Hy O Ho.

Chapter 2 properly introduce the concept of open covers and prove theorem
B. The focus will be on similarities and differences between covering spaces and
fields, so not many examples are discussed.

The third and last part will see an application of when Galois in topology
is used to show a result for Galois in algebra. As we have seen, given a field F,



there are ways to extend this to a field K by adding roots of polynomials. Some
of these extensions have the property of being Galois, to which we can associate
a group. It is known that all fields have such Galois extensions. The question
we want to answer is the opposite. That is, given a field F, do Galois field
extensions exist so that each finite group is associated to them? This question
is commonly referred to as the inverse Galois problem. The question is still
unanswered for F' = Q. But when F is the field of complex rational functions,
this holds true. We will in chapter 3 touch upon the necessary results to show
that the inverse Galois is true for the field of complex rational functions, denoted
C(t). The aim is to give a brief overview of the different results with a sufficient
amount of attention paid to details.



Chapter 1

Galois Theory

Abstract algebra is one of the broadest fields in mathematics, often intersecting
with many other areas. For example analysis, geometry and combinatorics to
name a few. Some of the more fundamental objects of algebra are groups, rings
and fields. In many cases, when given a group or field, we want to investigate
the subgroups of this group. Galois Theory does the opposite from this point of
view. Given a field, we do not so much ask about the subfields in it, but rather
in what ways we are able to add elements to this field, thereby extending it.
One may pose questions about these field extensions. Do they for instance all
have the same properties, or do some differ from others?

One kind of extension is called Galois which will be introduced in section 1.3.
These particular extensions play a vital role in the fundamental correspondence
of Galois Theory, which will be the topic of section 1.4. But before that we first
need to properly define field extensions, and further introduce some fundamental
field extensions, which will be done in sections 1.1 and 1.2 respectively.

1.1 Field extensions

Definition 1.1.1. Let K be a field and F' a subfield. Then K is called an
extension of F', denoted by K/F, and F is called the base of the extension.

Remark. Tt will be useful in coming chapters to have a precise meaning of F
being a subfield of K. F' is a subfield of K if there exists an injective homo-
morphism ¢ : F — K. The following diagram, where the hook symbolizes
injectivity, will be in common practice throughout.

K

]

F
Figure 8. An injective field homomorphism.



The hypothesis that the homomorphism is injective is actually superfluous. Non-
trivial homomorphisms of fields are always injective. For clarity, injective ho-
momorphism will nonetheless be used throughout.

Example 1.1.2. If K/F is an extension, then it is clear that K/F fulfils the
axioms of a vector space, when the elements of F' are interpreted as scalars.
This can be exemplified by the complex numbers C, seen as an extension of the
real numbers R. All complex numbers can be written on the form a + bi, where
a,b € R. So, the vector space C/R has 1 and i as a basis. Hence, the space is
of dimension two.

The fact that we can interpret K as a vector space over F' motivates the
following definition.

Definition 1.1.3. Let K/F be an extension. The degree of K/F is the di-
mension of K as a vector space over F', denoted by [K : F]. We say that an
extension is finite if its degree is finite.

Proposition 1.1.4. If K/L and L/F are two finite field extensions, then K/F
is also a finite extension where [K : F| = [K : L|[L : F].

Proof. See [1, p.523-524]. O

Example 1.1.5. In example 1.1.2, we saw that C/R is a vector space of di-
mension two, hence it is a finite extension of degree two. On the other hand,
the extension R/Q is infinite.

Why is it that the extension R/Q is infinite? In order to answer that ques-
tion, we need to introduce some further concepts.

Definition 1.1.6. Let K/F be an extension. An element a € K is said to be
algebraic over F if there exists a polynomial p(xz) € F|x] so that p(o) = 0. If
no such polynomial exists, then « is said to be transcendental over F.

If all elements of a field K are algebraic over some subfield F', then we say that
K is algebraic over F', and transcendental otherwise.

Example 1.1.7. v/2 € R is algebraic over Q, since it is a root of the polynomial
22 —2in Q(z). i € C is also algebraic over Q by the polynomial 22+ 1. On the
other hand, there is no polynomial with coefficients in QQ such that 7 € R is a
root (See [5, section 24.2]). Hence, 7 is transcendental over Q.

Proposition 1.1.8. If an extension K/F is finite, then K is algebraic over F.
Proof. See [1, p.522] O

Example 1.1.9. Now we can justify our claim in example 1.1.5, namely that
the extension R/Q is of infinite degree. By example 1.1.7 we saw that this
extension is transcendental, and so it must be of infinite degree by proposition
1.1.8. By the same proposition, we have that C/R is an algebraic extension
since we saw that the degree is finite.

wt



Definition 1.1.10. Let F' be a field. F is said to be algebraically closed if
K = F for every algebraic extension K/F.

As we have seen, polynomials play a central role when studying field ex-
tensions. We now introduce two properties of polynomials, irreducibility and
separability, which will prove important in the later characterisation of Galois
extensions.

Definition 1.1.11. A polynomial f(x) € F[z] is reducible in F' if there exists
polynomials p(z), ¢(z) € F[z] of degree greater than zero such that f(z) = p(x)q(z).
If f is not reducible, then we say that f is irreducible.

Notice that a polynomial may be irreducible in one field F', but reducible in
some extension of F. For example z? — 2 is irreducible in Q, but it is reducible
in R.

Proposition 1.1.12. Suppose f(z) € F[z] and « € F. Then
f(a) =0 if and only if (z — a)|f(z) in F[z].

Proof. Assume (z — «)|f(z) in F[z]. This is equivalent to f(z) = (z — a)g(z)
for some g(z) € Flz]. Now

fla) = (= a)g(a) = 0.
Assume f(a) = 0. Then the Euclidian algorithm gives
f@) = (& —a)g(a) +r(x)
for some g(x),r(z) € F[x] where deg r(z) < 1. So r(z) = ¢ for some ¢ € F.
Then from the hypothesis we gather
fla)=(a—a)g(a) +c=0<c=0,
and so
f(z) = (z—a)g(z) & (z —a)lf(z),
which completes the proof. O

Definition 1.1.13. Let f(z) € F[z] for some field F. An element o € F' is a
root of f of multiplicity n € Z if

(x - a)"|f(x) but (z — @)™ Jf(2) in Fla].

If n =1, then « is called a simple root, and if n > 2 then « is called a multiple
root.

Definition 1.1.14. If f(z) € F[z] only has simple roots, then f(z) is called
separable.

Theorem 1.1.15. Let K/F be an extention, and o € K an algebraic element
over F'. Then there exists a unique monic polynomial f(x) € F[z] such that
f(a) = 0 with the properties



a) g(a) =0 for g(z) € F[z] if and only if f(x)|g(x) in F|x].
b) f(x) is irreducible in F[z].
Proof. See [1, p.520] O

Definition 1.1.16. The polynomial f(z) in the previous theorem is called the
minimal polynomial for a over F' and is denoted by mq r(x).

Example 1.1.17. (Minimal polynomials)
e 22 — 2 is the minimal polynomial for v/2 in Q.

e 23 — 2 is the minimal polynomial for ¥/2 in Q.

1.2 Fraction fields and two extensions

In this section, we will introduce three common ways of creating fields, namely
fraction fields, adding elements to existing fields and splitting fields.

First up is the creation of fields from rings. A ring may be viewed as an incom-
plete field, since it usually lacks multiplicative inverses for some elements. We
further assume that the ring is an integral domain, since it is not possible to
find an inverse to nilpotent elements.

Theorem 1.2.1. Let R be a ring which is an integral domain. Then there
exists a field Frac(R) so that

a) There exist an injective homomorphism ¢ : R — Frac(R), i.e R is a
subring of the field Frac(R)

b) Frac(R) is the smallest field containing R.
Proof. See [1, section 7.5]. O
Definition 1.2.2. The field Frac(R) is called the fraction field of R.

Example 1.2.3. Q is the fraction field of the ring Z. Outline: Consider
the set G = {(a,b) € Z x Z|b # 0}. Define a relation ~ on G so that
(a,b) ~ (c,d) if ad = be. ~ is an equivalence relation on G, and we denote
the equivalence classes as [a,b]. First we introduce two operators +, -, defined
as [a,b] + [¢,d] = [ad + bc, bd], [a,b] - [¢,d] = [ac, bd]. These operations are inde-
pendent of which representatives a, b, ¢, d € Z we use for the equivalence classes.
From this construction it is easy to verify that this is actually the field Q, even
though its elements usually are represented as 3 and not [a, b].

Another fraction field, which will be our main interest in chapter 3, is the frac-
tion field of the polynomial ring C[¢]. It is usually denoted by C(¢). First, note
that C is a subfield of C(t), represented by the constant functions. Second, it
is also a transcendental extension over the field of complex numbers. This fol-
lows from the fact that C is algebraically closed, and so every polynomial with
complex coefficients can be fully factorized into linear factors.



Next up is field extensions generated by adding an algebraic element to an
existing field. Algebraic elements are by definition roots to some irreducible
polynomial.

Definition 1.2.4. Let K/F be an extension and a € K an algebraic element
over F. Then we let F(«) be the smallets subfield of K containing F and «a.

Proposition 1.2.5. Let K/F be an extension and a € K an algebraic element
over F. Define a function eval, : F[z] — K such that f — f(a) for f € Flz].
Then:

e eval, is a ring homomorphism
o Ker(evaly) = (mq r(z)) (The ideal generated by mq, r)
e Im(eval,) is the smallest subfield of K containing F' and c.
Proof. See [1, p.517] O

Remark. Hence, we have got a description of F'(«). By the isomorphism theorem
we have F(a) & Flz]/(ma,r(x)). Something interesting arises here. If o and
have the same minimal polynomial, then F(a)) = F(8). We then say that these
are algebraically indistinguishable.

Now that we have found a precise way of describing the field F(«), it would
be useful to find a good representation of the elements as well. Here, the minimal
polynomial plays a vital role. First of all, note that the minimal polynomial
essentially is a relation between the newly added element and the base field (the
field where the polynomial is defined). Consider m s o(z) = 22 — 2 and assume
that 6 is the root of the polynomial. Then @ fulfils the relation §2 = 2 (and we
know that the roots of m, 5 () are the only ones to do so). Thus, elements
of the form a + b0, a,b € Q would certainly be in Q(a). These elements would
also be minimal in the sense that powers of 6 greater than 1 could always be
reduced. Hence we would expect that 1 and 6 are basis elements of Q(6) seen
as a vector space over Q. It turns out that these expectations are true.

Proposition 1.2.6. Let F be a field, f(x) € F[z] be an irreducible polynomial
of degree n, and let 6 be a root of f(z) in some extension of F. Then

o [F(A):Fl=n
e 1,0,0% ..,0" ! are a basis for F(6)
Proof. See [1, p.513] O

Example 1.2.7. (Bases of field extensions)

e The field extension Q(1/2)/Q is of degree 2, and (1,1/2) is a basis. So
Q(V2) = {a+bv2la,b € Q,v2" =2},



e Consider the polynomial p(z) = x® — 2z + 2 in Q(z). By the rational root
test we see that this is irreducible, hence proposition 1.2.6 is applicable.
Let 6 be a root of p(z) in some extension of Q. Then we get the relation
63 = 20 — 2, which we can use to reduce powers of # greater than 2. So a
calculation might look like

(1+6*)(3—0)=3—0+30% -6
=3—0+30%—3(20—2)
=970+ 0

e Let f(z) = 2™ — 1 for some integer n. The roots of polynomials like
these are called the nth roots of unity. They are easily described in their

2mi 2mi 2mi

complex form (1,e™n ,e™ 2 ... e '("_1)). These elements are actually a

27i

cyclic group, and e ™ is a generator. In fact, etk generates the group if
and only if k£ and n are relatively prime. Hence, there are ¢(n) generators
of this group that are usually called the nth primitive roots of unity. Let
(n be some primitive nth root of unity. The only roots of the minimal
polynomial m¢, o(z) are actually all primitive nth roots. So by adding
(n to Q, not only do z™ — 1 completely factor into linerar factors, but
we know that [Q(¢,) : Q] = ¢(n). This will be of further interesest in
example 1.3.3.

Definition 1.2.8. A polynomial f(z) € F[z] is said to split completely over F
if it can be factorized as a product of linear factors in F[x].

Note that even though we extend a field F' by adding an algebraic element «,
this does not imply that the minimal polynomial mg r(z) splits completely in
F(c). Consider the case when a = /2. Here we have that mys o) = 3 -2,
but in Q({/2) we have that mys o(2) = (z—V2)(@*+ {22+ V/22). The missing
roots are in this case the complex numbers ¥/2e°5" and ¢/2e*5. If we want to
ensure that a polynomial splits completely in a field extension, then we turn to
what is called splitting fields.

Definition 1.2.9. An extension K/F is a splitting field for some f(z) € F|x]
if
a) f(x) factors completely in K

b) If f(z) factors completely in some subfield of K’ of K (F C K' C K),
then K = K.

Remark. All polynomials do have some splitting field. These fields are isomor-
phic up to isomorphism. For further details, see [1, p.536; p.542]

Example 1.2.10. (Splitting fields)

e The extension Q(v/2)/Q is a splitting field for the polynomial 22 — 2, since
it factors as (z + v2)(z — v/2).



o Let f(xz) = 2" — 1. In example 1.2.7 we saw that the roots of f(x) forms a
cyclic group. Let ¢, be a nth primitive root (equivalently a generator for
the group). By adding this element to Q all other roots of f(x) will also
be included, hence Q(¢,) is a splitting field for f(x).

o Let f(z) = 2>—2. Asnoted, the roots of this polynomial are v/2, ¥/2¢3 and

/2¢2. Hence, Q(V/2, ¥/2¢3, V/2¢?) is a splitting field of f(z). Yet we might
want to find an easier way of describing this field. First note that /2 and

(3 together can describe the roots of f(x). So Q(¥/2, v/2(3, ¥/2¢3) € Q(V/2, ().

Similarly we find that (3 € Q(V/2, V/2(s, ¥/2¢2). Thus, the splitting field
of f is equivalent to Q(/2, (3).

1.3 Galois extensions

Polynomials and their roots are vital in the study of field extensions. What
Galois brings to the table is to study how the roots of polynomials can permute.
These permutations create automorphisms of the field extension, leaving the
base field unchanged. The set of automorphisms of this kind creates a group.
This reduces the study of fields to the study groups which are easier to work
with because of their simple structure.

Definition 1.3.1. Let K/F be an extension. We then define Aut(K) as the
set of automorphisms of K and Aut(K/F) as the set of automorphisms of K
fixing F.

Remark. By the properties of automorphisms, it is evident that Aut(K) is a
group under composition. Similarly one sees that Aut(K/F) is a subgroup.

Proposition 1.3.2. Let F' be a field, a some algebraic element in an extension
K/F and mq, p(x) the minimal polynomial. If 0 € Aut(K/F), then o(a) is a
root of my, p(z).

Proof. See [1, p.559]. O

So, Aut(K/F) can only permute the roots of irreducible polynomials. This
result will be of great use when trying to calculate the automorphism group for
extensions.

Example 1.3.3. (Automorphism groups)

o Let K = Q(v/2) and F = Q. The elements of K are on the form a -+ bv/2,
a,b € F. Since any o € Aut(K/F) fixes F, the automorphism is only de-
termined of where it maps v/2. We have that m s p(2) = (z—v2)(z+V/2).
By proposition 1.3.2, every automorphism maps v/2 to either v/2 or —v/2.

Both of these are automorphisms and they are the only ones. Hence
|Aut(K/F)| = 2.

10



e Let K = Q(V/2) and F = Q. The elements of K are on the form
a4+ b¥2 + ¢4, a,b,c € F. By the same argument as in the previous
example, the automorphisms in Aut(K/F) are only determined by where
they map /2. But the roots of m g5 p are \‘75, \3/§§3, \75{% The last two

are not in K, and so ¥/2 can not be mapped there. The only choice left is
that /2 maps to itself. Hence Aut(K/F) = {e}.

e Let K be the splitting field of 2% — 2 over Q. In example 1.2.10 we saw
that K = Q(+¥/2,(3). The elements of Aut(K/F) are determined by where
they map /2 and (3. Consider the maps:

a-{%H‘ﬁ@ T.{WH{"@

(3 (3 G5 (3

First we want to esatablish that o and 7 are automorphisms. We will do
this by showing that the action of these maps on the basis vectors gives
the same space. A basis for the extensions Q({/2)Q is (1, V/2, ¥/4) by
proposition 1.2.6. For now, we claim that [Q(+/2,(3) : Q(+/2)] = 2 (this
will be showed later in example 1.3.5). Then again by proposition 1.2.6,
the extension Q(+/2,(3)/Q has the basis (1, V/2, V4, (3,32, (3V4). o
maps these elements to (1,(3/2,(2V/4,(3,(23/2,V/4). Tt is easily shown
that these two sets of elements can be expressed by each other. So since the
first one was a basis, the other one must be too. In a similar fashion, we can
show this for 7, and then easily check that ¢ and 7 are homomorphisms.
To better visualize o and 7, we consider where they map the roots of
3 —2. If we let a1 = /2,00 = /23,003 = \3/§C§, then o and 7 can be
presented on cyclic notation. Then o = (123) and 7 = (23). By some
computation, we see that these elements generate the whole of S3. So we
conclude that Aut(K/F) = Ss.

e Let K be the splitting field of z™—1 and F' = Q. As seen in example 1.2.10,
K = Q(¢,) where ¢, is a primitive nth root of unity. In example 1.2.7,
we noted that {2 too is a primitive nth root of unity when n and a are
relatively prime. We also noted that the primitive nth roots of unity are
the roots of the same irreducible polynomial. So then the automorphisms

op i Cn= CF forl <k <mand (k,n) =1

are in Aut(K/F). These are in fact the only automorphisms, since ¢, is
mapped to each of the primitive nth roots, i.e the roots of mc, r.

From here, it is not hard to verify that Aut(K/F) = (Z/nZ)*.

Definition 1.3.4. Let K/F be a finite extension. Then K/F is said to be
Galois if [K : F] = Aut(K/F), in which case we denote the automorphism
group by Gal(K/F') := Aut(K/F).

Remark. In general, the automorphism group is smaller than the index.

11



Example 1.3.5. (Galois extensions)

e The extension Q(¥/2)/Q is not Galois. From example 1.3.3 we saw that
|Aut(Q(¥/2)/Q)| = 1, while [Q(¥/2) : Q] = 3.

e Let K be the splitting field of 23 — 2 and F = Q. |Aut(K/F)| = 6 by
example 1.3.3. We have seen that KQ(+/2,(3), so we get the diagram:

Q(V2,¢3)

Q )

(V2) Q(¢s
\ /
3
Q
Figure 4. Diagram of field extensions.

Now we get that

[Q(V2,¢3) : Q(V2)] -3 = [Q(V2,¢3) : Q]
[Q(V2,¢3) : Q(¢3)] - 2 = [Q(V2,¢3) : Q.

The degree [Q(¥/2,(3) : Q(+/2)] is equal to the degree of the minimal poly-
nomial g(x) of (3 over Q(v/2). But deg(m¢, o) = 2 and it must divide g(x),
so the degree of g(z) is smaller or equal to 2. The equations above say that
[Q(¥/2,¢3) : Q] divides 2, so it must be that [Q(V/2,¢3) : Q(¥/2)] = 2. Hence
[Q(¥/2,¢3) : Q] = 6. Hence, [Q(V/2,¢3) : Q] = |Aut(K/F)| and so the extension
K/F is Galois.

Definition 1.3.6. Let H C Aut(K) be a finite subgroup. The we define
K" ={ge K|o(g) =g, for all o € H}. K is a subfield of K and is called the
fixed field of H.

Example 1.3.7. Let K = Q(V/2), F = Q and G = Aut(K/F). In example
1.3.3, we saw that G = {e}. So, K¢ = K, since the identity fixes all elements
of K.

The definition of Galois extensions may at first seem cryptic. The two con-
cepts of index and size of the automorphism group do not immediately relate
in any meaningful way. FEven so, this definition shows to be a connection of two
fundamental building blocks of the Galois correspondence, namely, fixing field
of the automorphism group, and splitting fields for separable polynomials. For
example, note in example 1.3.5 that the splitting field of 22 — 2 is Galois. We
state the precise theorems.

Theorem 1.3.8. Let G = {01 = 1,039, ...,0,} be asubgroup of automorphisms
of a field K and let F be the fixed field. Then

12



K:F]=|G|=n
Proof. See [1, p.570]. O
Corollary 1.3.9. Let K/F be any finite extension. Then

Aut(K/F)| < [K : F|
with equality if and only if F is the fixed field of Aut(K/F).

Proof. Let K/F be any finite extension and F’ the fixed field of Aut(K/F).
Then proposition 1.1.4 and theorem 1.3.8 together gives

|[Aut(K/F)| = [K : F'
[K:F]|=[K: F/][F/ : F]
K : F] = |Awt(K/F)|[F" : F.

Now [K : F] = |[Aut(K/F)| if and only if [F’ : F] =1, i.e when F is the fixed
field of Aut(K/F). O

Another useful property of fixing fields is that it is easy to find the automor-
phism group.

Corollary 1.3.10. Let K be a field, H C Aut(K) a finite subgroup and
KH = M. Then Aut(K/M) = H.

Proof. We have that H C Aut(K/M) C Aut(K). Then we get
[H| = [K : M] < |Aut(K/M)| < [H].
So Aut(K/M) =H. O

Theorem 1.3.11. Let K/F be a finite extension. Then we have that K/F
is Galois if and only if K is a splitting field of some separable polynomial
f(x) € Flz] over F.

Proof. See [1, p.572-573] O

Proposition 1.3.12. Let f(z) € F[z] be an irreducible and separable polyno-
mial in a field F and let K be the splitting field of f(z) over F. Then the group
Gal(K/F) acts transitively on the roots of f(x).

Proof. See [1, p.606]. O

Hence, we now have three ways of characterizing a Galois extension. We
summarize: If the extension K/F is Galois, then the following are equivalent:

o [K:F]=Auw(K/F).
e K is a splitting field over F' for some irreducible polynomial f € F[z].
e The fixing field of Aut(K/F) is F.

13



1.4 The Galois correspondence

In this section we are able to properly state the Galois correspondence (Theo-
rem A) in detail and prove the main part. Furthermore, we will look at some
examples of how this structure unfolds. We end by analysing some applications
of Galois theory, a generalization reaching to infinite field extensions and stating
the inverse Galois problem.

Theorem 1.4.1. Let K/F be a finite Galois extension and G = Gal(K/F).
Then there is a 1-1 correspondence between intermediate subfields FF C M C K
and subgroups G D H D {e}

K {e}

e e

M\F h H\G

Figure 5. Commutative diagrams of corresponding fields and groups.

such that K /M is Galois. The correspondence is given by

K Gal(K/K)
e M correspond to Gal(K/M): pf — Gal(K/M)
F Gal(K/F)
{e} Klet
e H correspond to K#: I / N KH /

N N

Furthermore, this correspondence has the properties

KG

a) Let My, Ms be subfields of K and let Hy, Hy be their corresponding sub-
groups of G. Then M; C M, if and only if Hy O Hs.

b) The extension M/F is Galois if and only if H is normal in G.

Proof. We show is that the correspondence {Subgroup} — {Subfield}, given by
H — KT is bijective.
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(Injectivity) Let H be a subgroup of G = Gal(K/F). Our correspondence
maps H to K. The extension K/K is Galois by corollary 1.3.9. Assume
that K = K for some subgroup H’ of G. Corollary 1.3.10 then gives
that

H = Aut(K/K") = Aut(K /Ky = H'.
So this correspondence is injective.

(Surjectivity) Let M be any subfield of K containing F. Our goal now is
to find a subgroup H C Gal(K/F) so that K = M. K/F is Galois, so
K is a splitting field over F' for some separable polynomial f(x) € F[z].
The polynomial f(x) is also in M[z] since F' C E. Hence K is a splitting
field for f(x) over F, and so the extension K/E is Galois. KS(K/E) = |
and Gal(K/FE) C Gal(K/F'), so we have found a subgroup of Gal(K/F)
which fixing field is F.

O

Example 1.4.2. (Galois extensions)

Let K = Q(v2) and F = Q. We saw in a previous example that
Gal(K/F) = {e,0}, where 0(v/2) = —/2. Hence, the diagram of sub-
fields of K will be

K {e}

F {e,o}
Figure 6. Diagram of intermediate fields of Q(v/2)/Q.

Let K be the splitting field of 2°—1 and F' = Q. Hence K = Q((5) for some
primitive 5th root of unity (5. By previous example, Gal(K/F) = (Z/5Z)*.
This is a cyclic group, with the only subgroup < 4 >= {1,4}. Let M be
the fixed field of < 4 >. Then we get the following diagram:

Q(¢s) {e}
/ /
M 4 <4> 4
X K
Q (z/52)*
Figure 7. Diagram of intermediate fields and subgroups of the extensions
Q(¢)/Q.

In order to describe the field M, consider the element a = (5 + Cgl It
is fixed by < 4 >, so @« € M. To show that M = Q(«), we only need to
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check that « is not a rational number. (s is a root of 2° — 1, and if we
remove the factor (z — 1), we gather that (5 is a root of the polynomial
2%+ 23 + 22 + 2 + 1. Thus we get the expression (5 + (2 + (2 + (¢ = —1.
Now we get

A ta=CG+2+G 2+ G+
=GHE+E+G+2
=(=1)+2.

Hence, replacing a by x, we get that « is a root of the polynomial z2+z—1.
This is irreducible by the rational root test. Hence M = Q(«). Here we
note that M is a splitting field of Q

Remark. This version of the Galois correspondence only handles the case where
the extension is finite. Further generalizations to the infinte case exist, but are
not covered here. For a brief introduction, see [1, p.645-652]. However, this
constraint is not present in theorem B. This will be further discussed in section
2.2.

As we have seen, all fields have a Galois extension of some kind. The question
now is if there is some limit of what groups can appear as a Galois group to
some extension for a fixed field. In chapter 3 we will investigate, given a field
F, if every finite group appears as a Galois group for some Galois extension of
F. This is usually referred to as the inverse Galois problem. The case we will
study, and show that it holds true, is when F' = C(t). It is however not known
if this is true when F' = Q, even though it is true for all finite solvable groups.
Theorem A can be applied to solve several problems. It can be used to show that
there is no general solution by radicals to polynomials of degree 5 and higher. It
has also a significant use in proofs considering what geometrical objects can be
constructed by straightedge and compass. For further details on these subjects,
see [1, Section 14.7] and [1, Section 13.3] respectively.
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Chapter 2

Covering spaces

The goal of this chapter is to investigate the similarities and differences of the-
orem A and theorem B from the introduction. Theorem A is stated in the
context of algebra and deals with fields, while theorem B is stated in the con-
text of topology and deals with what is called covering spaces. We must first
find a way of associating groups to these covering spaces. The idea of connecting
groups with topological spaces is not unfamiliar. The fundamental group is a
prime example of when group theory goes a long way to broaden the insights
how certain topological spaces differ and agree. The fundamental group does in
fact play a greater role in a generalization of theorem B, but it is beyond the
scope of this thesis. For further details, see [4, p.315].

In section 2.1 we will properly introduce covering spaces and discuss their
similarities to field extensions. In section 2.3 we will state and prove theorem
B. This theorem is only valid for certain covering spaces, called Galois covers.
These Galois covers and the connection of covering spaces with group actions
will be the topic of section 2.2. In section 2.4 we will present a specific cover
of interest. This is not only a fundamental Galois cover, but it also plays a key
role in chapter 3.

2.1 Covering spaces

Definition 2.1.1. Let p: Y — X be a continuous map. An open set u C X is
said to be evenly covered if p~!(u) = U v; such that

iel
i. v; are open subsets of Y’
ii. v;Nv;=0foralli+#j
iii. Each restriction p|,, : v; — u is a homeomorphism.

Definition 2.1.2. A continuous, surjective map p : ¥ — X is said to be a
covering map if each element z € X has an evenly covered neighbourhood. Y
is said to be a covering space of X, and X is said to be the base of the cover.
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Remark. A covering map of two covering spaces will sometimes be referred to
as a cover.

Proposition 2.1.3. All covering maps are open and quotient maps.
Remark. Remember, a map ¢ : Y — X is a quotient map if
e ¢ is surjective.
e U C X is open if and only if ¢~ (U) C Y.
Example 2.1.4. (Covering maps)

e Homeomorphisms ¢ : Y — X are covering maps. Just choose any point
2 and corresponding neighbourhood U. ¢~!(U) is a disjoint union of one
open set, and it is trivially homeomorphic to U.

e Themap e: R — S!, r = 2™ is a covering map. Given any zg € St, we
may find an evenly covered neighbourhood u of x(, as seen in the figure.
This is only a visualisation, for further details see [4, p.218].

0=

Figure 8. The real line projected down on the circle by a covering map

e A fundamental example of covers is the projection p : X x I — X,
(z,4) — x where X is any topological space and I a discrete space. For
any open set U C X, it follows that p~!(U) = [[,c; U x {i} which are all
trivially homeomorphic to U and so the axioms of a cover are fulfiled. We
call this the trivial cover. It even turns out that every covering space is
locally equivalent to a trivial cover (see proposition 2.1.9).

In order to address the claim that being a covering space is equivalent to the
trivial cover, we first need a method to compare different coverings. In algebra,
we already have an intuitive understanding of isomorphisms and automorphisms
of fields as a tool to compare fields. The same is true in topology for topological
spaces (when homeomorphisms are seen as isomorphisms). On the other hand,
what tool should be used for covering spaces is not so obvious. In order to find
a suitable structure, we first introduce the concept of lifts.
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Definition 2.1.5. Let p : Y — X be a covering map and ¢ : Z — X a
continuous map. A lift ¢ of f is a continuous map ¢ : Z — X so that ¢ = pop,
i.e the diagram commutes.

z%, X
Figure 9. A lift of the function .
Example 2.1.6. Let o : I — S! be the loop ¢(z) = 2™ at 1 going one lap
around the circle. Define the paths @¢1,$2 : I — R as ¢1(z) =z, ga(z) =2 +n
(n € N). Tt follows that
2miT 90(93)
2mi(z+n) _ eQm‘x

podi(z) =p(z)=e
po@a(r) =p(z+n)=e = o(z).

So these are clearly lifts of .

Proposition 2.1.7 (Unique lifting property). Let ¢ : ¥ — X be a covering
map and let Z be connected. Assume that ¢ : Z — X is a continuous map
and that @1,p9 1 Z — Y are lifts of ¢ that agrees at some point of Y. Then

P1 = Pa.

oY
L7 P2 lp
Z7-%, X
Figure 10. Two lifts of the same function.
Proof. See [4, p.220]. O

We can use the concepts of lifts as a comparative tool of covering spaces if
we also let ¢ : Z — X be a covering space. A lift can then be viewed as a
map between covers sharing the same base such that their structure as covering
maps is preserved under composition.

Definition 2.1.8. Let p: Y — X and ¢ : Z — X be two covers. A morphism
between the covers is a lift ¢ : Y — Z.

Figure 11. A morphism of covers.

An isomorphism of covers is a morphism of covers where ¢ is a homeomor-
phism. An automorphism of covers is an isomorphism of covers where Z =Y.

With these new concepts in mind, we are now able to properly make the
claim stated in example 2.1.4.
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Proposition 2.1.9. Let X,Y be topological spaces and p : ¥ — X a contin-
uous surjective map. Y is a cover of X if and only if each point of X has a
neighbourhood V' such that the restriction pl,-1(yy : p~1(V) — V is isomorphic
to a trivial cover. That is, there exist a homemorphism f:p~1(V) =V x I (I
is a discrete set) so that:

Figure 12. A local isomorphy of covers.
Proof. See [6, p.38]. O

Definition 2.1.10. Given a cover p : Y — X, we define Aut(Y/X) as the set
of automorphisms of this cover. This set is a group under composition.

Notice that we may apply the unique lifting property with the functions in
Aut(Y/X).

Corollary 2.1.11. If we let ¢1 = ¢ for some ¢ € Aut(Y/X), p2 =idy, ¢ =¢
and Z =Y, then the proposition implies that any automorphism having a fixing
point is the identity.

Figure 13. Two lifts with a shared fixed point.

Now we can start to notice the similarity between the theory of field ex-
tensions K/F and covering spaces p : Y — X. In both cases the base field
F' and the base space X are our fixed reference points. From these we try to
find other fields K and spaces Y so that they are compatible to their respective
bases by some function. For fields, this function is an injective homomorphism
¢ : FF— K. For topological spaces this function is a covering map p: Y — X.
In algebra, the idea of intermediate fields is a simple one. Given an extension
K/F, the field M is said to be an intermediate field if F € M C K. Formally,
this means that injective homomorphisms exist so that the following diagram
commutes.

K

e

M

AN

F
Figure 14. Commutative diagram of field extensions.
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Here, each arrow represents a field extension. So it would be appropriate that
this was the case for covering spaces as well. As it turns out, this is the case.

Proposition 2.1.12. Let Z be a connected space, p: Y — Z be a continuous
map and ¢ : Z — X a cover. If the composition gop : Y — X is a covering
map, then p is also a covering map.

Y

A
7 qop
X‘
X
Figure 15. Commutative diagram of covering spaces.

Proof. See [6, p.42]. O

Definition 2.1.13. A space Z with the above mentioned properties is called
an intermediate cover of the covering p: Y — X.

Thus, this means that it is suitable to see intermediate covers as the topologic
analogue of intermediate fields.

2.2 Group actions and Galois covers

In this section, we will first define Galois covers. Later, we will present a tool to
specifically create these Galois covers. This tool is the analogue of fixing fields
in algebra. That is, a way to map the automorphism group to a covering space.
The use of groups in topology is common and the main way groups interact
with topological spaces is through group actions. The orbits of these group
actions can in turn be used to create quotient spaces. When the group action
has certain properties (see 2.2.2), then it is the tool we are looking for.

Definition 2.2.1. Let p : Y — X be a cover and G = Aut(Y/X) the auto-
morphism group. Consider the quotient map of the orbit space pg : Y — Y/G.
Then there is a continuous map r : Y/G — X so that the following diagram
commutes.

Y
A lr
Y/G —" X

Figure 16. Commutative diagram of a quotient space.
The cover is said to be Galois if 7 is a homeomorphism, and then Gal(Y/X) := Aut(Y/X).

There are several interesting aspects to note here that either will be elabo-
rated on later, or are apparant immediately.
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e The map pg : Y — Y/G is a cover (corollary 2.2.5).
e The map r: Y/G — X is a cover (theorem 2.3.1).
o The covering map p is Galois when X = Y/G with Gal(Y/X) = G.

Hence, this definition bears a close resemblance to the algebraic characterisation
of a Galois extension by fixing fields. In both cases, the automorphism group
creates an intermediate field /space such that this extension/cover is Galois. It
also has the similar property of fixing fields that Aut(K/K%)) = G. Now, we
prove our claims about these orbit spaces.

Definition 2.2.2. Let G be a group acting continuously on a topological space
Y. G is said to act evenly on Y if each point y € Y has a neighbourhood U so
that UNg-U =0 forall g€ G, g # 1.

Proposition 2.2.3. Let G be a group acting evenly on a connected space Y.
Then the projection ¢ : Y — Y/G is a covering map.

Proof. Remember that ¢ : Y — Y/G is the map taking y € Y to the orbit of y,
50 q(y1) = q(y2) if and only if y; = g - y2 for some g € G.

First we want to show that each element in Y/G has a neighbourhood which
preimage is a disjoint union of open sets. So let z € Y/G and say that © = [y]
for some representative y € Y. G is acting evenly on Y so there is an open
neighbourhood U C Y of y so that UNg-U = 0 for all g € G, g # 1. Let
V = q(U). Then ¢ (V) = Ueqg - U. These are disjoint by the previous
remark. The map g : Y — Y is a homeomorphism and U is an open set, so g-U
is open for all g € G. What remains to show is that the restriction q|y : U — V
is a homeomorphism. The map ¢ is continuous and open, so this restriction
must be too.

e Injectivity: Assume that q(g-y1) = q(g - ye) for some y1,y» € U. This is
equivalent to ¢(y1) = ¢(y2), which in turn is equivalent with y; = h -y for
some h € G. But y1,y2 € U implies that h=1. Sog-y1 =g - yo-

e Surjectivity: V is defined as the image of U, so it is trivially surjective.
O

Proposition 2.2.4. Let p: Y — X be a covering space where Y is connected.
Then the action of Aut(Y/X) on Y is even.

Proof. Let y € Y and z = p(y). p is a covering map, so there exists a neigh-
bourhood V' of x so that p~!(V) is a disjoint union of open sets in Y. One of
these sets, say U contain y. Take any non-trivial ¢ € Aut(Y/X). This ¢ maps
U isomorphically onto some of the other disjoint open sets, say U’. Any auto-
morphism having a fixed point is the identity by corollary 2.1.12, so U # U’.
So we can conclude that ¢(U) N U = 0,V¢p € Aut(Y/X), where ¢ # id. O

Corollary 2.2.5. Let p : Y — X be a covering space. Then the quotient
m:Y — Y/Aut(Y/X) is a covering map.
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Proof. This follows immediately from propositions 2.2.3 and 2.2.4. O

Proposition 2.2.6. Let G be a group that acts evenly on a connected space Y
and pg : Y — Y/G the covering map defined by this action. Then Aut(Y/(Y/G)) = G.

Proof. 1t is trivial that G C Aut(Y/(Y/Q)), since pa(y) = [y] = [9-y] = pa(g-v)
for all g € G, and so g fits into the commutative diagram. Let ¢ € Aut(Y/(Y/G))
and let y € Y. Then ¢(y) must be mapped (by pg) to the orbit of y. So
o(y) = g -y for some g € G. Alas, ¢ and ¢ has a fix point and fit into the
commutative diagram

g

¢ ——Y

j4e
PG
Y/G
Figure 17. Two automorphisms with a fixed point.

so ¢ = g by proposition 2.1.5. Hence G = Aut(Y/(Y/G)). O

Y

Proposition 2.2.7. A connected cover is Galois if and only if Aut(Y/X) acts
transitively on each fibre of p.

Proof. o Assume that p: Y — X is a Galois cover with G = Aut(Y|X).

Y
Alp
Y/G —T X

Figure 18. Commutative diagram of a quotient space.

Let z € X, and y € p~!(x). We want to show that G acts transitively on
p~!(z), which is equivalent to show that pg maps p~!(z) to exactly one
element in Y/G, that is one orbit.

Let § = r~(z). pc(y) = 4, so [y] = §. r is a bijection, so by commuta-
tivity pe maps p~!(z) to 7, and so G acts transitively.

o Assume that G = Aut(Y/X) acts transitively on each fibre of the cover p.
We want to show that the induced map r is a homeomorphism. Surjectiv-
ity and continuity are already clear from the property of quotient maps.
Let € X and [y] = p~!(x). Tt is clear that there is a 1-1 correspondence
between the elements of X and the elements of G\Y, since each z € X
maps to the fibre of x, which is equal to the orbit of the fibre. Lastly,
we want to show that r is an open map. Let U C Y/G be an open set.
By definition of a quotient space pal(U) C Y is open. Since p is open
by proposition 2.1.3, we have that p(p;'(U)) C X is open. This together
with

p=ropg
p(pg'(U)) =r o pc(pg'(U)) = r(U)
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shows that r(U) is open. Hence r is an open map.
O

We may note the similarity between this proposition and proposition 1.3.12.
Even though there is no apparent correspondence of polynomials in topology, the
roots and fibres in their respective theory do share some similarities. For one,
the roots are algebraically indistinguishable (see note after proposition 1.2.5),
just as all fibres have neighboroods that are pairwise homeomorphic. So in a
sense, these fibres are locally the same. This analogy is not always available.
Galois field extensions can be created from splitting fields of separable polyno-
mials, but they do not necessarily need to be irreducible. So the Galois group
does not act transitively on all added roots here, and so proposition 2.2.7 cannot
be translated into an equivalence statement in algebra.

So, we have made a connection with two of the Galois characterisations from
algebra, but not with the original one (definition 1.3.4). There is a connection
here as well, but only in special cases. First, given a covering map p: Y — X,
the fibres p~*(z) have the same cardinality for all = (see [4, p.281]). This also
means that the discrete set I in proposition 2.1.9 has the same cardinality for all
neighbourhoods. The cardinality is called the number of sheets of the covering.
The concepts of Galois in algebra and Galois in topology coincide in the finite
case. We state it as a proposition.

Proposition 2.2.8. Let p: Y — X be a covering. If the number of sheets of
the covering is finite, then [p~1(z)| = |Aut(Y/X)| if and only if the cover p is
Galois.

Proof. o Assume that the cover is Galois. Let z € X. The group Gal(Y/X)
acts transitively on the fiber p~! () by proposition 2.2.7. If we fixy € p~*(z)
then this implies that for all a € p~1(z), there exists some g € Gal(Y/X)
so that y = g - a. So [p~1(x)| < |Gal(Y/X)|.

e For a condratiction, assume that |Gal(Y/X)| > |p~!(x)|. Then for some
y € p~ () there are g,h € Gal(Y/X), g # h, so that g -y = h -y. Thus,
equivalently h~1g-y = y. But then the maps h~'g and 1 share a common
fix point. So by corollary 2.1.11 h~!g = 1, which contradicts that g # h.

O
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2.3 The Galois correspondence in topology

In this section we will properly state the Galois correspondence in topology, also
referred to as theorem B. The theorem is purposely stated in a similar fashion
as theorem A in order to clearly see that they are similar.

Theorem 2.3.1. Let p: Y — X be a Galois cover and G = Gal(Y/X). Then
there is a 1-1 correspondence between intermediate connected covers Z and
subgroups G D H D {e}

v {e}

A .

A p & H
\ \
X G
Figure 19. Commutative diagrams of corresponding covering spaces and
groups.

so that ¢ : Y — Z is Galois. The correspondence is given by

Y Gal(Y/Y)
e Z corresponds to Gal(Y/Z) : » / p — Gal(Y/Z)
X Gal(Y/X)

{e} Y/{e}

e o

e H correspondstopy : Y = Y/H: fg s Y/H va
\ %‘
G Y/G
Further, this correspondence has the properties

a) Let Z1, Zs be intermediate covers and let Hy, Hy be their corresponding
subgroups of G. Then there is a covering map f : Z; — Z5 if and only if
H, D H,.

b) The map r: Z — is Galois if and only if H is normal in G.

Proof. First we need to show that this correspondence is well defined.
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e (H C G maps to an intermediate field) Assume that H is a subgroup of
G. Then the cover py : Y — Y/H is trivially Galois. So we only need to
show that the map pg : Y/H — X is a covering map. Since p:Y — X is
a covering, there exist neighborhoods V' C X such that p~}(V) 2 U x T
by proposition 2.1.9. Here [ is a discrete subset representing the elements
in the fibre of p, and U C Y = V. We have that pi(p~1(V)) = pg (V).
H only acts on [ in U x I, so pyg(U x I) =U x (I/H). Hence locally we
have that p (V) 2 U x (I/H), so P is a covering map by proposition
2.1.9.

o (Intermediate covers maps to subgroup H C G) Assume that r : Z — X
is a cover that fits into the commutative diagram below.

Y

Figure 20. Commutative diagram of covering spaces.

Then g : Y — Z is a cover by proposition 2.1.12. Now we want to show
that this is a Galois cover. That is to show that Y/(Aut(Y/Z)) = Z. Fur-
thermore we want to show that Aut(Y/Z) C Gal(Y/X) in order for the cor-
respondence to be well defined. We can clearly see that Aut(Y/Z) C Gal(Y/X),
since automorphisms commuting with Y over Z also commute with Y over

X. The cover ¢ : Y — Z is Galois if and only if Aut(Y/Z) acts transi-
tively on the fibres of q. So take z € Z and let y1,y2 € ¢~'(2). Then in
particular y1,y2 € p~1(r(z)). p is a Galois cover, so ¢(y;) = yo for some

¢ € Gal(Y/X). Now, ¢ € Aut(Y/Z) only when the diagram commutes.

Yy — .y
X /
q
Z
Figure 21. Automorphism of a covering space.

Equivalently, the diagram commutes only when the maps ¢ and q o ¢ are
equivalent. These maps may be seen as lifts in the following diagram:

A

qo0 7
e
ot

-
-

y “ 2 x
Figure 22. Two lifts of the map p.
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We have a fixing point by ¢(é(y1)) = q(y2) = q(y1), so these maps are
equal by proposition 2.1.7. Hence, ¢ € Aut(Y/Z) and this group acts
transitively on the fibres of q.

The last thing to show is that this correspondence is bijective. The last point
showed that the correspondence is surjective, so we only need to show that is is
injective. But this is trivially so, since if Y/H = Y/H’, then h-y = h' -y for
he€H, W € HandycY. But then " 'h-y =y, so B’ = /! by 2.1.11.
Hence H = H'.

O

2.4 Universal cover

Calculating the automorphism group of a cover is not always that easy. If we find
a connection to other known groups, it would simplify the task. The universal
cover is one such asset. For every connected and locally simply connected space
X, there exists a Galois cover p : Y — X so that Aut(Y/X) = 71(X, z0). We
begin with a proposition.

Proposition 2.4.1. Let p: Y — X be a cover and assume that Y is simply
connected. If ¢ : Z — X is another cover, then there exists a covering map
r:Y = Z.

Y
Lf//;
7 P
X
X

Figure 23. Commutative diagram of covering spaces.
Proof. See [4, p.297-298]. O

Corollary 2.4.2. Let Y, Y’ be two simply connected spaces. If both Y and Y’
are covers of the same space X, then Y and Y’ are homeomorphic.

Remark. Remember that a space is simply connected if it is path connected
and its fundamental group is trivial. In particular, a simply connected space is
connected.

Definition 2.4.3. If p: Y — X is any cover and Y is simply connected, then
Y is called a universal covering.

By these propositions, it makes sense to regard the universal cover as a
maximal cover. This resembles what the algebraic closure is for the algebraic
case. But note that the algebraic closure of Q is an infinite extension over Q,
and so it does not fit into our finite version of Galois theory. On the other hand,
the universal cover does fit into the topological version.
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Theorem 2.4.4. Assume that X is a connected and locally simply connected
space. Then

e there exists a universal cover Y of X;
o Aut(Y/X) = m (X, )
e X is homeomorphic to the orbit space Y/m1 (X, z).
Proof. See [4, p.298] and [3, p.71-72] O

Theorem 2.4.5. Let p: Y — X be a covering map. If Y is simply connected,
then Aut(Y/X) = 71 (X, x0).

Proof. See [4, p.310-311]. m

Putting these theorems together, we see that if Y is the universal cover of
X, then it is a Galois cover.

To conclude, given a space and its fundamental group, we know that there
exists a Galois cover, with the automorphism group isomorphic to the funda-
mental group. This will be of great use in section 3.5, where we will show the
inverse Galois for C(t).
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Chapter 3

Inverse Galois for C(t)

All fields, which are not algebraically closed, have a non trivial Galois extension.
They can be created as splitting fields for some separable polynomial. Thus we
can associate a Galois group to every field. The same is true when considering
covering spaces, where existence of a Galois covering is secured by the universal
cover.

Starting the other way around and fixing a field F', Galois extensions K/F exist
so that every finite group appears as a Galois group Gal(K/F)? This problem
is commonly referred to ’the inverse Galois problem’. In the case where F' = Q
it is still an unsolved problem, but offers a partial solution for all finite abelian
groups. In this chapter we prove that this is true for F' = C(¢). What is interest-
ing is even though that this claim is purely algebraic, the proof uses topological
techniges and the Galois correspondence in topology. This chapter contains the
necessary concepts and results to show that every finite group appears as a Ga-
lois group for an extension of C(t).

In section 3.1 we introduce Riemann surfaces. They are a way of locally at-
taching the structure of C on two-dimensional manifolds. Section 3.2 and 3.3
will present maps of Riemann surfaces which preserve their complex structure.
These maps are the analogue of holomorphic and meromorphic maps in com-
plex analysis. For both maps there are important 1-1 correspondences crucial
for our proof of the inverse Galois. Holomorphic and proper maps of connected
Riemann surfaces correspond to finite covering spaces. Meromorphic maps of
connected and compact Riemann surfaces coorespond to field extensions. In
section 3.4 we introduce free groups. These groups have an important property,
namely that every finite group appears as a quotient of a free group. This is the
key we use to show in section 3.5 that every finite group appears as a Galois
group for any field extension of C(t).
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3.1 Riemann surfaces

Definition 3.1.1. Let X be a two-dimensional manifold, i.e X is Hausdorff,
second countable and locally isomorhpic to R2.

e A complex chart on X is a homeomorhpism ¢ : U — V of open subsets
UcXandV CC.

e Two complex charts ¢ : U — V, 4 : U’ — V' are said to be holomorphi-
cally compatible if the map

Yo tipUNU) = yUNU)
is biholomorphic, i.e 1) o ¢!
also holomorphic.

is bijective, holomorphic, and its inverse is

e A complex atlas on X is a system of charts 8 = {¢; : U; — V;|i € I}

which are holomorphically compatible and cover X, i.e UiE Ui = X.

e Two atlases 4, 4I" are said to be analytically equivalent if every chart of &
is holomorphically compatible with every chart of I’

Note that analytical equivalence of atlases is an equivalence relation on the
set of atlases, since the composite of biholomorphic functions are biholomorphic.
This motivates the following definition.

Definition 3.1.2. A complex structure on a two-dimensional manifold X is an
equivalence class of analytically equivalent atlases on X.

Definition 3.1.3. A Riemann surface is a two-dimensional manifold together
with a complex structure ¥ on X.

Example 3.1.4. (Riemann surfaces)

e The space C is trivially a Riemann surface. Just consider the atlas with
only one complex chart id¢c : C — C, z — z. So the complex structure
on C would be the equivalence class of atlases analytically equivalent to

{idc}.

e The Riemann sphere P! is a Riemann surface. The sphere is defined as
the space P! = C U {co} with the one-point compactification topology.
The only open sets of P! are

— V, where V C C is open.

— VU{oo}, where V' C C is open and the complement of V' is compact.
This topology makes P! into a compact, Hausdorff space, which is iso-
morhpic to the sphere 52.

The atlas 4l we define on P! consists of two charts. Let U; = C and
Uy = PY\{0} = C* U {o0}.
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*(plIUl*)C, Zr—Z
1/z if z € C*

0 if z=o00

—(p21U2—>(C7 Z'—){

These are clearly homemorphisms. If ¢; and 5 are going to constitute a
complex atlas of P!, then these maps must be holomorphically compati-
ble. Uy NUy = C*, s0 1(U1 NUsz) = po(U; NUz) = C*. We have that
©10w2(2) = a0 pi(z) =1/z and that they have domain and target C*.
Hence they are biholomorphic. The equivalence class of atlases analyti-
cally equivalent to Y = {1, 2} is the complex structure on P! making
it into a Riemann surface.

3.2 Holomorphic maps

With Riemann surfaces defined, we would like to define maps on them taking
use of their complex structure. The idea is first to define maps from Riemann
surfaces to the complex plane, but locally observe these maps as maps purely
complex functions going through the complex charts. When the maps are con-
sidered like these, then we can impose properties on these maps from complex
analysis such as being holomorphic. In the same manner we can define maps
from Riemann surfaces to Riemann surfaces, and impose that they are holomor-
phic when locally viewved as complex maps.

Definition 3.2.1. Let X be a Riemann surface and Y C X an open subset. A
map f:Y — C is said to be holomorphic if, for every complex chart ¢ : U — V
on X, the mapping

foy t:pUNY)—=C

is holomorphic as a complex map.

Definition 3.2.2. Let X, Y be Riemann surfaces. A continuousmap f: X - Y
is said to be holomorphic, if for every pair of charts ¥ : Uy — Vi, 1o : Us — Vo
on X and Y respectively with f(U;) C Uz, the mapping

Yoo foyrt Vi =1,
is holomorphic as a complex map.

Theorem 3.2.3. Let X,Y be Riemann surfaces and f : X — Y a non-constant
holomorphic map. Let a € X and set b = f(a).

Then there exists an integer £ > 1 and charts ¢ : U — V on X and
v : U — V' such that

e acU, pla)=0;be U’ y(b)=0.
o f(U)CU'
e The map F:=1o fop !:V — V'is given by
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F(z)=z" forall z € V.

Proof. See [2, p.10]. O

Definition 3.2.4. The integer k in the theorem is called the ramification index
of f at a. The points a where k > 1 are called branch points and we let S
denote the set of branch points.

Corollary 3.2.5. Any holomorphic map between Riemann surfaces are open.

Proof. Let g = z*. Then this follows immediately from that f = ~togoy, ie
f is written as a composition of open maps. O

Corollary 3.2.6. The fibres of f and the set Sy are discrete closed subsets of
X.

Proof. See [6, p.76]. O

Definition 3.2.7. A map f : Y — X is called proper if the preimage of all
compact subsets of X are compact in Y.

Remark. The map f is closed when Y is locally compact and Hausdorff.

Proposition 3.2.8. Let X be a connected Riemann surface and f: Y — X a
proper holomorphic map. Then the map f is surjective with finite fibres, and
its restriction f: Y\f71(f(Sf)) — X\ f(Sy) is a covering map.

Idea of proof: Why is it that we must remove the pre-image of the branch
points to get a cover? The reason is that neighbourhoods around these points are
not evenly covered. The map f is locally equivalent to 2™, so no neighbourhood
UCYof0Ois1-1to f(U) C X, and so they are not homeomorphic. By removing
the branch points, then the fibres of f are finite by corollary. To show that f
is surjective, coinsder that it is both open by corollary 3.2.5 and closed by the
note of 3.2.7. So f(Y) C X is both open and closed. The space X is connected,
so then f(V) = X.

Lastly, for each preimage of x € X\ f(Sf)), we can find a neighbourhood and
complex maps as in theorem 3.2.3 such that f locally is equivalent to the identity
map. Hence a homeomorphism. By taking the intersection of these we gather
the desired evenly covered neighbourhood. For details of this proof, see [6, p.77].

Definition 3.2.9. Let f : Y — be a proper holomorphic map of Riemann
surfaces as above. Then it is called a finite branched cover.

This correspondence of holomorphic proper maps and finite covers is in fact
even stronger, as stated by the following theorem.

Theorem 3.2.10. Let X be a connected Riemann surface and S C X a discrete
closed subset. Then there is a 1-1 correspondence of

e Finite topological covers p: Y’ — X\S.
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e Riemann surfaces Y with proper maps f : Y — X such that f(x) € S for
all branch points z € Y.

In the correspondence we have that Y’ C Y and p is a restriction of the map f.
Furthermore, let Y and Z be Riemann surfaces equipped with proper maps ¢, r
mapping to X. Assume that Y and Z correspond to the finite covers Y’, Z’ of
X'’ such that there exist a covering morphism ¢’ : Y’ — Z’. Then ¢’ extends
to a unique holomorphic map from Y to Z.

Figure 24. Corresponding morphism of holomorphic maps and covering spaces.

Remark. In the field category theory, this correspondence is called an equiva-
lence of categories. However, further details of this area lies beyond the scope
of this thesis. For details of the definition and proof, see [6, p.77-79] and [6,
chapter 1.4] respectively.

Corollary 3.2.11. Aut(Y/X) =2 Aut(Y'/X")

Since these two objects can be considered as equivalent, then it is suitable to
make the following definition.

Definition 3.2.12. Let f: Y — X be a proper holomorphic map which corre-
spond to a finite cover f':Y’ — X', If the cover Y’ over X’ is Galois, then we
say that Y is a finite Galois branched cover of X.

3.3 Meromorphic functions

Meromorphic functions on Riemann surfaces have the same properties as regular
meromorphic functions on the complex plane. For our purposes, one important
aspect is that the set of meromorphic funtions on a connected Riemann surface
is a field. Further, holomorphic maps between connected Riemann surfaces
extend these fields. There is in fact a 1-1 correspondence between Galois covers
of connected and compact Riemann surfaces and Galois field extensions of the
field of meromorphic functions.

Definition 3.3.1. Let D be an open and connected subset of the complex
plane. A function f : D — C is meromorphic if for all points € D it holds
that

e f is analytic at x
e or f has a pole at z.

Definition 3.3.2. Let X be a Riemann surface. A function f : X — C is
meromorphic if
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1) There exist a closed discrete subset S C X such that the restriction
f:X\S — C is holomorphic

2) The map fo ¢t : ¢(U) — C is meromorphic, for all complex charts
¢:U — C.

If X is a Riemann surface, then we let M(X) be the set of all meromorphic
functions on X. It is easily seen that M(X) is a ring under addition and
multiplication. What is more useful is the following proposition.

Proposition 3.3.3. Let X be a Riemann surface. If X is connected, then
M(X) is a field.

Proof. See [6, p.80]. O

Proposition 3.3.4. Let P! be the Riemann sphere. The set of meromorphic
functions on P! are only the rational functions, i.e M(P1) = C(¢).

Proof. See [2, p.11-12] O

Proposition 3.3.5. Let X,Y be Riemann surfaces and ¢ : ¥ — X a non-
constant holomorphic map. Then ¢ induces a ring homomorphism ¢* : M(X) — M(Y)
by f +— fo¢. In particular, ¢* is an injective field homomorphism when X and

Y are connected. Hence M(Y)/¢p* M(X) is a field extension.

There is a correspondence, similar to the one in theorem 3.2.10, between
field extensions of M(X) and holomorphic maps mapping to X.

Proposition 3.3.6. Let X be a connected and compact Riemann surface. Then
there exist a 1-1 correspondence of

e Connected and compact Riemann surfaces Y being a finite Galois cover
cover over X by the proper holomorphic map ¢ : Y — X.

o Galois field extensions M(Y)/dp* M(X).

Further, let Y and Z be connected and compact Riemann surfaces equipped
with holomorphic maps mapping to X, such that both of them are finite Galois
branched covers. Assume that Y, Z correspond to the fields M(Y), M(Z) and
that there exist an injective homomorphism ¢* : M(Z) — M(Y). Then there
exist a continuous function ¢ : Y — Z.

Rt M(Y)
Z = M(Z)
AN -
X M(X)

Figure 25. Corresponding morphism of Riemann surfaces and fields.

Corollary 3.3.7. Aut(Y/X) = Gal(M(Y)/dp* M(X)).
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3.4 Free group

One problem arises when studying groups in an abstract way. We would like to
describe them and their structure without drawing out a whole multiplication
table. On the other hand we do not want their descriptions to be too general,
beacause then they could lack the detail necessary for our purposes. The way
we approach this is by defining groups on which there are no relations except
the ones given by the group axioms. These are called free groups. We begin by
formally defining how these groups are created.

Definition 3.4.1. Let S and S™! be sets such that there exist a bijection
between them, and let {1} be the singleton set. If s € S corresponds to t € S~!
by the bijection, then we say that s~ = ¢. Similarly, if ¢ € S~! corresponds to
s € S, wesay that t™1 = s. Then (s7!)~! = s forall s € SUS™!, and we define
171 :=1. A word on S is a sequence of elements (s1, sz, 83, ...) in SUS~ U {1}
such that there exist an integer NV so that s, = 1 for all n > N. We say that a
word is reduced if

® Sit1 F s;l for all ¢ such that s; # 1.
e S, = 1 1mphes that Si+1 = 1.
We denote F(S) as the set of reducible words of S.

Proposition 3.4.2. Let S be a set. Then one can define a group structure on
F(S) by concatenation and cancelation. If |S| = n, then we call F(S) the free
group on n generators.

The cancelation rules are the following:

Example 3.4.3. e Let S = {a}. Then F(S) is the free group on one gen-
erator. The sequences a, aaa, a~! and 1 are reduced words. Usual con-
vention is to write aaa as a3. Multiplication is done by concatenation and
cancelation. So aaa multiplied with a~! is the product aaaa™!, which is
then reduced to aa = a?. From this is easily follows that F(S) = Z.

o Let S = {a,b}. Then F(S) is the free group on two generators. The
sequences ab, ba, a®b~'a? are distinct reduced words. Note that ab # ba,
so this is not a commutative group.

Even thought that the free groups are easy to describe, they do not seem
do resemble many other common groups. Their usefulness comes from what is
called the universal property of free groups.

Proposition 3.4.4. Let S be a set, G a group, f : S — G a function and
i:S — F(S) the inclusion map. Then there exist a unique group homomor-
phism ¢ : F(S) — G such that the diagram commutes.
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S — F(S)
\ v
G
Figure 26. Universal property of free groups.
Proof. See [1, p.217] O
The real strength of this property is realised in the following proposition.

Proposition 3.4.5. Every finite group appears as the quotient of a free group.

Proof. Let G be a finite group and let S be a set of the same cardinality, thus
there exist a bijective function f : S — G. By the universal property of free
groups, there is a homomorphism ¢ : F(S) — G such that f = g oi. By
the isomorphism theorem, we have that Im(p) =2 F(S)/Ker(y). The map f is
surjective, so ¢ must be as well. Hence Im(p) = G, and so G = F(S)/Ker(p).

O

The connection of the free group to Riemann surfaces comes thorugh the
following proposition.

Proposition 3.4.6. Let X = S' and {z1,..., 7,11} a finite set of points on X.
Then 71 (X\{z1, ..., Znt1}) = F(a1, ..., an).

Proof. See [6, p.87]. O
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3.5 Application on C(t)

Now we have gathered the necessary results to prove the inverse galois for C(t).

Theorem 3.5.1 (Inverse Galois for C(¢)). Let C(¢) be the field of rational
polynomials in C and G any finite group. Then there exist a Galois extension
K /C(t) such that Gal(K/C(t)) = G.

Proof. e Let G be a finite group. Then G = F(ay, ..., a,)/N for some normal
subgroup N of the free group F(ay,...,a,) by proposition 3.4.5.

o Let X = Ptand X’ = P\{zy, ..., 7,41} for some points {z1, ...,z 411} C PL.
Then 71 (X', z9) = F(ay, ..., a,) by proposition 3.4.6.

e X' is locally simply connected and connected, so by theorems 2.4.4 and
2.4.5 there exist a universal cover p: Y/ — X’ such that
— The cover is Galois.
— Gal(Y'/X') =2 m (X', z0) = Flay, ..., an).
— Y’ is connected.
e Let Z/ =Y'/N. Z' is connected since it is a quotient of a connected space.

By the Galois correspondence in topology, all covers in the diagram below
are Galois since N C Gal(Y’/X"’) is normal.

Y/

X/
In particular, Gal(Z’/X") = F(a1,...,a,)/N = G, so this is a finite cover.

e The finite cover q : Z/ — X’ corresponds to a proper holomorphic map ¢
of Riemann surfaces X,Y by theorem 3.2.9. In fact, Y is a finite Galois
cover of X. So Aut(Y/X) = Gal(Y'/X").

e Both X and Y are connected Riemann surfaces. X is compact, and Y
is also compact because ¢ is a proper map. So the finite Galois cover
q :'Y — X corresponds to a Galois field extension M(Y)/q*M(X) by
theorem 3.3.7. It also holds that Gal(M(Y)/¢* M(X)) = Aut(Y/X) = G.

e The field of meromorphic functions on P! is the field of complex rational

functions by 3.3.4. That is, ¢* M(X) = C(¢).
Hence, the field extension M(Y)/C(t) is Galois with Galois group G. [
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