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Abstract

In the following we are going to look at a generalised notion of groups.

These structures, called polystrucures seems to fall a bit short when it

comes to fit properly into the classical theme of mathematics. The cause

why groups became so deeply researched was that mathematicians found

close resemblance between proofs say in matrix theory and permutation

theory so it was helpful to find an abstract way to do these proofs. And

group theory showed to be the link. The problem with polystructures is

that they lack this ”linking” property.

But with the right mindset one doesn’t have to discard them straight

away. We are going to see that most of the important properties of groups

can be exhibited in a way or another. Furthermore we will also see that

the modern view of mathematics have a place booked for polystructures

from the beginning, namely they form a category.
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1 A WAY TO GENERALIZE GROUPS

1 A way to generalize groups

Generalising concepts and trying to observe objects on a greater scale has always
been one of the leading ideas of sciences. What is meant by this is we are going
to put less claims on the structure and by doing so create something that is
more general so to say. Some information and detail may be lost in the process
but usually new aspects and viewpoints rise. An easy way to approach this is
to look at the assumptions on the questioned object and loosen up one or some
of them. Now this can lead to results not fitting properly in the original theory
but their investigation is still worthwhile.

In this paper we are going to look at the concept of groups where we change
the group operation to be multivalued or set-valued. So let us start with a brief
discussion on multivalued mappings.
In this section we mainly follow Viros and Davvaz paper.

1.1 Set-valued mappings

A univalued map
f : X ! Y

(X and Y being arbitrary sets) can always be considered as an ordered pair
that is an element of the cartesian product of the two sets

(x, y), x 2 X, y 2 Y.

This can not be done with a set-valued mapping (though in a non-trivial sense,
every mapping can be embedded in a correspodning multivalued mapping). We
will write

f : X ! 2Y

or sometimes
f : X ( Y.

It is thus a map where to each x 2 X is associated a subset f(x) ✓ Y .
For the construction of polystructures we need a multivalued binary operation
which is a multivalued map

f : X ⇥X ( X

with non-empty values, where X being an arbitrary set. Commutativity of such
an operation is easy to define, it means that

f(x, y) = f(y, x), 8x, y 2 X

but the need of associativity forces us the extend f to products of arbitrary
collections of elements (a multivalued binary operation does not need to be
associative, but we want it to be associative for some of our constructions), the
extension comes almost naturally

2X ⇥ 2X ! 2X : (A,B) 7!
[

a2A,b2B

f(a, b).
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1.2 Polystructures 1 A WAY TO GENERALIZE GROUPS

This means that we may talk about associativity of f :

f(a, f(b, c)) = f(f(a, b), c), 8a, b, c 2 X.

1.2 Polystructures

1.2.1 Preliminary definitions

In this section we follow Davvaz and Comer.
From now on we have a number of ways to make our generalisation and we are
going to look at them very briefly. For easing on the notation we are going to
consider elements as singleton sets. What we are going to call a hypergroupoid
is the broadest generalisation and it is defined as so

Definition 1. Let X be a set and let P ⇤(X) denote the set of all nonempty
subsets of X. Let ⇧ be a multivalued partial function ⇧ : X ⇥ X ! P ⇤(X).
Then we call the system < X,⇧ > a hypergroupoid.

Here ⇧ is not a binary operation since it is not nececerily defined on all pairs
of elements of X. As you can also see we do not postulate associativity of the
operation. This is actually a straightforward generalization of a groupoid.

Definition 2. A grupoid is a set X together with a unary operation ()�1 : X !
X and a partial function ⇤ : X⇥X ! X. Here again ⇤ is not a binary operation
by the same reasons as above.

If we further tighten the rules the next thing we could do is to make ⇧ associative
and then we arrive at something we will call a semihypergroup and defines as

Definition 3. Let X be a set and let P ⇤(X) denote the set of all nonempty
subsets of X and let ⇧ : P ⇤(X)⇥ P ⇤(X) ! P ⇤(X), satisfying

a ⇧ (b ⇧ c) = (a ⇧ b) ⇧ c

for all a, b, c 2 X. Then the system < X,⇧ > is called a semihypergroup.

This is a straightforward generalization of a semigroup.

Definition 4. A semigroup is a set X together with a associative binary oper-
ation.

This is looking good so far, but one still feel the need something grouplike that
is where we can get all the di↵erent elements by combining others.
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1.2 Polystructures 1 A WAY TO GENERALIZE GROUPS

First axiom of multigroups: Let X be a set and ⇧ multivalued binary oper-
ation which is associative and that for all a, b 2 X we can find x, y satisfying

a ⇧ x ◆ b, y ⇧ a ◆ b.

Later on we are going to adapt some theorems from group theory into this new
system. The problem is that what we have now is way too loose and without a
unit we cannot possibly hope to accomplish this adaptation. So the next step
would be to add the notion of a unit element. We are mostly going to look at
commutative structures but for the sake of completeness we say

Definition 5. u is a left(right) unit if it fullfills

u ⇧ a ◆ a, (a ⇧ u ◆ a) 8a 2 X

respectively. We call u a unit if both the above relations are true.

Mostly we are going to consider multigroups where this unit behaves even nicer
namely when

Definition 6. Whenever

u ⇧ a = a, (a ⇧ u = a), 8a 2 X

holds, we call u left (right) scalar unit respectively. If both holds then u is called
an absolute unit.

Second axiom of multigroups: There exists a unit element u ✓ P.
Whenever a system M =< X, ⇧ > satisfies the two axioms we call it a multi-
group. We can define inverses of an element a in a multigroup X by the fol-
lowoing

Definition 7. Let M be a multigroup with unit element u. We call b ✓ M a
two sided-inverse of a ✓ M if

(i) b ⇧ a ◆ u

(ii) a ⇧ b ◆ u

It is clear by the first axiom that inverses exist. There is a nice theorem about
absolute units:

Theorem 1. Let < M, ⇧ > be a multigroup and let it contain a left scalar unit
u. If there exists a right unit in M then it is unique and equal to u and u is
the only left scalar unit of M. If M contains an absolute unit then there are no
other units.

Proof. Let us call the right unit u
r

. By assumption u is a left scalar unit so we
have that

u ⇧ u
r

= u
r
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1.2 Polystructures 1 A WAY TO GENERALIZE GROUPS

but also u
r

is a right unit that is

u ⇧ u
r

◆ u

so we have that u ✓ u
r

and since both are singleton sets we have that u = u
r

.
Now assume that u is an absolute unit of P, and u

l

, u
r

are left and right units
respectively. By the above argument

u
l

= u = u
r

1.2.2 Polygroups

If we postulate that our structure has an absolute unit then we arrive at some-
thing we are going to call a polygroup. This is a nice enough object, we will see
that it has rich inner structure and that there are several interesting examples.
We give the definition

Definition 8. A polygroup is a system P =< X,⇧, u, ()�1 > where X is a set,
u ✓ X is an absolute unit, ()�1 is a unary operation, ⇧ maps P ⇤(X) ⇥ P ⇤(X)
into P ⇤(X) and the following holds for all x, y, z ✓ P

1. (x ⇧ y) ⇧ z = x ⇧ (y ⇧ z)

2. u ⇧ x = x ⇧ u = x

3. x ✓ y ⇧ z ) y ✓ x ⇧ z�1 and z ✓ y�1 ⇧ x

This last axiom will be referred to as the reversibility property

We may characterize ()�1 in a similar way as for multigroups.

Lemma 1. Let < P, u, ⇤, ()�1 > be a polygroup then

u ✓ x ⇧ y ) x = y�1 or y = x�1, 8x, y ✓ P.

Proof. Let P be a polygroup with u as an absolute unit and x, y ✓ P. Assume

u ✓ x ⇧ y

by the reversibility property this gives

x ✓ u ⇧ y�1 = y�1

since u is an absolute unit. Now both x och y�1 are singletons we get equality
and similarly we get that x�1 = y.
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1.2 Polystructures 1 A WAY TO GENERALIZE GROUPS

It is naturally true that a polygoup is a multigroup. This follows from the fact
that the reversibility property implies the first axiom of multogroups. Assume
that P is a polygroup. Given a, b ✓ P we want to see that there are x, y ✓ P
such that

a ⇧ x ◆ b y ⇧ a ◆ b.

We have
b = b ⇧ u ✓ b ⇧ (a�1 ⇧ a) = (b ⇧ a�1) ⇧ a

therefore we have an x ✓ b ⇧ a�1 such that

b ✓ x ⇧ a.

And similarly for y.

Let us make note of some elementary facts about polygroups. For all x, y ✓ P
and u being an absolute unit

1. u ✓ x ⇧ x�1 \ x�1 ⇧ x

2. u�1 = u

3. (x�1)�1 = x

4. (x ⇧ y)�1 = y�1 ⇧ x�1

5. x ✓ y ⇧ z ) x�1 ✓ z�1 ⇧ y�1

The proof of the above claims are easy and we show the proof of only one of
these, say 3. We have

(x ⇧ y) ⇧ y�1 ⇧ x�1 =

since ⇧ is associative
= x ⇧ (y ⇧ y�1) ⇧ x�1,

now u ✓ y ⇧ y�1 so

x ⇧ (y ⇧ y�1) ⇧ x�1 ◆ x ⇧ x�1 ◆ u.

Now we know the abstract definition of polygroup, but a concrete example of
them is due. Similarly to ususal group theory we will try to capture the proper-
ties of ⇧ in a polygroup table. All the following examples will be commutative.

To begin with let us look at the smallest example we can find, a one element
polygroup is just the trivial group but with two elements we can construct

Example 1. Let X = {u, a} and let ⇠ : 2X ⇥ 2X ! 2X be defined by the
following rules x ⇠ u = u ⇠ x = {x} for all x ✓ X and a ⇠ a = {a, u}.
This is indeed the smallest polygroup we can create and we will denote it by P1.

8



1.2 Polystructures 1 A WAY TO GENERALIZE GROUPS

⇠ u a
u u a
a a {u, a}

Table 1: Polygroup table of P1

We can see that this structure fullfills the requirements of Defniniton 9. The
unit element behaves as postulated. The reversibility property is also fullfilled
but it seems trivial due to the lack of di↵erent elements. From the table we can
see that

u�1 = u and a�1 = a

Now we give some examples of polygroups of varying cardinality.

Example 2. Let X = {u, a, b} and let ⇢ : 2X ⇥ 2X ! 2X satisfy u ⇢ x =
x⇢ u = x for all x 2 X and a⇢ b = b⇢ a = {u, a, b}. Let us call this polygroup
P2

⇢ u a b
u u a b
a a a {u, a, b}
b b {u, a, b} b

Table 2: Polygroup table of P2

Furthermore

()�1 u a b
u b a

Table 3: Inverse table of P2

We can see that u behaves as needed, namely as an absolute unint. Furthermore
the reversibility property is also satisfied. We give an example

a 2 a ⇢ b ) a 2 a ⇢ b�1

from the table we see that b�1 = a so

a 2 a ⇢ a

and
a 2 a ⇢ b ) b 2 a�1 ⇢ a

and again from the table we see that a�1 = b so

b 2 b ⇢ a

9



1.2 Polystructures 1 A WAY TO GENERALIZE GROUPS

and this is also true. It is also easy to see that associativvity is true. Let us
make a calculation in this polygroup. We calculate (a ⇢ b) ⇢ b as follows

(a ⇢ b) ⇢ b = ({u, a, b}) ⇢ b =
[

(u ⇢ b, a ⇢ b, b ⇢ b) =

=
[

(b, {u, a, b}, b) = {u, a, b} = a ⇢ (b ⇢ b)

Example 3. Another way we can create examples is from linearly ordered sets.
Let X be a linearly ordered set with order � and an element 0 such that 0 � x
for all x ✓ X di↵erernt from 0. Now define a binary multivalued operation (we
may refer to these as hyperoperation in the future) on X by

(a, b) 7! a ⇡ b =

(
max(a, b), if a 6= b

{x 2 X | x � a} if a = b

If we take X = {0, 1} and 0 � 1 then this construction gives P1. Let us prove
the claim that constructions of these type create polygroups. So we have to show
that ⇡ is associative, we have a unit element and that the reversibility property
is true as well. We have four di↵erent cases to look at

a = b = c, a = b � c, a � b = c, a � b � c

and since we need the same cases both for associativity and reversibility property
so we do these together so we need to show

1. a ⇡ (b ⇡ c) = (a ⇡ b) ⇡ c

2. a ✓ b ⇡ c ) b ✓ a ⇡ c�1 c ✓ b�1 ⇡ a

(a) Let a = b = c, then

a ⇡ (b ⇡ c) = {x 2 X | x � c}

and by similar reasoning we get that

(a ⇡ b) ⇡ c = {x 2 X | x � c}

to show that 2 also holds first we need to check if a ⇢ b⇡c is possible.

a ✓ b ⇡ c| {z }
{x2X|x�c}

and since all a, b, c are equal in this case we see that this assumption
is true. One thing we haven’t mentioned until now, namely that in
this polygroup all elements are their own inverses. This means that
the implication

a ✓ b ⇡ c ) b ✓ a ⇡ c�1 c ⇢ b�1 ⇡ a

turns into
a ⇢ b ⇡ c ) b ✓ a ⇡ c c ✓ b ⇡ a

which is clearly true since a = b = c.

10



1.2 Polystructures 1 A WAY TO GENERALIZE GROUPS

(b) Let a = b � c, and check first if

a ⇡ (b ⇡ c) = (a ⇡ b) ⇡ c.

According to the definition

a ⇡ (b ⇡ c)| {z }
c| {z }

c

= (a ⇡ b)| {z }
{x2X|x�b}

⇡c

| {z }
c

.

Secondly we want to check the reversibility property, but since a =
b � c by assumption we can not have a ✓ b⇡ c, hence 2. is vacuously
true.

The reversibility property is not defined in this case since

a = b � c

is not true.

(c) Let now a � b = c. For associativity we need

a ⇡ (b ⇡ c) = (a ⇡ b) ⇡ c.

By definition
a ⇡ (b ⇡ c)| {z }

{x2X|x�b}
| {z }

b

= (a ⇡ b)| {z }
b

⇡c

| {z }
b

.

For the reversibility property we have

a ✓ b ⇡ c ) a ✓ {x 2 X | x � b}

and this should imply

b ✓ a ⇡ c and c ✓ b ⇡ a

both of which boils down to

b = c.

(d) Finally assume a � b � c. In this case ⇡ is clearly associative, it
gives back c on both sides of

a ⇡ (b ⇡ c) = (a ⇡ b) ⇡ c.

As in case (b) the reversibility property is again trivially true so we
are done.

3. We need to have unit element as well, and the ”smallest” element will
work perfectly.

11



1.2 Polystructures 1 A WAY TO GENERALIZE GROUPS

Example 4. A linearly ordered set X can be turned into a di↵erent polygroup
if we define the operation to be

(a, b) 7! a � b =

8
><

>:

max(a, b), if a 6= b

{x 2 X | x � a}, if a = b 6= 0

0, if a = b = 0.

If the set X consists of more than 2 elements then the operation � is truly
multivalued.

The construction in Example 3 is called linear order polygroup and the one in
Example 4 is called strict linear order polygroup.
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1.3 Embedding 1 A WAY TO GENERALIZE GROUPS

1.3 Embedding

In this section we follow the idea of embedding by Melvin and Ore.

Our progress so far seems viable even though this generalisation may seem a bit
odd, but we can still find a correlation with rings mirroring the methods we use
to relate groups to group rings. By doing so we may think about polygroups
as a special rings. We felt that showing this correlation will make polygroups
slightly more concrete and therefore we will look into this idea now. The fact is
that a polygroup can always be embedded in an algebra. We will now exhibit
this embedding.

First of all we start with a field, say C and and a polygroup P. Then we consider
the free vector space generated by the elements of P and we denote this object
by CP . It has elements of the form

pX

i=1

�
i

p
i

, |P| = p, �
i

2 C, p
i

2 P

Now CP has a vector space structure by construction so what is left to give
CP a ring structure also. We omit the · in the above expression since in the
following · is reserved to denote the multiplication in C. Since P is a polygroup
the group operation returns subsets that is

p1 ⇧ p2 = {q1, q2, . . .} ✓ P.

Definition 9.

⇣ pX

i=1

�
i

p
i

⌘
⇧
⇣ pX

j=1

µ
j

p
j

⌘
:=

X

i,j

X

qk2pi⇧pj

(�
i

µ
j

)q
k

2 CP

where �
i

, µ
j

2 C and p
l

, q
l

2 P.

Note in particular that we continue using the same symbol ⇧ for multiplication
in the algebra.
So we have to show that the group operation ⇧ is associative, distributive and
possesses a unit element. We start with the unit since this is easiest, we just
take u, the unit of P to be the unit element in the ring. For associativity we
have to show that

a ⇧ (b ⇧ c) = (a ⇧ b) ⇧ c, 8a, b, c 2 CP .

To see that this is true let

a =
pX

i=1

�
i

p
i

, b =
pX

j=1

µ
j

p
j

, c =
pX

k=1

⌫
k

p
k

and let us start the grunt work. Now

b ⇧ c =
pX

j=1

µ
j

p
j

⇧
pX

k=1

⌫
k

p
k

=
pX

j,k=1

µ
j

· ⌫
k

p
j

⇧ p
k
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1.3 Embedding 1 A WAY TO GENERALIZE GROUPS

and this times a gives

pX

i=1

�
i

p
i

⇧
pX

j,k=1

µ
j

· ⌫
k

p
j

⇧ p
k

=
pX

i,j,k=1

�
i

· µ
j

· ⌫
k

p
i

⇧ p
j

⇧ p
k

.

So this is where the left hand side leads us to. We can clearly see that the right
hand side gives the same result (the details are left to the reader).
Now for distributivity we show that

a ⇧ (b+ c) = a ⇧ b+ a ⇧ c

we start with the left hand side (using the same notation as above)

b+ c =
pX

j=1

µ
j

p
j

+
pX

k=1

⌫
k

p
k

=
pX

j=1

(µ
j

+ ⌫
j

)p
j

and

a ⇧
pX

j=1

(µ
j

+ ⌫
j

)p
j

=
pX

i=1

�
i

p
i

⇧
pX

j=1

(µ
j

+ ⌫
j

)p
j

=

=
pX

i,j=1

�
i

(µ
j

+ ⌫
j

)p
i

⇧ p
j

and for the right hand side
a ⇧ b+ a ⇧ c

becomes
pX

i=1

�
i

p
i

⇧
pX

j=1

µ
j

p
j

=
pX

i,j=1

�
i

· µ
j

p
i

⇧ p
j

for the other term, for notational ease we change the summation index in c to
be j which gives

pX

i=1

�
i

p
i

⇧
pX

j=1

⌫
j

p
j

=
pX

i,j=1

�
i

· ⌫
j

p
i

⇧ p
j

.

Finally the sum of these two group elements is

pX

i,j=1

�
i

· µ
j

p
i

⇧ p
j

+
pX

i,j=1

�
i

· ⌫
j

p
i

⇧ p
j

which gives
pX

i,j=1

�
i

(µ
j

+ ⌫
j

)p
i

⇧ p
j

and this agrees with the left hand side as we wanted to. And now our embedding
is ready, not forgetting that whenever p

i

⇧ p
j

returns a subset we consider the
sum of the elements of this using + from the C.
We can summarize the above embedding in

14



1.4 Subpolygroups 1 A WAY TO GENERALIZE GROUPS

Proposition 1. Given a polygroup P and a field k, we can define ⇢ which
injects P into the free vector space over k generated by the elements of P, in
symbols

⇢ : P ,! kP ,

such that
⇢(a ⇧ b) = ⇢(a) · ⇢(b).

1.4 Subpolygroups

This and the following section is based on Davvaz paper.

Definition 10. A non-empty subset K of a polygroup P is called a subpolygroup
of P if K is also a polygroup with the same operations and unit element.

This definition is also a straightforward generalization and as in group theory
we would like to have some criterion to decide whether a set is a subpolygroup.
This comes in the form of

Theorem 2. A non-empty subset K of a polygroup P is a subpolygroup of P if
and only if

a, b ✓ K ) a ⇧ b ✓ K

and
a ✓ K ) a�1 ✓ K

Another important notion is normality which can also be adapted by

Definition 11. Let P be a polygroup and let N be a subpolygroup of P. N is
called normal if and only if

a�1 ⇧ N ⇧ a ✓ N , 8a ✓ P,

where a ⇧ N means
S
a ⇧ {n | n ✓ N}.

A couple of nice properties are collected in the following lemma

Lemma 2. Let K and N subpolygroups of P with N normal in P. Then

1. N ⇧ a = a ⇧ N , 8a ✓ P

2. (N ⇧ a)(N ⇧ b) = N ⇧ a ⇧ b, 8a, b ✓ P

3. N ⇧ a = N ⇧ b, 8b ✓ N ⇧ a

4. N \K is normal in K

5. N ⇧ K = K ⇧ N is a subpolygroup of P

6. N is normal in N ⇧ K

15



1.4 Subpolygroups 1 A WAY TO GENERALIZE GROUPS

Proof. 1. Since N is normal we have

a�1 ⇧ N ⇧ a ✓ N ) N ⇧ a ✓ a ⇧ N

on the other hand

N ⇧ a ✓ a ⇧ N ) N ✓ a ⇧ N ⇧ a�1

by the reversibility property this means

a ⇧ N ✓ N ⇧ a

and we are done.

2. This follows from (1)

3. Assume b ✓ N ⇧ a, then

b ✓ N ⇧ a ) N ⇧ b ✓ N ⇧ a

and by definition

b ✓ N ⇧ a ) a ✓ N ⇧ b ) N ⇧ a ✓ N ⇧ b

and we are done.

4. Let a, b ✓ N \ K then a, b ✓ N and a, b ✓ K and so a ⇧ b ✓ N and
a ⇧ b ✓ K therefore a ⇧ b ✓ N \ K. We have the inverses since N and K
are themselves groups. Now N \K is normal in K if

a�1 ⇧ (N \K) ⇧ a ✓ N \K 8a ✓ K.

Take l ✓ N \K and a ✓ K then

a�1 ⇧ l ⇧ a ✓ K 8a ✓ K

furthermore N is normal in P

a�1 ⇧ l ⇧ a ✓ N 8a ✓ K ✓ P.

5. Let us show first the equality of these two. Take n ⇧ k ✓ N ⇧ K then we
have

n ⇧ k ✓ N ⇧ K )

n ⇧ k ✓ N ⇧ k̃, k̃ ✓ K

By (1) this gives
n ⇧ k ✓ k̃ ⇧ N ✓ K ⇧ N

so
N ⇧ K ✓ K ⇧ N .

16
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The other inclusion is similarly easy to see.

Now N ⇧ K is a subgroup if its closed under the operation and includes
inverses. A product in N ⇧ K looks like

n1 ⇧ k1 ⇧ n2 ⇧ k2 n1, n2 ✓ N k1, k2 ✓ K.

Let now x ✓ P be a singleton set such that x ✓ k1⇧n2. Since N is normal
we have k1 ⇧N = N ⇧k1 and so there is an n3 such that x ✓ n3 ⇧k1. That
is, we have

n1 ⇧ x ⇧ k2 ✓ n1 ⇧ n3 ⇧ k1 ⇧ k2 ✓ N ⇧ K

and since x was chosen arbitrary it is clear that

n1 ⇧ k1 ⇧ n2 ⇧ k2 ✓ N ⇧ K

To see that inverses are also included in N ⇧ K take

k ✓ K n ✓ N

so
k�1 ✓ K n�1 ✓ N

since they are polygroups. Now the inverse of an element n ⇧ k ✓ N ⇧ K
is k�1 ⇧ n�1 but since N ⇧ K = K ⇧ N we have

k�1 ⇧ n�1 ✓ K ⇧ N = N ⇧ K.

6. Let n ✓ N and a ✓ N ⇧ K then

a�1 ⇧ n ⇧ a ✓ N ✓ N ⇧ K

There is one more property of ordinary groups which one may feel the need of
here, namely an equivalence relation after which we can partition P into cosets.

Definition 12. If N is normal in P, then we define the relation x ⌘ y mod N
if and only if x ⇧ y�1 \N 6= ;. This relation is denoted xNPy.

This looks promising we just have to show that NP is an equivalence relation

Theorem 3. The relation NP is an equivalence relation

Proof. Let x, y, z ✓ P. So we have to show that NP is reflexive, symmetric and
transitive.

We start with with reflexivity. Since u ✓ x ⇧ x�1 we have that for all x ✓ P
that x NP x.

Secondly for symmetry assume that x NP y, this means that x⇧y�1\N = ; so
we have an element z ✓ x ⇧ y�1 which in turn means (since a ✓ b ⇧ c ) a�1 ✓
c�1 ⇧ b�1 in a polygroup) that z�1 ✓ y ⇧ x�1 so y NP x. So NP is symmetric.

17
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To see that transitivity of NP assume that x NP y and y NP z which gives that
we have a and b such that a ✓ x ⇧ y�1 \N and b ✓ y ⇧ z�1 \N . Applying the
reversibility property gives x ✓ a⇧y and z�1 ✓ y�1 ⇧ b. Combining the last two
yields x ⇧ z�1 ✓ a ⇧ y ⇧ y�1 ⇧ b ✓ a ⇧ b ✓ N . Hence x ⇧ z�1 \N 6= ; which is the
desired result.

Now we have our equivalence relation so we have a chance to create a coset
decomposition of P. Let us denote the equivalence class of x by NP(x). Let
[P : N ] = {NP(x) | x ✓ P}, in usual group theory this detones the relative
size of N in P, the number of copies of N that fits into P. Let us define a
hyperoperation � on [P : N ] by

NP(x)�NP(y) = {NP(z) | z ✓ NP(x) ⇧ NP(y)}.

Usually we denote the coset of a subgroup N by N ⇧ x and let the set of cosets
be denoted by P/N . What we want show now is the fact that whenever N is
normal we have

N ⇧ x = NP(x).

Theorem 4. Let P be a polygroup and let N be a normal subpolygroup of P.
Then N ⇧ x = NP(x).

Proof. Let y ✓ N ⇧ x, then by definition

9n ✓ N s.t. y ✓ n ⇧ x ) n 2 y ⇧ x�1 ) y ⇧ x�1 \N 6= ; ) N ⇧ x ✓ NP(x).

On the other hand, let y 2 NP(x) this means by definition that

y ⇧ x�1 \N 6= ; ) 9n ✓ N s.t. n ✓ y ⇧ x�1 ) y ✓ n ⇧ x ) NP(x) ✓ N ⇧ x

So we can conclude that [P : N ] = P/N , which is nice and grouplike.

Lemma 3. Let N be a normal subpolygroup of P then for all x, y ✓ P, we have

NP(NP(x) ⇧ NP(y)) = NP(x) ⇧ NP(y)

Proof. By Theorem 4 NP(x) = N ⇧ x so

NP(NP(x) ⇧ NP(y)) = NP(N ⇧ x ⇧ N ⇧ y) = N ⇧ N ⇧ x ⇧ N ⇧ y =

and since N is normal we get

N ⇧ x ⇧ N ⇧ y = NP(x) ⇧ NP(y)

Another important property is captured in

18
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Theorem 5. Let N be a normal subpolygroup of P. Then for all x, y ✓ P we
have

N ⇧ (x ⇧ y) = N ⇧ z, 8z ✓ x ⇧ y.

Proof. Suppose z ✓ x⇧y, this means N ⇧z ✓ N ⇧(x⇧y). Let now a ✓ N ⇧(x⇧y)
then we have y ✓ (N ⇧x)�1 ⇧ a = x�1 ⇧N ⇧ a multiplying on the left by x gives

x ⇧ y ✓ x ⇧ x�1 ⇧ N ⇧ a

Since N is normal we can use Lemma 2/1 to obtain

x ⇧ y ✓ x ⇧ N ⇧ x�1 ⇧ a ✓ N ⇧ a

therefore for every z ✓ x ⇧ y we have that z ✓ N ⇧ a which means a ✓ N ⇧ z as
required.

To make the isomorphism theorems work we need to give a polygroup structure
to [P : N ]. This is achieved by

Proposition 2. The system < [P : N ],�,NP(u), ()�1 > is a polygroup, where
NP(a)�1 = NP(a�1).

Proof. We need to show associativity of �, that we have an identity and the
reversibility property. For all a, b, c ✓ P, we have

(NP(a)�NP(b))�NP(c) =

by definition of �

= {NP(x) | x ✓ NP(a) ⇧ NP(b)}�NP(c) =

= {NP(y) | y ✓ NP(x) ⇧ NP(c), x ✓ NP(a) ⇧ NP(b)} =

= {NP(y) | y ✓ NP(NP(a) ⇧ NP(b)) ⇧ NP(c)} =

by Lemma 3
= {NP(y) | y ✓ (NP(a) ⇧ NP(b)) ⇧ NP(c)}.

And
NP(a)� (NP(b)�NP(c)) =

by the exact same reasoning as above

= NP(a)� {NP(x) | x ✓ NP(b) ⇧ NP(c)} =

= {NP(y) | y ✓ NP(a) ⇧ NP(x), x ✓ NP(b) ⇧ NP(c)} =

= {NP(y) | NP(a) ⇧ NP(NP(b) ⇧ NP(c))} =

= {NP(y) | y ✓ NP(a) ⇧ (NP(b) ⇧ NP(c))}.

We see that these result in the same equivalence class. NP(u) is the unit el-
ement by Theorem 5, furthermore NP(x�1) is the inverse of NP(x). For the
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reversibility propery take NP(c) ✓ NP(a) ⇧ NP(b), then we have an x ✓ NP(c)
such that NP(x) = NP(c). Therefore we have a y ✓ NP(a) and z ✓ NP(b)
such that x ✓ y ⇧ z and since x, y, z ✓ P we have y ✓ x ⇧ z�1. This means that
NP(y) ✓ NP(x) ⇧ NP(z�1) which in turn means NP(a) ✓ NP(c) � NP(b�1).
And we can get the other part of the reversibility property by similar reasoning
and we are done.

Corollary 1. If N is a normal subpolygroup of P, then the system
< P/N ,�,N , ()�1 > is a polygroup with

Nx�N y = {N ⇧ z | z ✓ x ⇧ y}

and
(N ⇧ x)�1 = N ⇧ x�1.

Now we see that the notion of a quotient polygroup makes sense.

1.5 Polygroup homomorphisms

In abstract algebra an important point besides defining these abstract structures
is to find connections between them. This often comes in the form of homomor-
phisms. And we will generalise this notion so it will fit into polystructures. The
definition is again a straightforward generalisation of the non-multivalued case.

Definition 13. Let P and Q be polygroups. A map f : P ! Q is called a weak
polygroup homomorphism if

f(uP) = uQ

and
f(a ⇧P b) ✓ f(a) ⇧Q f(b), 8a, b ✓ P

Here we use that f – as well as ⇧ – is extended to a map f : 2P ! 2Q as in the
previous sections.

As with many of the concepts in this area we have a stronger notion of homo-
morphism as well and we give the definition now

Definition 14. Let P and Q be polygroups. A map f : P ! Q is called a
strong polygroup homomorphism if

f(uP) = uQ

and
f(a ⇧P b) = f(a) ⇧Q f(b), 8a, b ✓ P

A strong homomorphism which is injective and surjective is called an isomor-
phism.
Let f : P ! Q be a strong homomorphism, since P is a polygroup

uP ✓ a ⇧ a�1 8a ✓ P
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and since f is a strong homomorphism

uQ ✓ f(a) ⇧Q f(a�1)

which by the reversibility property gives

f(a�1) ✓ (f(a))�1 ⇧ uQ = (f(a))�1

After taking inverses on both sides in

uQ ✓ f(a) ⇧Q f(a�1)

we get
uQ ✓ (f(a))�1 ⇧ f(a�1)�1

and again by the reversibility property we get

(f(a))�1 ✓ uQ ⇧ f(a�1) = f(a�1)

and these two inclusions mean

f(a�1) = (f(a))�1

which is another nice property of ordinary group theory we could transfer into
this new structure. We summarize it in a lemma

Lemma 4. Let P be a polygroup, a 2 P, then

f(a�1) = (f(a))�1.

Definition 15. Let P1 and P2 be polygroups and f be a polygroup homomor-
phism. Then the kernel of f is the set

ker f = {x ✓ P1 | f(x) = uQ}

The kernel of a homomorphism is always a subpolygroup, but usually not nor-
mal. Even with strong homomorphisms we cannot assure that the kernel be
normal.

Proposition 3. Let P1 and P2 be polygroups and let � be a weak polygroup
homomorphism. Let K = ker�, then K is a subpolygroup of P1.

Proof. K is a subpolygroup if it is closed under the operation and has inverses.
Let k1, k2 ✓ K then

�(k1 ⇧P1 k2) ✓ �(k1) ⇧P2 �(k2) = u2 ⇧P2 u2 = u2

and since u2 is a singleton we have equality here so indeed k1 ⇧P1 k2 ✓ K To
see that K has the needed inverses let k ✓ K then by Lemma 4

�(k�1) = �(k)�1 = u�1
2 = u2

which shows that k�1 ✓ K and we are done.
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Another fact we are going to need for the isomorphism theorems is

Proposition 4. Let � : P1 ! P2 be a strong polygroup homomorphism. Then
Im� is a subpolygroup of P2.

Proof. Let a, b ✓ P1 and � : P1 ! P2 be a strong polygroup homomorphism.
Then

�(a) ⇧P2 �(b) = �(a ⇧P1 b) ✓ Im�.

Furthermore
�(a)�1 = �(a�1) ✓ Im�.

Here we can mention another property of polygroups which mirrors groups
namely

Theorem 6. Let � : P1 ! P2 be a strong polygroup homomorphism. Then �
is injective as a mapping of sets if and only if ker� = {u}.

Proof. First we assume that � is injective. We take an x 2 ker� then by
definition

�(x) = u2 = �(u1) ) �(x) = �(u1) ) x = u1

where we used injectivity in the last implication. For the contrary assume that
ker� = {u1} and take y, z such that �(y) = �(z). Then

u2 = �(u1) ✓ �(y) ⇧P2 �(y
�1) = �(z) ⇧P2 �(y

�1) = �(z ⇧P1 y
�1)

this means that we have an x 2 z ⇧P1 y
�1 such that

u2 = �(u1) = �(x)

but ker� = {u1} by assumption so x = u1. But this means we have u1 2
z ⇧P1 y

�1 which in turn implies that y = z and this is the desired result.

Let us look at some concrete examples of polygroup homomorphisms.

Example 5. Let
f : P2 ! P1

since we used the symbol a in both polygroups we will use indexes to avoid
confusion

f(uP2) = uP1

f(aP2) = f(b) = aP1 .

Then f is a strong polygroup homomorphism.

Another, bit more abstract example of a polygroup homomorphism arises from
the linear order polygroups we were talking about earlier.
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Example 6. Let X and Y be linearly ordered sets with some additional structure
given by the operation ⇡ as in Example 3 and with smallest element 0

X

and
0
Y

respectively. Then any monotone map f : X ! Y mapping 0
X

to 0
Y

is a
polygroup homomorphism.
Let us verify this claim. Let X,Y be sets as above and let f be a monotone
increasing mapping, that is

a � b ) f(a) � f(b) 8a, b ✓ X.

For f to be a polygroup homomorphism we need that

f(0
X

) = 0
Y

and that
f(a ⇡ b) = f(a) ⇡ f(b).

The first equality holds by definition. For the second assume first that a � b ✓ X
then

f(a ⇡ b) = f(b).

On the other hand since f is monotone we have f(a) � f(b) which means

f(a) ⇡ f(b) = f(b).

Let now a = b ✓ X, then

f(a ⇡ b) = f({x ✓ X | x � a}) = {x 2 X | f(x) � f(a)}.

Finally
f(a) ⇡ f(b) =

since f is monotone we get

= {x ✓ X | f(x) � f(a)}.

Now we have our morphisms between polygroups so we are in the position to
make another important observation which will have its own brief section.
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1.6 Category theoretical view

This short section is based on Melvin and Ore.

The absence of previous research could be caused by the fact that these
polystructures lack the many intresting examples of say groups to urge a de-
velopment of an abstract theory. In the mindset of trying to relate polygroups
to other ”more usual” algebraic objects we may find it an interesting fact that
polgroups with their strong polygroup homomorphisms constitute a category.
So our next goal is to show that we have a category Pol of polygroups.
First we need objects to be in Pol, let us take the class of all polygroups. We
need arrows in between these and the role of the arrows can be played by strong
polygroup homomorphisms. The identity arrow will be the identity morphism
denote it 1. Lastly we need to be able to compose these arrows, that is we want
every triangle

A B

C

µ

�

 

to commute, where A,B,C 2 obj(Pol) and µ, ,� 2 Hom
Pol

. We can take

� =  � µ

where � means usual function composition, that is do µ first then  whenever
this is defined we can take � to be this composition. And we are actually done,
which should not come as a surprise. Category theory doesn’t really look at the
individual elements of the objects rather how the objects interract.
The embedding into an algebra in a previous section is actually a functor

F : Pol V AlgC

After this short detour into category theory we can continue with the scrutiny
of polygrups.
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1.7 Examples

Before we go further and show the main results, that is isomorphism theorems
let us break up the monotonity of these definitions and theorems by some more
complicated examples of polygroups. These examples are rooted in ordinary
abstract algebra.

Example 7. Conjgacy class polygroups. Let G be a group and let x, y 2 G.
The element y is said to be the conjugate of the element x if there exists an
element a 2 G suc that y = axa�1. If H and K are subgroups of G, then K is
said to be a conjugate subgroup of H if there exists a 2 G so that K = aHa�1.
Conjugacy of elements defines an equivalence relation on G.
So let us denote the collection of conjugacy classes of the group G by Ḡ. Let us
also define ?, a binary operation on these classes to be the set of all conjugacy
classes contained in the elementwise product of the sets. Then the system
< Ḡ, ?, {u},�1 > is a polygroup. Let us demonstrate this construction using the
dihedral group D3, that is the group of symmetries of an equilateral triangle.
If we denote the counterclockwise rotation by 120� by a and flipping along the
vertical axis by b, we find that D3 is decomposed into the following conjugacy
classes

C1 := {u}, C2 := {a, a2}, C3 := {b, ab, a2b}
and let us exhibit the structure of D̄3 in a polygroup table

? C1 C2 C3

C1 C1 C2 C3

C2 C2 C1, C2 C3

C3 C3 C3 C1, C2, C3

To take a bit more complicated example we can do the same thing with D4. This
consists of 8 symmetries. If we denote the counterclockwise rotation with 90�

by a and the flip along the vertical axis by b we get

D4 = {u = a0, a, a2, a3, b, ba, ba2, ba3}

If we calculate the conjugacy classes we find the following

C1 = {u}, C2 = {a2}, C3 = {a, a3}, C4 = {ba, ba3}, C5 = {b, ba2}

and we can capture the structure of D̄4

? C1 C2 C3 C4 C5

C1 C1 C2 C3 C4 C5

C2 C2 C1 C3 C4 C5

C3 C3 C3 C1, C2 C5 C4

C4 C4 C4 C5 C1, C2 C3

C5 C5 C5 C4 C3 C1, C2

So these polystructures were here all the time, we just failed to recognize them
due to their lack of internal beauty.
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Example 8. Double coset algebras. Let G be a group and suppose it has a
subgroup H. We define the system G//H =< {HgH | g 2 G}, ?, H,�1 > where
(HgH)�1 = Hg�1H and

(Hg1H) ? (Hg2H) = {Hg1hg2H | h 2 H}.

This system is called the algebra of double cosets G//H and is a polygroup.
Let us now consider a concrete example. We again will look at D3 and use the
same notation as above. Let H = {u, b} and let us look at the double cosets it
generates

HuH = {u, b}, HaH = {a, a2, ab, a2b} =: K

furthermore

HuH = HbH = H, HaH = Ha2H = HabH = Ha2bH = K.

We can summarize this in a table

? H K
H H K
K K H,K

and we readily see that this is isomorphic to P1.
To take a bit more complicated example we can consider D4 also. Again we pick
a subgroup say H = {u, a2, ab, a3b} and calculate the respective cosets. So

HuH = {u, a2, b, a2b}

as expected, then
HaH = {a, a3, ab, a3b} =: K

since
uau = a2aa2 = a2bab = baa2b = a

uaa2 = a2au = bab = a2baa2b = a3

uab = a2aa2b = baa2 = a2bau = ab

and finally
uaa2b = a2ab = bau = a2baa2 = a3b

So here again we get two cosets and after a tedious amount of work we find that

H = Ha2H = HbH = HabH = Ha3b, K = Ha3H = HaH = Ha3bH.

So, to summarize we have that

D3//H =< {H,K}, ?, H,�1 >

and the same for D4.
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2 Isomorphism theorems

For this section we mainly used Davvaz paper. Now after this brief pause we
can return to our main result namely the fundamental theorems for polygroups.
We change to multiplicative notation, that is we drop ⇧ in the following.

2.1 The first isomorphism theorem

Theorem 7. Let � : P1 ! P2 be a strong polygroup homomorphism with kernel
K such that K is a normal subpolygroup of P1. Let u1, u2 be unit elements of
P1,P2 respectively. Then

P1/K ' Im�

Proof. Define
 : P1/K ! Im�

by
 (Kp) = �(p), 8p ✓ P1.

First of all  is well defined since if we take p, q ✓ P1 such that Kp = Kq then

kp ✓ Kp k ✓ K, p ✓ P

�(kp) = �(k)�(p) = �(p)

and
qp ✓ Kq q ✓ K, p ✓ P

�(kq) = �(k)�(q) = �(q)

thus
Kp = Kq ) �(p) = �(q)

To see that  is injective we take p, q ✓ P1 with �(p) = �(q). We have then

�(p)�(q)�1 = �(pq�1) ◆ u2

that is
9k ✓ pq�1 such that �(k) = u2

and
k ✓ pq�1 ) p ✓ kq

also implies
p 2 Kq

and by Lemma 2/3 this gives
Kp = Kq

as required. Finally  is surjective by construction.
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2.2 Second isomorphism theorem

Theorem 8. Let K and N be subpolygroups of P, with N normal, then

K/N \K ⇠= (NK)/N

Proof. By Lemma 2/(5) NK = KN , furthermore NK is a subpolygroup of P
and N is normal in NK so (NK)/N is defined. Let

� : K ! (NK)/N , �(k) = Nk.

First � is strong since
�(u) = Nu = N

and
N (k1k2) = Nk1Nk2.

by Lemma 2/(2). For surjectivity of �, take an element from the image Na ✓
NK/N , with a ✓ NK, that is a ✓ nk. By Theorem 5 we have

Na = Nnk = Nk = �(k)

as required. This means that

Im� = NK/N

Now if we can show that ker� = N \K then by the first isomorphism theorem
we are done. Let k ✓ K then we have the following chain

k ✓ ker� ()

�(k) = N ()

Nk = N ()

k ✓ N ()

k ✓ N \K

where the first and second implication is by the definition of �, the third is by
Lemma 2/(3), the fourth is by assumption. And we are done.

And last but not least

2.3 Third isomorphism theorem

Theorem 9. If K and N are normal subpolygroups of a polygroup P such that
N ✓ K, then K/N is a normal subpolygroup of P/N and

(P/N )/(K/N ) ' P/K.
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Proof. Obviously N is normal in K so K/N and P/N are defined. Since both
are subpolygroups and one is contained in the other so K/N is a subpolygroup
of P/N . It is normal since

Np�1kNpN ✓ Np�1kpN = Np�1kp ✓ K/N , k 2 K, p 2 P.

Now define
� : P/N ! P/K

by
�(Nx) = Kx.

We have
N ✓ K

by assumption, so
KN ✓ K

furthermore
K ✓ KN ✓ K

so
KN = K

� is well defined since if we take p, q 2 P with Np = N q, then

Np = N q )

KNp = KN q )

Kp = Kq.

The above defined � is a strong polygroup homomorphism since

�(N ) = K

and for p, q ✓ P
�(NpN q) = �(Npq)

since N is normal, and by the definition of � we get

�(Npq) = Kpq

on the other hand
�(Np)�(N q) = KpKq

since K is normal we have
KpKq = KKpq

and
KKpq = Kpq

since K is a polygroup.
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Now � is surjective by construction and ker� = K/N since if we take

a ✓ ker� a = Np, p ✓ P

then
�(a) = �(Np) = Kp = K

therefore p ✓ K and then Np ✓ K/N so we have

ker� ✓ K/N .

To see that K/N ✓ ker� take k ✓ K so Nk ✓ K/N . Then

�(Nk) = Kk = K

therefore
K/N = ker�

as required.

3 Chromatic polygroups

This nice application comes from Comer and Davvaz.

Chromatic polygroups are obtained from a special edge coloured complete graph
by making a multivalued algebra out of the set of coulours, something which is
called colour scheme.

3.1 Colour schemes

We start by defining what a color scheme is.

Definition 16. Suppose that we have a set of colours C and that ✏ is an invo-
lution of C.
A color scheme is a system V =< V,C

x

>
x2C. We will think about V as a set

of vertices and C
x

is a set of edges (coloured the same) in a directed full graph.
V admits the following:

1. {C
x

| x 2 C} partitions V 2 = {(a, b) | a, b 2 V, a 6= b}

2. C⌃
x

= C
✏(x), for all x 2 C, where ⌃ denotes the inverse of a relation

3. for all x 2 C, a 2 V there exists b 2 V such that (a, b) 2 C
x

4. C
x

\ (C
y

! C
z

) 6= ; implies C
x

✓ C
y

! C
z

, that is the existence of a
path coloured (y, z) between two vertices joined by an edge coloured x is
independent of the two verices, here ! denotes the composition of two
relations
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Let us look a bit closer at these axioms and translate them into terms of directed
graphs. The first one means that we have a full directed graph. The second
means that edges are ”paired” with their inverses, that is the colour of an edge
in one direction depends on the colour of the edge in the other direction. The
third translates to the fact that at each node we have at least one outgoing
edge of each colour. The last one means that whenever we have a path colored
x between two vertices and further there is a path coloured (y, z) between the
same two vertices, then whenever we find another edge coloured x between two
other vertices we also have a (y, z) colored path as well between them.
Given a colour scheme V choose a new symbol I /2 C, then the colour algebra
of V is the system MV =< C [ {I}, ⇤, I,�1 >, where ()�1 = ✏(x) for x 2 C.
Furthermore I�1 = I,

x ⇤ I = I ⇤ x = x, 8x 2 C [ {I}

and for x, y, z 2 C

x ⇤ y = {z 2 C | C
z

✓ C
x

! C
y

} [ {I | y = x�1.}

Our next goal is to show that MV is a polygroup. We have to verify the
conditions of Definition 9. We can readily identify I as the unit element. For
associativity we have to show that

a ⇤ (b ⇤ c) = (a ⇤ b) ⇤ c 8a, b, c 2 C.

On the left hand side we have

b ⇤ c = {q 2 C | C
p

✓ C
b

! C
c

} [ {I | c = b�1}

that is all two vertices having a path coloured (b, c) between them also have a
path colored q.

b

c

q

We evaluate a ⇤ q which will give an edge coloured r between all nodes already
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connected by a (a, q) path

b

c

q

a

r

Looking at the right hand side we get

a ⇤ b = {p 2 C | Cp ✓ C
a

! C
b

} \ {I | a = b�1}

ba

p

multiplying these p coloured edges with c gives rise to r

ba

p

cr

from the graphs it is obvious that the operation is associative. In terms or
relations we have that a path coloured a, say between nodes A and B means
that A is ”related” to B, that is ARB. Further let B be related to C (by an
egde coloured b), so BRC. Then

ARB ⇤BRC = ARC.

Then associativity translates to (let A,B,C,D be vertices of a directed full
graph)

(ARB ⇤BRC) ⇤ CRD = ARB ⇤ (BRC ⇤ CRD)
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which obviously holds. Now the last axiom we have to check is the reversibility
property. We have

x ✓ y ⇤ z ) y ✓ x ⇤ z�1 and z ✓ x�1 ⇤ y

Let us draw some graphs. Say, y goes between A and B, x is the colour of the
edge beteween B and C and finally z between A and C. We also have edges
x�1, y�1, z�1 by definition. If we look at the triangle these vertices make up we
get

B

CA

x

z

y

x�1

z�1

y�1

from which the above assertion follows.
In terms of relations this translates to

ARC ✓ ARB ⇤BRC )

ARB ✓ ARC ⇤ CRB and BRC ✓ BRA ⇤ARC.

Which again holds clearly. And we are done. A polygroup is chromatic if it is
isomorphic to some MV . As concrete examples let us extract a polygroup from
some colour schemes.

Example 9. The simplest we can draw is

with red arrows pointing in all possible directions. This actually gives rise to P1

from our very first example of polygroups.

To give bit more complicated example we can try with four vertices and two
colours and get
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Example 10.

reading o↵ from the graph we have (we will use b for a blue edge and r for a red
one)

b ⇤ b = {I, r}

r ⇤ r = I

b ⇤ r = r ⇤ b = b

⇤ I r b
I I r b
r r I b
b b b {I, r}
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