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Abstract

In this thesis we give an introduction to the dynamics of difference
equations and the complex behaviour that sometimes arise out of seem-
ingly simple equations. We start off with a short historical introduction
and a comparison with differential equations. We introduce the concept
of dynamics of difference equations, where we define and explain con-
cepts such as: orbit, fix points, periodic points, and discuss the notion
of stability, as well as state and prove criteria for determining stability of
periodic points. We then slowly introduce non-linear dynamics through
the example of population models and the logistic map, and we also dis-
cuss the theory of bifurcations. We give a short historical introduction to
chaotic dynamics, and after making the necessary definitions, we give our
definition of chaotic behaviour. Different definitions of chaotic behaviour
are discussed, mainly the one due to Devaney, and we briefly address the
various ambiguities regarding definitions in this rather recent field of re-
search. After introducing a possible quantification of chaotic behaviour,
through the concept of Lyapunov exponents, we move from the dynamics
to the geometric aspects of chaotic systems, via fractal geometry. Classical
notions of dimension are discussed via e.g. the Lebesgue covering dimen-
sion, and with a few examples of fractals, we give some intuition for how
and why these classical ideas may be extended to something called fractal
dimension. We then give a thorough explanation of different measures of
fractal dimension, and apply these ideas to chaotic attractors of dynami-
cal systems, in the form of Renyi dimension. Results of the authors own
numerical estimations of the dimension of well known chaotic attractors
are presented, and we tie together the dynamics with the geometry side of
things with a discussion of the Kaplan-Yorke conjecture. Lastly we give a
few concluding remarks and a brief discussion of potential applications to
number theory.
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B.5 Correlation dimension for the Hénon map . . . . . . . . . . . . 81
B.6 Information dimension of the perturbed Arnold’s cat map . . . . 83

5



1 Introduction
This thesis is written as an introduction to the study of discrete dynamical sys-
tems and their dynamics. These are one or more difference equations, also often
called recurrence relations, that form a system of equations in the same sense
one or more differential equations would form a system. In that sense they are
the discrete counterpart of the continuous systems, with which the reader might
already be familiar. These equations form a set of rules that govern how a point
or state is affected as time progresses. We use the word ’time’ here, as this is
a very common case, because many of the systems we study come from bio-
logical or physical applications, where time is ever present. For this reason, the
systems are often referred to as continuous time systems and discrete time sys-
tems. For example, the position of a stone being hurled from a catapult, may be
described by a set of equations where time certainly plays an important role, and
this would most likely benefit from a continuous time model. However, when
describing for example growth of a population, it could definitely be of interest
to let the independent variable be the number of generations, in case it would
most likely be modelled by a discrete time system. We can of course never really
work with infinitely small time intervals in real life, so continuous time mod-
els often end up being approximated by discrete systems after all, for example
when running numerical simulations on a computer. The system could then be
viewed as taking snapshots of it, at sufficiently short intervals. The reader can
think of a film of the stone from before; it looks like it is moving through the air
continuously, but we know it consists of many still images, with time intervals
of 1

25s between each one.
It is important to remember that these are all mere applications of the math-

ematics, and although very useful, they are just a few from an infinite set of
applications. It is therefore just as important to study the mathematics itself, as
it is as real as the physical phenomenon for which it can be used to study. We
should therefore think not so much of time progressing, as of moving through
the solution space. This may sound very abstract, and that is the point, but it
is not stranger than moving through time (perhaps less so in a way, and for all
we know, that is what time really is). As an example, take the difference equa-
tion xn+1 = 2xn. This just says to take an initial condition, x0, and double it
in order to get x1; double this to get x2; double that to get x3, and so on. It
is clear that these rules give rise to a sequence, namely to (xn)

1
n=0. A solution

to this equation is then a sequence for which these rules apply. It is clear that
such a solution depends on x0, for if x0 = 0, then (xn) = (0, 0, 0, ...), but if
x0 = 1, then (xn) = (1, 2, 4, 8, ...) = 2

n, n = 1, 2, 3, .... These solutions can be
seen as infinite dimensional vectors in the vector space of solutions, and mov-
ing through ”time” could then just be seen as moving along these vectors. So,
especially for discrete systems, the word ’time’ just refers to a specific point in
the solution sequence. We will also see that this, in turn, just corresponds to a
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specific number of iterations of a function applied to the initial value. For now,
the point is that the reader should not feel forced to think of time, when describ-
ing the progression of a system from a set of rules. We will sometimes still use
the word ’time’ in this sense, or we may just say that the system progresses.

As we explore different systems further on, we will see that remarkable com-
plexity will come from seemingly simple systems. We will encounter systems,
even among these simple ones, that undergo such extreme changes that they
become, in a sense, unpredictable. As we are still dealing with a deterministic
system, we do not mean this in a literal sense, but even the smallest perturbations
to the initial conditions, will give rise to huge changes further on. In practice,
this means that the long term behaviour becomes near unpredictable. This type
of behaviour is called chaotic, and as a field of study, it is considered by most to
be very much in its infancy. Before we go on to study dynamics, we will take a
look at the possible origins of difference equations, in a brief historical section.

1.1 A Little History
In the third section of the book ”Liber Abaci” (which roughly translates to ”The
Book of Calculations”), published in 1202, and written by Leonardo Pisano
(nicknamed Fibonacci), a problem was proposed. The now famous problem
concerned the evolution of a population of rabbits. If we assume that a pair of
rabbits always give birth to two more rabbits each month, and that it takes just
under two months for a rabbit to mature, then how will this population evolve?
Taking time to be discrete (counting in months and pairs), we see that if we begin
with one pair, there won’t be any more until two months later, when there will
be two pair. This new pair won’t give birth until after two months, during which
the first pair will have given birth to two new pair, and so on1. This give rise
to the sequence that bears Leonardo Pisanos nickname, namely the Fibonacci
sequence (1, 1, 2, 3, 5, 8, ...). Each term of the sequence is the sum of the two
preceding terms, and thus we can state this as the following difference equation:

xn+2 = xn+1 + xn. (1)

Equation (1) is an example of a second order difference equation, and the
Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, ...) is a solution to this equation. If we
asked for the 111th term, this would be a cumbersome task, as we would have
to find it by recursively applying the rules in (1). Thankfully there are algebraic
methods for solving these equations, which in practice results in a formula of
the form xn = f(n).

The reader might have noticed that we started the Fibonacci sequence with 1

1This is of course a rather unrealistic model since we would probably have to consider a lot
more factors, for this to accurately model a real population. Also the model would not likely be
linear, as we shall discuss in a later section.
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rather than 0, which certainly seems more common these days. This is because
Fibonacci himself started at 1. Understanding where the problem comes from, a
pair of rabbits does not just jump into existence from nothing do they? Also, it
really does not matter from what number we start. The nature of the equation is
what’s important, not what part of a solution we decide to write down. We may
as well describe it for negative n. By manipulating (1) we get xn = xn+2�xn+1,
which for x0 = 1, x1 = 1 would yield (...13,�8, 5,�3, 2,�1, 1, 0, 1, 1), for
n = �1, ...,�8. As we see, this mirrors the previous sequence for positive n,
but with alternating sign.

1.2 Continuous vs. Discrete
Before looking at the equations and their solutions, it may be a good idea to have
some intuition of the difference between the continuous and the discrete case.
We will try to supply this by briefly investigating how we could approximate the
one with the other.

As explained in the introduction, difference equations is the discrete coun-
terpart of differential equations (which are equations involving differentials),
as they are equations involving differences. Differential equations explain how
a system evolves continuously, by describing how one or more of a functions
derivatives change. To give some intuition of this, we make the following defi-
nition:

�xn := xn+1 � xn ) xn+1 = xn +�xn. (2)

So we get the next value in the solution by adding �xn to the previous term,
which makes sense.

A first order differential equation is usually of the form

dy

dx
= f(x, y(x)). (3)

With a little informal algebra of differentials, we may just as well view this as

dy = dxf(x, y(x)),

where dy is simply the change in y. Similarly, if this was a discrete system, start-
ing with y0, one would just like in (2) get the next term by adding the change,
i.e., y1 = y0 + dxf(x0, y0). In general we would have the formula

yn+1 = yn + dxf(xn, yn). (4)

Exchanging dx for h, and making the definition xn = x0 + nh, the reader may
recognize (4) as Euler’s method for approximating a solution to an initial value
problem, often referred to as ’Forward Euler’. This is a difference equation
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that can be seen as an approximation of (3). The reason why this is only an
approximation, is of course that in the continuous case, we are dealing with
infinitely small changes, while in the case of (4), we would have to settle for dx
to be finite. In this case we would usually write it as �x instead. We will see
more similarities between the two cases in later sections.

1.3 Solutions and Iterated Maps
By a difference equation we mean an equation of the form

xn = f(xn�1, xn�2, ..., xn�k, n), (5)

where the function f is usually a function from Rk+1 to R, often called the
recursion function. When this is linear, (5) is called a linear difference equation
of order k 2, and the equation takes the form

xn = g1(n)xn�1 + g2(n)xn�2 + ...+ gk(n)xn�k + h(n), (6)

where the coefficients g1, ..., gk, h are complex valued functions.
Just as with differential equations, the problem of finding a solution is usu-

ally stated as an initial value problem, i.e. to find a sequence that solves (6),
given k initial values x0, ..., xk�1. What it means, in practice, is finding a gen-
eral closed formula for xn. The methods for finding such solutions differ for
different types of equations, and even though the theory for difference equa-
tions are somewhat simpler than for differential equations, there are still a lot to
say on this subject. There is however one important and helpful fact, that may
seem obvious, about equations of the form of (6), and that is that every initial
value problem for a finite difference equation has a unique solution. This is evi-
dent from the fact that xn = f(xn�1) is uniquely determined by xn�1, and since
we start with x0 which then determines the whole solution.

This is one of the big differences between differential equations and dif-
ference equations, that in the continuous case we are not always guaranteed a
solution. In the case of differential equations, we are often resorted to approx-
imating solutions, using for example Euler’s method, described in the previous
section.

A solution to a differential equation is a function on Rn, while a solution to
a difference equation is a function on N, i.e. a sequence.

For the most part, we will restrict ourselves to the special case when g1, ..., gk
are constant functions, i.e. they do not depend on n (autonomous case), and
when h(n) = 0 (homogeneous case). In this case the equation is called au-
tonomous and homogeneous.

2Actually this is a finite difference equation as we could consider an equation of infinite
order. We choose to focus on finite ones however.

9



Instead of defining xn as a function of preceding terms, we can of course
use the fact that each term is determined by repeatedly applying f to the initial
condition x0. This is then referred to as an iterated map, and by the n:th iterate
of the function f , we mean the n:th power of f under function composition. We
write this as fn, and we let f 0

:= Id, where Id denotes the identity function.
This means that we have

fn
= f � f � . . . � f

| {z }

n times

.

For a solution to the one dimensional system xn = f(xn�1), starting with the
initial condition x0, we then have

x0 = Id(x0) = f 0
(x0),

x1 = f(x0) = f 1
(x0),

x2 = (f � f)(x0) = f 2
(x0),

...
xn = fn

(x0). (7)

It therefore makes sense to just write our discrete dynamical system as (7). Start-
ing with x0, the solution sequence then takes the form (f 0

(x0), f 1
(x0), f 2

(x0), . . .),
which can be shortened to (fn

(x0))n�0.
If the equation would be of a higher order, we would have to expand this to

higher dimensions. Let the k:th order equation be given by

x1n = f(x1n�1, x1n�2, ..., x1n�k).

We can then rewrite this as a system of first order equations in the following
way

8

>

>

>

>

<

>

>

>

>

:

x1n = f(x1n�1, x2n�1, ..., xkn�1)

x2n = x1n�1

...
xkn = xk�1n�1.

Then by letting ¯

 (x1, x2, ..., xk) = (f(x1, x2, ..., xk), x1, x2, ..., xk�1) and
x̄ = (x1, x2, ..., xk), we get a formula of the same form as (7), namely

x̄n =

¯

 

n
(x̄0), (8)

where each state x̄i is a k-dimensional vector.
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For example, rewriting the equation xn = xn�1 + xn�2 in this way, we get
(

xn = xn�1 + yn�1

yn = xn�1.

Thus we can say that F (x, y) = (x+ y, x) describes the system and we see that

(F n
(1, 0))1n=0 =

⇣

✓

1

0

◆

,

✓

1

1

◆

,

✓

2

1

◆

,

✓

3

2

◆

,

✓

5

3

◆

, ...
⌘

.

If we read off the sequence (yn)1n=0 we recognize this as the ordinary Fibonacci
sequence.

We will frequently be referring to the recursion function as the function
describing the system. We may also refer to a system as ’a system described
by f ’, or ’a system governed by f ’. Also, for the remainder of this thesis, we
will not distinguish k-dimensional vectors from 1-dimensional ones by using x̄
to denote the former. It should always be either explicitly stated when defining
the systems, or be clear from context, what dimension the states are in.

2 Dynamical Properties
Dynamical properties usually indicate properties of a system unchanged as the
system progresses. For instance, this incorporates the properties of being fixed,
periodic, and stable for points as well as for orbits. We shall also see that it is
of great interest to see how one system, with a change in one or more of the
parameters, could suddenly change properties completely, and thus become a
different system. This phenomenon is called ’bifurcation’, and will be studied
in Section 2.2.2. Let us now look at the behaviour of different points under
iteration of a function f . This is essentially what we mean by the dynamics of a
system.

2.1 Orbits, Fix Points and Periodic Points
For a system described by a function f , we call the sequence of points

(x0, f(x0), f
2
(x0), . . . , f

n
(x0), . . .)

the orbit of x0 under f , and when it is clear what function is describing the
system, we denote the orbit of x0 by O(x0). Sometimes we also write out
the orbit as (x0, x1, x2, ...). Some comments on notation is needed here. The
phrase ’orbit of x0’, refers to the sequence (fn

(x0))
1
n=0, sometimes also written

(fn
(x0))n�0. However, sometimes it is convenient to refer to the set of distinct
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points of O(x0), and usually this is understood from context. Thus we may refer
to the sequence O(x0) as a set if it is clear from context what we mean. Oth-
erwise we will make the distinction explicitly. For the set of points of O(x0)

we will write {fn
(x0)}n�0 and for the sequence we will write (fn

(x0))n�0. As
a sequence, the orbit is infinite, while the set of points {fn

(x0)}n�0 can be
finite if it is periodic (explained below), or infinite if it is not. As an exam-
ple, the orbit of x0 = 1 under iteration of f(x) = �x is ((�1)

n+1
)n�0, but

{fn
(x0)}n�0 = {�1, 1}.
Some set of points exhibit properties of special interest. The first of these

sets is the set of fix points of f .

Definition 2.1 A point xs is called a fix point of a function f , (sometimes re-
ferred to as a stationary state of xn = f(xn�1)) if f(xs) = xs.

We often denote such a point by xs, but in general it should be explicitly stated
if a point is a fix point. A rather intuitive corollary to this is that if xs is a fix
point of f , then xs is a fix point of fn. As an example, the set of fix points for

f(x) = �3x+ 2 (9)

is {1
2

}, since f(
1

2

) =

1

2

, and there is no other solution to f(x) = x. The fix
points of Id : R ! R however, is R. We understand that finding fix points is
just a matter of solving the equation f(x) = x.

A generalization of this concept is the notion of periodic points. This means
that you get back to a previous point after a number of iterations, and the se-
quence repeats itself.

Definition 2.2 A point x is called a periodic point, with period n, of a function
f , if x is a fix point of fn, n 2 N. The smallest positive such n is called the
prime period of x.

By this definition a fix point is just a period-1 point. In the above example,

x =

1

2

is a period 1 point of (9). It is of course also a period 1489 point. Its
prime period however is 1. For the map f(x) = �x, x = 1 is a period 2 point,
since f 2

(1) = f(f(1)) = f(�1) = 1. The period 2 points of f(x) = �x is
R, but the only period 1 point is {0}. Often, when referring to a point of prime
period n, we usually just call it n-periodic. One could also talk about a point
x as being eventually n-periodic, if fn

(x) eventually becomes n-periodic as n
increases. We also say that a point x is forward asymptotic to a point p with
prime period k, if limn!1 fnk

(x) = p. The stable set of p, denoted W s
(p), is

then all points that are forward asymptotic to p.
Just as with points, we will also refer to a whole orbit, where |O(x0)| = n,

as n-periodic. For orbits, we make the following definitions:
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Definition 2.3 A point p is called a limit point of O(x0), if there exists a subse-
quence (xnk

)k�0 in O(x0), such that xnk
! p, as k ! 1. Further, we call the

set of all limit points of O(x0) the limit set of the orbit of x0, and we denote it
L(x0).

For example, if xs is a fix point, then {fn
(xs)}n�0 = {xs} and L(xs) = {xs}. It

is also easy to see that if {fn
(x0)}n�0 = {x0, x1, ..., xn}, i.e. O(x0) is (n + 1)-

periodic, then L(x0) = {x0, x1, ..., xn} has (n+ 1) points.
It is important to remember that a limit point of a sequence is not defined in

the same way that one usually defines limit points of sets. For a set A, in any
topological space, one usually defines a limit point p 2 A, as a point such that
every neighbourhood of p contains a point of A different from p.

Definition 2.4 For an orbit (fn
(x0)), we will say that it is asymptotically sta-

tionary, if L(x0) = {xs}, for some fix point xs, we call it asymptotically peri-
odic if L(x0) is finite, and eventually stationary, if f(xn) = xn for some n � 1,
and eventually periodic, if fk

(xn) = xn for some k > 1.

Intuitively, one can think of an asymptotically stationary or asymptotically pe-
riodic orbit, as an orbit converging to a fix point xs, or to a periodic orbit re-
spectively, but not necessarily attaining the values at those points. It is clear that
eventually stationary and eventually periodic implies asymptotically stationary
and asymptotically periodic, respectively. However, let f(x) = x(1 � x), then
O(

1
2) = (

1
2 ,

1
4 ,

3
16 , ...) would be an example of an orbit that is asymptotically sta-

tionary, since L(12) = {0} and 0 is a fix point of f . It is, however, not eventually
stationary, since there is no n such that f(xn) = xn.

One question, that may arise from the definition above, is what happens if
an orbit is not asymptotically periodic. We make the following definition:

Definition 2.5 We call O(x0) aperiodic if L(x0) is not finite.

In this case the set {fn
(x0)}n�0 is infinite, since the orbit never settles down

into an periodic orbit. Further it is not asymptotically periodic either, since
L(x0) is infinite. Informally but intuitively, one can think of the orbit as never
settling down into a predictable behaviour. It is not hard to realize that this
property is of key importance in the study of chaotic behaviour. Another feature
of aperiodicity is that, since all points in the orbit are distinct, the orbit actually
visits every open neighbourhood of each of the points of L(x0). Thus, the points
of L(x0) are also limit points of the set {fn

(x0)}n�0. In later sections we will
see that aperiodicity is not enough for a map to be called chaotic, and we will
develop more properties needed in the sections to come.

Before going further, we will first look at a few of the introduced concepts
in the simple case of linear and affine mappings.
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2.1.1 Linear and Affine Mappings

By a linear one dimensional mapping f : R ! R, we mean one of the form
f(x) = ax, a 2 R \ {0}. Finding fix points to such mappings is of course very
easy, and there are a few conclusions one may draw about these mappings and
their fix points. First we note that 0 is always a fix point, and that it is the only
fix point since it is the only solution to ax = x; unless a = 1 because then
f = Id, and every point is a fix point.

Since the solution to xn = axn�1 is described by xn = anx0, we see that if
|a| < 1, then

lim

n!1
an = 0.

Therefore, no matter where we start, the solution will always tend to 0, i.e
limn!1{xn} = 0. So, all points x 2 R are asymptotically 1-periodic, or equiv-
alently, asymptotically stationary. We also see that W s

(0) = R. However, if
|a| > 1, then

lim

n!1
an = 1,

and limn!1{xn} = 1. We then say that W s
(1) = R\{0} (since if we start at

0, we stay there).
If we translate the map, so that its graph does not intersect the origin, we see

that we are not always guaranteed a fix point, since the equation ax+b = x does
not have a solution if a = 1, b 6= 0. Mappings where b 6= 0 are not called linear,
and they are instead called affine (i.e mappings that have a graph consisting of
a line, which of course also include linear maps). Affine mappings where a 6= 1

has one fix point, namely the solution to ax + b = x. Generalizing the above
discussion, we may state the following:

Theorem 2.1 For any affine mapping f(x) = ax+ b we have that if a = 1, b =
0, then every point is a fix point. If a = 1, b 6= 0, then the mapping has no fix
points. If |a| < 1, then O(x0) converges to the unique fix point p, which is the
solution of ax + b = x. If |a| > 1 and x0 6= p, then O(x0) diverges away from
p. If a = �1, then every point except p has prime period 2.

We will now develop our collection of properties of orbits and periodic
points even further, by looking at the concept of stability of periodic points.

2.1.2 Stability of Periodic Points

As we saw in the previous example of an affine map f , if |a| < 1 the orbit of f
tends to the fix point, while it diverges away from the fix point if |a| > 1. Thus
there seems to be some aspects of stability connected with a fix point. We make
the following definitions:
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Definition 2.6 Let xs be a fix point of f and let N↵(p) denote a neighbourhood
of radius ↵ around the point p. We then say

i) xs is stable, if for each ✏ > 0 there exists a � > 0 such that

fn
(N�(xs)) ⇢ N✏(xs), 8n 2 N

ii) xs is unstable if it is not stable.

iii) xs is asymptotically stable or attracting, if xs is stable and there exist a
neighbourhood Nr(xs) such that x 2 Nr(xs) ) limn!1 fn

(x) = xs.

iv) xs is repelling if there exist a neighbourhood Nr(xs) such that x0 2 Nr(xs)\{xs} )
fn

(x0) 62 Nr(xs) for sufficiently large n.

Informally speaking, a fix point xs of a map f is stable if points within a
neighbourhood N�(xs) of xs stay close to xs under iteration of f . To be precise,
we would call xs locally stable if the neighbourhood N�(xs) is finite. Other-
wise we would call it globally stable, in which case points in O(x0) can not get
arbitrarily far away from xs, no matter where we start. Since a globally stable
fix point is of course also locally stable, we will often just refer to locally stable
as stable if not otherwise stated. The most common term for an asymptotically
stable fix point, and the one we will use, is ’attracting’ since O(x0) is ”moving”
closer and closer to xs and is thus ”attracted” by it. In case (iv), O(x0) instead
diverges away from the fix point, as in the affine case where |a| > 1, it is there-
fore called a repelling fix point, and is thus unstable (a fix point can however be
unstable without being repelling).

To arrive at a criteria for stability, we consider the difference equation

xn = f(xn�1), (10)

where f : S ! S ⇢ R is differentiable. By Taylor expansion around the fix
point xs, we get that

f(xn�1) = f(xs) + f 0
(xs)(xn�1 � xs) +O((xn�1 � xs)

2
) ,

, xn � xs = f 0
(xs)(xn�1 � xs) +O((xn�1 � xs)

2
).

Thus the linear system of differences

yn = f 0
(xs)yn�1,

where yn = xn � xs, approximates (10) when xn is close to xs. We then know
from our earlier discussion that limn!1{yn} = 0 if |f 0

(xs)| < 1, and that
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limn!1{yn} = 1 if |f 0
(xs)| > 1. Now obviously, if xs is attracting, then

{yn} ! 0, as n ! 1.
To state and prove the criteria for stability of fix points of differentiable one

dimensional mappings, we first need the following lemma:

Lemma 2.1 3 If f : S ! S is differentiable at p 2 S ✓ R and |f 0
(p)| < 1, then

there is a positive number a < 1 and a neighbourhood Nr(p) such that, for all
x 2 Nr(p),

|f(x)� f(p)|  a|x� p|.
Similarly, if |f 0

(p)| > 1, then there is a positive number a > 1 and a neighbour-
hood Ns(p), such that for all x 2 Nr(p),

|f(x)� f(p)| � a|x� p|.

Proof. Let limx!p
f(x)� f(p)

x� p
= f 0

(p) and suppose |f 0
(p)| < 1. We can

then choose a 2 (0, 1) such that f 0
(p) 2 (�a, a). By the definition of limit, we

then have that there exists a neighbourhood Nr(p), such that
x 2 Nr(p), x 6= p ) f 0

(p) 2 (�a, a). Thus

x 2 Nr(p), x 6= p ) �a <
f(x)� f(p)

x� p
< a ,

�

�

�

f(x)� f(p)

x� p

�

�

�

< a. So, for

all x 2 Nr(p), we have |f(x)� f(p)|  a|x� p|.
Similarly, if |f 0

(p)| > 1, then we can instead pick a > 1 such that 1 <
a < |f 0

(p)|. By an analogous argument we may deduce that there exists a

neighbourhood Ns(p) such that x 2 Ns(p), x 6= p )
�

�

�

f(x)� f(p)

x� p

�

�

�

> a. So,

for all x 2 Ns(p), we have |f(x)� f(p)| � a|x� p|. ⇤

Lemma 2.1 can be used to prove the following theorem about fix points of
differentiable maps.

Theorem 2.2 Suppose xs is a fix point of the map f : S ! S, where S ⇢ R,
and that f is differentiable at xs with |f 0

(xs)| 6= 1, then

i) |f 0
(xs)| < 1 ) xs is stable, and there exist a neighbourhood Nr(xs) such

that x0 2 Nr(xs) ) limn!1 fn
(x0) = xs. Thus xs is an attracting fix

point.

ii) |f 0
(xs)| > 1 ) xs is unstable, and there exist a neighbourhood Nr(xs)

such that x0 2 Nr(xs)\{xs} ) fn
(x0) 62 Nr(xs) for sufficiently large n.

Thus xs is a repelling fix point.
3This lemma and the following theorem, are modified and slightly extended versions of

Lemma 5.2.2 and Theorem 5.2.1 in Banks [2]
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Proof. Let xs be a fix point of f , and assume first that |f 0
(xs)| < 1. From

Lemma 2.1 and the fact that f(xs) = xs, we then get that there exists a positive
a < 1, and a neighbourhood Nr(xs), such that x 2 Nr(xs) ) |f(x) � xs| 
a|x� xs|. Since xn = f(xn�1), a 2 (0, 1) and we assume that x0 2 Nr(xs), we
get that

|x1 � xs|  a|x0 � xs| ) x1 2 Nr(xs)

) |x2 � xs|  a|x1 � xs|  a2|x0 � xs| ) x2 2 Nr(xs)

) |x3 � xs|  a|x2 � xs|  a3|x0 � xs| ) x3 2 Nr(xs)

. . . ) |xn � xs|  a|xn�1 � xs|  an|x0 � xs|.

Since an ! 0, as n ! 1 and |x0 � xs| is a constant, xn ! xs, as n ! 1 and
fn

(Nr(xs) ✓ Nr(xs). So xs is stable and x0 2 Nr(xs) ) limn!1 fn
(x0) = xs.

Suppose instead that |f 0
(xs)| > 1 but that xs is stable. Then there exists

a neighbourhood N✏(xs) such that x 2 N✏(xs) ) |f(x) � xs| � a|x � xs|
by the second part of Lemma 2.1. By the definition of stable there also exists
a neighbourhood N�(xs) such that fn

(N�(xs)) ✓ N✏(xs) for all n 2 Z+. So
x0 2 N� ) fn

(x0) 2 N✏(xs) for all n 2 Z+. By a similar reasoning as before
we get that

|x2 � xs| � a|x1 � xs|
|x3 � xs| � a2|x1 � xs|

...
|xk � xs| � ak�1|x1 � xs|,

and since a > 1, ak�1 ! 1, as k ! 1. So, for sufficiently large k, fk
(x0) 62

N✏(xs). So fn
(N�(xs)) 6✓ N✏(xs), which contradicts the fact that xs was stable,

and hence xs is unstable. Also, xs is an repelling fix point. ⇤

In the case when |f 0
(xs)| = 1, xs is usually called indifferent, and it can

be attracting, repelling or actually both. Thus we can not say much about the
stability of an indifferent fix point by analysing the first derivative; for this we
would need more sophisticated methods.

Since a point p is a n-periodic point of f , if it is a fix point of fn, we also
see that for a periodic point p of prime period n, we have that

|(fn
)

0
(p)| < 1 ) p is an attracting fix point of fn,

|(fn
)

0
(p)| > 1 ) p is repelling fix point of fn.

A similar argument, as the one using Taylor expansion for (10), works even
in higher dimensions. So, for a function F : S ! S ⇢ Rn, the n-dimensional
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system given by
xn = F (xn�1) (11)

still has an approximation

yn = F 0
(xs)yn�1,

where yn = xn�xs, and where F 0
(xs) is now the Jacobian of F evaluated at xs.

So we have approximated the system (11) by this linear system, where F 0
(xs)

is a matrix, let’s call it J . We then have that yn = Jny0. We also know from
linear algebra that if J is diagonalizable, then we can write Jn

= P⇤nP�1,
where ⇤ is a diagonal matrix with the eigenvalues of J on its diagonal. Now,
if �i, i = 1, ..., n are the eigenvalues of J , and |�i| < 1 for i = 1, ..., n, then
yn ! 0, as n ! 1, but if |�i| > 1 for at least one i, then ⇤n will blow up and
yn ! 1, as n ! 1.

For a square matrix A that is not diagonalizable, there is still always a
block diagonal matrix ⇥, called the Jordan canonical form of A, such that
A = T⇥T�1. So, we still have that An

= T⇥nT�1. The matrix ⇥ has the
following form:

⇥ =

0

B

@

⇥1

. . .
⇥p

1

C

A

,

where each block ⇥i is a square matrix of the form

⇥i =

0

B

B

B

@

�i 1

�i
. . .
. . .

1

�i

1

C

C

C

A

,

where �i is the i:th eigenvalue of A.
The power of a block diagonal matrix B := B1� · · ·�Bm is the direct sum

of the powers of the blocks, i.e Bk
= Bk

1 � · · · � Bk
m. From a more general

formula, for applying a matrix function to a Jordan block, that we won’t state
here, one can derive the following formula for the n:th power of a m⇥m Jordan
block ⇥i:

⇥

n
i =

0

B

B

B

B

B

@

�ni
�

n
1

�

�n�1
i

�

n
2

�

�n�2
i · · ·

�

n
m�1

�

�n�m+1
i

0 �ni
�

n
1

�

�n�1
i · · ·

�

n
m�2

�

�n�m+2
i

...
... . . . . . . ...

0 0 · · · �ni
�

n
1

�

�n�1
i

0 0 · · · 0 �ni

1

C

C

C

C

C

A
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To find out what happens to ⇥n for large n, we look at the limit of the
elements of the j:th super diagonal. We first note that

✓

n

j

◆

�n�j
i =

n(n� 1)(n� 2) . . . (n� k + 1)

k!
�n�j
i

=

(1� 1
n
)(1� 2

n
) . . . (1� k�1

n
)nk+2

k!
�n�j
i ,

where we get the last equality by multiplying with
nk+2

nk+2
. For large n we then

have that
✓

n

j

◆

�n�j ⇡ nk+2

k!
�n�j.

From this we derive that

lim

n!1

✓

n

j

◆

�n�j
= 0, for|�| < 1

lim

n!1

✓

n

j

◆

�n�j
= 1, for|�| > 1.

(12)

A useful terminology about matrices, that is often used, is the spectrum
of a matrix. The spectrum of a matrix A, denoted �A, is just the set of its
eigenvalues. We also often talk about a matrix spectral radius. We make the
following definition:

Definition 2.7 The spectral radius of a matrix A is denoted ⇢(A), and we define
it as:

⇢(A) = max{|a| : a 2 �A}.

With the above discussion in mind we now state, without a formal proof,
a generalization of the earlier theorem about the stability of fix points of one-
dimensional maps.
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Theorem 2.3 4

Let xs be a fix point of the continuous function f : S ! S, where S ⇢ Rm,
and assume that f is differentiable in a neighbourhood of xs with continuous
derivative at xs. Let J = f 0

(xs) be the Jacobian of f evaluated at xs. Then

i) xs is an attracting fix point if ⇢(J) < 1,

ii) xs is an unstable fix point if ⇢(J) > 1,

iii) xs is a repelling fix point if min{|a| : a 2 �J} > 1.

This of course generalizes Theorem 2.2, since the Jacobian of a one dimensional

map f : S ! S ✓ R is just the 1⇥ 1-matrix
✓

df

dx

◆

. Thus, in that case we just

get ⇢(J) = | df
dx

|.
Before moving on to non-linear maps, as a side note, it can be a good idea to

introduce some graphical aids. As things get more complicated it usually helps
to illustrate them to get a more complete picture.

2.1.3 Graphical Tools

One common way to illustrate the evolution of a dynamical system is by plot-
ting a so called phase portrait. This is just a graph of the states of the system,
i.e a diagram showing where the rules takes a specific point, and where that
point goes on from there, and so on. This is more commonly used for contin-
uous systems, as there is a natural vector field associated with the system, that
you can also plot. This gives you a very nice presentation of the evolution of
different starting positions. For a discrete system, however, the next state of
the system can be very far away from the current one, and since we do not get
smooth curves describing the evolution of an initial condition, the phase portrait
would get quite messy. We still use the idea at times when it suits us however.
For example, say we wanted to illustrate how the one dimensional system rep-
resented by f(x) =

p
x evolves when starting from different points. We could

simply start from x0, and then plot the sequence fn
(x0), n = 0, 1, 2, .... This

would tell us where the points are, but not where to go from a specific point. In-
stead we indicate this by arrows. We usually also mark fix points by larger dots.
If all points within a given interval converges (diverges) to (away from) a fix
point, we represent this by an arrow covering the interval and pointing towards
(away from) the fix point. When the orbit does not converge (diverge) mono-
tonically, i.e when it jumps between two sides of a fix point on the real line, as

4This theorem is somewhat of a compound of several theorems that can be found in different
literature on the subject. For a proof of part (i) see Theorem 5.3.3 in [25], for part (ii) see
Theorem 10.4.2 in [44], and for part (iii) see Theorem 5.4.1 in [25].
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(a) f(x) =
p
x (b) g(x) = �x

3

Figure 1: Example of phase portraits for two one dimensional maps. The large
dots indicate fix points, and the arrows indicate where a point is taken under
iteration. Thick arrows indicate that all points in the interval covered by the
arrow is taken in the direction of the arrow.

for f(x) = �x3, the arrows may need to be bent in order to illustrate the orbits.
In these cases the phase portrait could become a bit messy. We are still dealing
with a one dimensional system, so the arrows are of no other significance than
to show the order in which the points occur under iteration of f . We can see two
examples of phase portraits in Figure 1.

A perhaps more descriptive way of illustrating the orbit of a point x0 under
iteration of a function f is by plotting f(x) and Id, together with the sequence

((x0, x0), (x0, f(x0)), (f(x0), f(x0)), (f(x0), f
2
(x0)), ..., (f

n�1
(x0), f

n
(x0)))

for a satisfyingly large n, and join the points of that sequence together by arrows.
The resulting image is called a cobweb. You simply start at x0 and ”move”
vertically to the graph of f(x), now move horizontally until you get to the graph
of Id(x), you are then at x = f(x0). Then move vertically again, to the graph
of f(x), at which point you are at y = f 2

(x0), and so on. This is a very intuitive
way of following the iterations of x0 under f . As we can see in Figure 2, it also
clearly illustrates the characteristics of the fix points as attracting or repelling.
The n-periodic points are also easy to spot, as they show up as square shaped
cycles, seen in Figure 2c. In Figure 2d, things look a bit more messy. We do not
seem to have any fix points or periodic points, even though this is of course not
entirely clear just from the picture. This is an example of a chaotic system, and
it is something we will explore in further detail in Section 3.

We will now start to explore the dynamics of non-linear maps, and we will
see that things get very complicated even for seemingly simple maps.
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(a) Cobwebbing of f(x) =

1

2

x starting at
�0.7 and 0.7.

(b) Cobwebbing of f(x) = 2x starting at
�0.1 and 0.1

(c) Cobwebbing of f(x) = 3x(1� x) start-
ing at x0 = 0.2

(d) Cobwebbing of f(x) = 4x(1�x) start-
ing at x0 = 0.2

Figure 2: Different examples of cobwebbing on a map f , as an illustration of
the orbit of a point x0 under iteration of f .
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2.2 Non-Linear Dynamics
We have already seen a lot of theory that apply to the case where the function
that describes a dynamical system is not necessarily linear or affine. In this sec-
tion we will discuss some more specialized theory suited for non-linear discrete
dynamical systems. We will start off with some motivation for a non-linear
theory, with an application to population dynamics. We will also introduce the
concept of a family of systems and bifurcations, as well as fractals and fractal
dimension. This will hopefully give us enough background to tackle the section
about chaotic dynamics.

2.2.1 Population Models and the Logistic Map

One very simple model for population growth would be to assume that for each
generation the number of individuals grows proportionally to the present gener-
ation, i.e. that

pn+1 = qpn,

where pn is the number of individuals after n time units, and q is some growth
factor. The solution to this difference equation is pn = qnx0. Now say that such
a population of 100 individuals grows by 50% each year, i.e. q = 1.5, then the
number of individuals after 10 years would be x10 = 5767, and after 100 years
it would be on the scale of 1019.

In Section 1.1 we gave an example of a second order difference equation,
namely the Fibonacci recurrence. We also explained how this was initially a
simplified model of the evolution of a population of rabbits. There are many
reasons that the model is a simplified one. One of them is of course that there
are probably many more external factors in play, such as other predators and/or
sickness and starvation, resulting in a death rate. A more obvious reason (albeit
due to the first reason) is that after just 5 years we would have 1548008755920

rabbits. That is about 209 times earth’s population (of 2016). After 40 years
the number of rabbits would be close to 10

100, which is well over the estimated
number of atoms in the universe (usually estimated to somewhere on the scale
of 1080). Obviously something has to limit growth for these models to make
sense.

Let us describe a different way of modelling population growth. As the
population of a certain species increase we can assume that, at a certain point,
it will be harder for each individual to survive due to competition for food, etc.
Let the number of individuals after n time units be xn, and let r be some growth
factor. We want (xn)n�0 to start decreasing when the population has become
big enough, say at size K, usually called the carrying capacity. This behaviour
can be modeled by the letting the rate of growth xn+1/xn be

xn+1

xn

= r(K � xn) ) xn+1 = xnr(K � xn). (13)
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Without loss of generality we can assume that K = 1 (rather than describing
the number of individuals we are then describing the percentage of the carrying
capacity population). The difference equation (13) can then be described by

f(x) = rx(1� x). (14)

This is the so called logistic map. This map is the discrete version of the logistic
equation, which is a model for population growth that was first published by
Pierre François Verhulst, in 1845 [41]. It has been known for a long time that
the logistic map is capable of displaying very complicated dynamics. It was
even suggested by John Von Neumann, in the late 1940s, that it could be used as
a random number generator. However, it was probably first popularized in 1976,
by the Australian physicist Robert May, in a paper called Simple mathematical
models with very complicated dynamics[28]. Because of its simple nature yet
complicated dynamics, it is very well suited for demonstration, and we will thus
return to this map several times throughout this thesis.

2.2.2 Family of Maps and Bifurcations

Sometimes we want to study how the behaviour of a system changes with a
change in one or more of the parameters. We will therefore introduce the
concept of a family of maps. We say that the set {f(a, x)|a 2 Rn} is a n-
parameter family of maps. When a 2 R, we often write this map as fa, or
even leave out the parameter in the function handle completely, as in the ex-
ample of f(x) = r cos(x). Since this is not a paper on function theory, and it
should always be clear from context what parameters, if any, we are changing,
we will use the notation best suited for the case at hand. Quite often, we will
omit the parameters from the function handle. Exceptions to this will be made
if very convenient, or perhaps to emphasize the fact that we are talking about a
family of maps, and not just one of the maps in a family.

The logistic map is part of a family of maps also called the logistic family, or
sometimes the quadratic family of maps, i.e. the family fr(x) = rx(1� x), for
r 2 R. Most interesting dynamics of these maps seem to occur when r 2 [0, 4].
Before going further and studying bifurcations, let us first look at some of the
properties we are already familiar with in the example of f(x) = rx(1� x).

Since f 0
(x) = r � 2rx, we see that f attains a maximum at x = 1/2,

and clearly f(0) = f(1) = 0. So, for r 2 [0, 4], f can be viewed as a map
f : I = [0, 1] ! I . This is how we will view it now, and also how it was used
in modelling since, as was mentioned above, f(x) then represents a percentage.

Solving f(x) = rx(1 � x) = x for x yields x1 = 0, x2 =

r � 1

r
, r 6= 0. So, f

has two fix points, but we see that x2 2 I only when r � 1 (and distinct from
x1 when r > 1). When r < 1, we see that x1 is the only fix point in I , and that
this is attracting since |f 0

(0)| = |r| < 1. So x1 first becomes repelling when
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r > 1, and another fix point x2 appears, which at this stage is attracting since

f 0
(x2) = f 0

(

r � 1

r
) = r � 2r(

r � 1

r
) = 2 � r. So x1 is repelling and x2 is

attracting. Continuing to increase r, we see that x2 stays attracting until r > 3,
when it becomes repelling.

So for r 2 (1, 3), the dynamics of f in I is well understood and simple.
All points in I , except for 0 and 1, are forward asymptotic to x2, and hence
W s

(x2) = (0, 1).
Now, one may ask, what happens when r > 3 and both x1 and x2 become

repelling? Up until now, we have only been looking at fix points of f , and
ignored the fact that there may be periodic points of higher periodicity present.
Remember from earlier, that a n-periodic point of f is a fix point of fn. So
finding the 2-periodic points is a matter of solving

f 2
(x) = x , r(rx(1� x))(1� rx(1� x)) = x

, �r3x4
+ 2r3x3 � r3x2 � r2x2

+ r2x = x.

Solving this yields the four solutions

x1 = 0, x2 =
r � 1

r
,

x3 =
r2 + r � r

p
r2 � 2r � 3

2r2
, x4 =

r2 + r + r
p
r2 � 2r � 3

2r2
,

of which we can of course see that x1 and x2 are the fix points we already had.
Hence, x3 and x4 are the two points of prime period 2. Solving r2 � 2r� 3 = 0

yields the two solutions r1 = �1, r2 = 3. So, we see that r2 � 2r � 3 is a
parabola with zeros at �1 and 3. This means that the points x3 and x4 only exist
in I for r > 3, and at r = 3, we see that

(3)

2
+ (3)� (3)

p

(3)

2 � 2(3)� 3

2(3)

2
=

(3)

2
+ (3)� (3)

p

(3)

2 � 2(3)� 3

2(3)

2

=

(3)

2
+ (3)

2(3)

2
=

3� 1

3

=

2

3

,

so that x2 = x3 = x4, when r = 3. Some tedious but straightforward calcula-
tions also gives (f 2

)

0
(x3) = (f 2

)

0
(x4) = �r2+2r+4, and solving |r2+2r+4| =

1 gives us r1 = �1, r2 = 3, r3 = 1�
p
6, r4 = 1+

p
6. We see then that x3 and

x4 stay attracting until r = 1 +

p
6.

So, to conclude this example: as we increased r, x1 = 0 became repelling
and another fix point, x2 was born at r = 1, with x1 = x2 when r = 1. We
then continued to increase r until x2 became repelling at r = 3, at which two
new attracting periodic points, x3, x4 of period 2 (or fix points of f 2) were born,
with x2 = x3 = x4, at r = 3. This continued up to r = 1 +

p
6 after which
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Figure 3: A so called bifurcation diagram of the logistic map, where we can see
the periodic points on the y-axis and the parameter r on the x-axis. This shows
how the dynamics change when we change the parameter.

we have points of period 4. This can all be illustrated using something called a
bifurcation diagram, or sometimes, perhaps more accurately, called an orbit
diagram. This is the attracting periodic points of a system, plotted against some
parameter. More precisely, we plot the parameter r against {fn

(x0)}Nn�k, for a
large N . If we let k be sufficiently large, the orbit will have settled down into a
periodic cycle (if one exists of course), so the y-axis will present the attracting
periodic points. In this way we can see how the dynamics changes when we
change the parameter. An example of such a diagram can be seen in Figure 3.
There we can also see that there seems to be another point, just to the right of
r = 3.5, where we seem to have points of period 8. We have also marked a
specific point further to the right with a line, after which we cannot seem to read
out any periodicity at all. We will return to this value later in Section 4.4.

We have already gone ahead of ourselves a bit, and thus we will now intro-
duce a concept that this last example gave a taste of, namely bifurcations.

As we saw in the previous section, the dynamics of a system can change
dramatically when we introduce a change in one of its parameters. To be very
precise we are not really looking at the same system as soon as we change a
parameter (remember the notion of a family of maps), but merely different maps
in a family. For a lot of these maps however, the dynamics will be exactly the
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same. We would call these systems topologically conjugate or topologically
equivalent. We will not go into much detail of topological conjugacy here, but
as we will use the concept later, we will give a brief introduction starting with
the definition.

Definition 2.8 Let X and Y be topological spaces. Two continuous functions
f : X ! X , and g : Y ! Y are called topologically conjugate, if there exists a
homeomorphic function (i.e. a bijective continuous function with a continuous
inverse) h : X ! Y such that h � f = g � h.

We may consult the following commutative diagram for some clarity:

X X

Y Y

f

h h

g

Definition 2.8 is done for general topological spaces, but for us we may just
aswell think of X and Y as subsets of Rn. Essentially (but informally) this
means that, as far as the dynamics goes, the systems described by f and g are
equivalent. Everything we know about the dynamics of one of them, we auto-
matically know about the other (e.g. in terms of fix points and their stabilities).
For example, we note that for x0 2 X we have that

h � f = g � h ) h � f � h�1
= g ) gn = h � fn � h�1 ) h � fn

= gn � h,

which leads us to

h(O(x0)) = {h(fn
(x0))}n�0 = {gn(h(x0))}n�0 = O(h(x0)).

Further, since if fk
(x0) = x0, then gk(h(x0)) = h(fk

(x0)) = h(x0), we see
that h takes orbits to orbits and periodic points to periodic points. In a similar
fashion, one can go further to show that periodic orbits go to periodic orbits of
the same period, and essentially that every dynamical feature is carried over by
h.

As we saw in the previous section, the dynamics may change when we pass
certain values of the parameters. Thus passing a point in the parameter space
could make us go from one set of topologically equivalent systems to another
set of equivalent systems, but that are no longer equivalent to the ones in the first
set. The point in the parameter space where this happens is called a bifurcation
point5. As we may understand from Theorem 2.2 and 2.3, for one dimensional

5This idea can actually be used to make a quite general definition of bifurcation point, in
loose terms, as a point in parameter space whose every neighbourhood contain topologically
different maps.
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systems, this typically happens when a change in a parameter makes |(fn
)

0
(xs)|

pass 1, at which point the stability of xs changes. For higher dimensional sys-
tems, we instead look at the spectral radius ⇢(J) of the jacobian J = (fn

)

0
(xs).

There are many ways in which the dynamics of different systems may change
and we will only make the concept precise here in terms of one dimensional
systems.

The above description gives some intuition for the concept, but in order
to make a more precise definition we first need another concept. Let J be an
interval and let f(a, x) be real valued maps, f : S ✓ R ! R, for each parameter
value a (as was mentioned earlier, we often just refer to ’the map’ f , instead of
the family of maps). Let V be a subset of J , and let xs be a fix point of f(a, x),
for every a in V ✓ J . From the previous section it is hopefully clear that xs

may be dependent on a. We can therefore see xs as a function xs : V ! R, of
a. We may also define fix points of fn

(a, x) (periodic points) in an analogous
fashion. Let us therefore rather say that xs(a) is a fix point of fn

(a, x) for some

n � 1. For example, remember that
r � 1

r
was a fix point of f(x) = rx(1� x)

for r 2 (1, 3), thus xs(r) =
r � 1

r
, with V = (1, 3). As we have seen earlier,

we may now plot the function xs(a) against a, and get a bifurcation diagram.
Usually we also refer to the graph of xs in V , as a branch of fix points of fn,
fore some n � 1.

Having built up the intuition, let us now define what we mean by a bifurca-
tion point.

Definition 2.9 Let f(a, x) be real valued, differentiable maps, with continuous
derivatives, for each a 2 J . We call p 2 J a bifurcation point of f , if there
are continuous functions xi : Vi ! R, for some non-empty Vi ✓ J, i = 1, 2
or i = 1, 2, 3, and whose graphs are branches of fixed points of fn, for some
n � 1, such that

xi(p) = xj(p), xi(a) 6= xj(a), a 6= p, i 6= j.

where p could be one of the endpoints of Vi, for some i.
The bifurcation diagram in Figure 3 illustrate this rather well. As we saw

before, this is called a bifurcation diagram of the logistic map f(x) = rx(1�x)
6. Let us first look at what happens at r = 1. Consider the branches x1(a) = 0

and x2(a) =
r � 1

r
. We have already seen, since f 0

(x1) = r and f 0
(x2) = 2�r,

that when r < 1 on I , x1 is attracting and x2 is repelling (however, it’s not
even in I , if we necessarily look at f : I ! I). The two branches meet at
r = 1, when x1(a) = x2(a) = 0, but x1(r) 6= x2(r), when r 6= 1. Thus, letting

6We will not describe the details of numerically generating this diagram. However, the code
can be found in the appendix B.2
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Figure 4: For the map f(x) = x3�ax, there is a bifurcation point (pitchfork bi-
furcation) at a = �1, but there is no exchange of stability between the branches.
The branch xs = 0 just becomes stable as a crosses �1 from the left.

J1 = J2 = (a, b), for a < 1 < b, we see that r = 1 is a bifurcation point, call
it p1. We also noted that when passing p1, x1 became repelling, but that instead
x2 became attracting. We often say that there is an exchange of stability at p1,
or that x1 passes its stability to x2. Another interesting point was when r = 3.
At this point, as we saw in the previous section, three branches meet, namely
x2(r), x3(r), x4(r), but they are different from each other when r 6= 3, hence
r = 3 is another bifurcation point, call it p2. At p2 there is also an exchange
of stability between x2, x3 and x4 in that x2 passes on its stability to x3 and x4.
Then x3 and x4 continue to be attracting until r = 1 +

p
6.

As the example of f(x) = x3 � ax, seen in Figure 4, shows, there does
not have to be an exchange of stability between branches of periodic points at a
bifurcation point.

3 Chaotic Dynamics
In this section, we will give a very brief history of chaotic dynamics as a field
of study, and build up the tools needed to give a, hopefully, comprehensible
definition of chaotic behaviour. We will end by discussing an attempt to quantify
chaos in terms of a measure of the rate of divergence of nearby orbits.

3.1 Short History and Introduction
The study of dynamical systems is a wide field of study, and the branch of it
called chaotic dynamics (sometimes just referred to as chaos theory, especially
in popular science) is a very recent development. Most people seem to agree that
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chaotic dynamics, as a field on its own, started with the American mathematician
and meteorologist Edward Lorentz7.

In 1961, as Lorentz was working on an simplified model for atmospheric
convection, he rounded off a few values to save time, and noticed a complete
change in the new solutions. His discovery showed that even a very small
change in the initial conditions could have a massive effect on the long term
solutions. We may want to remind ourselves that these are all deterministic
processes, and we like to think that a deterministic processes is, by definition,
easy to predict. If we knew the initial conditions of a physical system exactly
(and had a perfect model of it), we could predict its future exactly. However,
for some systems, if we are off even slightly (which may always be the case in
physical experiments), we are not even able to predict its relatively near future
to a satisfying degree. This was the sort of system that Lorentz were working on
when modelling the weather, perhaps without realizing it. This is a phenomenon
called ’sensitivity to initial conditions’. This key component is often referred to
as the butterfly effect, a phrase thought to have been coined by Edward Lorentz,
however the concept of it appeared in Ray Bradbury’s novel A sound of thunder
from 1952 [8]. Lorentz also described this phenomenon in a paper from 1969,
via the metaphor of a seagull flapping its wings [31].

One may think that such extreme sensitivity on initial conditions could only
be exhibited by very complicated systems, but recall the logistic map from be-
fore. As we described in Section 2.2.1, this was even part of a paper named
Simple mathematical models with very complicated dynamics[28], by Robert
May. In Figure 5 below, one may see a demonstration of the butterfly effect
using the logistic map. In this example, two different orbits O(x0) and O(x̃0),
under f(x) = rx(1 � x), with x0 = 0.1, x̃0 = 0.1 + 10

�16, was generated
using numerical methods. To give some perspective, say that these points were
part of some physical experiment. Now, if x0 were to represent the exact value,
and x̃0 our approximation, and that the values gave a measure of say mass in
kg, we would only have been off by a tenth of the mass of an E.coli bacterium.
Still only about 48 iterations were needed to give a significant difference in the
results.

Later on, we will also see that sensitivity to initial conditions is part of even
simpler systems, and that it is far from enough to characterize something as
beeing chaotic. Before trying to define chaotic behaviour mathematically, we
will first discuss a few definitions that we will need in order to do so.

7The essence of a chaotic system, namely its sensitivity to initial conditions and thus appar-
ent randomness, was however noticed much earlier by a number of scientists, e.g James Clerk
Maxwell in 1860 and Henri Poincaré in 1890 [43].
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Figure 5: Illustration of the ’Butterfly effect’ using the logistic map
f = rx(1� x), with r = 4. The values of two orbits, of length 100, are plotted
against the number of iterations n. The first orbit starts at x0 = 0.1 (solid line),
and the other at x0 + 10

�16 (dashed line). For about the first 48 iterations, the
two orbits seem to coincide, but after that, one can clearly see a divergence as
the dashed line become visible.
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3.2 Stable and Unstable Orbits
We already know what it means for fix points and periodic points to be stable
or unstable, and we will now discuss a similar notion for whole orbits. The
intuition should be that we need something to push orbits apart, i.e. if two orbits
start very close to each other, we do not want them to end up close to each other
after enough iterations (not necessarily at least). In Section 2.1 we discussed
aperiodicity, and it seemed that this was a key ingredient of chaotic behaviour.
This was due to the fact that an aperiodic orbit never settles down into a periodic
one, and in a way, thus never repeating its behaviour. However, a system could
exhibit this behaviour while still not having a sensitive dependence on initial
conditions, as the following example8 shows:

Example 3.1 Recall from linear algebra that the counter clockwise rotation by
✓ radians is given by the transformation

✓

cos(✓) � sin(✓)
sin(✓) cos(✓)

◆✓

x
y

◆

=

✓

x cos(✓)� y sin(✓)
x sin(✓) + y cos(✓)

◆

Let S1 be the unit circle, x0 2 S1, and let f(x, y) = (x cos(1)�y sin(1), x sin(1)+
y cos(1)). Then f is a counter clockwise rotation of the plane of 1 radian around
the origin and we will now show that every open set of S1 contains points of
O(xo).

Assume there is an arc A of positive length of S1, such that A \ O(x0) = ;,
then there exists some open arc A0 containing A, such that A0 \O(x0) = ; but
the endpoints of A0 are points of O(x0). Now, let A1 = f(A0). If A1 = A0 then
1 = 2⇡, which is false. Further, if A0 6= A1, A0\A1 6= ;, then A0 would contain
one of the endpoints of A1, which belong to O(x0). This thus contradicts the
assumption that A0 \O(x0) = ;. So A0 \ A1 = ;. By an analogous argument,
we would have f(A1)\A0 = ; and further fn

(A0)\A0 = ;, for n = 1, 2, ..., k.
Since the length of A was positive, the length of A0 is positive and the length of
its image under fn is the same for all n. Thus, eventually, the length of all of
A0, A1, ..., Ak for some k, will exceed 2⇡, thus contradicting the fact that they
are all disjoint arcs of S1.

Then, since every arc of S1 around an arbitrary point z 2 S1, would contain
a point of O(x0), every point z 2 S1 is a limit point of O(x0). So L(x0) is
infinite and thus O(x0) is aperiodic.

In Figure 6, one can also find some numerical verification of this fact, show-
ing that the orbit of a point under f seems to trace out the entire unit circle.

Since f is an ordinary rotation of points in R2, one realizes that two orbits,
starting close to each other, will remain close forever. Thus it does not feel right

8Example 3.1 is taken from [25], however the proof has been modified slightly. Many of the
definitions in this section are also borrowed from [25]
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(a) (b)

Figure 6: Plots of the first 500 (6a) and 30000 (6b) iterations of x0 = (1, 0) under the
map f(x, y) = (x cos (✓)� y sin (✓), x sin (✓) + y cos (✓)), for ✓ = 1, i.e. the map that
rotates points in the plane one radian counter-clockwise. It seems that f maps x0 into
every open arc of the unit circle.

to characterize f as being chaotic in any sense. //

We now introduce a concept that will give us one of the properties missing
in the above example. First, let us state what we mean by an invariant set. A set
X ✓ Rn is called invariant under f if f(X) ✓ X . As an example, I = [0, 1]
is invariant under f(x) = x(1� x), since we know from before that every orbit
starting outside of I will diverge to negative infinity, but we also know that 0 is
attracting every point in I , so W s

(0) = [0, 1]. Simply put, if any orbit under f ,
that starts in X , stays in X , then X is invariant under f .

Definition 3.1 An orbit O(x0) is called stable, if for every ✏ > 0 there exists
� > 0 such that ||x0 � y0||  � ) ||fn

(x0) � fn
(y0)||  ✏, for every n � 1.

If O(x0) is not stable it is called unstable. If x0 2 X for some invariant set X ,
and if we require y0 2 X , then we say that O(x0) is stable/unstable in X .

Intuitively, this means that no matter how close to O(x0) we want some other
orbit O(y0) to remain, we can provide a neighbourhood U of x0, so that O(y0)
will remain closer than that forever, provided y0 2 U . Again, as a simple ex-
ample, O(0) of f(x) = x(1 � x) is unstable, since any orbit starting at x < 0

diverges away from it. The orbit O(0) is however stable in I .
Thus, if an orbit is unstable in some closed and bounded set X , we can

see this as having encapsulated the orbit in X , while still having instability, i.e.
nearby orbits will push away from it. As the reader may now suspect, if we
combine this with our previous concept of aperiodicity, we arrive at something
behaving the way we may expect from a chaotic system.
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Definition 3.2 Let f : S ! Rn, be continuous for some open S ⇢ R, let X ⇢ S
be a closed and bounded invariant set and let x0 2 X . Then O(x0) is called
dense in X , if L(x0) = X .

Recall from Example 3.1 above, that every point z 2 S1, which is clearly
invariant, was a limit point of O(x0), for a point x0 2 S1. Thus L(x0) = S1. So
the orbit of any point in S1 is dense in S1.

As we saw earlier, the reason that f in Example 3.1 failed to behave like
something we would call chaotic, was that nearby orbits would stay close for-
ever. We are now ready to move on and give our first definition of chaotic
behaviour, based on the concept we have introduced.

3.3 Defining Chaos
As a field of mathematics, chaotic dynamics could be considered a rather recent
one. This pose a few problems, mainly that there are still a lot of ambiguities
regarding definitions. It takes time for a theory like this to develop a solid basis
on which to stand. Because of this, there are actually many different definitions
of chaotic behaviour, and we will only touch on a few of them here. The one
most suitable for our purposes is simply going to be the one we have built up
intuition for. Definition 3.3 below is due to Martelli, Dang and Seph [26], and it
combines precisely the two ideas we have previously discussed 9.

Definition 3.3 Let f : S ! Rn, be continuous in X ⇢ S, for some closed and
bounded invariant set X and open S ⇢ Rn. We call f chaotic in X , if there
exists a point x0 2 X such that

i.) O(x0) is dense in X ,

ii.) O(x0) is unstable in X .

Another important concept that often comes up when studying chaotic sys-
tems, and that we will see is even part of another common definition of chaos,
is the notion of topological transitivity.

Definition 3.4 The continuous map f : S ! S, is called transitive in S, if for
every pair of non empty open sets U and V in S, there is a non-negative integer
n such that fn

(U) \ V 6= ;

This means that points in any open set in S eventually moves (under f ) into any
other open set. It should be clear that this is deeply connected with our notion
of dense orbits. As a matter of fact, in a paper by Stephen Silverman, from 1992
[35], it is proven that if S is perfect, separable and second category, then the

9Definition 3.3 is taken from [25]
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notions of transitivity and the existence of a dense orbit are equivalent. In the
chapter about fractal geometry we will explain what perfect means, but the other
notions are out of scope for this paper. Right now, it is enough to know that the
sets we are considering, for example closed and bounded subsets of Rn, fulfill
these requirements. For the sake of completeness however, we state and prove
the following special case, which will be enough for our purposes:

Theorem 3.1 Let X be compact, and let f : X ! X be a continuous function.
If f is topologically transitive in X , then there exists x0 2 X such that O(x0) is
dense in X .

Proof. Let ri =
1

i
, and let {Bri

j }kj=1 be a finite cover of X , of closed balls of
radius ri. Let U1 ⇢ X be a closed subset of X , then there is some n11 2 N,
such that V11 = fn11

(U1) \ Br1
1 6= ;, by transitivity since fn11

(U�
1 ) \ Br1

1 6= ;.
Then there is a n12 such that V12 = fn12

(V11) \Br1
2 6= ;, and so on to n1k, such

that V1k = fn1k
(V1k�1) \ Br1

k 6= ;. Let U2 = f�(n11+...+n1k)
(V1k) \ U1. Do

the same for a cover {Br2
j }kj=1 to obtain V21 = fn21

(U1) \ Br2
1 6= ;, ..., V2k =

fn2k
(V2k�1) \ Br2

k 6= ;. Then let U3 = f�(n21+n22+...+n2k)
(V2k) \ U2, and so on

to get Um+1 = f�(nm1+...+nmk)
(Vmk)\Um, for a cover {Brm

j }kj=1. We then have
that U1 � U2 � ... � Um+1. Letting m ! 1 we get that

W =

1
\

i=1

Ui 6= ;,

by Cantor’s intersection theorem, since each Ui is compact by the continuity of
f .

If so, there exists some x0 2 W , and then for each i > 0 and j 2 {1, 2, . . . , k}
{fn

(x0)}n�0 \Bri
j 6= ; for Bri

j 2 {Bri
j }kj=1. Since every neighbourhood of any

point p 2 X will contain an open ball B of some cover {Bri
j }kj=1 for sufficiently

large i, any neighbourhood of any point p 2 X will contain a point of O(x0),
and thus {fn

(x0)}n�0 is dense in X . Then every point of X is a limit point of
O(x0), so L(x0) = X . ⇤

In [25, Theorem 6.2.1], Martelli states the following theorem without proof,
under the same assumptions as in Definition 3.3, that can be applied to prove
the presence of chaos for certain maps.

Theorem 3.2 Assume that for every x 2 X and every r > 0, there exists n � 1

such that F n
(B(x, r)\X) = X . Then there exists x0 2 X such that L(x0) = X .

Proof. Since the assumption in Theorem 3.2 obviously implies topological
transitivity of F , the proof of this theorem is automatic from the proof of 3.1.⇤
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Let us now put Theorem 3.2 to use, in proving chaotic behaviour of a one
dimensional system.

Theorem 3.3 f(x) = 2|x|� 1 is chaotic in [�1, 1].

Proof. First of all, [�1, 1] is closed and bounded, and it is also easy to see that
f([�1, 1]) = [�1, 1], so [�1, 1] is invariant under f . We also see that f 0

(x) = 2,
for x 2 (0, 1] and f 0

(x) = �2 for x 2 [�1, 0). Either way, |f 0
(x)| > 1 for all

x 6= 0. So every orbit of f will be unstable.
If a, b > 0, we have f((a, b)) = (2|a| � 1, 2|b| � 1), and if a, b < 0, we get

f((a, b)) = (2|b|� 1, 2|a|� 1). So, if (a, b) does not contain 0, we have that

|f((a, b))| = |2|a|� 2|b|| = 2|a� b|
and hence the length of an open interval is doubled with each iteration of f .
Let U = N✏(x) \ [�1, 1], for some x 2 [�1, 1] and neighbourhood N✏(x) of
x, ✏ > 0. Then, if U or any of f 1

(U), ..., fk�1
(U) does not contain 0, and

the length is doubled at each iteration, at some point we will have 0 2 fk
(U).

Now, since f(0) = �1, f(�1) = 1 and f(1) = 1 we get that 1 2 fk+l, l =
2, 3, 4.... Again, as with U , if V or any of f 1

(V ), ..., fm�1
(V ) does not contain

0, and the length is doubled at each iteration, at some point we will have 0 2
fm

(V ). So, fm+1
(U) = [�1, 1] and therefore fk+m+3

= [�1, 1] and thus
for every x 2 [�1, 1], and every neighbourhood of x, there exists n such that
fn

(N✏(x) \ [�1, 1]) = [�1, 1]. From Theorem 3.2 we may conclude that there
exists x0 [�1, 1] such that L(x0) = [�1, 1].

Hence by Definition 3.3, f is chaotic in [�1, 1]. ⇤

Now, let I = [�1, 1], f : [0, 1] ! [0, 1], f(x) = 4x(1 � x), which we
recognize from before as the logistic map with r = 4. Let further g : I !
I, g(x) = 2x2 � 1 and h : I ! I, h(x) = 2|x| � 1. In [25] it is shown that h

is topologically conjugate to g via the conjugacy � : I ! I,�(x) =
2

⇡
arcsin x.

It is also easy to see that f is conjugate to g via  : I ! [0, 1], (x) =
1� x

2

since, for  �1
(x) = 1� 2x, we have

 �1 � f �  (x) = 1� 2(4(

1� x

2

)(1� 1� x

2

))

= 1� 2(2(1� x)� (1� x)2) = 1� 2(1� x2
) = 2x2 � 1 = g(x).

So g =  �1 � f �  )  � g = f �  , and f and g are conjugate. If we now
argue for why g and h are conjugate via �, we could directly say that f and h
are conjugate. Instead we notice that, since h � � = � � g ) g = ��1 � h�, we
get

f �  =  � g =  � ��1 � h�) f � ( ��1
) = ( ��1

) � h,
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which in turn would show that f and h are conjugate via  � ��1
: I !

[0, 1], ��1
(x) =

1� sin

⇡
2x

2

. We can then just check to see if  � ��1 is a
conjugacy between f and h. We see that

f � ( � ��1
)(x) = 4

⇣

1� sin (

⇡
2x)

2

�
1� sin

2
(

⇡
2x)

2

⌘

= 4

⇣

1� sin (

⇡
2x)

2

�
1� 2 sin (

⇡
2x) + sin (

⇡
2x)

4

⌘

= 2� 2 sin (

⇡

2

x)� 1 + 2 sin (

⇡

2

x)� sin

2
(

⇡

2

x)

= 1� sin

2
(

⇡

2

x) = cos

2
(

⇡

2

x).

We also see that

( � ��1
) � h(x) =

1� sin (

⇡
2 (2|x|� 1))

2

=

1� sin (⇡|x|� ⇡
2 )

2

=

1� cos (⇡|x|� ⇡)

2

=

1 + cos (⇡|x|)
2

= cos

2
(

⇡

2

|x|) = cos

2
(

⇡

2

x).

So f � ( � ��1
) = ( � ��1

) � h, and thus ( � ��1
) is a conjugacy between f

and h. Further, it is shown in [25, Therorem 6.2.2 and 6.2.3] that if f1 : X ! X
and f2 : Y ! Y are conjugate maps, then f1 is chaotic in X if and only
if f2 is chaotic in Y . This is somewhat intuitive since chaotic behaviour is a
property related directly to the dynamics of a system, and as we mentioned
earlier, everything we know about the dynamics of f1, we also know about f2.
Now, since we have shown that h is chaotic in I , and that f is conjugate to h, we
may draw the conclusion that f is chaotic in [0, 1]. This is of course something
we have suspected all along, but now we had the theory to actually prove it
according to a more precise definition.

This shows how conjugacy can be used to show that certain maps are chaotic,
by finding conjugacys to other maps that we already know are chaotic. We will
end this section by discussing some of the other definitions of chaotic behaviour
that exists.

3.3.1 On Other Definitions

Informally, a chaotic system is a dynamical system that exhibits chaotic be-
haviour in some region of its phase space. Chaotic behaviour, in turn, has many
definitions. One of the most popular seems to be the one by the American math-
ematician Robert L. Devaney, which is the following:
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Definition 3.5 Let f : U ! U ⇢ Rn be continuous. Then f is said to be
chaotic in U if

1. f is topologically transitive in U ,

2. Periodic points are dense in U ,

3. f has sensitive dependence on initial conditions.

Devaney calls the three properties 1,2,3; indecomposability, an element of regu-
larity and unpredictability respectively. We have already discussed topological
transitivity in the previous section. This was a property that made sure that ev-
ery open neighbourhood eventually got mapped into any other. This property is
often referred to as mixing property for obvious reasons. Devaney calls it inde-
composability since the system cannot be broken down into several subsystems
that does not interact with each other. We will return to the concept of a dense
set when we discuss fractals in Section 4, but 2. means that every open subset
of U contains a periodic point. This is what Devaney therefore calls an element
of regularity. We have already touched on the subject of sensitive dependence
on initial conditions, but not properly defined it. This is perhaps one of the most
intuitive parts of the definition, since it was even part of why chaotic dynamics
was more or less discovered, as discussed in Section 3.1. The definition is pretty
much straight forward, and it is usually stated as follows:

Definition 3.6 The function f : S ! S has sensitive dependence on initial
conditions in S, if there exists a real number r > 0 such that for any x 2 S,
and any neighbourhood N of x, there exists y 2 N and m > 0 such that
|fm

(x)� fm
(y)| > r.

We may note that it is not necessary that N ✓ S. We therefore also define
sensitive dependence on initial conditions with respect to S, by adding the
restriction in Definition 3.6, that y 2 N \ S. Informally speaking, if no matter
how close to every initial condition x0 we start, that orbit will eventually get far
away from the orbit of x0, then the system exhibits sensitive dependence. As
has been mentioned before, this is a key component in a chaotic system, often
referred to as the ’butterfly effect’. However, it is not a sufficient condition,
as can easily be seen from the simple system governed by e.g. f = 5x. The
orbits of any two points, no matter how close, will eventually get separated far
enough. However, one may argue that in such an example, f has the whole
of R to ”move around” in. Some, especially physicists, may still argue that in
a bounded invariant set X , this is still the simplest and most important feature,
and therefore take sensitive dependence on initial conditions in X as a definition
of chaos. This is actually referred to as the experimentalists definition of
chaos in [26]. However, as Martelli, Dang and Seph shows in [26], there are
maps that we would not want to classify as chaotic that still shows sensitive
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dependence on initial conditions even in bounded invariant sets. They take F :

D ! D,F (⇢, ✓) = (⇢, ✓ + ⇢), where D = {x 2 R2||x|  2} as an example.
They show that C⇢ = {x 2 R2||x| = ⇢} is invariant, and that F shows sensitive
dependence on initial conditions there, but at the same time F is just a rotation
in C⇢ and it does not seem appropriate to classify it as chaotic.

It has been shown by J. Banks et al. in 1992 [1] that, in Definition 3.5, 1
and 2 implies 3. Now, as we mentioned in Section 3.3, Silverman had shown
that under the given circumstances, transitivity and existence of a dense orbit
are equivalent. In [26], Martelli, Dang and Seph also shows that, under the
assumptions of Definition 3.3, f has sensitive dependence on initial conditions
with respect to X , if and only if O(x0) is unstable in X . This means that the
two definitions, Definition 3.3 and Definition 3.5, are closely related since, at
least for a large class of functions on closed and bounded subsets of Rn, 1 and
2 of Definition 3.3 are equivalent to 1 and 3 of Definition 3.5. It has also been
proven by M. Vellekoop and R. Berglund [40] that on an interval, transitivity
implies sensitivity and dense periodic orbits, and hence is enough for chaos.

From the above discussion we see that the only notion that Devaney’s def-
inition adds, in comparison with Definition 3.3, is the denseness of periodic
points. This is actually similar to part of another common definition of chaos,
due to T.Y. Li and J.A. Yorke., who also coined the term ’chaos’ in their paper
Period three implies chaos [21] from 1975. In their paper, they proved that for
an interval I , and a continuous function f : I ! I , if f has a periodic orbit
of period 3, then f has a periodic orbit of every period. Further there is an un-
countable set S ⇢ I , such that for every x 2 S O(x) is aperiodic and unstable,
which was the two ingredients that eventually lead us to Definition 3.3. So one
possible definition of chaos is to say that a map f : I ! I is chaotic in the
Li-Yorke sense, if f has a periodic point of period 3 in I . This is then a very
experimentally nice definition, since all that needs to be done is to find a point
of period three, but a drawback is of course that the definition is only applicable
on intervals 10.

So in conclusion, the two main properties that all sensible definitions of
chaos wants to capture is the ones of mixing, or as Devaney calls it, indecom-
posability, and of sensitivity. These two properties were illustrated in Figure 5,
where we saw two orbits starting very close to each other. After only about 48 it-
erations we saw that the two orbits had separated quite a lot and that they did no
longer approximate each other even slightly. In Figure 6 we saw a demonstra-
tion of transitivity, as the orbit seems to visit every open arc of the unit circle. In
a way, we may intuitively but informally see these two properties, of mixing and
sensitivity, as embodying the concepts of geometry and dynamics respectively.

Before ending the section on chaos, we will introduce a dynamical concept
that quantifies the notion of sensitive dependence, and gives us a way to try and

10An extension to Rn was however made by F.R. Marotto in 1978 [24], using a concept he
called a snapback repeller.
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measure how sensitive a system is to initial conditions. In the later half of this
thesis, we will instead spend some time trying understand the geometry side of
things. Later we will try and tie these two concepts together when defining a
measure of dimension (geometry) in terms of this new measure of sensitivity
(dynamics).

3.3.2 Lyapunov Exponents

Let us look at a rather intuitive concept that is closely related to the sensitive
dependence on initial conditions, which we need for chaotic behaviour. Let us
consider two different orbits, starting very close to each other. One can imagine
that if no matter how close to another orbit we start, the two different orbits
will diverge away from each other exponentially fast, but still be confined to
a bounded region, we have a good chance of that system behaving chaotically.
Also, if you think about the three notions no intersections of orbits, orbits con-
fined to a bounded region, and exponential divergence of nearby orbits, as the
always present features of chaotic systems, it is relatively easy to see that chaos
cannot emerge in a continuous system in less than three dimensions. This can
actually be realized by just thinking about how this would work, drawing on a
piece of paper. One can think of this as the system needing that extra dimension
to wrap its orbits around themselves. One makes this idea of exponential diver-
gence of orbits precise by introducing something called a Lyapunov exponent.
Let �(t) denote the distance between two orbits at time t, and say that two orbits
start close to each other, at a distance �(0). If the distance �(t) between the two
orbits satisfies

�(t) = �(0)e�t, (15)

then � is called the Lyapunov exponent for the orbits. Figure 7 illustrates this.
We also talk about the average Lyapunov exponent, where we consider a large
amount of orbits. Most authors actually just call this ’the Lyapunov exponent’
for the system [16].

Let us consider a one-dimensional system described by a function f , a start-
ing point x0, and another point y0 very close to x0, say at a distance ✏ of x0. Let
us first note that, for an iterated function fn we get its derivative as

(fn
(x0))

0
= f 0

(fn�1
(x0))f

0
(fn�2

(x0))f
0
(fn�3

(x0)) . . . f
0
(f(x0))f

0
(x0)

= f 0
(x0)f

0
(x1)f

0
(x2)f

0
(x3) . . . f

0
(xn�1),

just by using the chain rule for derivatives.
We will now see what happens to the distance |fn

(x0) � fn
(y0)|, as the

system progresses, i.e. what happens to the distance between the two orbits
starting close to each other. From the definition of the derivative, and for a
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Figure 7: Illustration of the Lyapunov exponent as a measure of the rate of
divergence of two trajectories. The two orbits, represented by x(t) and x(t) +
�(t), start off at a distance of �(0) from each other. The distance between them
grow/shrink exponentially on average.

small ✏, we then have that

|fn
(x0)� fn

(y0)| ⇡ |(fn
(x0))

0||x0 � y0| (16)
= |f 0

(x0)||f 0
(x1)||f 0

(x2)||f 0
(x3)|| . . . |f 0

(xn�1)|✏, (17)

from which we see that, as n ! 1, the distance between the two orbits will
either remain constant, grow or shrink exponentially on an average. As we
expect the distance to grow according to an exponential law, we write

|fn
(x0)� fn

(y0)|
✏

= e�̃n

(compare this to (17)), and to get a quantitative measure of the rate of divergence
we solve for ˜�, for a very small ✏, to get

˜� =

1

n

⇣

ln

⇣ |fn
(x0)� fn

(y0)|
✏

⌘⌘

⇡ 1

n

⇣

ln (|f 0
(x0)||f 0

(x1)||f 0
(x2)| . . . |f 0

(xn�1)|)
⌘

=

1

n

⇣

ln (|f 0
(x0)|+ ln |f 0

(x1)|+ . . .+ ln |f 0
(xn�1)|)

⌘

,

(18)

where ˜�, or perhaps more accurately ˜�(x0), would be the the approximated Lya-
punov exponent for the finite orbit. As we would not want to restrict ourselves
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to finite orbits of length n, it makes sense to define the Lyapunov exponent for
O(x0) as

�(x0) = lim

n!1

1

n

⇣

ln (|f 0
(x0)|+ ln |f 0

(x1)|+ . . .+ ln |f 0
(xn�1)|)

⌘

. (19)

It is also convenient to consider the so called Lyapunov numbers. In the
above example, the Lyapunov number of the orbit of x0, denoted ⇤(x0)

11, would
be the average growth factor of the separation, where we would use a geometric
mean, i.e.

⇤(x0) = lim

n!1
(|f 0

(x0)||f 0
(x1)| . . . |f 0

(xn)|)
1
n . (20)

This is perhaps a more intuitive measure as e.g. ⇤(x0) = 2 would mean that
the separation of the orbits grow, on an average, by a factor 2 at each iteration.
So for exponential divergence of orbits we simply need ⇤(x0) > 1. Of course
we realize that the Lyapunov exponent is just the logarithm of the Lyapunov
number, i.e. �(x0) = ln (⇤(x0)), and that �(x0) > 0 precisely when ⇤(x0) > 1.
By applying the natural logarithm to (20), and using simple logarithm laws, we
also see that we get (19).

This also gives us a rather convenient way to numerically approximate the
average Lyapunov exponent for a system. We will discuss the notion of an
attractor in Section 4.4, but let’s just say that we wanted to measure the average
Lyapunov exponent of a system on an invariant and attracting set A. We first
generate a large finite orbit, starting from a random point p1 close to or in A.
We omit a portion from the beginning of the generated orbit, to make sure the
points we are left with are actually in A (this works since A is attracting). We
then use (18) to calculate ˜�(p1). We then do the same thing for another random
point p2, to get ˜�(p2), and so on, until we have ˜�(pm). We then simply let the

approximated average Lyapunov exponent be
1

m

Pm
i=1

˜�(pi). In Figure 8, we
can see the result of such a numerical approximation done in the example of
the logistic map. Here we have calculated the average Lyapunov exponent for
several different values of r, and presented the results along with the bifurcation
diagram that shows the regions of r, in which the map behaves chaotic. In
this way, one can clearly see the correspondence between a positive Lyapunov
exponent and chaotic behaviour.

In the case of higher dimensional maps, the role of the derivative is as usual
played by the Jacobian. We may remember from linear algebra that for an n-
dimensional linear map M the eigenvalues of M can be seen as a factor of how
much the transformation M streches in the direction of the corresponding eigen-
vector. Thus we could define the Lyapunov numbers for M as the eigenvalues
of M . For a, not necessarily linear n-dimensional map ⌦, we can, as in (17),

11Unfortunately this is most commonly denoted L(x0). Since we have reserved this notation
for the limit set of an orbit, we denote it ⇤(x0) instead.
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Figure 8: Illustration of the correspondence between a positive Lyapunov ex-
ponent and chaos. In the figure we can see that the so called chaotic bands
of the bifurcation diagram seem to correspond well with a positive Lyapunov
exponent.
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make the linear approximation

⌦

n
(x0)� ⌦n

(y0) ⇡ (⌦

n
(x0))

0
(x0 � y0)

in a neighbourhood of x0, and look at the behaviour of the Jacobian (⌦

n
(x0))

0.
In a similar fashion as for one dimensional maps, but instead now looking at the
eigenvalues of a matrix, we thus define the Lyapunov numbers
⇤1(x0),⇤2(x0), . . . ,⇤n(x0) as the n eigenvalues of

lim

n!1

⇣

(⌦(x0))
0
(⌦(x1))

0
(⌦(x2))

0 . . . (⌦(xn))
0
⌘

1
n
.

Thus a two-dimensional system would have two Lyapunov exponents associated
with it, one for each dimension. This of course makes sense, since the orbits
could now separate in two directions. One usually refers to the set of Lyapunov
exponents as the Lyapunov spectrum. Also, when referring to the average
Lyapunov exponents or Lyapunov numbers for a whole system, as opposed to
just an orbit, we usually denote them �i and ⇤i respectively.

We will now leave the dynamics behind, to discuss the more geometrically
related subject of dimension. As it turns out, the geometry of many invariant
sets, on which maps behave chaotically, is not that simple. Again, this can per-
haps be realized by thinking of the three notions of chaotic behaviour mentioned
in the first paragraph of this section. Sets with these properties often have a ge-
ometry which is called fractal, and the dimension of such sets are referred to as
a fractal dimension. This is the rather counter-intuitive idea of a non-integer di-
mension. As we said in the end of Section 3.3.1, we will return to the Lyapunov
exponents in Section 4.5.2, when we tie together the dynamics with the geom-
etry, suggesting that the dimension of an attractor (geometry) can be expressed
in terms of the Lyapunov exponents (dynamics).

4 Fractal Dimension and Strange Attractors
The notion of dimension probably seems clear to most people. We have no trou-
ble imagining up to at least three dimensions, since this is what we experience
every day. When we pass three it may be trickier, but even then our imagination
can help us in a number of ways. We may think of four dimensional objects
as three dimensional ones existing in time or having different temperatures at
different points, etc. If we let go of our need to imagine the object existing in
front of us in space, we could just as well deal with objects having a thousand
dimensions.

Informally speaking, and according to classical definitions, the dimension
of an object is the minimum number of coordinates needed to specify a point
within it. Thus a circle is one dimensional rather than two, since it could be
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parametrized using just one parameter, namely the angle. Therefore the dimen-
sion of an object is not necessarily the same as the dimension of the space it is
embedded in (e.g a circle is embedded in two and a sphere in three dimensions).
As we shall see, for some geometrical shapes, this way of thinking about di-
mension breaks down completely, and as so often happens in mathematics, we
come up with new ways of defining and thinking about it.

We will start off by explaining one of the perhaps most natural ways of mak-
ing the concept of dimension precise, and that is that of the Lebesgue covering
dimension or topological dimension. We will then introduce certain geometrical
objects called fractals, give a few examples of them, and discuss their properties.
This will hopefully build up enough intuition for why we may want to extend
the concept of dimension. These extended definitions will coincide, i.e they will
yield an equivalent measure of the dimension, with the topological dimension of
’ordinary’ geometrical objects, but for fractals they will yield a dimension that
can even be non-integer.

We shall introduce a few different ways of measuring this so called fractal
dimension, and see how this can be applied to the field of chaotic dynamics.

4.1 Lebesgue covering dimension
One way of defining the dimension of an object, or more precisely of a topo-
logical space, is the so called topological dimension, also known as Lebesgue
covering dimension. To define it we first need the following.

Definition 4.1 A collection A of subsets of the space X is said to have order
m+1 if some point of X lies in m+1 elements of A , and no point of X lies in
more than m+ 1 elements of A .

Intuitively one could imagine a number of two dimensional sets in the plane
being placed in a ”pile”. Some of these sets may intersect each other, and the
order of this ”pile” is the largest number of sets sharing a piece of the plane.
Using this concept, we can now make the following definition.

Definition 4.2 A space X is said to be finite dimensional if there is some inte-
ger m such that for every open cover A of X , there is an refinement B of A
of order at most m + 1. The smallest such integer m is called the topological
dimension of X. We denote it by dimX .

We are thus looking for a way to cover a set with the least amount of overlap-
ping, and in such a cover we look for the maximum number of sets overlapping
each other, and we call this the topological dimension. In Figure 9, we can see
covers of a circle and a disk. We may refine these covers further, but it is hope-
fully clear that any such refinement will have the same maximum amount of
intersecting sets as before. It will be impossible to cover the disk with a ”chain”
of sets only having at most two intersecting sets. You need atleast three sets
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Figure 9: Illustration of topological dimension by covering of a circle (left), and
a disk (right), with open covers {A1, A2, A3, A4}, and {B1, B2, B3} respec-
tively. We see that the largest number of intersecting elements, i.e the order, of
the cover is two and three respectively. The dashed lines mark the intersections
determining the order of the cover.

having a common intersection and thus, according to Definition 4.2, the topo-
logical dimension of the disk is 3� 1 = 2 (while it is 1 for the circle as seen in
Figure 9).

The topological dimension of ”ordinary” geometrical shapes corresponds
with the notion of the minimum number of coordinates needed to specify a
point in it that we mentioned earlier. We will now introduce other objects where
this notion seems to fail.

4.2 Fractals
The word ’fractal’ (from the Latin word ’fractus’, meaning broken) was coined
in 1975 by the Polish-French mathematician Benoı̂t B. Mandelbrot. Mandel-
brot himself described them as, ”[B]eautiful, damn hard, increasingly unuseful.
That’s fractals.” However, since then, many have tried to formally define what a
fractal actually is. Still to this day, we lack a well accepted universal definition.
Most sets we call fractals seems to have a number of properties in common
however. First and foremost, they seem to be consisting of parts that can be
constructed from simple rules via an iterative process that creates a repeating
pattern, which is seen at every scale. Also, many fractals exhibits something
called self-similarity, which means that the whole set is similar to a part of it.
We will now give a few examples of sets which we will call fractals, without
making a formal definition of the term itself.

4.2.1 The Cantor Set

In 1883, the German mathematician Georg Cantor published a paper [3], where
he introduced what is now known as the Cantor ternary set or the Cantor middle
thirds set. The term ’The Cantor Set’ usually refers to this set, but this was just
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an example in Cantor’s paper. In general we call any perfect and nowhere dense
set a Cantor set. Remember that a set is perfect if it is closed and has no isolated
points. No isolated points means, for a set S, that given a point x 2 S, every
neighbourhood of x contains a point y 6= x such that y 2 S. The intuition for a
nowhere dense set may be trickier, even though we may remember what dense
means.

Definition 4.3 A subset S of a topological space X is called nowhere dense in
X if the interior of the closure of S is empty.

One could also say that it is a set that is not dense in any non-empty, open subset
of X . In a more loose sense it is a set whose elements are not tightly packed
together. As an example, Z is nowhere dense in R, since the closure of Z is just
Z itself, and it does not have any interior points. However, K = Z[

⇣

(0, 1)\Q
⌘

is not nowhere dense, since Q is dense in R, and thus K is dense in [0, 1]. For
us, it is enough to realize that a nowhere dense set in R can not contain any
non-degenerate intervals.

Thus we have two properties for a Cantor set in R that seem to contradict
each other. Nowhere dense seems imply that points are separated from each
other, while perfect seems to imply that the points are infinitely close together.

Let us now demonstrate the construction of a Cantor set via the middle thirds
Cantor set.

We construct the middle thirds Cantor set iteratively by staring from the
closed interval C0 = [0, 1]. We then remove the middle third part of C0, i.e
�

1

3

,
2

3

�

. Thus leaving C1 =

⇥

0,
1

3

⇤

[
⇥

2

3

, 1
⇤

. From each of these two intervals

we then delete its middle third, namely
�

1

9

,
2

9

�

and
�

7

9

,
8

9

�

, which gives us four

new segments C2 =
⇥

0,
1

9

⇤

[
⇥

2

9

,
1

3

⇤

[
⇥

2

3

,
7

9

⇤

[
⇥

8

9

, 1
⇤

, and so on. The open sets
we remove from Cn�1 to get Cn has the general form

⇣

3k + 1

3

n
,
3k + 2

3

n

⌘

,

where k 2 {0, 1, 2, ..., 3n�1 � 1}.

Remark 1 Note that k counts the number of possible thirds, even the ones pre-
viously removed. As we are taking the union of these, that does not matter.

The closed formula for the Cantor middle thirds set then becomes

C = [0, 1] \
1
[

n=1

3n�1�1
[

k=0

⇣

3k + 1

3

n
,
3k + 2

3

n

⌘

. (21)
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As we see from (21), we are dealing with a limiting set as n ! 1. The Can-
tor set is what is left over after iterating the above described process infinitely
many steps. In other words, C1 is the Cantor set. This is best illustrated by
Figure 10.

Notice also how many length units we remove from [0, 1]. The first part is
1

3

, the second is
2

9

, and the n:th is
2

n

3

n+1
units. In total we thus remove

1
X

n=0

2

n

3

n+1
=

1

3

⇣

1

1� 2
3

⌘

= 1

units of length.
So then one may ask, ”What is left?”. One thing we can notice is that, since

we only remove open intervals, the endpoints all remain. So at least C1 is
non-empty. We will explore this further using expansion in a different base.

Our usual way of writing decimal numbers in base-10 holds within it some
information that we may not think of as useful. We may ask ourselves the ques-
tion, ”Where in [0, 1] is the number 0.3456 located?”. The base-10 expansion
then in fact tells us that it is in the fourth (0.3456) tenth (base-10) from the left,
in the fifth (0.3456) tenth of the previous fourth tenth, and in the sixth (0.3456)
tenth of that, and so on (remember that we of course start from 0 indicating the
first tenth). If we instead expand in base three, we get the same thing but in
thirds, which will be useful for us here.

In base three, the point 0.012 will for example be in the last third of the
second third of the first third of [0, 1]. Now let us imagine the points that are left
in the actual Cantor set expanded in base-3. Since we always remove the middle
third of all the intervals left over at any stage, we first remove numbers of the
form 0.1... (the middle of [0, 1]), then the ones of the form 0.01... and 0.21...,
then 0.001..., 0.021..., 0.201... and 0.221..., and so on. We end up deleting all
points with 1’s in their base-3 expansion. In fact, we only delete the points that
has a 1 in its base-3 expansion, and we are thus left with all the other points.

Remark 2 Note that endpoints like 1 and
1

3

= (0.1)3 are never removed. How-
ever, these could equivalently be written as 0.222... and 0.0222... respectively
(just as 1 = 0.999... in base-10).

Now suppose we could make a list L of all the points in the Cantor middle
thirds set. We would have something like L = {0.a11a12a13..., 0.a21a22a23..., ...},
where all numbers are in base-3. Now let x⇤

= 0.b1b2b3..., where bi = 0 if
aii = 2, and bi = 2 if aii = 0. Then x⇤ 2 C1, since C1 contain all points with
no 1’s, but x⇤ 62 L. We have constructed a number in C1 that is not on our list.
Thus C1 contains uncountably many points! As the reader may notice, this is
just Cantors famous diagonal argument.
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Figure 10: Demonstrating the construction of the Cantor middle thirds set. In
each step a new set Cn is created by removing the middle third of each of the
segments in Cn�1. The Cantor middle thirds set is the set we get at infinity, C1.

In conclusion, the Cantor middle thirds set is constructed from removing in-
finitely many intervals from [0, 1], it is closed (since any intersection of closed
sets is closed), has zero measure, but contain infinitely many points and is
nowhere dense in R. In fact C1 contains as many points as [0, 1], but still
contains no non-degenerate intervals.

4.2.2 The Von Koch Curve

The Von Koch curve is a fractal described by the Swedish mathematician Helge
Von Koch in a paper from 1904. We start off by looking at the construction of it
in a similar fashion as for the Cantor middle thirds set.

To construct the Von Koch curve we start with a line segment K0. Let Kij

denote the j:th straight line segment of Ki from the left. We then do the follow-
ing three steps to get to K1:

1. Divide each of Kij, j 2 {1, ..., 4i} into three equal parts.

2. For each j, create an equilateral triangle pointing upwards using the mid-
dle third of Kij as a base.

3. Remove the base(s) of the triangle(s) created in step 2.

Do these steps again, starting with K1 to get to K2, and so on iteratively with
Kl to get to Kl+1. The construction is illustrated in Figure 11.

The reason why we haven’t drawn C1 or K1 in Figure 10 or Figure 11
respectively, is of course that we can’t. These sets are objects that you would
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Figure 11: Demonstrating the construction of the Koch curve. In each step a
new set Ki is created by creating an equilateral triangle out of the middle third
of each line segment created by the previous step, and then removing its base.
The Koch curve is the limiting set K1.

have to imagine, if you can. This is one of the most important advantages of
mathematics, it can describe it precisely.

Let us now look at the length of K1. Let Li denote the length of the straight
line segments of Ki. Since the triangles being created from each segment of Ki

are equilateral, with one third of the previous segment as its base and the base is
discarded, we end up with four new line segments. Each of these then have the

length Li = 4

1

3

Li�1. It is then easy to see that in general we get

Li =
�

4

3

�n
L0 ! 1, as i ! 1.

So the Koch curve has infinite length. It is also self similar, meaning that you
can take any part of it and scale it up to match the whole thing. Since any two
different points on K1 could be seen as lying in two different line segments at
some stage of the construction, an infinitely long curve will be created between
them. Thus any two points on K1 are infinitely far away from each other on
K1. This makes it hard to classify the Koch curve as being 1-dimensional. How
do we even specify the position for an arbitrary point on it? However, it does
not seem justified to classify it as being 2-dimensional either, since it is a curve
after all. So what is it?

Let us now introduce different ways of making sense of the dimensions of

50



these sets.

4.3 Fractal Dimension
Because of the intricate geometrical nature of the fractals introduced in the pre-
vious section (we can’t even specify a point on K1), it seems that our notion
of dimension of a set as being the minimum number of coordinates needed to
specify a point in it, may not be as rigid as we thought. Constructions made by
Giuseppe Peano [30] in 1890, and by David Hilbert [15] in 1891, i.e the Peano
curve and Hilbert curve respectively, further substantiates these doubts. These
are examples of space filling curves. Normally we think of a curve as something
one dimensional, as it can be parametrized using exactly one parameter. What
Peano and Hilbert showed was that there are curves that visits all points of a
square, and more specifically that the unit square [0, 1]⇥ [0, 1] (2-dimensional)
could be parametrized by one parameter, ranging over [0, 1] (1-dimensional).

Another important paper on the subject, that has to be mentioned, is the one
by Benoit Mandelbrot [23] from 1967. In his paper, Mandelbrot discuss the idea
of measuring a coast line using a measuring stick (or a compass if you like). Say
you choose a length of s units for the stick, and you start placing it around the
coastline, you will then get a length of say L units. Now, suppose next you
choose a shorter stick, i.e. you decrease s. What happens to L? The result is
that L will increase due to all the creases and irregularities in the coastline that
the stick of length s missed. If we choose an even smaller s, then L will again
increase. Thus there seem to be a relation between the scale of the individual
measurements and the length of the coastline. The suggestion is that they are
related by a power law L / sd, where d is the fractal dimension of the object
which we are measuring. Since we have that

L = Csd () log(L) = log(Csd) () log(L) = d log(s) + log(C)

for some constant C, experimentally one may do such a measurement, and then
plot log(L) against log(s) to hopefully get points almost on a line with slope
d. In practice one would do a least squares approximation to fit a line through
the points, and take the slope of this line to be d. Say that C = 1, so that

L = sd , d =

log(L)

log(s)
. Intuitively one may see this as a ratio describing how

the object change in detail with a change in scale.
Mandelbrot mentions in a note to his paper that, ”The concept of dimension

is elusive and very complex, and is far from exhausted by simple considerations
of the kind used in this paper. Different definitions frequently yield different re-
sults, and the field abounds in paradoxes. However, the Hausdorff-Besicovitch
and the capacity dimensions, when computed for random self-similar figures,
have so far yielded the same value as the similarity dimension.”[23] This sum-
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marizes our suspicions that dimension might not have been as intuitive of a
concept as we thought. To clarify what was meant by the last sentence in the
quotation above, we will further study the three concepts that Mandelbrot men-
tioned.

4.3.1 Hausdorff-Besicovitch Dimension

The Hausdorff-Besicovitch dimension (introduced in 1918), after Felix Haus-
dorff (1868-1942) and Abram Samoilovitch Besicovitch (1891-1970), is prob-
ably the oldest and perhaps most important definition of dimension to the field
of fractal geometry12. It generalizes the concept of dimension of a vector space,
and it nicely captures the idea of dimension as a number that indicates the
amount of space a set occupies near each of its points [32].

The Hausdorff-Besicovitch dimension uses another concept called the Haus-
dorff measure, that in turn generalizes the concepts of length, area, and volume,
etc. A complete treatment of Hausdorff-Besicovitch dimension is out of scope
for this article, but we will take a look at the main definitions and give a short
intuition for them.

Definition 4.4 Let (X, ⇢) be a metric space, S be any subset of X , and � > 0

be a real number. Further define

Hd
� (S) := inf

n

1
X

i

(diamUi)
d
:

1
[

i=1

Ui ◆ S, diamUi < �
o

.

Then
Hd

(S) := lim

�!0
Hd

�(S)

is called the d-dimensional Hausdorff measure of S.

So we look at all covers {Ui} of a set S with sets Ui of diameter at most �. For
each such cover we then look at the d:th powers of the diameters. Now if S
has a topological dimension of d, then (diamUi)

d is an approximation of the
d-dimensional volume of a little piece of S, i.e. Ui. If we then sum up those
volumes for all sets in a cover of S, then we should get at least the volume of
S. Surely it will be a lot bigger for many covers, hence we take the infimum
of these sums. If d is however larger than the topological dimension of S then
these sums will get arbitrarily close to 0 (e.g. if S is a disk but we have d = 3,
then since a cube of side � is a smaller portion of a ball than a square of side �
is of a disk, when we take smaller and smaller � and we only add up over sets
that cover the disk, we are going to get smaller and smaller sums.) If we then

12Hausdorff did not use the term fractal as this was something coined by Mandelbrot. Man-
delbrot, however, used the concept of Hausdorff-Besicovitch dimension as a basis for further
study of the geometrical objects he called fractals.
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look at the values of d � 0 where Hd
(S) = 0, and take the infimum of these,

we should get the dimension of S. This is just before Hd
(S), as a function of

d, switches over to 0, i.e. when we pass the threshold where d becomes too big.
We therefore define the Hausdorff-Besicovitch dimension as

dimH(S) := inf{d � 0 : Hd
(S) = 0}.

It can be shown for subsets of Rn that n-dimensional Hausdorff measure coin-
cides, to within a constant multiple, with the usual n-dimensional volume [5],
i.e. H0

(A) is the number of points in A, while H1
(B) is the length of the

curve B, and so on. For further and more rigorous treatment of the Hausdorff-
Besicovitch dimension, see [5].

Hausdorff’s definition is mathematically nice and hugely important in the-
ory, however, as Peitgen puts it, it is impractical to use even in elementary ex-
amples and nearly impossible to estimate in practical applications [32].

4.3.2 On the Definition of Fractal

Remembering the definition of topological dimension from before, the essen-
tial property of a fractal set is that its Hausdorff-Besicovitch dimension exceeds
its topological dimension. Objects with this feature are referred to as having a
fractal geometry, or as being fractals, and their possibly approximated Haus-
dorff dimension is referred to as their fractal dimension. This suggests for ex-
ample that coastlines are often fractals, since we are essentially measuring 1-
dimensional curves to begin with, but usually get dimensions d 2 (1, 2). The
fractal dimension of the curves of Peano and Hilbert from before has also been
approximated, having a fractal dimension of 2 even though being 1-dimensional
curves in terms of topological dimension. This of course reflects their space-
filling nature.

Since Mandelbrot, the fractal dimension of different coastlines has been ap-
proximated by several people over the years. Other than the already mentioned
Britain (1.25), a couple of example measurements include Ireland of 1.22±0.02
[17], and Norway of 1.52 [7]. This then suggests that the coast of Norway has a
somewhat more complicated structure than Ireland. That would certainly corre-
spond well with observation since Norway has a very convoluted coastline with
lots of bays and fjords.

As we can see from the quotation of Mandelbrot in Section 4.3, there are
other definitions with the same idea in mind that mostly yields the same re-
sults as Hausdorff-Beisicovitch dimension. Some of these are also much easier
to work with even though being somewhat ad hoc at times. For example, the
experimental approach discussed earlier about measuring coastlines aims at ap-
proximating the Hausdorff-Beisicovitch dimension. In the next two sections we
will be discussing the two other concepts that Mandelbrot mention.
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Figure 12: Similarity dimension of the square as a ratio .

4.3.3 Similarity Dimension

If an object can be seen as a collection of sets, each of which is similar to the
whole set, we call the set self-similar. Self-similar then refers to a an object
where you can take any of the parts that make up the object, and scale it uni-
formly to get the whole set. Another related property is self-affinity, where the
scaling would not be uniform, i.e not the same in all directions. To retrieve a
measure for the dimension in terms of a ratio discussed in the previous section
for self similar objects, one could do like follows:
Scale down the object A by a certain amount s, and see how s is related to the
number of scaled down versions n it takes to make up A, using the power law
n = sd. We would then define d to be the similarity dimension of A.
Take the unit interval [0, 1] for example. Let Is denote [0, 1] scaled down by s,
e.g. I2 = [0, 12 ]. One would need 2 copies of I2 to make up the whole of I1. In
general you would need s copies of Is to make up I1. We then have that n = s
so that s = sd, and thus d = 1, which makes sense. For the unit square, when
s = 2, then n = 4 or 4 = 2

d ) d = 2, as seen from Figure 12 which also
includes an example when s = 3. Thus the similarity dimension is 2 for the
square. In general we solve for d as we saw before and get d = log(n)/ log(s).
One can easily see the connection to the example of measuring coastlines from
before. Instead of choosing a smaller size of the measuring stick, we pick a
smaller ”stick” in the shape of the object we are measuring, and then count the
length as the number of ”sticks” we need in order to cover the object.

We have seen then that similarity dimension makes sense for ”ordinary”
self-similar objects. Let us now look at the Cantor set and the Koch curve from
before.
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Example 4.1 The Cantor Set: At each stage in the construction Ck is composed
of two copies of Ck�1 scaled down by a factor 3, e.g. in Figure 10 the left
and right part of C2 is C1 scaled down by 3, the left and right part of C4 is
C3 scaled down by 3, and so on. We get that s = 3, n = 2 thus giving us
2 = 3

d , d = log3(2)/ log3(3) = log(2)/ log(3) ⇡ 0.63. //

Example 4.2 The Koch curve: At each stage in the construction Kk is com-
posed of four copies of Kk�1 scaled down by a factor 3, e.g. in Figure 11 K2 is
composed of four copies of K1 scaled down by 3. We get that s = 3, n = 4 thus
giving us 4 = 3

d , d = log3(4)/ log3(3) = log(4)/ log(3) ⇡ 1.26. //

4.3.4 Minkowski–Bouligand dimension

The similarity dimension is of course very convenient for self-similar sets. How-
ever, for a wider collection of sets we need to generalize the concept even fur-
ther. As with the previous definitions, we are interested in the way the mea-
sure of a set at a scale ✏ varies as we vary ✏. One popular definition is the so
called Minkowski–Bouligand dimension, also known as capacity (capacitary
dimension in Mandelbrot’s note above), box dimension or box-counting di-
mension13. It is computationally easy to use and has become one of the most
frequently used definitions of dimension [5]. As before, we study how the mea-
surement at a small scale varies as the scale varies. Hopefully the reader has
started to become familiar with the power law idea Measurement / scaled. We
make the following definition.

Definition 4.5 Let S be a non-empty bounded subset of Rn, and let N�(S) be
the minimum number of sets of diameter at most � which cover S. Then

dimB S := lim

�!0

logN�(S)

� log(�)

is called the Minkowski-Bouligand dimension or box dimension of S, if it ex-
ists.

One may also define upper and lower limits accordingly, and call them upper
and lower box dimensions respectively.

The Minkowski-Bouligand dimension is in many ways similar to the simi-
larity dimension, but with the crucial difference that we are not forced to deal
with self-similar sets any more. To give an example of a fractal that is not self-
similar, we give the following construction and calculation [38].

13Many of these measures of dimension has a variety of different names and sometimes dif-
ferent, albeit equivalent, ways to define them. This paper tries to focus on the names that create
least confusion with other definitions, and that pays respect to the mathematicians who discov-
ered them.
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Figure 13: Illustrating the construction of a non-self-similar fractal. The con-
struction resembles the Menger carpet, but the sections to be removed are deter-
mined at random. Image source:[38]

Example 4.3 Start with the unit square, divide it into nine equal squares (three
by three), select one of the nine squares at random and delete it. Repeat this
process for each of the remaining eight squares, and so on. The process is
illustrated by Figure 13. Now we see that S1 is covered by N 1

3
(S1) = 8

squares of side � =

1

3

. Further we get N 1
9
(S2) = 16 = 8

2. In general
we get N( 13 )

n(Sn) = 8

n. Then, since N�(Sn) = 8

n, we can use the sequence

(�n) = ((

1

3

)

n
) and Definition 4.5 to get that

dimB(S1) = lim

�!0

log(8

n
)

� log((

1

3

)

n
)

= lim

n!1
=

n log(8)

�n log(

1

3

)

=

log(8)

log(3)

⇡ 1.893.//

Before we move on to discuss the concept of Renyi dimension, we first look
at the concept of a strange attractor.

4.4 Strange Attractors
Unfortunately there is not even a universally accepted definition of attractor [38,
p. 324], but informally we may think of an attractor as a set A in phase space
that attracts nearby trajectories. It is also reasonable to require that A is invariant
under the function f that governs the system, i.e. f(A) ⇢ A. Further it should
be the minimal set for which the previous applies, otherwise there would be
some other set B ⇢ A that could just as well be seen as the attractor. It seems
reasonable to make the following definition:

Definition 4.6 Let f : U ⇢ Rn ! U . A closed and bounded set A ⇢ U is
an attractor if f(A) = A, and there exists r > 0 such that d(x0, A)  r )
d(xn, A) ! 0, as n ! 1, where d(x, S) = inf{|x � y|

�

�

�

y 2 S} is the
distance from a point to a set.
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This means that if we start within a distance r from the attractor A (usually
referred to as within the basin of attraction), that orbit will eventually end up
in A. Further, since f(A) = A, this is the smallest such set. Many authors
also require that the orbits starting within the basin of attraction, are dense in
A. Numerically, one can visualize an attractor by starting sufficiently close to
it, omitting the transient points and look at a very large, but thus finite, orbit.
This should thus ”fill up” the attractor. As we saw in Section 3.3, the logistic
map was chaotic in [0, 1] for certain values of r. Seen as a map f : R ! R, we
realize that even though [0, 1] is invariant, and orbits starting within [0, 1], were
dense in it, it is not an attractor since no matter how close to [0, 1], outside of it,
we start, the orbit will diverge away to �1, as we have seen before. So a map
can of course be chaotic in an invariant set that is not necessarily an attractor. It
is however very common for the attractors, on which maps behave chaotically,
to have a strange geometry, as we gave some intuition for in Section 3.3.1. This
is perhaps why they got the name ’strange attractors’.

The definition of a strange attractor is not very universal, and there is still
some disagreement on this topic. The first use of the term ’strange attractor’ is
usually attributed to David Ruelle and Floris Takens, in an article on turbulence
from 1971 [33]. Originally it was meant to reflect a geometrical property of an
object, i.e an attractor was strange if it had a fractal geometry. This is sometimes
still used, but these days it seems more common to refer to attractors as strange
if they exhibit sensitive dependence on initial conditions. This is because the
geometrical aspect of being fractal is usually regarded as less important than
the dynamical property of exhibiting sensitive dependence on initial conditions
[38].

Let us look at two examples of attractors that have been called strange. We
are already familiar with the logistic map f(x) = rx(1 � x). If we look at
the bifurcation diagram, we may view this as a graph of the attractor for a spe-
cific value of r. So each value of r gives a different attractor. As we can see,
for values of r below approximately 3.57 (a more accurate approximation is
3.5699456) the attractor is just a set of periodic points. As we increase r, the
number of periodic points increase by a factor two. This was what we called a
period doubling bifurcation in Section 2.2.2. If we start after the first bifurca-
tion point r = 1, which we called p1, and continue to increase r, we saw that
we got p2 = 3 and p3 = 1 +

p
6. As we can see in Figure 14, this continues,

and the next value is actually p4 ⇡ 5.4409. We thus get a sequence (pn)n�2

such that every pn is a period doubling bifurcation point. The sequence (pn)n�2

converges to 3.5699456, which is often called the onset of chaos. This type
of sequence of bifurcation points is often called a bifurcation cascade, and in
specific, when all bifurcations are of the period doubling type, a period dou-
bling cascade14. This process should remind ourselves of the creation of the

14This is something that M.J. Feigenbaum noted was a common, so called, route to chaos in
many systems. It has therefore been called the period doubling route to chaos .
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Figure 14: Results of zooming in on the bifurcation diagram for the logistic map. The
boxed regions of the image on the left are blown up to the right. So in (b) we see the
boxed region of (a), and in (c) we see the boxed region of (b), and in (d) we see the
boxed region of (c).

Cantor Middle Thirds set, and it turns out, as we shall see in Section 4.5.1, that
they both have a similar value for its fractal dimension. As a matter of fact, the
attractor for the logistic map can be shown to be a general Cantor set, for certain
values of r. If we zoom in on the bifurcation diagram of the logistic map, we can
also see, in Figure 14, the self similar pattern emerging on smaller and smaller
scales.

Another map that has a strange attractor, is the Hénon map. This was in-
troduced by the French mathematician Michel Hénon, as a simplified, lower di-
mensional model of the Lorentz systems, which Edward Lorentz studied when
discovering chaotic dynamics. This is a two-dimensional map defined by
h(x, y) = (y + 1 � ax2, bx), where a and b are parameters. In his paper from
1976 [14], Hénon argues that the systems converges to a strange attractor for
parameter values (a, b) = (1.4, 0.3). This is one of the simplest models that
rather elegantly illustrates one very common feature of chaotic maps, namely
stretching and folding. In Figure 15, we can see what happens when we apply
the Hénon map to a square. We can see the square being squashed, folded, and
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Figure 15: This shows the formation of the so called Hénon attractor. We see
five iterations of the Hénon map on a square (left to right, up, down), demon-
strating the folding and streching effect of the map.

stretched out, and so on. What is slowly forming is the so called Hénon attractor.
This results in a very detailed micro-structure that shows similarity on smaller
and smaller scales, as seen in Figure 16.

4.5 Measuring the Dimension of Strange Attractors
When trying to numerically approximate the fractal dimension of an attractor,
the most straightforward way would probably be to generate a large set of points
from the orbit O(x0), and select a subset U of this set by skipping a number of
points from the beginning. This makes sure that the points in our set is actu-
ally located on the attractor (this method was already touched upon in Section
3.3.2, and in the construction of the bifurcation diagram). We will sometimes,
when clear from context what we mean, refer to this obviously finite set as the
orbit, even though it is not literally the whole orbit, since that would be in-
finite. Continue by partitioning the d-dimensional phase space in equal sized
d-dimensional squares of side length ✏i, and count the number ¯N(✏i) of squares
containing at least one point of U (those squares will constitute a cover of the
attractor). Following the procedure suggested in the introduction to this section,
take ¯N(✏i) as the measure of your attractor and plot ln ( ¯N(✏i)) against ln (1/✏i)
for many small values of ✏. This will hopefully give a nice fit with a straight
line, and we may then take the slope of this line as an approximation of the
Minkowski-Bouligand dimension dimB, or box dimension for short.
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Figure 16: By zooming in on the Hénon attractor (above to the left) we see that
the same type of pattern emerge at smaller and smaller scales, demonstrating
the self similarity of the attractor. Image source: [22]
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The above mentioned procedure is of course a direct analogue of what we
were discussing for measuring coast lines before. However, there is at least one
possible problem with this method, and it has to do with the fact that a box could
contain one or a very large number of points. As a matter of fact, when ✏ is small
enough, most boxes will contain a very small amount of points, and only a few
of the boxes will contain the majority of the orbit. Actually there may be a
large amount of boxes that are not counted, since they are empty, but that would
contain points if the generated orbit were made just a little bit longer. This
especially poses a problem when the points of the orbit tend to clutter together
on the attractor, i.e. filling up the attractor faster in some areas than others. We
will now illustrate this problem, with an example.

Consider the map defined as

�(x, y) = (2x+ y, x+ y)( mod 1).

This is known as Arnold’s cat map, and it is a map � : T2 ! T2, which is
perhaps more intuitively clear if we think of the torus T2 as the quotient space
R2
�Z2. It is named after the Russian mathematician Vladimir Igorevich Arnold

(12 June 1937 – 3 June 2010), who first described the effects of the map in the
1960:s, by applying it to a picture of a cat. For this map, the whole torus is an
attractor, but what happens if we introduce a small perturbation? Let us look
at15

�⇤(x, y) = (2x+ y, x+ y + � cos (2⇡x))( mod 1).

In Figure 17 we see three different length orbits, for � = 0.001, � = 0.08 and
� = 0.23, plotted on a torus16. We see, for � = 0.001, that the orbits slowly
start to fill up T2, rather uniformly. As a matter of fact, Yakov Sinai has shown
that the whole torus is still an attractor for small � [36]. As � increases however,
points are clustering together at certain areas, and the torus fills up faster in these
areas than in other. In Figure 17f, for � = 0.23, we see that it is no longer even
clear that the torus is an attractor. We may actually have a smaller attracting
set made up of the bands, seen swirling around the torus in the plot. If we look
at this plot, on the square and zoom in on the bands, as seen in Figure 18, we
also see that the pattern repeats itself on smaller scales. As was discussed in
the previous paragraph, using box counting, there will therefore be fewer boxes

15We will not go into details and specifics of the dynamics and the attracting sets of this
family of maps. This is just used here to illustrate some points about different ways to measure
dimension. For more info about these type of maps, called Anosov diffeomorphisms, we refer
to [36]

16For estethic purposes we have plotted this on a somewhat larger torus, of major radius 2

instead of 1. The purpose of plotting this on a torus in the first place, is merely of an illustrative
nature. This way, one can clearly see the orbits ’swirling’ around the torus instead of having
to imagining the square as the torus. For most purposes however, one may just as well look at
plots on the square, as in 18.
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actually accounting for most of the points in the orbit. Since there are potentially
a lot of empty boxes that would eventually fill up, if the orbit was made longer,
we tend to underestimate ¯N(✏i), and thus in turn, underestimate dimB. One
may also argue that it makes sense to distinguish between boxes that the orbit
spends a lot of time in, and the ones that it hardly ever visits. We will therefore
now look at a measure of dimension that does precisely this. In Figure 18,
we have zoomed in on some of the bands (here depicted in the unit square for
simplicity). As we zoom in, we can see that the bands seem to consist of several
similar bands. As a matter of fact, this pattern continues on smaller and smaller
scales, and may suggest a fractal micro-structure. However, as we mentioned
before, it is not entirely clear that we have a smaller attracting set (which may
be fractal), or if the entire torus is still an attractor, and we just need to make the
orbit longer.

4.5.1 Renyi Dimension

As we just saw, there are some possible drawbacks with using the box-dimension,
as it does not distinguish between the different boxes needed to cover the attrac-
tor. There is a generalized notion of dimension, often referred to as the Renyi
dimension or sometimes the generalized dimension, that does this by weight-
ing each box Bi according to its so called natural measure µ(Bi). We will not
go into details of the definition of µ here, but instead just informally state that
µ(Bi) can be seen as the limit, as T ! 1, of the fraction of points, of an orbit,
in Bi, during the interval (0, T ) to the total number of points in the orbit. Thus,
one may equally think of µ(Bi) as the probability of a random point being in
Bi. We then define the order q Renyi dimension Dq as

Dq = lim

✏!0

1

1� q

ln (

P

j(µ(Bi))
q
)

ln (

1
✏
)

. (22)

where q gives the strength of the weighting, i.e. the higher value of q, the
stronger the weighting of the boxes with larger measure µ(Bi), compared to
the ones with smaller measure. We note that setting q = 0, we retrieve the box
dimension, i.e. D0 = dimB.

Taking the limit as q ! 1 in (22), we may note, since
P

i µ(Bi) = 1, that

ln (

X

i

µ(Bi)
q
) ! ln(1) = 0 and

(1� q) ln (
1

✏
) ! 0,
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(a) � = 0.0001, N = 10000 (b) � = 0.0001, N = 150000

(c) � = 0.1, N = 10000 (d) � = 0.1, N = 150000

(e) � = 0.23, N = 10000 (f) � = 0.23, N = 150000

Figure 17: N iterations of �⇤ starting from (0.1, 0.1) projected onto a torus, for three
different values of �. For a small �, numerical results suggests that the whole torus is
an attractor. When � is increased, patterns emerge, showing that the orbit spend more
time in certain areas than other. It is not clear whether, for a larger �, we have a smaller
attracting subset of the torus, or if the torus would be filled if the orbit was made long
enough.
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(a) (x, y) 2 I ⇥ I (b) x 2 [0.26, 0.5], y 2 [0.55, 0.6]

Figure 18: 200000 and 600000 iterations of �⇤ starting from (0.1, 0.1), plotted in the
unit square I ⇥ I , for � = 0.23. Figure 18b shows some of the bands magnified, which
reveals a similar micro-structure of new bands.

and therefore we may apply l’Hospital’s rule, to arrive at

lim

✏!0
lim

q!1

1

1� q

ln (

P

j(µ(Bi))
q
)

ln (

1
✏
)

= lim

✏!0
lim

q!1

P

i

�

µ(Bi)
q
ln (µ(Bi))

�

P

i

�

µ(Bi)
q
�

ln (✏)

= lim

✏!0

P

i

�

µ(Bi) ln (µ(Bi))
�

ln (✏)
:= D1.

The limit D1 is usually called the information dimension. It is also worth
noting that Dq is a non-increasing function in q [29].

In 1983 Peter Grassberger and Itamar Procaccia introduced the correlation
dimension in their paper Measuring the Strangeness of Strange Attractors [10],
as a method for estimating the fractal dimension of so called strange attrac-
tors. This dimension actually corresponds to D2 above, and it has a convenient
numerical algorithm, often referred to as the Grassberger-Procaccia algorithm.
The idea is similar to the previously presented definitions, but here we look at
pairwise distances instead of looking at a cover of boxes. The main advantage
of this is that it allows one too look at very small scales. If the same small scales
would to be used in a box-counting algorithm, we would have the problem dis-
cussed above, with many boxes being considered empty [39].

We start by counting the number of pairs of points in the orbit, or more
specifically of the first N points in it, that are closer together than ✏. We then
divide by the total number of pairs

✓

N

2

◆

=

N !

2(N � 2)!

=

N(N � 1)(N � 2)!

2(N � 2)!

=

N(N � 1)

2

,

to get a ratio that describes the fraction of pairs closer to each other than ✏. We
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thus define the correlation integral as

C(✏) = lim

N!1

2

N(N � 1)

N
X

i<j=1

⇥(✏� ⇢(xi, xj)), (23)

where ⇥ is the Heaviside step function, i.e.

⇥(x) =

(

0, x < 0,

1, x � 0,
,

and ⇢(x, y) is the metric used in the space that embeds A (usually the standard
euclidean metric). We then define the correlation dimension for A (or to be
precise, for the orbit) as

dimC = lim

✏!0

ln(C(✏))

ln(✏)
. (24)

Of course it is impossible for us to deal with these limits in practice, so what
we do is that we approximate C(✏) by summing over all points in a large orbit
we generated numerically, i.e. for a very big N . We then do this for many
different values of ✏ and plot ln(C(✏)) against ln(✏). If the points are related by
a power law, there should be a linear correlation between the two, meaning that
we should be able to find a close fit of a line through the points using the method
of least squares.

Remark 3 As we can see from (23), for large enough ✏ we get C(✏) = 1. This
means that (24) won’t supply us with any useful information. If on the other
hand ✏ is small enough, C(✏) will be close to or equal to zero, and (24) will not
supply us with useful information. In practice we must thus tailor our choice of
✏ to avoid this.

In Figure 19a and 19b we can see an approximation of the correlation di-
mension using the above method for two well known attractors to discrete dy-
namical systems. In Figure 19a we generated points using the logistic map
f(x) = rx(1 � x) for r = 3.56995, starting from x0 = 0.5, and in Figure 19b
we looked at the Hénon map h(x, y) = (y + 1� ax2, bx) with a = 1.4, b = 0.3
starting from x0 = (0.1, 0.1). We found an approximated correlation dimension
of 0.50117 for the logistic attractor and 1.2057 for the Hénon attractor. We may
compare this result to the values of Grassberger and Procaccia of 0.500± 0.005
and 1.21 ± 0.01 17 respectively [10]. We have also numerically approximated
the information dimension (D1) of Arnold’s cat map, with a small perturbation,

17The results of the dimension of the Hénon attractor are actually underestimated and a better
method for approximating the dimension, using embedding dimensions, are discussed in [10]
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i.e. �⇤ from the previous section. We have both looked at this for small values
of �, where the whole torus is an attractor, and for larger values of �, where we
seem to have a smaller attractor. The results of this can be seen in Figure 19c
and 19d respectively.

4.5.2 Lyapunov Dimension, and the Kaplan-Yorke Conjecture

Before we conclude this thesis, we will now, as promised in the end of Section
3.3.2, in part return to the dynamics. We will introduce a conjecture that in a
way tries to bind together the notions of geometry and dynamics. It does so
by suggesting that an attractors dimension (geometry) could be expressed in
terms of the systems Lyapunov exponents (dynamics). The intuition for, and
presentation of this conjecture, known as the Kaplan-Yorke Conjecture, will
be rather brief and will merely be used as a concluding subject, demonstrating
the connections between the different areas that we have been discussing.

We begin by building some intuition. Imagine covering an attractor A, for a
2-dimensional system, governed by a function f , with boxes of side �. Let, as
in the section on box-dimension, N(�) denote the number of such boxes needed
to cover the attractor (purely for convenience, we depart from the previously
used notation N�(A) that included the attractor A in the notation). Then study
how an arbitrary box B is deformed by fn, i.e. after n iterations. As we saw
in Section 3.3.2, when discussing the Lyapunov numbers, the stretching factors
were given by the eigenvalues of the Jacobian (fn

(x0))
0. Suppose that the Lya-

punov numbers are the same for almost every starting point x0 within the basin
of attraction [6], so we can say that ⇤1,⇤2 are the Lyapunov numbers for the
whole attractor. Then, for a sufficiently small �, the box B will be transformed
into a parallelogram fn

(B) with length ⇤n
1� and width ⇤n

2�. We then look at
how many boxes of side ⇤n

2� it takes to cover fn
(B), which of course will be

⇣

⇤1

⇤2

⌘n

. It is therefore reasonable to say that

N(⇤

n
2�) ⇡

⇣

⇤1

⇤2

⌘n

N(�). (25)

We now remember, from the discussion of the box dimension, that

N(�) /
⇣

1

�

⌘dimB

, (26)
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(a) Logistic Map (b) Hénon Map

(c) Arnold’s Cat Map (d) Perturbed Arnold’s Cat Map

Figure 19: Results of numerical approximations of the correlation dimension D2, and
the information dimension D1, for three well known attractors. In (a) we see the result
of 30000 iterations of the logistic map starting from x0 = 0.5 and with r = 3.56995.
This yielded D2 ⇡ 0.50117, and in (b), the Hénon map with a = 1.4, b = 0.3 and
15000 iterations which gave D2 = 1.2057. In (c) and (d) we see a significant difference
when introducing the perturbation. For � = 0 the map is just the usual Arnold’s cat map
and the whole torus should be an attractor. The approximated dimension is therefore
close to 2, D1 ⇡ 1.925. When a large perturbation is introduced the dimension has
gone down significantly to 1.5957.
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and substituting this into (25), for some proportionality constant c, we get

c
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1

⇤

n
2�

⌘dimB
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⇤1
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⌘n⇣
1

�
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) dimB ln
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⌘

= n ln

⇣

⇤1

⇤2

⌘

+ dimB ln

⇣

1

�

⌘

) dimB

⇣

ln

�

1

⇤

n
2�

�

� ln

�

1

�

�

⌘

= n ln

�

⇤1

⇤2

�

) dimB = �
ln

�

⇤1

⇤2

�

ln (⇤2)
= 1� ln (⇤1)

ln (⇤2)
= 1 +

ln (⇤1)

ln

�

1

⇤2

�

.

This is then the so called, Lyapunov dimension, or sometimes also called
Kaplan-Yorke dimension of A, i.e.

dimL(A) = 1 +

ln (⇤1)

ln

�

1

⇤2

�

,

where ⇤1,⇤2 are the Lyapunov numbers of the attractor.
One may generalize these arguments to higher dimensions, and the more

general Lyapunov dimension is usually defined using the Lyapunov exponents
�i instead of the Lyapunov numbers ⇤i (remember that �i = ln (⇤i)). The
Lyapunov dimension, that was introduced by J. Kaplan and J. Yorke in 1978
[19], is defined for an attractor to a n-dimensional system, as

dimL = k +

Pk
i=1 �i

|�k+1|
, (27)

where the Lyapunov exponents are ordered �1 � �2 � . . . � �n and k is the
index for which

Pk
i=1 �i > 0 and

Pk+1
i=1 �i < 0. The Kaplan-Yorke conjecture

says that, for typical attractors, dimL = D1, where we may remember D1 as
the information dimension from before [29]. Using a Mathematica function
called LCEsD [34] (Lyapunov Characteristic Exponent Discrete), developed by
Marco Sandri, we obtain the Lyapunov spectrum for the Hénon map with a =

1.4, b = 0.3 as �1 = 0.418,�2 = �1.622. Substituting this into (27), we
get dimL ⇡ 1.258. As we can see, this is considerably higher than the value
obtained from numerical approximations of the information dimension in the
previous section. Grassberger and Procaccia noted this in their paper ([10]) and
suggested a more accurate way of approximating the dimension using different
embedding dimensions.

There are much more to say on the subject, but we will end the discussion
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here. For more on the Lyapunov dimension, see [6] and [19].

5 Concluding Remarks and Future Research
The fields of chaotic dynamics and fractal geometry are both in their infancy,
and this is especially evident when we look at definitions. It takes time for these
concepts to find a solid ground, and for the mathematical world to find defini-
tions that people are satisfied with. Therefore you can find many different defi-
nitions of notions such as ’attractor’, ’strange attractor’, ’fractal’, and ’chaotic’.
This is also perhaps much because of the interdisciplinary nature of both fields
(especially chaotic dynamics). Most articles one will find on chaotic dynamics
will likely come from researchers within physics, or mathematical physics, but
as far as we know, chaos is a purely mathematical phenomenon. However, it
seems there are many phenomena in nature that exhibits a behaviour that could
be closely described by chaotic dynamics, and thus interest about such models
come from all sorts of fields that study natural phenomena.

It is true that attractors of chaotic systems seem to have fractal geometry,
and it was because of this that the term ’strange’ was somewhat reserved for
these. Nevertheless, both fractal chaotic attractors, fractal non-chaotic attractors
[12], and even non-fractal chaotic attractors [37] exists. One could argue that the
term ’strange’ should then refer to the geometrical aspects of the attractor rather
than the dynamical, and thus argue that a strange attractor can exist without it
exhibiting chaotic dynamics. We could then instead be talking about strange
chaotic, non-strange chaotic, strange non-chaotic (and of course non-strange
non-chaotic) attractors.

Perhaps since chaotic dynamics, as a field of study, was more or less born out
from physics, it seems that it has, to a large extent, stayed there. There seems
to be much fewer (or at least lesser known) attempts to apply these theories
to problems within the field of mathematics itself. Of course, application of
chaotic dynamics could be considered as soon as we have something behaving
seemingly randomly, and that we do not understand in a better way. A particular
area within mathematics that comes to mind for such applications, is the field
of number theory. As an example, we seem to have a pretty poor grasp of how
and why the prime numbers are distributed the way they are, and they seem
to pop up more or less at random. However, plotting them in certain ways
reveil patterns in an otherwise seemingly random distribution, such as the Ulam
spiral [9]. Many of these patterns may be better explained by theories different
from the one of dynamical systems, but at least the Ulam spiral are connected
with many, still unanswered, questions in number theory. Another place where
chaotic dynamics could perhaps be applied to number theory, is in the case of the
Collatz conjecture. The Collatz conjecture states that, for the system governed
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by f : N>0 ! N>0, given by

f(x) =

(

x/2 if x ⌘ 0 (mod 2)

3x+ 1 if x ⌘ 1 (mod 2).
,

L(x0) = {1} for all x0 2 N>0, i.e. no matter what point x we start at, the orbit
will always converge down to 1.

Experimental evidence suggests that the conjecture is true, but it has yet to
be proven. This problem, also often referred to as the ’3n + 1-problem’, has
been referred to as especially difficult by many famous mathematicians. The
Hungarian mathematician Paul Erdős even went as far as saying: ”Mathematics
may not be ready for such problems.”[13].

In a paper from 1999 [20], this problem was extended to the complex plane
by S. Letherman, D. Schleicher and R. Wood, to reveil, among other things,
what has been named the Collatz fractal, seen in Figure 20. In a similar fashion,
it would be interesting to see what the dynamics would look like if we extend the
Collatz function f , e.g. to a field of p-adic numbers. Studying various properties
and invariants of the systems we get from expanding f for different p, may reveil
information useful in trying to prove the conjecture. This is, however, very much
based on pure intuition and nothing else. In conclusion, since chaotic dynamics
is such a recent development, and since it seems to have been somewhat stuck in
the hands of physicists for a long time, there may be reasons to believe that many
applications (and perhaps breakthroughs) within pure mathematics are soon to
come.
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Figure 20: A so called escape-time coloured plot of an extension of the Collatz
function to C. The extension is given by the function

f : C ! C, f(z) = 1

4

(2 + 7z � (2 + 5z) cos (⇡z)), and regions in the complex
plane are colored after how fast those values diverge away to infinity under the
iteration of f . Black regions are starting values whose orbits remain bounded,
while other colours indicate divergence. The image is centred at z = 0 and
the long spiky horizontal line that goes through the whole image is R. Image
source: [18]
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Appendices
A Classification of Bifurcation Points
There are several characterizations of bifurcation points that may be of special
interest, and therefore it may be of use to classify them accordingly. We will
only mention a few types here, and we will not go into too much detail. The
important message is just that there are many types of bifurcation points with
different properties, and that this is an area of study in itself called bifurcation
theory.

Above, we have already seen examples of two different types of bifurcation
points. The first one, p1, is called a transcritical bifurcation point. The charac-
teristics of this type is that two different branches (x1(r) and x2(r) in our case)
exists in an open neighbourhood of the bifurcation point they meet at. A su-
percritical (subcritical) pitch fork bifurcation is when three branches meet at
a bifurcation point p, two of them existing only in [p, b) ((a, p]), for some b > p
(a < p), and the other one existing in an open interval of p, but all of them of
the same period. If we look at the point a = 1 in Figure 21c, it is easy to see
where the name comes from. Another type of bifurcation point is the so called
supercritical (subcritical) fold bifurcation. This is when two branches only
exists in an interval [p, b) ((a, p]), and meet at p, as seen in Figure 21b.

When the period of the points in one or two branches is double the period
of the other one, the bifurcation is called a period doubling bifurcation. This
is clearly what happens at p2 above. This looks very similar to a pitch fork
bifurcation. The difference is that if the branch to the left of the bifurcation
point has period p, the two branches to the right of it has period 2p. This type
of bifurcation is of special interest in the study of chaotic dynamical systems, as
we shall see further on.

B Matlab Code
This section includes some of the scripts needed to generate the most important
figures and results in this thesis. Some of the most simple scripts have been
omitted. Since the focus has been on the mathematics, few considerations re-
garding complexity of the algorithms has been taken. Since, to a great extent,
Matlab’s own functions has been used, and these seems to be rather optimized,
this is hopefully not of great importance. The scripts run in under approximately
one minute, even for a rather large number of iterations, on a fairly standard
modern PC (of 2017). Some of the scripts could also have been incorporated
into one, more general function, that takes a function handle of a map of any
dimension, with parameters and initial condition, and e.g. returns the correla-
tion dimension. Again, programming and efficiency has not been the main focus
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(a) Subcritical fold (b) Supercritical fold

(c) Supercritical Pitchfork (d) Transcritical

Figure 21: Examples of some different types of bifurcation points. In (a) we have a
Subcritical fold at a =

1
4 for f(x) = x

2
+ a, In (b) we have a Supercritical fold at

a = �1
4 for f(x) = x

2 � a, In (c) we have a Supercritical Pitchfork at a = 1 for
f(x) = ax� x

3, and in (d) we have a Transcritical bifurcation at r = 1 for the logistic
map f(x) = rx(1� x).
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here, therefore the scripts are somewhat ad hoc.

B.1 Illustrating the ’Butterfly effect’ using the logistic map

%#!/usr/bin/octave -qf

% This is a script to illustrate the butterfly effect of a chaotic map.
% The map used to illustrate this is the logistic map, f.
% An extremely small change in initial conditions, 1e-15, still makes
% a significant difference after quite few iterations.

clear all

timestart = cputime;

% Parameters
N = 100; % number of iterations (10000 good test)
r = 4;
x0 = 0.1
y0 = x0+10ˆ(-16);
n = 1:N;

% The logistic map
f = @(p,r)r.*p.*(1-p);

% Allocating memory
p1 = zeros(N,1);
p2 = zeros(N,1);

% Generating two orbits
p1(1) = x0;
p2(1) = y0;
for i=2:N

p1(i) = f(p1(i-1),r);
p2(i) = f(p2(i-1),r);

end

plot(n,p1,'k'), hold on
plot(n,p2,'--k')
set(gca,'fontsize',18)
xlabel('n')
ylabel('x_n')

B.2 Bifurcation diagram of the logistic map

%#!/usr/bin/octave -qf
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% Creates a bifurcation diagram of the logistic map. One may use the
% different parameters below to obtain different zoom levels, or play
% around on their own. For the plots to look good, one has to adjust both
% N, omit, and res (the resolution of r) when zooming.

clear all

% Parameters zoom1:
N = 900; % number of iterations (500 good test)
omit = 875; % number of transient points to omit (100 good test)
res = 0.0001; % step size of r values (0.001 good test)
r = 2.5:res:4;
YaxisPlotRange = [0 1];

% Parameters zoom2:
%N = 1800;%N = 1600;
%omit = 1770;%omit = 1580;
%res = 0.000001;%res = 0.0000008;
%r = 3.84:res:3.86;
%YaxisPlotRange = [0.4 0.6];

% Parameters zoom3:
%N = 3500;
%omit = 3470;
%res = 0.00000005;
%r = 3.8475:res:3.85;
%YaxisPlotRange = [0.488 0.52];

% Parameters zoom4:
%N = 7500;
%omit = 7100;
%res = 0.00000001;
%r = 3.8493:res:3.8495;
%YaxisPlotRange = [0.497 0.5032];

% Map specific parameters
x0 = 0.3; % initial condition

% Start CPU time
timestart = cputime;

% Allocating memory
p = zeros(length(r),N-omit);
tmp = zeros(1,N);

i = 1;
for R = r(1):res:r(end)

for j = 2:N
tmp(1) = x0;
tmp(j) = R.*tmp(j-1).*(1-tmp(j-1));

end
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p(i,:) = tmp(omit+1:end)';
i = i+1;

end

% Stop CPU time
timeend = cputime-timestart

% Plotting
TeXylabel = ['$\{fˆn(x_0)\}_{n>a}$'];
plot(r,p(:,:),'.','Color',[0.2 0.2 0.2],'MarkerSize',0.01)
set(gca,'fontsize', 21)
axis([r(1) r(end) YaxisPlotRange(1) YaxisPlotRange(2)])
xlabel('r')
ylabel(TeXylabel, 'Interpreter', 'Latex', 'FontSize', 24)

B.3 Lyapunov exponent for the logistic map

%#!/usr/bin/octave -qf

clear all

% Parameters:
N = 10000; % number of iterations, length of orbit
omit = 500; % number of points to omit from the start of the orbit. (100 good test)
rrange = [3.5 4]; % range that r varies over
rres = 0.001; % increments of r

% Allocating memory
lyapunov_exponents=zeros(1,length(rrange(1):rres:rrange(2)));

% The logistic map
f = @(p,r)r.*p.*(1-p);

timestart = cputime;
j = 1;
for r = rrange(1):rres:rrange(2)
s = 0;
p = rand; % Pick a random starting point in (0,1)
for i = 1:N % Generate orbit of length N

p = f(p,r);
if i > omit % Omit the first omit nr. of points
s = s + log(abs(r.*(1-p)-r.*p)); % Accumulate the logs of the derivatives

end
end
lyapunov_exponents(j)=s./N; % Assign the average lyapunov exponent to each element of l
j = j + 1;

end
timeend = cputime-timestart

% Plots
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r = rrange(1):rres:rrange(2);
plot(r, lyapunov_exponents,'Color',[0.2 0.2 0.2]);
set(gca,'fontsize', 21);
referenceline = refline([0 0]);
referenceline.Color = 'k';
axis([rrange(1) rrange(2) -1.5 1])
xlabel('r');
ylabel('Lyapunov exponent');

B.4 Correlation dimension for the logistic map

%#!/usr/bin/octave -qf

% Calculating the correlation dimension of the logistic map. This script is
% tailored to use a one dimensional map, just change f to use another map.
% The same procedure can easily be extended to higher dimensions by making
% the appropriate changes to this script. An example of such an extension
% is correlation_dimension_henon.m.

clear all

timestart = cputime;

% Parameters:
N = 30000; % number of iterations (10000 good test)
omit = 1000; % number of points to omit from the start of the orbit. (500 good test)
res = 50; % resolution, the number of l values. (50 good test)

% Map specific parameters
x0 = 0.5; % initial condition
R = 3.56995; % parameter

% The logistic map
f = @(p,r)r.*p.*(1-p);

% Allocating memory
p = zeros(N,1);
distMatrix = zeros(N-omit,N-omit);
Cl = zeros(res,1);

% Generating the orbit p
p(1) = x0;
for i=2:N

p(i) = f(p(i-1),R);
end

% Generating distance matrix distMatrix from p, omitting <omit>
% number of points from the start of the orbit
distMatrix = pdist(p(omit+1:end));
distMatrix = squareform(distMatrix);
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% Counting pair of points with distance smaller than l
l = (logspace(-4,-1,res))';
k = 1;
for i = 1:res

Cl(k) = (1/2).*nnz(distMatrix(:) < l(i));
k = k + 1;

end

% Generating approx. correlation integral
Cl = (2/(Nˆ2-N)).*Cl;

% Preparing for log plot and least squares curve fitting
Cl = log10(Cl);
l = [ones(res,1) log10(l)];

% Least squares curve fitting
b = l\Cl
lsY = b(2)*l(:,2)+b(1);

% Cpu time
timeend = cputime-timestart

% Plotting

% Label showing slope d
txt1 = ['D_2 \approx ',num2str(b(2))];
% Positioning of label
xlbl = ((max(l(:,2))+min(l(:,2))))/2-0.4;
ylbl = ((max(lsY)+min(lsY)))/2+0.4;
% Plots
scatter(l(:,2),Cl,'k')
hold on
set(gca,'fontsize',18)
plot(l(:,2),lsY,'k')
axis equal
xlabel('log(l)')
ylabel('log(C(l))')
text(xlbl,ylbl,txt1,'HorizontalAlignment','left','fontsize',18);
%print -dpng corr_logistic.png

B.5 Correlation dimension for the Hénon map

%#!/usr/bin/octave -qf

% Calculating the correlation dimension of the Henon map. This script is
% tailored to use a two dimensional map, just change h to use another map.
% The same procedure can easily be extended to higher dimensions by making
% the appropriate changes to this script
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clear all

timestart = cputime;

% Parameters:
N = 15000; % number of iterations (10000 good test)
omit = 1000; % number of points to omit from the start of the orbit. (500 good test)
res = 50; % resolution, the number of l values. (50 good test)

% Map specific parameters
x0 = [0.1 0.1]; % initial condition
a = 1.4; b = 0.3;

% The Henon map
h = @(x,y,a,b)[y+1-a.*x.ˆ2; b.* x];

% Allocating memory
p = zeros(N,2);
distMatrix = zeros(N-omit,N-omit);
Cl = zeros(res,1);

% Generating the orbit p
p(1,:) = x0;
for i=2:N

p(i,:) = h(p(i-1,1),p(i-1,2),a,b);
end

% Generating distance matrix distMatrix from p, omitting <omit>
% number of points from the start of the orbit
distMatrix = pdist(p(omit+1:end,:));
distMatrix = squareform(distMatrix);

% Counting nr of pairs with distance smaller than l
%l = (linspace(2.*10ˆ(-2),0.5,res))';
% Using logspace instead for equal spacing between log(l) values
l = (logspace(-1.25,-0.2,res))';%(logspace(-1.25,-0.2,res))';%-1.7,-0.3
k = 1;
for i = 1:res

Cl(k) = (1/2).*nnz(distMatrix(:) < l(i));
k = k + 1;

end

% Creating approx. correlation integral
Cl = (2/(Nˆ2-N)).*Cl;

% Preparing for log plot and least squares curve fitting
Cl = log10(Cl);
l = [ones(res,1) log10(l)];

% Least squares curve fitting
b = l\Cl
lsY = b(2)*l(:,2)+b(1);
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% Cpu time
timeend = cputime-timestart

% Plotting

% Plot the attractor
%plot(p(:,1),p(:,2),'k.','MarkerSize', 4)
% Label showing slope d
txt1 = ['D_2 \approx ',num2str(b(2))];
% Positioning of label
xlbl = (max(l(:,2))+min(l(:,2)))/2-0.5;
ylbl = (max(lsY)+min(lsY))/2+0.3;
% Plots
figure
scatter(l(:,2),Cl,'k')
hold on
set(gca,'fontsize',18)
plot(l(:,2),lsY,'k')
axis equal
xlabel('log(l)')
ylabel('log(C(l))')
text(xlbl,ylbl,txt1,'HorizontalAlignment','left','fontsize',18);
%print -dpng corr_henon.png

B.6 Information dimension of the perturbed Arnold’s cat map

%#!/usr/bin/octave -qf

% Calculating the information dimension of the perturbed Arnold's cat map.
% This script is tailored to use a two dimensional map, just change f or h
% to use another map. The same procedure can easily be extended to higher
% dimensions by making the appropriate changes to this script.

clear all

timestart = cputime;

% Parameters:
N = 30000; % number of iterations (1000 good test)
omit = 1000; % number of points to omit from the start of the orbit. (100 good test)
res = 50; % resolution, the number of l values. (50 good test)

% Map specific parameters
x0 = [0.1 0.1]; % initial condition
delta = 0.235;
a = 1.4; b = 0.3;

% The Henon map
h = @(x,y,a,b)[y+1-a.*x.ˆ2; b.* x];
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% Arnold's cat map, perturbed
f = @(x,y,delta)[mod(2.*x+y,1); mod(x+y+delta.*cos(2.*pi.*x),1)];

% Allocating memory
p = zeros(N,2);
Cl = zeros(res,1);
n = zeros(N-omit,res);

% Generating radii-vector l; using logspace for equal spacing
% between log(l) values.
l = (logspace(-2.2,-1.2,res))';%(logspace(-2,-0.4,res))'

% Generating the orbit p
p(1,:) = x0;
for i=2:N

p(i,:) = f(p(i-1,1),p(i-1,2),delta);%h(p(i-1,1),p(i-1,2),a,b);%
end

% Generating matrix n, where n(k,i) are the number of points
% within a l(i) neighborhood of the point p(k,:). Iterating
% through all points of the orbit p and all radii l.
for i = 1:res

Idx = rangesearch(p(omit+1:end,:),p(omit+1:end,:),l(i));
for k = 1:N-omit

n(k,i) = length(Idx{k});
end

end

% Generating approximate 'Information integral' Cl based on
% formula for D_1, derived from applying l'Hospital to general formula
% for Renyi-dimension.
for r = 1:res

Cl(r) = exp((1./(N-omit)).*sum(log(n(:,r)./((N-omit)-1))));
end

% Preparing for log plot and least squares curve fitting
Cl = log10(Cl);
l = [ones(res,1) log10(l)];

% Least squares curve fitting
b = l\Cl
lsY = b(2)*l(:,2)+b(1);

% Cpu time
timeend = cputime-timestart

% Plotting
% Plot the attractor
%plot(p(:,1),p(:,2),'k.','MarkerSize', 4)
%print -dpng arnoldcat_perturbed_phase.png
% Label showing slope d

84



txt1 = ['D_1 \approx ',num2str(b(2))];
% Positioning of label
xlbl = (max(l(:,2))+min(l(:,2)))/2-0.5;
ylbl = (max(lsY)+min(lsY))/2+0.4;
% Plots
figure
scatter(l(:,2),Cl,'k')
hold on
set(gca,'fontsize',18)
plot(l(:,2),lsY,'k')
axis equal
xlabel('log(l)')
ylabel('log(C(l))')
text(xlbl,ylbl,txt1,'HorizontalAlignment','left','fontsize',18);
%print -dpng arnoldcat_perturbed.png
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