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GROTHENDIECK’S HOMOTOPY HYPOTHESIS AND THE
HOMOTOPY THEORY OF HOMOTOPY THEORIES

ABsTRACT. We will present two possible models for “co-categories™ simpli-
cial set with a horn-filling condition and Kan-complex enriched categories.
We present Grothendieck’s homotopy hypothesis as a “litmus test” for oo-
categories, and then develop the necessary machinery for explaining the phrase
“homotopy theory of homotopy theories”. We also define the maximal Kan-
complex contained in a quasi-category, a generalization of the maximal groupoid
contained in a category, and prove that it is an adjoint — we believe that this
has not been done explicitly (in print) before.
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1. INTRODUCTION

In this text we will present Grothendieck’s homotopy hypothesis and the slo-
gan “homotopy theory of homotopy theories” in a self-contained way suitable as a
first introduction to these two notions in particular and higher category theory in
general. The prerequisites are few  some ordinary category theory (e.g. limits,
adjunctions, groupoids) and the meaning of homotopy. The topics have been se-
lected to present these ideas in a brief and understandable way  we believe that
these “slogans” are often used but seldom explained in detail and so believe that a
short and basic but rather complete introduction like this will fill a gap in the ex-
isting literature. The proofs in Section 3 along with Definition 21 are our own work
and we hope that these will help the reader understand how work might be carried
out in these settings (in the same way that they did just that for the author).

In Sections 2 and 3 we explore simplicial sets, which form a category sSet,
and define a quasi-category as a simplicial set with a certain horn-filling property.
The full subcategory of sSet that these quasi-categories form are denoted QCat.
We present an important functor N : Cat — sSet, the nerve functor, and show
that it in fact has domain QCat. We then proceed to define the fundamental
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category functor 7; : sSet — Cat and show that this is a left adjoint to N. We
finish Section 3 with a discussion of Kan complexes, which are simplicial sets with
a stronger horn-filling property than that of quasi-categories. We show that the
inclusion Kan — QCat is an analogue to the inclusion Gpd — Cat. In particular
we define the maximal Kan-compler contained in a quasi-category as a functor
mK : QCat — Kan and show that this is a right adjoint to the inclusion Kan —
QCat, just as core : Cat — Gpd is a right adjoint to the inclusion Gpd — Cat.
This hints that Kan-complexes might be considered a oco-dimensional analogue to
groupoids.

Next is Section 4 where we discuss informally what a co-category might be and
introduce the (n, k)-categories, which have morphisms up to dimension n but where
every arrow of dimension greater than k is invertible. In this way ordinary cate-
gories are (1,1)-categories, while groupoids are (1,0)-categories. We explain that
quasi-categories are (0o, 1)-categories while Kan-complexes are (oo, 0)-categories,
and that in this view we really might consider Kan-complexes to be co-groupoids.
We also discuss some difficulties in defining oo-categories and how what we ex-
plore in this text is just one possible approach. Finally we discuss Grothendieck’s
hypothesis, which essentially states that oo-groupoids “should” be equivalent to
topological spaces. This is thus a “litmus test” for co-categories — ideally anything
that claims to be a oco-category should fulfill this hypothesis. In fact Kan does, but
we do not show this. This is followed by a description of the singular set functor
Sing : Top — sSet and geometric realization |—| : sSet — Top which are adjoint
Sing - |—| that gives the equivalence that the homotopy hypothesis suggests should
be there.

We proceed to Section 6 where we present the axioms of model categories. A
model category can be though of as a place to “do homotopy theory”, in the way
that we have some class of arrows that we would like to formally invert as to make
them into isomorphisms. The prime example is working with topological spaces up
to homotopy — this is in essence working in Top with the homotopy equivalences
inverted. We can do this formally with any class of arrows in any category, but this
might give us set-theoretic problems. Having a model structure assures us that this
does not happen. With this we understand that a “homotopy theory” is in fact a
model structure on a category, and so might begin to explain “the homotopy theory
of homotopy theories”.

The following sections present simplicial categories, sCat, as an alternative way
to define oo-categories. We also present the general machinery behind “nerves and
realizations” that generalize both the N F 71 and Sing - |—| adjunctions. This gives
us proofs of these adjunctions and also a homotopy coherent nerve N : sCat — sSet
and it’s realization. Finally we discuss the hammock localization that from a model
category M gives us a simplicial category LM, with the property that we might
recover the homotopy theory of M from LM. Together with a model structure on
sCat itself this gives us a “homotopy theory of homotopy theories”.

The history of higher category theory is quite rich. It of course came after the
theory of ordinary categories, but the need for something like it can be found much
earlier. Consider the (first) homotopy group of a topological space T at some base-
point ¢, m (T, t). We would have preferred to construct it by taking the elements to
be paths in T, and the group operation being concatenation of paths. However, the
usual way to define concatenation of paths is not associative, so we instead define
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m (T,t) as homotopy classes of paths. Higher category theory provides an alterna-
tive work-around: we remember the “higher dimensional” information contained in
the homotopies between paths, and construct a “fundamental co-groupoid” instead.
This fundamental co-groupoid “should” contain all the information of a topological
space — this assumption is Grothendieck’s homotopy hypothesis.

The start of actual higher category theory is in the 1980s. In 1983 Grothendieck
writes a letter (known by the title Pursuing Stacks, [Groth]) containing some of his
ideas on how the higher dimensional structure of a “oo-category” should be defined
(see Section 4 for some discussion on why there is no one answer to that question).
The initial letter is about a dozen pages long, but Grothendieck keeps adding to
it. Eventually the finial version is a few hundred pages long. The text is written
in an unusual style — the reader gets to follow Grothendieck’s thought, including
his errors and mistakes; take a glance at it, if you haven’t seen it before. The
stacks that Grothendieck was pursuing are a notion used in algebraic geometry,
but for this text the most relevant parts of Pursuing Stacks is the discussions on
oo-groupoids.

Notable names are Daniel Kan (1927-2013) (e.g. [DK]) and Daniel Quillen (1940-
2011) (e.g. [Qui] where he introduced model categories) that were crucial to the
initial developments. In more recent years higher category theory has become a
rather broad area, in part since there are so many conceptually similar but formally
different notions of co-categories (and associated objects). For the views presented
in this text Jacob Lurie (see [Lurie] for a rather full discussion on quasi-categories)
and André Joyal (who introduced the name quasi-category, see e.g. [Joyal]) have
had large impacts. Of course many others have been quite important too, and we
recommend that the reader take a look at the bibliography.

2. SIMPLICIAL SETS

Definition 1. A simplicial set is a functor F : A°® — Set (where A is the
category of finite ordinals with order-preserving maps). The category of simplicial
sets is denoted sSet.

Remark 2. The category of finite ordinals A has as objects the posets [n] =
{0,1,--- ,n}, with the usual order, for n € N and the morphisms are order preserv-
ing maps.

Example 3. The standard n-simplex A [n] is the simplicial set given by A [n] (z) =
Homa (z, [n]) for objects z € A and for maps f: z — y € A we let A[n](f) be
the map from Homa (y, [n]) to Homa (z, [n]) that takes ¢ to ¢ o f. These standard
n-simplices will be rather useful later.

Thus a simplicial set X is a collection of sets X, X1, Xa, ... indexed by N (here
X, is shorthand for X ([n])) and maps between them: there are n + 2 maps X,, —

Xp+1 and n maps X,, = X,,—1, so it looks something like

Xo X1 X, X3
- _—
The maps X,, = X, 1 are known as the degeneracy maps and denoted s} for
0 <k <n+1, while the maps X,, — X,,_; are the face maps and are denoted d}}
for 0 < k <n—1. As it is usually clear what X,, the maps operate on we often
suppress the superscript, and simply write si or dg.
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The properties of the face and degeneracy maps come from the properties of
maps in A°P and explicitly these are

didj = dj—ldi ifi < j
diS]' = Sj—ldi ifi < j
(2.1) dis; =1id ifi=jori=j5+1
diSJ' = dei—l if7 > 7+ 1
SiSj = Sj+15; ifi<j+1
We think of the objects of X,, as being “n-dimensional” (and will say that an
element z € X, is a n-simplex) and the face maps as picking out a n—1 dimensional
piece of the boundary of the object. We write, for an object = € X,, dr =
(dgx,dta, -+, di_ x) and call this the boundary of x. In this view the degeneracy
maps are seen as taking an object to a higher dimensional one where one side is
“constant”, e.g. taking a “point” z € X to a “line” [ € X; which has = as both of
its endpoints.
We think of a 1-simplex x as having a direction, in the way that x goes from dyx
to doz. We might draw this as

dl.Z' —2 s d().??
If x € X5, then Ox consists of three 1-simplices, and we might draw them all as

dodo:t

dldzm dodlx

d1(E

Note that the way we write the corners in this triangle is not unique; for example,
didox = didyx. To simplify discussions, we will call the O-simplex d;dsx the 0-
vertex of , and in the same way dydopx will be the 1-vertex and dodyx will be the 2-
vertex. In general, if z € X, then the k-vertex of z is dodp - - - do dpdp—1 -+ - dit1 ().

———

k times
Example 4. Take S to be any non-empty set. We construct the discrete simplicial
set X on S by letting X,, = S for all n € N, and defining
dt (s) = s

st(s) = s

The conditions in 2.1 hold trivially, so X is a simplicial set.

Example 5. Take S to be any non-empty set. We construct the codiscrete sim-
plicial set X on S. Let X,, = SxS8x---xS and let d} : X,, — X, take
N————

n+1times
(ag, a1, ,an) to (ag,a1, + ,a;—1, @41, "+ ,an_1), i.€. d; just drops the i:th co-
ordinate. In a similar manner, let s? : X,, — X, 411 take (ag,a1, -+ ,an—1) tO
(ag, a1,y yQi—1,Q4, Q3 Qig1, "+ ,Ap_1), 1.€. §; inserts an extra copy of the i:th co-

ordinate. The properties in 2.1 are somewhat tedious to check, but they do hold,
so X is a simplicial set.
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Example 6. An abstract simplicial complex is a subset S of P (V'), the power set
of some set V' with the property that if z € S and y C z, then y € S. We think of
V as a set of vertices and S as a set of simplices.

If we impose a total order on V we can turn S into a simplicial set S’ by taking
S! to be the set of order-preserving functions f : [n] — V such that imf € S. Let
D? be the map [n — 1] — [n] in A that corresponds to the map d; : [n] — [n —1]
in A° and similarly for S?. The the face map d; in S’ takes f to f o D’ and the
degeneracy map s; takes f to f o S°.

Thus f is a n-simplex of S’, then the i-vertex of f is f (¢) and the boundary Jf
is (fODO,fODl,"' 7fOD").

2.1. The nerve of a category. There is a functor N : Cat — sSet, which takes
a small category C' to the simplicial set NC' with NCy = obC, NC; = arrC. The
map di : NC7 — NCj is the source map, and dy is the target map; sg gives the
identity arrows. NC5 consists of triangles

A—f>B

N

C
and dp on the above triangle picks out g, di gives g o f and dy gives f. The
elements of NCy can be though of as the composites g o f, but retaining the in-
formation on how it was constructed. Elements of NC3 then consists of triple
composites h o go f and so on.
Another way to think of NC' is to view the elements of NCj, as (k + 1)-length

chains of objects and arrows in C, i.e. Ag ﬁ> Ay g Ay ]3 fk—_>1 Ap_q Jl A
where the arrows have appropriate source and targets so that the whole composition
exists. Here the action of d and s are simple — d; removes the i:th step and replaces
it with the arrow f;+1 o f;, while s; inserts another copy of A; with f; = ida, —
compare this with Example 5.

N is a right adjoint — the left adjoint is the fundamental category functor, which
we will discuss in section 3.1. Also, N is full and faithful, but we will not show
that.

3. QUASI-CATEGORIES

In an ordinary category we may take two arrows (with suitable source and target)
and from these get a (unique) third arrow, using composition. Clearly we’d like
something similar for higher dimensional categories (although we won’t require
uniqueness), but it’s not too easy to figure out what this should mean for higher
dimensional arrows. With our geometric view of a simplicial set we get the following
idea: if we have m-simplices xg,x1, 2, -+ ,z, that could be the boundary of a
(n+ 1)-simplex (if we add some n-simplex x,1), then there should indeed be
at least one such possible x,,41, i.e. it should be possible to fill the horn given
by x1,x2, - ,z, into an actual n + 1-simplex. The various possible x,i:s are
though of as the compositions of zg, 21,22, -+ ,z,. We will additionally restrict
this property to so called inner horns — in an ordinary category we cannot expect
to find a filling (dashed arrow) for the horn
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Consider for example the category with objects a, b and ¢, the two arrows f and
g, and the identity arrows. In this category there is no arrow from a to b that could
be the dotted arrow. Note that if the category is a groupoid, then such an arrow
must exist — there must be an arrow g~ ! o f, which would make the above diagram
commute. This all leads to the following definitions:

Definition 7. The n-dimensional k-horn A}, for 0 < k < n is the subset of
the standard n-simplex A™ generated by all the (n — 1)-dimensional faces of A™
containing the k-th vertex. A} is said to be an inner horn if 0 < k < n.

Remark 8. Note that there is a canonical inclusion i}} : A} — A™.

Definition 9. A simplicial set X is a quasi-category if every inner horn A} — X
can be extended along i} to a map A™ — X.

The full subcategory of sSet given by the quasi-categories is denoted QCat.

Definition 10. A Kan complez is a simplicial set X where every horn A} — X
can be extended along ¢'. (We simply drop the condition that the horn be an inner
horn.)

Thus the “horn-filling property” of a simplicial set X is the property that given
any arrow h : A} — X in sSet there is a dashed arrow making the following
diagram commute:

AZ#X

7
i 7
/
ATL

Some examples of quasi-categories are the simplicial set constructed in Example
5 and the nerve of a category:

Example 11. For any category C the nerve NC'is a quasi-category. A n-simplex of

NC is alist Ap Q Aq fi Ay fi e f51 A, f# A, together with the information

on what the various composites are. An inner k-horn is then such a list but lacking
some information on the composites — however, since C is a category composition
is uniquely determined by the arrows we are composing, so that information is
easily regained, allowing us to fill the horn.

Note that not all horn have fillers — consider for example

7
7/
7/
/
Ay A,

We cannot expect to find a dotted arrow in a general category (take again the
category with objects A, Ao and As, identities and the two solid arrows).

Another example is topological spaces - we will see in Section 5 how we can
construct a quasi-category (in fact a Kan-complex) from a space.
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3.1. The fundamental category for quasi-categories. In this section we will
define the fundamental category of a quasi-category X, denoted 7 X. To define this
we will use the relation ~ on Xj.

Definition 12. Given a simplicial set X the relation ~ on X is defined as f ~ g if
b=dyf =dog, a=dif =dyg (i.e. f and g are parallel) and there is some o € X,
such that do = (sgb, f, g) (where do is (dyo, d10,d20)).

Theorem 13. ~ is an equivalence relation.

Proof. Reflexivity is immediate — take o = s; f. Then using properties of arrows
in A°P (equations 2.1) we see that dos1f = sodof = sob, dis1f = idf = f and
das1f =1idf = f, so indeed do = (spb, f, f).

Symmetry: in the diagram

b
Tsob
g b Sgb
/ sob
a b
f

all three small triangles are the boundaries of something in X5 — the upper left
is Jo, the upper right is 0sgsgb and the lower is ds1 f. So by horn-filling the large
outer triangle is also the boundary of some simplex in X5 and provides proof that
g~ [

Transitivity: if f ~ g and g ~ h we get a diagram similar to the one above

b
SUbl
f b sob
//////1;///;7 sob
a b

h
where the upper right triangle is the boundary of sospb € X, and again by
horn filling the outer triangle must be the boundary of something in Xs, so that

One might as well “switch the order” in the definition of ~; one gets three new
relations: f ~q g if thereis a o € Xy with do = (sob, f,9), f ~2 gif 0o = (g, f, soa)
and f ~3 g if 9o = (f, g, spa). The proof above needs only small changes to show
that these three are also equivalence relations.

Theorem 14. ~, ~y, ~9 and ~3 are in fact the same relation.

Proof. That ~=~1 and ~y=~3 follows from symmetry. We show that ~=~3. The
necessary diagram is
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b
Tf
f sob
a
soa \\
a b

Note that sof has the small upper left triangle as boundary, and that s; f has
the small upper right triangle as boundary, so we may use horn filling if either the
small bottom triangle or the large outer triangle is the boundary of some 2-simplex
and then conclude that the other one is also the boundary of some 2-simplex. But
this is precisely the statement that f ~ g <+ f ~3 g, so indeed ~=r~s3. |

Let [z] and [y] be two composable equivalence classes of ~, i.e. dox = dyy, and
let o be some filler of the horn

We will need all z that arises from such fillers to be in the same equivalence
class, and also show that the choice of representatives of [z] and [y] doesn’t matter.

Theorem 15. If x ~ 2’ and y ~ 3/, then z ~ 2, where z and z’ come from fillers
as in the diagrams:

In this diagram, all three small internal triangles are the boundaries of something
in Xy the upper right and bottom one because y ~ ¢’ and x ~ x’ respectively,
and the top left one because z’ came from a horn-filling simplex. Thus we may
use horn filling to conclude that the large outer triangle also is the boundary of
something in X5, which gives our p.

Using this we show that z ~ 2’
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a &

z
Here the upper left triangle is the boundary of p, the upper right is the boundary
of something as y ~ ¢’ and the bottom one is a boundary as z came from such a
filler. Thus the large outer triangle is also the boundary of some 2-simplex, and so
2z~ 2. O

Definition 16. The fundamental category 7 X of a quasi-category X is the cat-
egory with X, as objects, and X (z,y)/ ~ as arrows from z to y. The above
discussion shows that composition exists and is well-defined. The identity arrow
id, of an element z € X is the class [sq (z)]-

We can make 7y into a functor 7, : QCat — Cat by specifying 71 (f) for S ENGA
a morphism in QCat. On objects = in 7.5 let 71 f () = f(z), and on arrows

! yin 7S let 71 f (u) = [f (u)] — this is well defined, as if u ~ v in S, then
there is o in S with 9o = (idg,u,v,u), and as f is a map of quasi-categories,
9 (fo) = (fidagu, fv, fu) so that fu ~ fo.

The domain of 7y can be extended to the whole of sSet. We note that 7 is
a left adjoint, with its right adjoint being N, the nerve functor - we show this in
Theorem 18.

Remark 17. For a quasi-category @, the fundamental category 71 is the same
as the so-called homotopy category, hoQ). The homotopy category arises from the
general notion of model categories, which we will discuss in section 6.

3.2. The fundamental category functor in full. A category looks a lot like a
simplicial set with only 0 and 1 dimensional objects — the largest difference is the
lack of composition in a simplicial set. If we have a quasi-category we may use the
2-simplices to define composition (as we did above). In a general simplicial set we
might not have any reasonable choice for composition — there might not be any
2-simplex that fills a given horn. So in order to make a simplicial set into a category
we will need to add some new morphisms.

Given a simplicial set X we construct a directed graph X* (which essentially will
be a category without composition, which we will define later). Let the vertices of
X* be the 0-simplices of X, and let the edges be lists of composable 1-simplices
in X. If for example f,g,h € Xy with dyf = d1g and dyg = d1h we would have
edges (f), (9) and (h), and also (f, g), (g, h) and (f, g, h). In this way we guarantee
that will have composites later on — we might take g o f to be (f,g). The source
of a list (f1, fo, -+, fn) is taken to be d; f1 and the target to be dyf,. We define
composition of two composable edges f = (f1, f2, -+, fn) and g = (91,92, " , gm)
tobegof = (f1,", fu,91, "+, gm); this is associative. We now create the identity
morphisms, by identifying f o sox, soy o f and f (where f : x — y). Finally, we
identify f o g with h if there is some o € X5 with doo = f, dio = h and dyo = g.

3.3. About 7, and N.



GROTHENDIECK’S HOMOTOPY HYPOTHESIS 10

Theorem 18. The functor 7, : QCat — Cat is left adjoint to N : Cat — QCat.

Proof. We will define two natural transformations € : 7y N — idcat and 7 : idgget —
N7; and show that these are the counit and unit of the adjunction, respectively.
To do this we first discuss the functors 71 N and N7.

Firstly, 71 IV is a functor from Cat to Cat. For any small category C', the objects
of 1N (C) are the same as the objects of C'. The arrows of 71 IV (C') are equivalence
classes of arrows in N (C) — in what cases are two arrows f,g : z — y of N (C)
equivalent? This happens only when there is some 2-simplex o of N (C), with
do (0) = idy, di(0) = g and dy (o) = f. But recall the definition of the nerve
— a 2-simplex p of N (C) is a composition a = b > ¢, with dy (p) = b > ¢,
dy (p) = a 225 cand dy (p) = a = b. We draw these two diagrams side-by-side:

y b
o I3
T 7 y a s c

Here we see that if f ~ g, then we must have f = id o ¢ = g, so not only are
the objects of 71 N (C') the same as the objects of C, but additionally the arrows of
71N (C) look the same as those of C, and from this we also see that composition
is the same. Thus C and 71N (C) are isomorphic, and we may take £ to be this
isomorphism. Explicitly, arrows in 73 N (C) are equivalence classes of length one

sequences, e.g. Ay ﬂ> Ay, and € takes this to f, which is an arrow in C.

Now we turn to the functor N7; : QCat — QCat. If X is some quasi-category,
then the objects of 71 (X) are Xy, and so (N7 (X)), = ob (71 (X)) = X,. Higher
dimensional simplices are sequences of elements of X chained together by the maps
of 71 (X), i.e. equivalence classes of 1-simplices in X, e.g.

Ay L4 a4, 2L g 1L g,

As for maps, let s: X — Y. Then N7 (s) takes

Ag L4 4, 1L g 1L g,

to
SA() [Si)] $A1 [Sﬁ)] SAQ [Sﬁ)] SA3
The naturality square for 7, for any simplicial sets X and Y and any map s :
X —Yis

X—° -V

NTl (X)mNTl (Y)

It’s reasonable to guess that ng might take a n-simplex o of S to the chain
o (0) ) o (1) Wl ] o (n), where o (k) is the k:th corner of o and f is the
1-simplex from o (k — 1) to o (k) in 0. This clearly makes the naturality square
commute, so 7 is a natural transformation.

Now we need only show that for any small category C' and simplicial set S we
have id;, s = €75 071 (ng) and idye = N (e¢) o nye. For the first of these, note
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that 7 (ns) goes from 7.5 to 71 N71.5, and takes objects to themselves and arrows

T [i; y to themselves, too. Then ¢ also takes both objects and arrows to themselves,

and so the composition is indeed the identity morphism.
For the second equation, ny¢ takes an n-simplex Ag L Ay ﬁ) As £> e i>

A, to Ag ﬂ Ay M Ay @ M A,, and as NC is a nerve, the equivalence
classes are all singletons, which are taken to their only element by e, so that the
composition is again the identity. This shows the theorem. O

From this discussion it’s not hard to draw the conclusion that a simplicial set X
is the nerve of some category if and only if it has unique horn-fillers. We also note
that as 71 is a left adjoint it preserves colimits. Additionally, it can be shown that
7y preserves finite products, although we wont do that.

Theorem 19. The functor 11 : sSet — Cat is left adjoint to N : Cat — sSet.

Proof. We again use the unit-counit notion of adjunction.

Note that if 71 N (C) has the same objects as C' € Cat. The arrows of 4 N (C) are
lists of 1-simplces of N (C'), which are in turn arrows of C. We thus let € take objects
to themselves and take an arrow (fo, f1, f2,- - , fn) to the arrow f,0---0 fao fiofo
(note that this is well-defined since it respects the composition in 74N (C')). This
makes ¢ into a natural transformation.

For N7 (S) the O-simplices are the same as in S. The 1-simplices are list of
length one of arrows in 71.5, which in turn are lists of compatible 1-simplices of S.
So we let n take O-simplices to themselves, a 1-simplex f to (f), a 2-simplex o to
(deo,doo) etc. This is well-defined since composition in 71.5 was defined using the
2-simplices of S. Then 7 is also a natural transformation.

We need to show that for any S € sSet we have id,, s = £,5 o 71 (n5). But ng
embeds S into N7y (S), and so 71 (ng) embeds 715 into 7y N7y (S), and then e, 5
composes the lists of 71 N (71.5) so that they become actual arrows in 7.5 — all this
preserves the actual arrows, so that the equation holds.

The second equation we need to confirm is idyc = N (e¢) o nne. Here nyc
embeds NC into N7y (NC). As e¢ composes lists into single arrows, N (e¢) com-
poses together the list corresponding to a side in a simplex. E.g. N (e¢)takes
(fg,fl,-" afn) ZA0—>A1 in TlN(C) to an"-OflofoZAo —>A1 in NC. So in
all the right hand side of the equation changes nothing. Thus ¢ and 7 shows that
71 and N are adjoint. |

3.4. Other functors. Every Kan complex is of course a quasi-category, and so
there is a natural inclusion Kan < QCat, and as it turns out this corresponds to
the inclusion of groupoids into categories, Gpd — Cat. There is thus good reason
to consider Kan complexes to be “quasi-groupoids”.

Theorem 20. For any category C, NC' is a Kan-complex if and only if C is a
groupoid.

Proof. Recall that a groupoid is a category where every morphism is invertible.

Let NC be a Kan-complex, and let f be any morphism z EN y in C' . Consider
the following two (outer) 2-horns
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y N
o/
KN
Y- rr T
Here we know that there are fillers f; and fo that makes the diagram commute
— we can also see that f; = id, o fi = fo 0idy = f5, and that f> o f = id, and
fo fi =idy, so that f; = f5 is an inverse to f.
Let C be a groupoid. NC' is a quasi-category (see Example 11). Following the
process in that example we see that any outer n-horn for n > 3 has a filler. It only
remains to show for outer 2-horns.

Yy y\
/4 9 9 N
s N
/s A\

T———>2 T2z
In the case of A2 (the right diagram) take f o g~! to be the dotted arrow. For
A2 (the left diagram) take instead g~! o f as the dotted arrow. d

The inclusion i : Kan — QCat is a left adjoint, with the right adjoint being
mK : QCat — Kan which takes a quasi-category to the largest Kan complex
contained in it.

Definition 21. For a quasi-category S, let mK (S) be the simplicial set with Sy as
objects, and where 1-simplices are those f € S; such that there are two 2-simplices
o and 7 in Sy with boundaries as below:

dof dOf
N 7N
df——————df hf———"————df

iddlf iddlf

(We think of f! and f7 as left and right inverses to f, respectively. We also note
that these need not be unique.)

For n > 1, construct inductively mk (5), as the elements o of S,, where every
entry in do is in mK (S),,_;.

If f: X =Y in QCat, we let mK (f) = f|mk(x) — this turns mK into a functor
QCat — Kan.

Theorem 22. For any quasi-category S, the simplicial set mK (S) is a Kan-
complez.

Proof. Step one: show that mK (S) is a quasi-category. Assume that f and g are
1-simplices in mK (S), and that there is a 2-simplex o in S with do = (g, h, f), for
some h € S;. We need to show that h has inverses h* and A" we do this for hl
only, the proof for A" is similar.

Take h' to be d; of some 2-simplex that is a filler of the horn
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(Fix some choice of ¢* and f'.) Now we show that there is a 2-simplex p in S
with 0p = (h’, i g). We draw the following diagram:

Yy
ng
idy fl
4
/ X\
Y 7 €z

The upper triangles and the large outer one are all the borders of things in S5.
The upper left triangle comes from the choice of ¢!, the right upper triangle from
the choice of 1/, and the large outer as f' ~ f!. Thus by horn-filling in S there is
such a p.

Now we show that A’ is in fact a left inverse of h. The diagram is

z
gT
h h'
Yy
X
id,

Here every small triangle is the border of some 2-simplex of S — the bottom one
from our choice of f!, the top left one from the definition of h and the top right
one is the border of p.

Horn-filling for higher dimensions follows from the construction of the higher
dimensions of mK (S). In particular, o is in mK (S),, so that the horn given by f
and g does have a filler.

Step two: show that in this quasi-category every outer horn has a filler. Say we
have an outer horn (the proof for the other outer horn is similar)

We claim that there is some p € Sy with dp = (h, g, f) so that p is the required
filler (it will be in mK (), as its boundary is in mK (S),). The diagram to consider
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xr z

Here the two upper small triangles and the large outer triangle are borders of
2-simplices of mK (S). The upper left from the choice of f!, the upper right from
choice of h, and the outer one as g ~ g. Thus by horn-filling there is something
that fills the lower triangle — take this as our p. Again, in higher dimensions the
results follow from the construction from S. ]

Theorem 23. The functor mK : QCat — Kan is right adjoint to the inclusion
functor i : Kan — QCat.

Proof. We need natural transformations ¢ : ¢ o mK — idqcat (the counit) and
7 : idkan — mK o ¢ (the unit). Note that, since every morphism in a Kan complex
has both left and right inverses (as in Definition 21), mK (K) = K if K is a Kan
complex. Thus mK o i = idkan, and we may take nx to be the identity on K. We
need € to, given f: X — Y in QCat, satisfy the naturality square

iomK (X)i(ﬂi)i omK (V)

exl lw

X Y

Note that every simplex of i o mK (X) is a simplex of X, so we may take ex to be
the inclusion mK (X) — X.

We now need to verify the unit-counit equations id;yy = &;v) o i(ny) and
idmk(x) = mK (ex) o Nmk(x) for X € QCat and Y € Kan. For the first, note
that as Y is a Kan complex, both €;(y) and i (ny) are the identity on Y, and so
the composition is the identity on Y and thus on ¢ (Y'), and for the second equation
the situation is similar — both arrows on the right hand side are the identity on
mK (X), and so the equation holds. This shows that mK  i. O

The adjunction mK F ¢ corresponds to the adjunction between the inclusion
Gpd — Cat and mG, where mG takes a category to the maximal groupoid con-
tained in it (i.e. mG throws away all morphisms that are not isomorphisms). These
functors are summarized in the following picture:

T1

_—
QCat 1 Cat
N

i [l mK mG ||
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The inclusions Gpd — Cat and Kan — QCat also have left adjoints, where we
instead of removing the offending morphisms/simplices we add new ones. There is
a functor fG : Cat — Gpd that adds an inverse for every morphism that lacks one,
and thus turns a category into a groupoid, and a similar functor fK : QCat — Kan
that adds fillers to all outer horns that lack them.

4. GROTHENDIECK’S HOMOTOPY HYPOTHESIS

Note: This section contains a high-level, informal discussion about what higher
category theory should, or could, be.

The fundamental group of a topological space X at a point z € X, m (X, z),
should be familiar. By considering not only loops, but any path between any two
points of X, we may similarly construct the fundamental groupoid of X.

Definition 24. Let S be a topological space. The fundamental groupoid 11; (S) of
S has as objects the points of S, and as arrows homotopy classes of paths in S, i.e.
a path p gives an arrow [p] from p (0) to p(1).

This is clearly a groupoid, as every path can be reversed.

However, with our newfound knowledge of higher dimensional categories there is
no need to consider classes of paths — we could take points of S as objects, paths
as arrows, homotopies as arrows between arrows, etc.

4.1. Different kinds of homotopies. What precisely is an “arrow between ar-
rows”? The perhaps most intuitive way to draw them is as

2 b Sy
~_ 7

This is how we think about homotopies — maps between two parallel maps. What
we’ve been working with in quasi-categories are 2-simplices, which we might draw

as
/ Y \
T L z
This kind of 2-arrow is suitable when we’d like to talk about e.g. composition,
as we have done. Taking y = z and the arrow between them to be id, we recover
the kind of 2-arrow we had above — this is what we did when we constructed the

7y functor using the relation ~.
We could of course go further, to get e.g.

b
a H c
d
Note that homotopies are symmetric say that we have a quasi-category X

and a 2-simplex ¢ in X; then o provides a homotopy from dyo o deo to dio, but
also in the other direction, from dio to dgo o deo
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4.2. Invertible homotopies. Coming from the direction of topology it seems rea-
sonable that homotopies should go both ways — if a path p can be transformed into
q, we expect the reverse to hold as well. But recall that in our topological space
even the paths can be reversed, and that is clearly not a reasonable assumption
for categories in general — perhaps we ought not take every property suggested by
topological spaces.

Quasi-categories gives a structure where 1-simplices are not necessarily invertible,
but simplices of higher order are. If we instead consider how we might add a second
level of morphisms to an ordinary category by enriching it over Cat, this object
would not necessarily have invertible 2-arrows.

There is a common terminology used to discuss these various ways of model-
ing higher dimensional categories. We speak of (n,k)-categories, which are cat-
egories with morphisms up to dimension n, where every morphism of dimension
greater than k is invertible. Thus ordinary categories are (1, 1)-categories, quasi-
categories are (00, 1)-categories, groupoids are (1, 0)-categories and quasi-groupoids
are (00, 0)-categories.

We’ve seen one example each of (0o, 1)- and (00, 0)-categories — both as simpli-
cial sets with certain conditions, but there are other objects that might fill these
roles. These different models of high level categories of course have different prop-
erties.

4.3. The homotopy hypothesis. Thus there are many different alternative choices
for what a oco-category should be, but from the first discussion we’d expect the oco-

groupoids to correspond to topological spaces. With this background we state

Grothendieck’s homotopy hypothesis as

There should be an equivalence between Top and coGpd.

On one hand the equivalence should be given by the fundamental groupoid,
Il : Top — coGpd
and on the other by so called geometric realization,
|—| : coGpd — Top

As it turns out, in the case we have studied where coGpd are Kan complexes,
this is a provable theorem.

4.4. Topological (0o, 1)-categories. If one starts out with the aim of having the
homotopy hypothesis as a theorem, one might be inclined to define (0o, 1)-categories
using some topological notion. This is fully possible, and gives topological cate-
gories. Stated briefly, a topological category is a category enriched over the category
CGHaus of compactly generated Hausdorff spaces. (We need to use CGHaus in-
stead of Top as the later isn’t Cartesian closed.) This in essence means that instead
of Hom-sets we have Hom-spaces, where points correspond to arrows, and paths to
homotopies etc. In a specific sense these topological categories and quasi-categories
are equivalent models of (oo, 1)-categories.

5. GEOMETRIC REALIZATION AND THE SINGULAR SET

In Section 4 we discussed informally how we might expect a relation between
topological spaces and oo-categories. In this chapter we explore this connection
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further and more formally (for the case where we take quasi-categories to be our
(00, 1)-categories).
Well need the following notation:

Definition 25. Given a map ¢ : [n] — [m] in A, define the map ¢* : |A"| — |A™|
by letting ¢ (to,t1,- -+ ,tn) have 3 .1 ;) t; as it’s i:th coordinate.

Definition 26. Given a map ¢ : [n] — [m] in A and a simplicial set X, let ¢.
denote the map X (¢) in X.

5.1. The singular set. We will use |A™| to denote the standard n-simplex, a
topological space given by |A"| = {(to,t1, - ,tn): D i ot; = 1,¢; >0} C R™H?
with the subspace topology.

Definition 27. Let T be a topological space. Then the singular set S (T) of T
(sometimes denoted SingT’) is a simplicial set defined by

S (T)n = Homrop, (|A"],T)

For a map ¢ : [n] — [m] in A, let S (T') (¢) be the map from Homrop, (|A™],T) to
Hommop (JA™|,T') that takes f to f o ¢*.

Remark 28. S is in fact a functor — if f : X — Y is an arrow in Top, then Sf is
a map from SX to SY by composition, taking maps |A"] — X to |A"| - X Ly,

5.2. Geometric realization. Geometric realization of a simplicial set S assigns
a n-simplex to each element of S,, and then glues these together in a nice way,
somewhat similarly to how a CW-complex is constructed.

We use ¢* and ¢, to associate maps between the standard topological simplices
and the face and degeneracy maps in a simplicial set. If for example ¢ : [1] — [3] is
the map ¢ (i) = ¢ + 1, then ¢* picks out the edge between the 1 and 2 vertices in
}A3|, while ¢, = dg o ds (recall that simplicial sets are contravariant functors).

Definition 29. Given a simplicial set X, the geometric realization of X, |X|, is

defined as
(i) -
n=0

with the quotient topology. Here ~ is the relation defined by (z, ¢* (t)) ~ (¢« (), t)
for every map ¢ € arrA.
(The product X,, x |A™| is given in Top, by giving X,, the discrete topology.)
We note that geometric realization is left adjoint to the singular set functor.
This will follow from Theorem 60.

6. MODEL CATEGORIES

Definition 30. A model category is a category C together with three classes of
morphisms called fibrations, cofibrations and weak equivalences that satisfies the
following axioms:

(0) Any composition of two fibrations, cofibrations or weak equivalences are
again respectively a fibration, cofibration or weak equivalence. Equiva-
lently, the three classes are closed under composition.

(1) The category C is complete and cocomplete.
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(2) If f and g are composable morphisms, and any two of f, ¢ and f o g are
weak equivalences, then so is the third. (This is sometimes called the “two
out of three-rule”.)

(3) If we have a diagram

X—tsy_J.ox

T

A m B n

where j oi = idx and n om = id4, then if g is a fibration, cofibration or
weak equivalence, then f is too.

(4) If, in the diagram below, f is a cofibration and g is a fibration and at least
one of them is a weak equivalence, then there is a dotted arrow making the
diagram commute.

A——=B

7
|,
/
C——=D

(5) Any map z: X — Y in C can be factored as = foc, where f is a fibration
and c is a cofibration, in two ways — one where f is a weak equivalence

and one where c is.
DN

A

A model category is though of as a place to “do homotopy theory”. By formally
inverting all weak equivalences in C, so that they become isomorphisms, we get
a homotopy category, hoC — for example, the category of homotopy classes of
topological spaces arises in this way. This can be seen as a way of “reducing” a
category, by loosening the conditions necessary for two objects to be isomorphic
— in Top we might be satisfied by homotopy equivalences rather than actual
homeomorphisms.

(Given any category and some arrows we could of course formally invert them,
but this might force us to create very many new arrows — so many that the collec-
tion of arrows between two objects might not be a set anymore. Model categories
does not have this size problem if we invert the weak equivalences.)

There are trivial model structures on any co- & complete category — take the
weak equivalences to be the isomorphisms, and let every morphism be both a fibra-
tion and a cofibration. Top admits a non-trivial model structure that allows the
ordinary homotopy theory of CW-complexes (where the fibrant arrows are fibrant
maps, hence the name), but this is not the only choice. Additionally, sSet admits
a non-trivial model structure, which turns out to be closely related to the one on
Top.

Remark 31. Model categories and model structure were introduced by Daniel
Quillen (1940-2011), and much of what is discussed here is sometimes referred

to as “Quillen =, e.g. “Quillen equivalence of model categories”, “Quillen model
structure” etc.
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There is much more to say about model categories than what we mention here —
see for example [Hov|, where another approach to the homotopy category is used.

6.1. Basic facts about model categories.

Lemma 32. If C is a model category and id, is the identity arrow for some x €
obC, then id, is a weak equivalence.

Proof. By the fifth axiom of model categories, we can factor id, as id, = foec,
where f : y — z is a fibration and weak equivalence, and ¢ :  — y is a fibration.
The the diagram

c f
r—>Yy—>2
lidw lf lidm
r—r—2

idx idg

commutes, and also fulfills the requirements of the third axiom, so that id, is a
weak equivalence. |

Definition 33. Some common terminology for a model category C":

e An object x € obC' is fibrant if the unique arrow from z to the terminal
object is a fibration. (A terminal object exists as C' is complete.)

e Similarly, an object x € obC'is cofibrant if the unique arrow from the initial
object to x is a cofibration. (A initial object exists as C' is cocomplete.)

e An arrow that is both a weak equivalence and a (co)fibration is known as
a trivial (co)fibration. (These are occasionally called acyclic rather than
trivial (co)fibrations.)

A common way to classify the (trivial) (co)fibrations of a model category is by
lifting properties relative to the other classes.

Definition 34. If for the two maps f : x — y and p : @ — b, any commutative
diagram of the form
r—>a
7
7/
1T
/
y—=>b

has a dotted arrow making it commute, then f has the left lifting property (LLP)
with respect to p, and p has the right lifting property (RLP) with respect to f.

Theorem 35. In a model category C,

(1) The fibrations are the maps of C that have the RLP with respect to the
trivial cofibrations

(2) The trivial fibrations are the maps of C that have the RLP with respect to
the cofibrations

(8) The cofibrations are the maps of C' that have the LLP with respect to the
trivial fibrations

(4) The trivial cofibrations are the maps of C that have the LLP with respect
to the fibrations
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Proof. Note that 3 and 4 follows from 1 and 2 by duality. Note that the fourth axiom
of model categories tells us that every fibration has the RLP with respect to trivial
cofibrations, and that trivial fibrations has the RLP with respect to cofibrations.

We need to show that if f : * — y has the RLP with respect to every trivial
cofibration, then f is a fibration. Use the fifth axiom to factor f as f = pogq, where
p: 2z — yis a fibration and ¢ : x — z is a trivial cofibration. Then there is a f’
making the following diagram commute:

NF

and so the diagram

IHZL>I

commutes, and so by the third model category axiom f must be a fibration. The
proof of 2 is the same, but take p to be trivial instead of q. (|

We'll need this lemma later, and it provides another good example of working
in model categories:

Lemma 36. If C is a model category and f : x — y is a trivial fibration in C,
then any pullback along f is also a trivial fibration.

Proof. Take s to be any map from z’ to y in C. Construct the pullback

p
|
’

z S

s
X

if

We need to show that f’ is a trivial fibration. By Theorem 35, it’s enough to show
that f’ has the RLP with respect to any cofibration ¢ : @ — b in C. Since f is a
trivial fibration it has the RLP with respect to c, i.e. there is a map a making

a T
cl o lf
b Yy

commute, whenever the square commutes. Thus for any commutative rectangle

|

RN



GROTHENDIECK’S HOMOTOPY HYPOTHESIS 21

we can use the UMP of the pullback with the maps b — z’ and « : b — z to conclude
that there is a unique map b — p making the diagram commute — this is a right
lift from c to f/, and as ¢ was a arbitrary cofibration, f’ is a trivial fibration. [

Remark 37. Just as in Theorem 35 there are really four versions of this lemma
— in addition to the above any pullback along a fibration is a fibration, and any
pushout along a (trivial) cofibration is a (trivial) cofibration. The proof for the first
statement is very similar, and the two other statements follow by duality.

6.2. Homotopy on model categories. We will define homotopy between arrows,
and then use this to define the homotopy equivalence classes. In the next subsection
this will be used to define the homotopy category of a model category.

Definition 38. If C is a model category and x € obC, then
(1) A path object p is a factorization

Am:xip(pl—ﬂz)xxx

. id,id . .
of the diagonal A, : z (1—l>) x X x, where f is a weak equivalence.

(2) A cylinder object c is a factorization

Vz:wugccicfch

. id+id . .
of the codiagonal V, : z U x fiant x, where f is a weak equivalence.

Note that by the last axiom of model categories every object has at least one path
object and one cylinder object.

Definition 39. If C is a model category, x,y € obC and f,g: x — y, then

(1) A right homotopy, n : f =R g, is an arrow 7 : © — p to some path object p
of y, such that the following diagram commutes:

x

VN
Y=pr PV

(2) A left homotopy, 1 : f =1 g, is an arrow 7 : ¢ — y from some cylinder
object ¢ of x, such that the following diagram commutes:

Cc1 Cc2
r—=>C<——2X

N

We will from now on only discuss the right versions of the statements — the left
sided versions follow by duality.

Lemma 40. If y is fibrant and y = p (pl—”?) Yy X y is a path object for y, where the

map (p1,p2) is a fibration, then the maps p1 and p2 are trivial fibrations.

Proof. Note that id, = p1 o a, and « is a weak equivalence by definition of path
object, and by Lemma 32 so is id,, and so by the second axiom p; is also a weak
equivalence, and similarly ps is too. Recall that the product y x y is the pullback
of y = * + y (which are fibrations, as y is fibrant), and so by Remark 37 the



GROTHENDIECK’S HOMOTOPY HYPOTHESIS 22

projections 71,7 : y X y — y are fibrations. But p; = 71 o (p1,p2) and so p; is a
fibration, and similarly for ps. a

The following is a very useful lemma that tells us that if there is a homotopy
then there is a “nice” homotopy too.

Lemma 41. Let f,g: x — y. If there is a right homotopy n : f =r g, then there

is a right homotopy 0 : f =gr g with path object y — q (%) y X y such that the

map (q1,q2) is a fibration.

Proof. Let the path object associated to n be y = p (pl—’>pz) y X y. Use the fifth

. c ; d . .
axiom to factor (pi,p2) as p — ¢ — y X y, where ¢ is a weak equivalence and
cofibration, and d is a fibration. As ¢ and 7 both are weak equivalences, so is com,

thus y =5 ¢’ A y X y is a path object with the required properties. a

Corollary 42. If f and g are parallel arrows in a model category and there is a

right homotopy n : f =R g, then there is a right homotopy 6 : f =gr g with path

object y — q (ql—’q>2) y X y where the maps q1 and g2 are trivial fibrations.

If there is any right homotopy from f to g, then we say that f and g are
homotopic. Being homotopic defines a relation R on Home (x,y) for any objects z
and y in C, by fRg if there exists a right homotopy f =g g.

Theorem 43. If y is fibrant, then R is an equivalence relation on Home (z,y).

Proof. Let f,g,h: 2z — y in some model category C.

For symmetry, if n is a right homotopy from f to g, where the associated path

object is y — p (L) y X y, then taking instead the path object to be y — p (p2p0)

y X y makes 7 into a right homotopy from g to f.

For reflexivity, we need to show that there is n : f =g f. Take the path
id idy,id

ylﬁy(liﬁ')yxy, and take n = f.
For transitivity, let n : f =g g and 6 : ¢ =r h be two homotopies and let the

associated path objects be y = p (1)1—’>M) y X y respectively y g q (ql—’>qz) y X y. Using

Corollary 42 we can assume that py, p2, ¢1 and g are trivial fibrations. Let

q; q1

NS
L=

_—
b2

be a pullback square. Then as ¢; and po are trivial fibrations Lemma 36 tells us that
both ¢ and p), are trivial fibrations. Since r is a pullback, and p;oa =id, = ¢1 08
(as a and S come from the path objects) there is a unique map ~ : y — 7 such that
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the diagram

P—=Y

commutes. Now, « is a weak equivalence as p is a path object and ¢ is also a weak
equivalence, so by the second axiom + is also a weak equivalence (as one part of the
diagram is ¢; o = ). Now, gjoy = aand phoy = f, 50 progi 0 = id, = gzopho7,
and so
»Y (prody,q20p%)
Yy T YyxXy

is a path object for y. Now, the homotopy diagrams gives that ¢; 00 = g = ps o7,
so again use the UMP of pullbacks to conclude that there is a unique map ¢ : x — r

such that the diagram
z 0
NN
P

I

n

Q
=0
"<
RLRL—Q
=2

E——
P2

commutes. Note that ¢ o = 7, so progi o = pron = f, and similarly
g2 0 ph o = h, so ¢ is a homotopy from f to h, with the above path object. Thus
R is transitive. a

Lemma 44. If = is cofibrant and y s fibrant, then the relations R and L on
Hom (z,y) coincide.

Proof. We show that if y is fibrant and f =g g (for f,g : © — y) then f =1 g.
Then duality gives us the full lemma.

By Corollary 42 there is a homotopy 7 : f =g ¢ with path object y 2 <p1—’>p?)

y X y where p; and po are trivial fibrations. Use the fifth axiom to factor the

codiagonal V:z Uz —» zx asz Uz ate . g x with ¢; + ¢ a cofibration and S a

trivial fibration — this makes ¢ into a cylinder object for z. The diagram

aof+n

T Xr—>

ci+ca P1

o<—-10»C
L3

—_—
foB
commutes as fo o (c;+cy) = fo(id+id) = f+ f and p; o (o f+n) =
(proao f+pion)=f+f. The fourth axiom applies and givesusamap l:c — p
making the diagram commute. Let § = pyol. Then focy = psolocy = pyoao f =
ido f = f while focy =pyolocyg =pgon =g, sofisahomotopy f =1, g. |
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When Lemma 44 holds we call the relation R simply “homotopy”, and we write
f ~gfor fRg.
6.3. The homotopy category of a model category. Given a object x of a
model category C, we can use the fifth axiom to factor the map () — z from the
initial object to z as § — z* 2% % where P, is a fibration and weak equivalence.
The map x — 1 can be factored as x = . — 1 where ¢z 1s a cofibration and weak

equivalence.
Note that z* is cofibrant and x, is fibrant. If z is itself cofibrant we agree to pick
z* = x and if z is fibrant we pick x, = . We think of z* and z, as respectively

cofibrant and fibrant “replacements” for z.

* *

Lemma 45. If f : © — y in a model category C, then there is a map f* : x
such that the following diagram commutes:
_ >

T* y*
Pml lpy
T 7 Yy

Further, f* is a weak equivalence if and only if f is.

-y

I

I—

Proof. The diagram

e
7

y*
e
Py
//f l
Y

-

o

fopa

8

commutes since @ is the initial object of C'. Since p, was a weak equivalence and
fibration and z* is cofibrant we can use the fourth axiom to get a map f* : x* — y*
making the diagram commute. Clearly p, o f* = f o p,.

From the second axiom, the fact that p, and p, are weak equivalences and
fops =pyo f* we see that the weak equivalence of either of f and f* implies that
the other one also is a weak equivalence. O

There is of course a dual to the above lemma, which gives us a map f,.

Definition 46. If C is a model category, let C./R denote the category which has
as object the cofibrant objects of C' and where the arrows are the right homotopy
classes of arrows in C. Dually, let Cy/L consist of the fibrant objects of C' and left
homotopy classes of arrows of C.

Definition 47. There is a functor P : C — C../R that takes an object z to z* and
amap f:x — yto [f*], a right homotopy class of arrows from z* to y*. Dually,
there is a functor @ : C' — Cy/L.

For this to be a functor we need [f o g] = [f’ o ¢’] for any representatives f’ and
g’ of [f] and [g], respectively. Also note that if f = id, in Lemma 45 we might
take f* = id,«, so we need every choice of f* to be homotopic to id,« (so that the
functor preserves identities). Both of these statements follow from

Lemma 48. If z is fibrant and ¢ : p — q is a trivial cofibration then precomposition
with ¢ gives a bijection from ¢’ : Hom (¢, ) /R — Hom (p,x) /R.
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Proof. First note that if f,g: ¢ >z andn: f =g gthennoc: foc=gr goc
so that precomposition with ¢ actually preserves homotopy classes and thus ¢’ is a
function.

Take any class [f] in Hom (p, z) /R. The diagram

f
E—

7

c /
/0

/
R

R
mR<8

commutes since 1 is the terminal object. By assumption the fourth axiom applies
and gives a map [ : ¢ — x with the property that [ oc = f, so ¢’ is surjective.

Now take f,g : ¢ — = such that ¢’ ([f]) = ¢ ([¢g]). This means that there is a
right homotopy 7 : f oc =g g o ¢, and by Lemma 41 there is a right homotopy 6

from f oc to goc with path object x — ¢ (tl—’ti) x x x where the map (t1,t2) is a
fibration. The diagram

0y
P 7
Ve
Cl 4 \L(thtz)
Ve
Ve
—=1x Xz
(f:9)
commutes, and the fourth axiom applies to give us a map [ : ¢ — t. Note that [ is
a right homotopy from f to g, so [f] = [g], and thus ¢’ is injective. O

With this lemma we can conclude that —* preserves left homotopy (by the dual
of Lemma 48, —op, and —op, in the proof of Lemma 45 preserves homotopy). The
proof of the dual of Lemma 44 then shows that, since x* is cofibrant, left homotopy
implies right homotopy. Thus P is a well-defined functor.

Definition 49. Let C.s/ ~ be the category which has as objects the objects of C'
that are both fibrant and cofibrant and where the arrows are homotopy classes of
arrows in C.

Lemma 50. The restriction of the functor P to C;y gives a functor P’ : Cy/L —
Cey/ ~. The restriction of the functor Q to C. gives a functor Q' : C./R — Cey/ .

Proof. We only need to show that if  and y are fibrant objects of C and if f, g :
x — y such that [f], = [g], (note that since L is not necessarily a equivalence
relation, since y might not be cofibrant, these are the classes generated by L) then
P(f) = P(g), then the rest follows from duality. It is enough to show that this
holds if there actually is a left homotopy from f to g (since the rest will follow),
but this follows from our discussion following Lemma 48. ]

Definition 51. Given a model category C, the homotopy category hoC' has the
same objects as C' and where Homypoc (7,y) = Home,_,/~ (Q' (*), Q" (y*))-

There is a functor 7 : C — hoC that takes objects to themselves and weak
equivalences to isomorphisms.

We could imagine hoC to be C.y/ ~ — this is certainly a category; we have
successfully avoided the size-problem of simply inverting the weak equivalences.
This is not equal to hoC, but C.f/ ~ is equivalent to hoC.

The following theorem is another characterization of hoC"
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Theorem 52. Let B be a category, C a model category and F : C — B be a functor
that takes weak equivalences to isomorphisms. Then there is a unique functor hoF :
hoC — B such that (hoF')om = F.

For the proof, see [Hov, Lemma 1.2.2].

7. SIMPLICIAL CATEGORIES

A simplicial category is, to put it briefly, a category enriched over sSet. This
essentially means that we replace the sets Hom (z,y) with simplicial sets, i.e. we
allow for them to have more structure than just sets do. We provide an unrelated
example to demonstrate enrichment:

Example 53. Let C be the category of vector spaces over some field k, with k-linear
transformations as arrows. Given two vector spaces U and V', take two transfor-
mations u,v € Home (U, V) — these provide a new arrow u + v € Home (U, V),
by defining (u + v) (z) = u (z) +4 v (z). Also, there is the constant map w (z) = 0,
which is in every homset. This is one example where the category has homsets with
a natural extra structure — in this case the structure of an abelian group. Thus
our category C could be considered a category enriched over Ab.

For the formal definition, we need to do some work first.

7.1. Monoidal structure of sSet. We will in this section verify that sSet has a
so-called monoidal structure, although for brevity we won’t specify precisely what
that means (think of it as a category with products). First we need a product of
simplicial sets — the product S x T is simply taken pointwise, so that (S x T'), =
S, x T,

Remark 54. Simplicial sets are so called presheaves, and so sSet is a category of
presheaves — by a general result such categories are both complete and cocomplete
(by taking the limits pointwise), and in particular have products.

7.1.1. Properties of the product. Let % denote the simplicial set with *, = {0} for
each n € N. The face and degeneracy maps are then determined. Note that for any
simplicial set S we trivially have isomorphisms S x * &2 S = % x S, so that * acts
as a kind of unit for the product in sSet (another way to see this is to note that
* is a terminal object in sSet — note that any terminal object would do). Denote
the first isomorphism idRg and the second idLg (they are simply the projection on
the first and second element, respectively).

Also, x is associative (in a non-strict sense) as there is an isomorphism (A x B) x
C 2 A x (B x(C) for simplicial sets A, B and C. Denote this isomorphism by
aSA B,C-

Finally, we have for any simplicial sets A, B, C and D two commutative diagrams

(Ax(BxC))xD

asa,p,c Xid W

(Ax B)xC)xD Ax ((BxC)xD)

aSAxB.C,Dl J/idAxasB,c,D

(Ax B) x (C x D) A x (B x (C x D))

aSA,B,CxD
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aSA,I,B

(AxI)x B Ax (Ix B)
idfmA AALB
AxB

These two diagrams essentially tells us that x really behaves as an associative
operation with a unit as we’d expect.

All this shows that (sSet, x, ) really is a monoidal category, so that we may
speak of “categories enriched over sSet”.

7.2. Simplicial enrichment. For clarity, the identity morphisms in sSet will be
denoted 1 in this section, rather than id.

Definition 55. A simplicial category C (or category enriched over sSet) consists
of

e A class obC, called the objects of C

e For every pair of objects z and y in C' as simplicial set C' (z, y) (also denoted
Home (x,y))

e For each object x of C' an arrow id, : * — C(z,z) in sSet, called the
identity of x.

e For any three objects z, y and z of C, an arrow o, , . : Hom¢ (y, 2) x
Home (z,y) — Home (z, 2) in sSet, called composition, such that for any
objects z, y, z and w the following three diagrams commute:

(1) Left unity

idy X1c(a,y)

* x C(z,y) C(y,y) x C (z,y)
‘dm %

(2) Right unity

1o (z,y) Xidz

) x C
1dm %

(3) Associativity

Cl(x

(z, )

(C(z,w) x C(y, 2)) x C(2,y)

Oy, z,wX1c(x,y)
asC(z,w),C(y,2),C(z,y)

C(z,w) x (C(y,2) x C(z,y)) C(y,w) x C(z,y)

C(z,w) x C(x,2) ————— > C'(z,w)

sz‘ll}
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7.3. About simplicial categories. Simplicial categories have a higher-dimensional
structure — we can think of the O-simplices of C' (x, y) as morphisms, the 1-simplices
as morphisms between morphisms etc. Recall from Section 4 that (0o, 1)-categories
should have all morphisms of dimension 2 and higher invertible, which means that
the simplicial sets C (z,y) should have invertible morphisms from dimension 1 and
up. We know from Section 3 that Kan complexes are just those simplicial set. Thus
we’d expect simplicial categories where the hom-simplical sets are Kan complexes
to model (oo, 1)-categories. However, it turns out that that restriction is not nec-
essary, and so simplicial categories (with no conditions on Hom (x,y)) are model of
(00, 1)-categories. (See [Lurie] for details.)

The category of simplicial categories is denoted sCat, and can be given a non-
trivial model structure, which we will need for Section 9, but this structure is to
complex too describe here.

7.4. More structure on sSet. Here we are going to use simplicial categories and
model categories to show some extra structure on sSet, to illustrate how “nice”
that category really is. This is a side-track an can be skipped, and to keep it brief
we will omit proofs.

The category sSet can be seen as a simplicial category.

Above we showed that sSet has a monoidal structure — this is enough to guar-
antee that there is an internal hom. In Set, given two objects U and V, the set
of functions from U to V, i.e. Homget (U, V), is itself a set, and thus an object of
Set; thus in Set the internal hom is the same as the ezternal one — in general
this might not be true: there might not even be any sensible object to take as the
“internal hom”. For sSet there is a way to do this however.

Definition 56. Given two objects x and y in sSet, the internal hom homgget (2, y)
(denoted with a lower case h) is the simplicial set given by homgges (z,¥), =
Homgget (z X A[n],y) where A [n] is the standard n-simplex defined in Example
3.

By replacing the ordinary hom-sets of sSet with the internal hom-set (which
are in fact simplicial sets) we get a simplicial category of simplicial sets. For the
remainder of this section we will use sSet to mean this simplicial category rather
than the ordinary one.

In any simplicial category, and thus in sSet, it is easy to define homotopy.
Homotopy is “supposed” to mean that two maps can (in a sufficiently nice way) be
deformed to each other. The higher dimensional structure of a simplicial category
gives this without any trouble. For simplicity we restrict ourselves to simplicial
categories where the hom-sets are Kan complexes (since we expect homotopies to
be invertible).

Definition 57. Given two objects x and y of a simplicial category C, two maps
f,9 € Home (z,y), are said to be homotopic, f ~ g, if there is some o € Homc (z,y),
with dio = f and dgo = g.

Now note that we this way have two different notions of homotopy in sSet —
the one we just described, and the that arises from some model structure on sSet.
The nice thing here is that with the Quillen model structure on sSet these two
homotopies coincide.
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8. NERVES AND REALIZATIONS

We have encountered two pairs of adjoints that both have, as it turns out, a lot
in common. These are the nerve and fundamental category adjoints, 74 4 N and
the singular set and geometric realization pair, |—| - Sing. Both of these fit into a
general pattern of “tensors and hom” or “nerve and realization”. To explain this we
first need a “structure theorem” for simplicial sets.

8.1. Simplicial sets as colimits.

Definition 58. Given a simplicial set S, there is a simplex category A | S which
has as elements maps o : A[n] — S, n € N, (where A[n] are the standard n-
simplices from Example 3) in sSet. An arrow f:0 — 7in A | S is a map making
the following diagram commute

The identity arrows are the identities on the A [n]:s and composition in A | S
is the same as in sSet.

There is a functor Fs : A | S — sSet that takes an object o : A[n] — S to
A[n] and maps f : o — 7T to themselves.

Theorem 59. For a simplicial set S, we have colimFg = S.

Proof. There is a trivial cocone (S, \,) where the maps A\, = 0. Let (T,7,) be
another cocone of Fg.

Note that A [n] has precisely one non-degenerate simplex, which we will denote
[n]. (Non-degenerate means that it is not the image of any degeneracy map.)

There is at most one map (S,\,) — (T,n,). For the sake of contradiction,
assume that there are two different such maps, say f and g. Then there is some
simplex z, say of dimension n, in S for which f (z) # g (z). There is precisely one
map ¢ : A[n] — S such that ¢ takes [n] to . But then fo¢ # go ¢, contradicting
the assumption that f and g were maps of cocones.

There is at least one map f : (S,\,) — (T,7n,). For a simplex z € S,, let
oz : An] — S be the map that takes [n] to z and let f (z) = n,, ([n]). It’s quick
to check that this is indeed a map of simplicial sets, and the construction makes it
trivial to realize that this makes it into a map of cocones

In conclusion, (S, \,) is an initial cocone, and thus the colimit of Fy, as claimed.

O

8.2. Creating nerves. Given a category C, a functor A°? — C' is known as a
simplicial object, and we often substitute “object” for the name of the category, e.g.
a functor A°? — Grp would be a simplicial group, while for Set we get simplicial
sets. (There is a naming clash here, as a functor A°? — Cat and a sSet-enriched
category could both be called simplicial category, but we will only use the to mean a
sSet-enriched category.) The “standard simplices” we have encountered in various
categories form such simplicial objects; in for example Top there is a simplicial
object |A,| given by |A.|(n) = |A™|. A cosimplicial object is then similarly a
functor A — C.
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Given a cocomplete category C' and a cosimplicial object s® of C there is a
functor N : C' — sSet, given by N (x),, = Hom¢ (s* (n),x). Foramap f:z —y
in C, take N (f) to be the map that takes a simplex ' € N (z),, to foa'.

If we have C' = Top and with the correct choice of s* (i.e. s®(n) =|A"|), the
functor IV is the singular set functor from Section 5, and that we might similarly
retrieve the nerve functor from Section 2. Thus this construction can be seen as a
generalized nerve functor. This is a right adjoint.

8.3. Realizing simplicial sets. If C is a cocomplete category and s, a simplicial
object of C' we may use the so (n):s as “standard simplices”, and use these to glue
together a an object of C' following the specification of a simplicial set. Let sSetA
be the full subcategory of sSet with the A [n] as objects. Then there is a functor
¢ : sSetA — C given by A [n] — se (n), and using Theorem 59 we can extend this
to a functor from the entire category sSet to C, by taking

|S| = colim¢ o Fg

since the image of Fg is in sSetA. This functor is a generalization of the geometric
realization from Section 5. It is also a left adjoint, and with the right adjoin being N
from above. (If the simplicial and cosimplicial objects s, and s® agree on objects.)

Theorem 60. Given a category C and the functors N and |—| as above, then N
is right adjoint to |—|.

Proof. We show a natural bijection between Home (| X|,Y) and Homgget (X, NY)
for X € sSet and Y € C.

We have Home (| X,Y) = Hom (colim¢ o Fix,Y) by definition of |—|, and from
the definition of colimit we see that this is naturally isomorphic to

zcgilfr)l(Homc (po Fx (x),Y)

Note that for z € A | X we have ¢ o Fx (z) = se (n) for some n, so we have
Home (po Fx (x),Y) = N (Y),,, and as the limit is taken over maps A[n] — X
we get a natural isomorphism with Homgget (X, NY'), which is what we wanted. O

8.4. The homotopy coherent nerve. We're going to need more standard n-
simplices, this time in sCat. To define the simplicial sets that will be our Hom it
will be helpful to have to following notation:

Given two natural numbers i and j, with ¢ < j, let a (i, j)-set be a subset S of
N with the property that ¢ and j both are in S, and if s € S then i < s < j. Let
P; ; denote the set of (i,j)-sets. Then P;; is partially ordered by inclusion. Let
CP; ; denote the ordinary categorification of a poset, i.e. the objects of C'P; ; are
the elements of P; ; and there is an arrow p — p’ if and only if p C p'.

Definition 61. The standard n-simplez [A™] in sCat is the simplicial category
with ob [A"] = {0,1,2,--- ,n} and where Homanj (i, j) = 0 if i > j, and otherwise
HOHI[[An]] (Z,j) =N (CPZ'J'), the nerve of CPZ]

This definition is a bit difficult to digest. But note that, as we’d expect, there’s
no arrows from larger objects to smaller, and P;; has precisely one object, so
Hom (i,7) have only identity arrows in every dimension. If we instead consider
Hom (4,7 + 2), then there are two objects of C'P; ;19, corresponding to {i,i+ 2}
and {i,i+ 1,7+ 2}, and in the category [3] we have the diagram

="



GROTHENDIECK’S HOMOTOPY HYPOTHESIS 31

we might think of {4,7 + 2}as the lower arrow, while {¢,7+ 1,7+ 2} would be the
composition of the two upper arrows. Then the 1-dimensional simplex generated
by {i,i+2} C {i,i+ 1,7+ 2} in Hom (4,7 + 2) gives a homotopy showing that the
two different maps 7 — ¢ + 2 are indeed “the same”.

These standard n-simplices gives us both a simplicial object and cosimplicial ob-
ject in sCat, by taking A® = [A"] (and the correct maps), and so by the machinery
developed above we get a nerve-functor and a realization functor. Concretely, we
have

Definition 62. Given a simplicial category C, the homotopy coherent nerve, NC
(intentionally the same notation as for the ordinary nerve), is a simplicial set given
by

NC,, = Homgget (A", NC) = Homgcat ([A"], C)

where A™ denotes the standard n-dimension simplex in the corresponding category.

Note: it is safe to confuse the ordinary nerve N : Cat — sSet and the homotopy
coherent nerve N : sCat — sSet. If we have a category C' we might turn it into a
simplicial category C’ by taking Home (z,y) to be the discrete simplicial set (from
Example 4) on Home (z,y). If we do this then NC = NC'.

9. HOMOTOPIES OF HOMOTOPIES

9.1. Localization of model categories. We will here present the so called “ham-
mock localization” of a model category, which assigns to every model category a
simplicial category.

In what follows, C' is a model category and W is the class of weak equivalences

in C.

Definition 63. Given C and W as above, a hammock of length n and height &
between two objects x and y of C' is a commutative diagram with the shape

z C1,1 C1,2 Ci,n Yy
x C2.1 C2.2 C2.n Yy
€ C3.1 C3,2 C3.n Yy

oo l

L

z Ck,1 Ck,2 Ck,n Yy

where the horizontal dashes represents arrows that may point in either direction,
that fulfills the following properties:

(1) All vertical maps are in W

(2) All arrows in a column go in the same direction

(3) All arrows pointing to the left are in W
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There are some simplifications possible — for example a column with only identity
arrows contains no information, so we may omit them. Additionally, if the arrows
in two columns next to each other point in the same direction we may replace them
with their composition. Applying these two methods we get reduced hammocks,
which then have the additional rules

(4) No column contains only identity morphisms
(5) The arrows in two adjacent columns point in different directions

Let HE (z,y) denote the set of all reduced hammocks of any (finite) length and
height k£ between x and y. These have a simplicial structure, in the sense that
there is a simplicial set H (z,y) with H (z,y), = Hé‘,w (z,y). The face maps d;
remove the i:th row (replacing the vertical arrows with the composition) and the
degeneracies s; repeat it (with the new vertical arrows being the identity arrows).

Definition 64. For a model category C, the hammock localization of C is a sim-
plicial category HL (C) with the same objects as C' and where Homyr, ¢y (z,y) =
H (z,y).

Theorem 65. HL (C) is a simplicial category.

Proof. It remains to specify id, (for z € obHL (C)) and composition o, 3 . : Hom (b, ¢) x
Hom (a,b) — Hom (a,c) and check that conditions of Definition 55 holds. Take
idy (%) to be the hammock of length 0, i.e. where the only maps are id and height

n. For composition, given (H,G) € Hom (b, ¢) x Hom (a,b), i.e. a hammock H in
Hom (b, ¢) and G in Hom (a,b) of the same height, we can construct a hammock
from a to ¢ by placing G to the left of H (and reducing, if necessary).

Some rather tedious but not complicated computations show that the conditions
do indeed hold. We only write down the first one, which is to check that (o) ©
(idb X 1H0m<a’b)) = idLgom(a,p) a8 maps from x x Hom (a,b) to Hom (a,b). Here
idLuom(a,b) is simply the projection on the second element. But id, picks out a
hammock of Hom (b, b) that has only identities from b to b, so when we then apply
the composition we change nothing, and so the left hand side is also the projection
on the second element. O

9.2. Localization preserves homotopy. First we need to be able to speak of
the components of a simplicial set.

Definition 66. Given a simplicial set S, we can consider its connected components,
mpS. Define an equivalence relation ~ on Sy generated by z ~ y if there is some
f €851 with dof =y and d; f = 2. Then we define myS = Sp/ ~.

The statement that “localization preserves homotopy” is then

Theorem 67. Given a model category C' and objects x and y, there is a one-to-
one correspondence between maps from x to y in hoC and the components of the
simplicial set Homyy,oy (z,y), i.e. Hompeo (7,y) = moHompyy, o) (,y).

The original proof by Dwyer and Kan uses some more advanced machinery than
what we have developed (in particular homotopy (co)limits), and so we omit it. It
can be found in [DK].
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9.3. Homotopy theory of homotopy theories. Recall from Section 6 that we
think of model categories as “homotopy theories”. But by the above, the functor
HL “preserves homotopy”, in the sense that for a model category C, hoC' might
be retrieved from HLC as mgHLC. Thus we might consider sCat as a category of
homotopy theories. But sCat itself admits a model structure, and thus presents
a homotopy theory — in this case we might in this sense view it as a “homotopy
theory of homotopy theories”.

10. CONCLUSION

We have presented the notion of (0o, 1)-categories and presented two structures
that might fit the bill, namely

e Simplicial sets with a horn-filling condition
e Simplicial categories where Hom (z,y) is a Kan-complex for any objects x
and

Both of these are “nice” in the sense that they satisfy Grothendieck’s homotopy
hypothesis. The hypothesis really is a statement about (oo, 0)-categories, and says
that we might expect a (oo, 0)-category to be “the same” as a topological space.
For quasi-categories this equivalence is concertized by the two adjoint functors
geometric realization |—| : sSet — Top and singular set Sing : Top — Kan.

We have see (amongst others) the following functors:

e |—| and S, between Top and sSet.
e |—| and N between sCat and sSet
e 7 and N between Cat and sSet.

This diagram shows some functors between the carious categories we have seen.
Note that it is not commutative!

sSet

Cat

QCat

)

Top <———— Kan

Model categories have been defined and we have shown how they are carriers of
homotopy theories. Using the hammock localization we can turn a model category
M into a simplicial category S in such a way that the maps in the homotopy cate-
gory hoM correspond one-to-one with the connected components of the simplicial
hom-sets in S. In this way the category sCat “contains” all other homotopy theo-
ries, and since sCat itself is a model category we can speak of “homotopy theory
of homotopy theories”.
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