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Abstract

We define a function which takes a polynomial with coefficients
from the integers modulo a prime number and sends it to an-
other polynomial with coefficients from the integers modulo the
same prime number. Our main focus is to find the inverse to
the function. We will see that the function is linear and so we
can represent it as a matrix. Our problem then becomes to
find the inverse to the matrix representation. We then start
to study, and investigate, the fixed points but also how many
times we have to apply the function to an element until we can
be certain that we are back at the same element we started at.
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1 Introduction
Throughout this paper, we will assume p is a prime. Let
An = {f ∈ Zn[x], deg f < n} and define a function

ϕp : Ap → Ap

f(x) 7→
∑

a∈Zp

f(a)xa.

We are interested in studying this function when p is a general prime
number. To do so we will see that the function is linear and, hence,
we can convert this into a linear algebra problem. Due to this, we
can represent ϕp as a matrix and the polynomials as vectors. Then
we can use standard methods from linear algebra to get information
about our initial problem.

A main question we will examine in this paper is to find the inverse
of ϕp (call it Mp). But we will also take a look at another problem.

A description of this problem is as follows. We will start by applying
ϕp to a polynomial f , this will give us another polynomial f1. Apply
ϕp to f1 to get another polynomial f2. We will see that, eventually,
we will come back to the same polynomial we started at. This is due
to invertibility of ϕp and that the set Ap is finite.

A simple example is when p = 2. Take f(x) = 1 + x ∈ A2 and
apply ϕ2 on f . This gives us

ϕ2(f(x)) = f(0)x0 + f(1)x1 = 1 + 0x = 1.

If we now apply ϕ2 on 1, we see that we end up at f(x), which is
where we started. Thus, we see there is a "connection" between 1 and
1 + x under this function. Both 0 ∈ A2 and x ∈ A2 stays fixed since
ϕ2(0) = 0 and ϕ2(x) = x. Since there are only four elements in A2,
there are no polynomials left.
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We want to understand the behaviour of this function when we apply
this algorithm in general. We will take a look at how many times we
have to apply ϕp until we can be certain that we are back to the same
polynomial we started at, no matter which polynomial we started
from. We will also investigate the eigenvalues and eigenvectors corre-
sponding to the matrix representation of ϕp, which we define by Mp.
We will see that 1 is an eigenvalue to Mp, and we want to answer
what the corresponding eigenspace will look like. This is the same
as asking, which polynomials satisfies ϕp(f) = f? To gain intuition
and in the hope to see patterns, I have done some programming in
Mathematica for some specific values for p.

Finally, the definition of ϕp was suggested by Mats Boij as a vari-
ation of a similar iteration process due to Samuel Lundqvist.

2 Representing ϕp as a matrix
We will in this section transform ϕp into a matrix. But first, let us
prove the linearity.

Theorem 1. Let n be any natural number. Then the function ϕn is
linear.

Proof: Let f(x) = a0x0 + a1x1 + ... + an−1xn−1 and g(x) = b0x0 +
b1x+ ...+ bn−1xn−1. We have to show that

(1) ϕp(f) + ϕp(g) = ϕp(f + g)

(2) ϕp(cf) = cϕp(f) where c ∈ Zn.
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(1)

ϕp(f(x)) + ϕp(g(x))
= ϕp(a0x

0 + a1x
1 + ...+ an−1x

n−1) + ϕp(b0x
0 + b1x+ ...+ bn−1x

n−1)
=
∑

a∈Zn

((a0a
0 + a1a

1 + ...+ an−1a
n−1)xa + (b0a

0 + b1a+ ...+ bn−1a
n−1)xa)

=
∑

a∈Zn

((a0a
0 + a1a

1 + ...+ an−1a
n−1) + (b0a

0 + b1a+ ...+ bn−1a
n−1))xa

=
∑

a∈Zn

(((a0 + b0)a0 + (a1 + b1)a1 + ...+ (an−1 + bn−1)an−1))xa

= ϕp(f + g).

(2)

cϕp(f)
= c

∑

a∈Zn

(a0a
0 + a1a

1 + ..+ an−1a
n−1)xa

=
∑

a∈Zn

c(a0a
0 + a1a

1 + ..+ an−1a
n−1)xa

= ϕp(cf).

We now have the following result.

Theorem 2.
With respect to the standard basis {1, x, . . . , xp−1}, the map ϕp is
given by the matrix

Mp =




1 0 0 · · · 0
1 1 1 · · · 1
1 21 22 · · · 2p−1

1 31 32 · · · 3p−1

...
...

... · · · ...
1 (p− 1)1 (p− 1)2 · · · (p− 1)p−1




.
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Proof: Let f(x) = a0x0 + a1x1 + · · · ap−1xp−1. We have that f(0) =
a0, f(1) = a010 +a111 + · · ·+ap−111,.., f(p−1) = a0(p−1)0 +a1(p−
1)11 + · · · ap−1(p− 1)p−1. It gives us, directly, the matrix




1 0 0 · · · 0
1 1 1 · · · 1
1 21 22 · · · 2p−1

1 31 32 · · · 3p−1

...
...

... · · · ...
1 (p− 1)1 (p− 1)2 · · · (p− 1)p−1




.

We will soon move on to our first example. But first, let us state a
definition.

Definition 1.
Let v and w be elements in Zp

p. We say that v and w belongs to the
same cycle whenever there exists an i such that M i

pv = w.

A difficult problem is to classify the cycles that arises. The following
example shows the computation of the cycles when p = 3, using M3.

Example 1.
Let p = 3. Then

M3 =




1 0 0
10 11 12

20 21 22


 =




1 0 0
1 1 1
1 2 1


 .

Every polynomial will now be represented as a vector of size 3. For
example, the polynomial f(x) = 1 + x will be represented by

v0 :=




1
1
0


 ,
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since the constant coefficient is 1, the coefficient in front of x equals
1 and the coefficient in front of x2 is 0.

If we now apply M3 repeatedly, where the starting vector is v0, we
see that

v1 := M3 ·




1
1
0


 =




1
2
0




v2 := M3 ·




1
2
0


 =




1
0
2




v3 := M3 ·




1
0
2


 =




1
0
0




v4 := M3 ·




1
0
0


 =




1
1
1




v5 := M3 ·




1
1
1


 =




1
0
1




v6 := M3 ·




1
0
1


 =




1
2
2




v7 := M3 ·




1
2
2


 =




1
2
1




v8 = M3 ·




1
2
1


 =




1
1
0


 .
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Thus v8 = v0, so the cycle consists of 8 elements. Namely v0, v1, .., v7.

Another cycle with 8 elements is given by

v′i := 2vi.

This gives us the list of vectors

v′0 =




2
2
0


 , v′1 =




2
1
0


 , v′2 =




2
0
1


 , v′3 =




2
0
0




v′4 =




2
2
2


 , v′5 =




2
0
2


 , v′6 =




2
1
1


 , v′7 =




2
1
2


 .

Let us now choose

v′′0 =




0
1
0


 .

This also gives us a cycle consisting of 8 elements. After applying M3
we see that the cycle consists of the elements

v′′0 =




0
1
0


 , v′′1 =




0
1
2


 , v′′2 =




0
0
1


 , v′′3 =




0
1
1




v′′4 =




0
2
0


 , v′′5 =




0
2
1


 , v′′6 =




0
0
2


 , v′′7 =




0
2
2


 .

Since there are 33 = 27 different vectors and we already have 3·8 = 24
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of them in any of the three cycles there are only 3 vectors left. But
the first component in our vector stays fixed under the transformation.

Fix the first component. Then there are 32 = 9 vectors we can get
from it. This mean that we must have one vector with the first com-
ponent equals 0, one with the first component equals 1 and one with
the first component equals 2 left. These vectors are

v :=




0
0
0


 , u :=




1
1
2


 , w :=




2
2
1


 .

Hence, we must have that M3v = v, M3u = u and M3w = w. That
is cycles with only 1 element.

An interesting property this matrix has is that it is invertible. This
can be seen by computing the determinant and using that the Van-
dermonde matrix is invertible. In the next section we will determine
the inverse of Mp.

3 Inverse of ϕp

Our problem is to find a matrix

M−1
p =




m′11 m′12 m′13 · · · m′1(p−2) m′1(p−1)
m′21 m′22 m′23 · · · m′2(p−2) m′2(p−1)
...

...
... . . . ...

...
m′(p−2)1 m′(p−2)2 m′(p−2)3 · · · m′(p−2)(p−2) m′(p−2)(p−1)
m′(p−1)1 m′(p−1)2 m′(p−1)3 · · · m′(p−1)(p−2) m′(p−1)(p−1)




such that MpM
−1
p = M−1

p Mp = Ip (where Ip denotes the identity
matrix of size p).

We will begin by stating an existence lemma. This lemma ensures
us that Mp is invertible.
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Lemma 1. Assume a1 6= 0 and let

Mp =




a1 0 · · · 0
a2
... Vp
an




where Vp is invertible, then Mp is invertible.

Proof. Since a1 6= 0 we can use that row to eliminate a2, .., an.



a1 0 · · · 0
0
... Vp
0



.

Now, the first row is clearly not a linear combination of any of the
other rows, since Vp is invertible, the conclusion follows.

3.1 Defining Vandermonde matrix and investigate some
properties

A well-known type of matrix is the Vandermonde matrix. There are
well-known facts about these types of matrices. One is that there
exist a formula for the inverse matrix.

Definition 2. A Vandermonde matrix of order n is a square matrix
of the form

Vn =




x1 x2
1 · · · xn

1
x2 x2

2 · · · xn
2

...
... . . . ...

xn x2
n · · · xn

n



.

We define our Vandermonde matrix Vp to be the (p − 1) × (p − 1)
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matrix defined by

Vp =




1 12 13 · · · 1p−2 1p−1

2 22 23 · · · 2p−2 2p−1

...
...

... . . . ...
...

(p− 1) (p− 1)2 (p− 1)3 · · · (p− 1)p−2 (p− 1)p−1



.

Our goal is to compute the inverse of Vp. We are now ready to present
the general formula for the inverse of a Vandermonde matrix.

Theorem 3. Let Vn be a Vandermonde matrix of order n. Then its
inverse V −1

n = [v]n can be specified as

vji =





(−1)j−1




∑

1≤m1 <... < mn−j ≤n
m1,...,mn−j 6=i

xm1 · · ·xmn−j

xi

∏

1≤m≤n
m 6=i

(xm − xi)




: 1 ≤ j < n

1
xi

∏

1≤m≤n
m 6=i

(xi − xm)
: j = n

Proof: Result can be found in [1].

In our case xm = m and n = p − 1. We will see that for Vp, we will
arrive at a simpler expression than the form of Theorem 3. To do so,
we will start by proving the following useful lemma:

Lemma 2.
Let p be a prime number, then

i
∏

1≤m≤p−1
m6=i

(m− i) = 1 ∀i : 1 ≤ i ≤ p− 1. (1)
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Proof: First, notice that p = 0 ∈ Zp and therefore 1p = 2p = 3p =
... = (p − 1)p = 0. This implies that p − i = ip − i. In the first
step below we will use Wilson’s Theorem. Since p is a prime, we have
(p− 1)! = (p− 1)(p− 2)! = p− 1. Hence (p− 2)! = 1.

1 = (p− 2)! = (p− 2)(p− 3) · · · (p− i) · · · 1 = (p− 2)(p− 3) · · · (ip−
i) · · · 1 = i

[
(p − 2)(p − 3) · · · (p − (i + 1))(p − 1)(p − (i − 1)) · · · 1

]
=

i
[
(−2)(−3) · · · (−(i + 1))(−(i − 1)) · · · 1

]
= i

[
(−2)(−3) · · · ((p − 1) −

i)(1 − i) · · · ((i + 2) − i)((i + 1) − i)
]

= i
[
(1 − i)(2 − i) · · · ((i − 1) −

i)((i+ 1)− i)((i+ 2)− i) · · · ((p− 1)− i)
]

= i
∏

1≤m≤p−1
m 6=i

(m− i).

A corollary is the following

Corollary 1.

1
i

∏

1≤m≤ p−1
m 6=i

(i−m)
= p− 1 ∀i : 1 ≤ i ≤ p− 1.

Proof: Consider ∏

1≤m≤ p−1
m 6=i

(i−m) .

Since m 6= i, there are p− 1− 1 = p− 2 different m’s. This is an odd
number. This gives us

(−1)p−2 ∏

1≤m≤ p−1
m 6=i

(m− i) = −
∏

1≤m≤ p−1
m 6=i

(m− i) .
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By the previous lemma we have

i
∏

1≤m≤p−1
m6=i

(m− i) = 1.

So
1

i
∏

1≤m≤ p−1
m 6=i

(i−m)
= 1
−1 = 1

p− 1 .

But (p− 1)−1 = p− 1. So

1
i

∏

1≤m≤ p−1
m 6=i

(i−m)
= p− 1.

Hence, we are left with

vji =





(−1)j−1




∑

1≤m1 <... < m(p−1)−j ≤ p−1
m1,...,m(p−1)−j 6=i

m1 · · ·m(p−1)−j

1




: 1 ≤ j < p− 1

p− 1 : j = p− 1

The next step is to simplify the sum
∑

1≤m1 <... < m(p−1)−j ≤ p−1
m1,...,m(p−1)−j 6=i

m1 · · ·m(p−1)−j

in the inverse formula.
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Lemma 3.
Let p be a prime number, then

xp−1 − 1
x− i = xp−2+i−(p−2)xp−3+· · ·+i−2x1+i−1x0 for all i ∈ Zp. (2)

Proof: We have that

xp−1 − 1
x− i = xp−2 + ap−3x

p−3 + · · ·+ a1x+ a0.

Multiplying both sides by x− i gives us

xp−1−1 = xp−1+ap−3x
p−2+· · ·+a1x

2+a0x−ixp−2−iap−3x
p−3+· · ·−ia1x−ia0.

If this equality should hold, we need to have the coefficients of xp−1

to be equal each other, the coefficients of xp−2 to be equal each other
all the way down to x0. This leaves us with a system of equation to
solve 




−a0 = −1⇔ a0 = i−1

a0 − ia1 = 0⇔ a1 = i−2

a1 − ia2 = 0⇔ a2 = i−3

...
ap−4 − iap−3 = 0⇔ ap−3 = i−(p−2).

ap−3 should also satisfy the equation (ap−3 − i)xp−2 = 0xp−2. But
it is true since ap−3 − i = 0 ⇔ ap−3 = i. But ap−3 = i−(p−2). So
i−(p−2) = i since, if we multiply both sides by i−1, we get i−(p−1) = 1.
We can now conclude that

xp−1 − 1
x− i = xp−2 + i−(p−2)xp−3 + · · ·+ i−2x+ i−1.
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The previous result can now be used to prove that
∑

1≤m1 <... < m(p−1)−j ≤ p−1
m1,...,m(p−1)−j 6=i

m1 · · ·m(p−1)−j

has the following form.

Lemma 4.
Let p be a prime number. Then

∑

1≤m1 <... < m(p−1)−j ≤(p−1)
m1,...,m(p−1)−j 6=i

m1 · · ·m(p−1)−j = (−1)ji−j .

Proof: We have that

xp−1 − 1
x− i = (x− 1)(x− 2) · · · (x− (i− 1))(x− (i+ 1)) · · · (x− (p− 1)).

It equals to xp−2 + i−(p−2)xp−3 + · · ·+ i−2x+ i−1 by Lemma 3. Now

xp−2 + i−(p−2)xp−3 + · · ·+ i−2x+ i−1

= (x− 1)(x− 2) · · · (x− (i− 1))(x− (i+ 1)) · · · (x− (p− 1)).

If we now carry out the multiplication of the right hand side we get
xp−2 − (1 + 2 + 3 + · · ·+ (p− 1))xp−3 + · · ·+ (1 · 2 · · · (p− 1)).

So we now have

xp−2 + i−(p−2)xp−3 + · · ·+ i−2x+ i−1 =
xp−2 − (1 + 2 + · · ·+ (i− 1) + (i+ 1) + · · ·+ p− 1)xp−3

+ · · · − 1 · 2 · · · (i− 1)(i+ 1) · · · (p− 1).

This tells us exactly that i−(p−2) = −(1 + 2 + 3 · · · + (p − 1)),..,
i−2 = 1 · · · (i− 1)(i+ 1) · · · (p− 2) + ...+ 2 · · · (i− 1)(i+ 1) · · · (p− 1)
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and
i−1 = −1 · · · (i− 1)(i+ 1) · · · (p− 1). This sum is alternating between
− and +. It is − when j is odd and + when j is even. Hence,

∑

1≤m1 <... < m(p−1)−j ≤ p−1
m1,...,m(p−1)−j 6=i

m1 · · ·m(p−1)−j = (−1)ji−j .

So we have now reduced the formula

vji = (−1)j+1(−1)ji−j = −i−j .

This is the inverse of Vp.

Theorem 4.

Let

Vp =




1 1 · · · 1
21 22 · · · 2p−1

31 32 · · · 3p−1

...
... · · · ...

(p− 1)1 (p− 1)2 · · · (p− 1)p−1




then

V −1
p =




−1−1 −2−1 · · · −(p− 1)−1

−1−2 −2−2 · · · −(p− 1)−2

...
... · · · ...

−1−(p−2) −2−(p−2) · · · −(p− 1)−(p−2)

−1−(p−1) −2−(p−1) · · · −(p− 1)−(p−1)



.

Proof: Follows from the formula we just derived. So vji = −i−j .

Here is an alternative proof of the inverse of the Vandermonde matrix
Vp:
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Proof: We are going to show that
VpV

−1
p = Ip−1.

To see that the diagonal consists of 1’s; Pick an arbitrary row, call it
i, from Vp and pick column i of V −1

p−1. Then we will have

−
p−1∑

k=0
ik−k = −

p−1∑

k=0
1 = −(p− 1) = 1.

Consider now row i, column j (where i 6= j). This gives us
i1j−1 +i2j−2 + ...+ip−1j−(p−1) = (i1j−1)1 +(i1j−1)2 + ...+(i1j−1)p−1.

Since the inverse is unique, and i 6= j, i1j−1 6= 1. Hence, we can apply
Lemma 3, which shows that the sum equals 0. So VpV

−1
p = Ip−1.

We are soon ready to present the inverse to Mp. But before we do
that, we will present another lemma which will come in handy.
Lemma 5. If p− 1 6 |k then 1k + 2k + · · ·+ (p− 1)k = 0.
Proof: Proof is given in [2].

Theorem 5.

M−1
p =




1 0 0 · · · 0
0 −1−1 −2−1 · · · −(p− 1)−1

0 −1−2 −2−2 · · · −(p− 1)−2

...
...

... · · · ...
0 −1−(p−2) −2−(p−2) · · · −(p− 1)−(p−2)

p− 1 −1−(p−1) −2−(p−1) · · · −(p− 1)−(p−1)




.

Proof: Let

N−1
p =




m11 m12 m13 · · · m1(p−1)
m21 −1−1 −2−1 · · · −(p− 1)−1

m31 −1−2 −2−2 · · · −(p− 1)−2

...
...

... · · · ...
m(p−2)1 −1−(p−2) −2−(p−2) · · · −(p− 1)−(p−1)

m(p−1)1 −1−(p−1) −2−(p−1) · · · −(p− 1)−(p−1)




.
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Hence, we have to find the first row and first column. If all the el-
ements in the first row, except the first one, should equal 0 then we
must have m12 = m13 = ... = m1(p−1) = 0. This can be seen since
the first row of Mp is (1 0 0 · · · 0). Multiplying this row with any of
p− 2 last column gives us m1j + 0 + 0...+ 0 = 0⇔ m1j = 0.

Multiplying all the rows of Mp with the first column of N−1
p gives

us 



m11 = 1
m11 + 11m21 + ...+ 1p−1m(p−1)1 = 0
m11 + 21m21 + ...+ 2p−1m(p−1)1 = 0

...
m11 + (p− 1)1m21 + ...+ (p− 1)p−1m(p−1)1 = 0.

Sincem11 = 1 and Vandermonde matrices are invertible, we have that



1
1
...
1




+ Vp




m21
m31
...

m(p−1)1




= ~0

⇐⇒




m21
m31
...

m(p−1)1




= V −1
p




−1
−1
...
−1



.

Hence, we want to compute



−1−1 −2−1 · · · −(p− 1)−1

−1−2 −2−2 · · · −(p− 1)−2

...
... · · · ...

−1−(p−2) −2−(p−2) · · · −(p− 1)−(p−1)

−1−(p−1) −2−(p−1) · · · −(p− 1)−(p−1)







−1
−1
...
−1



.

Choose row k of V −1
p , where k is not the last row, and multiply it
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with the vector. This gives us

1−k + 2−k + · · ·+ (p− 1)−k.

Let k′ = −k. Then we have

1k′ + 2k′ + · · ·+ (p− 1)k′ .

Since k is not the last row, we have that k′ < p−1 and hence p−1 6 |k′
which means that the hypothesis in Lemma 5 is satisfied. This means
that m21 = m31 = · · · = m(p−2)1 = 0. For the last element we have

1−(p−1)+2−(p−1)+· · ·+(p−1)−(p−1) = 1+1+1+· · ·+1 = (p−1)·1 = p−1.

Hence the last element is p − 1 by Fermat’s little theorem. We can
now conclude the inverse is given by

M−1
p =




1 0 0 · · · 0
0 −1−1 −2−1 · · · −(p− 1)−1

0 −1−2 −2−2 · · · −(p− 1)−2

...
...

... · · · ...
0 −1−(p−2) −2−(p−2) · · · −(p− 1)−(p−2)

p− 1 −1−(p−1) −2−(p−1) · · · −(p− 1)−(p−1)




.

We would like not to have inverses inside the inverse matrix, e.g el-
ements such as −2−1 and −3−(p−3), so we will apply the following
lemma.
Lemma 6. If 0 6= a ∈ Zp then ap−i−1 = a−i.
Proof: Let a ∈ Zp where a 6= 0. We now have

ap−i−1 = a−i ⇔
ai · ap−i−1 = 1⇔
ai+p−i−1 = 1⇔

ap−1 = 1.

(3)
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where the last equality is true by Fermat’s little theorem. Since all of
the expressions are equivalent, we can conclude that ap−i−1 = a−i.

Corollary 2.
Let p be a prime. The inverse to Mp is given by

M−1
p =




1 0 0 · · · 0
0 −1p−2 −2p−2 · · · −(p− 1)p−2

0 −1p−3 −2p−3 · · · −(p− 1)p−3

...
...

... · · · ...
0 −11 −21 · · · −(p− 1)1

p− 1 p− 1 p− 1 · · · p− 1




.

Here is an example how the inverse can be used to go backward in
the cycles.

Exempel 2.

We will now go back to Example 1. Then we have

M−1
3 =




1 0 0
0 −11 −21

2 2 2


 =




1 0 0
0 2 1
2 2 2




Now, consider the element v7 from Example 1. If we now do the same
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kind of iteration as we did in the previous example, we see that

M−1
3




1
2
1


 =




1
2
2


 = v6

M−1
3




1
2
2


 =




1
0
1


 = v5

M−1
3




1
0
1


 =




1
1
1


 = v4

M−1
3




1
1
1


 =




1
0
0


 = v3

M−1
3




1
0
0


 =




1
0
2


 = v2

M−1
3




1
0
2


 =




1
2
0


 = v1

M−1
3




1
2
0


 =




1
1
0


 = v0.

This shows us that if we apply M−1
3 on the vectors, compare to Ex-

ample 1, we have a rule that makes it possible to see which element
is the previous element in a cycle. We end this example by applying
M−1

3 on the remaining vectors.
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Choose v′7 from Example 1, then

M−1
3 v′7 = v′6

M−1
3 v′6 = v′5

M−1
3 v′5 = v′4

M−1
3 v′4 = v′3

M−1
3 v′3 = v′2

M−1
3 v′2 = v′1

M−1
3 v′1 = v′0.

and we can also see, by doing the same computation for the third
8-cycle with starting vector v′′7 , that

M−1
3 v′′7 = v′′6

M−1
3 v′′6 = v′′5

M−1
3 v′′5 = v′′4

M−1
3 v′′4 = v′′3

M−1
3 v′′3 = v′′2

M−1
3 v′′2 = v′′1

M−1
3 v′′1 = v′′0 .

By applying M−1
3 to the vectors belonging to cycles with only 1 ele-

ments clearly gives us back the same vector. This is because

M−1
p v = v ⇐⇒ v = M−1

p v.

4 Eigenvalues and Eigenvectors
Take a polynomial f ∈ Ap, apply ϕp on f to get a new polynomial f1;
ϕp(f) = f1. Do the same on f1 to get ϕp ◦ϕp(f) = ϕp(f1) = f2. How
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many times do we have to apply ϕp before we end up at the same
polynomial, f , again? To investigate this problem we will define what
we mean by the order of ϕp.

Definition 3. The order of ϕp is the least i such that

ϕi
p = id ⇐⇒ M i

p = Ip.

We will now walk through an example where we find the order ofM3.
This will show us that we could never have gotten any larger cycle
than the 8-cycles we got in Example 1.

Example 3.

Consider M3. Then

M
(2)
3 =




1 0 0
1 1 1
1 2 1


 ·




1 0 0
1 1 1
1 2 1


 =




1 0 0
0 0 2
1 1 0




M
(3)
3 =




1 0 0
1 1 1
1 2 1


 ·




1 0 0
0 0 2
1 1 0


 =




1 0 0
2 1 2
2 1 1




M
(4)
3 =




1 0 0
1 1 1
1 2 1


 ·




1 0 0
2 1 2
2 1 1


 =




1 0 0
2 2 0
1 0 2




M
(5)
3 =




1 0 0
1 1 1
1 2 1


 ·




1 0 0
2 2 0
1 0 2


 =




1 0 0
1 2 2
0 1 2




M
(6)
3 =




1 0 0
1 1 1
1 2 1


 ·




1 0 0
1 2 2
0 1 2


 =




1 0 0
2 0 1
0 2 0
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M
(7)
3 =




1 0 0
1 1 1
1 2 1


 ·




1 0 0
2 0 1
0 2 0


 =




1 0 0
0 2 1
2 2 2




M
(8)
3 =




1 0 0
1 1 1
1 2 1


 ·




1 0 0
0 2 1
2 2 2


 =




1 0 0
0 1 0
0 0 1


 .

By definition, the order is 8.

We will now prove that λ = 1 is always an eigenvalue.

Proposition 1. Let p be a prime, then 1 is an eigenvalue to Mp.

Proof: Let λ ∈ Zp. Now;

|M − λI| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− λ 0 0 · · · 0
1 1− λ 1 · · · 1
1 21 22 − λ · · · 2p−1

1 31 32 · · · 3p−1

...
...

... · · · ...
1 (p− 1)1 (p− 1)2 · · · (p− 1)p−1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (1− λ)

∣∣∣∣∣∣∣∣∣∣∣∣

1− λ 1 · · · 1
21 22 − λ · · · 2p−1

31 32 · · · 3p−1

...
... · · · ...

(p− 1)1 (p− 1)2 · · · (p− 1)p−1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

From the first factor we find that 1− λ = 0 ⇐⇒ λ = 1. Hence 1 is
always an eigenvalue.

That 1 is an eigenvalue is the same as saying that if we apply Mp to
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a vector we fix that vector. Here is an example where we use eigen-
vectors to classify some of the cycles in M5.

Example 4.
Consider

M5 =




1 0 0 0 0
1 1 1 1 1
1 2 4 3 1
1 3 4 2 1
1 4 1 4 1



.

We want to find vectors v satisfying

M5v = λv ⇐⇒ M5v − λv = 0 ⇐⇒ (M5 − λI5)v = 0.

Let
M∗5 (λ) = M5 − λI5.

To find the eigenvalues we will compute the characteristic polynomial

|M∗5 (λ)| = (λ+ 1)(λ+ 4)(λ3 + λ2 + 4λ+ 3) = 0.

The solutions to this equation is given by λ = 4 and λ = 1. We now
want to solve

M∗5 (4)v = 0.

Reduction of M∗5 (4) gives us a parametrization

x1 = 0
x2 = 4t
x3 = 4t
x4 = 2t
x5 := t.
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Thus, the eigenspace corresponding to the eigenvalue 4 is spanned by

v =




0
4
4
2
1



.

v belongs to a cycle with length 2, since 4 = 22 and

M5M5v = M522v = 22M5v = 22 · 22v = 24v = v.

Where the last equality is due to Fermat’s little theorem.

We now want to find the eigenvectors for λ = 1,

M∗5 (1)v = 0.

By reducing M∗5 (1) we find the parametrization

x′1 = 3s
x′2 = 4s
x′3 = s

x′4 = 0
x′5 := s.

And from this we find that the eigenspace corresponding to the eigen-
value 1 is spanned by

v′ =




3
4
1
0
1



.
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Since this vector, v′, corresponds to the eigenvalue 1, it satisfies

M5v = v.

This example shows us that, for example, the polynomial 3 + 4x +
x2 + x4 stays fixed under ϕ5.

Due to that 1 is an eigenvalue; a problem we are interested inves-
tigating is to find the eigenspace




1 0 0 · · · 0
1 1 1 · · · 1
1 21 22 · · · 2p−1

1 31 32 · · · 3p−1

...
...

... · · · ...
1 (p− 1)1 (p− 1)2 · · · (p− 1)p−1







a0
a1
a2
...

ap−1




=




a0
a1
a2
...

ap−1



.

Here is a theorem which tells us how a1 relates to ap−1.
Theorem 6. If




1 0 0 · · · 0
1 1 1 · · · 1
1 21 22 · · · 2p−1

1 31 32 · · · 3p−1

...
...

... · · · ...
1 (p− 1)1 (p− 1)2 · · · (p− 1)p−1







a0
a1
a2
...

ap−1




=




a0
a1
a2
...

ap−1




then a1 = −ap−1.
Proof: Consider




1 0 0 · · · 0
1 1 1 · · · 1
1 21 22 · · · 2p−1

1 31 32 · · · 3p−1

...
...

... · · · ...
1 (p− 1)1 (p− 1)2 · · · (p− 1)p−1







a0
a1
a2
...

ap−1




=




a0
a1
a2
...

ap−1



.
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By multiplying the matrix with the vector on the left hand side we
find that

a0 = a0

a0 + a1 + ...+ ap−1 = a1

20a0 + 21a1 + ...+ 2p−1ap−1 = a2
...

(p− 1)0a0 + (p− 1)1a1 + ...+ (p− 1)p−1ap−1 = ap−1.

(4)

Let a0 = 1. Adding all the rows gives us an expression of the form
(∗) (1 + 1...+ 1) + (11 + 21 + ...+ (p− 1)1)a1 + (12 + 22 + ...+ (p−
1)2)a2 + ...+ (1p−1 + 2p−1 + ...+ (p−1)p−1)ap−1 = a1 +a2 + ...+ap−1.
But from the second equation we have that

a1 + a2 + ...+ ap−1 = a1 − 1.

So we can substitute that expression in to the right hand side of (∗)
(1+1...+1)+(11 +21 + ...+ (p−1)1)a1 +(12 +22 + ...+ (p−1)2)a2 +
...+ (1p−1 + 2p−1 + ...+ (p− 1)p−1)ap−1 = a1 − 1.

We can also apply Lemma 5 on all the coefficients for a1, a2, .., ap−2
on the left hand side, since no of them are divisible by p − 1. Hence
they must be 0. So we are now left with (p − 1) + (p − 1)ap−1 =
−1− ap−1 = a1 − 1 ⇐⇒ −ap−1 = a1. Where we have used Fermat’s
little Theorem for ap−1.

5 Experiments
Down below are three tables. The first one shows the order of the
matrix for a particular p and the factorization of the characteristic
polynomial. The second shows the degree of every factor of the char-
acteristic polynomial forMp. The last table present the corresponding
eigenspace for the eigenvalue 1.
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p Order Characteristic polynomial
2 2 (x+ 1)2

3 8 2(x+ 2)(x2 + x+ 2)
5 124 4(x+ 1)(x+ 4)(x3 + x2 + 4x+ 3)
7 1368 6(5 + x)(6 + x)(1 + 3x+ x2)(4 + 2x+ x2 + x3)
11 X 10(10 + x)(1 + x+ x2)(7 + x+ x3)(8 + 4x+ 7x4 + x5)

Table 1
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p Degree of factors
13 1, 12
17 1, 1, 6, 9
19 1, 1, 3, 3, 5, 6
23 1, 3, 7, 12
29 1, 1, 2, 12, 13
31 1, 2, 3, 3, 6, 6, 7
37 1, 1, 1, 2, 13, 19
41 1, 1, 2, 4, 9, 10, 14
43 1, 1, 4, 37
47 1, 1, 2, 5, 6, 6, 26
53 1, 3, 9, 17, 23
59 1, 1, 3, 9, 13, 32
61 1, 1, 10, 15, 34
67 1, 1, 2, 3, 7, 23, 30
71 1, 1, 2, 3, 3, 6, 7, 12, 36
73 1, 2, 7, 63
79 1, 1, 1, 1, 1, 3, 7, 14, 50
83 1, 2, 6, 11, 18, 21, 24
89 1, 1, 16, 27, 44
97 1, 3, 14, 34, 45
101 1, 5, 9, 9, 23, 54
103 1, 1, 1, 4, 14, 23, 28, 31
107 1, 1, 2, 5, 30, 68
109 1, 1, 107
113 1, 1, 3, 4, 5, 99
127 1, 1, 3, 4, 9, 19, 35, 55

Table 2
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p Eigenspace corresponding to 1 generated by
2 (0, 1)
3 (2, 2, 1)
5 (3, 4, 1, 0, 1)
7 (3, 6, 3, 6, 0, 1, 1)
11 (10, 10, 9, 2, 3, 8, 7, 6, 3, 6, 1)

Table 3

By inspecting Table 1, we see that the order of Mp is given by the
sequence 2, 8, 124, 1368, ... I haven’t been able to find any pattern
in this sequence. I have also entered the sequence into the online
encyclopedia of integer sequences [3], but with no positive result.
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6 Appendix/Code
Representation of the matrix
m[p_] := Mod[ I n s e r t [Map[ Prepend [# , 1 ] &,
Table [ x^y , {x , p − 1} , {y , p − 1 } ] ] ,

Prepend [0^Range [ p − 1 ] , 1 ] , 1 ] , p ]

Computing the order of Mp

ComputeOrder [p_] := Block [
m[p_] := Mod[

I n s e r t [Map[ Prepend [# , 1 ] &, Table [ x^y , {x , p − 1} ,
{y , p − 1 } ] ] , Prepend [0^Range [ p − 1 ] , 1 ] , 1 ] , p ]

TMatrix = Mod[ MatrixPower [m[ 1 1 ] , 1 ] , 1 1 ] ;
mp = m[ p ] ;
Idp = Ident i tyMatr ix [ p ] ;
j = 1 ;
While [ TMatrix != Idp , TMatrix = Mod[ TMatrix .mp, p ] ;

Pr int [ j ] ; j++]
]

Computing the order of M11

m[p_] := Mod[
I n s e r t [Map[ Prepend [# , 1 ] &, Table [ x^y , {x , p − 1} ,
{y , p − 1 } ] ] , Prepend [0^Range [ p − 1 ] , 1 ] , 1 ] , p ]

TMatrix = Mod[ MatrixPower [m[ 1 1 ] , 1 ] , 1 1 ] ;
m11 = m[ 1 1 ] ;
Id11 = Ident i tyMatr ix [ 1 1 ] ;
j = 1 ;
While [ TMatrix != Id11 , TMatrix = Mod[ TMatrix .m11 , 1 1 ] ;

Pr int [ j ] ; j++]

Computing eigenvalues to Mp

ModCharacter i s t icPolynomial [p_] :=
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Factor [ PolynomialMod [ Charac t e r i s t i cPo lynomia l [m[ p ] ,
\ [Lambda ] ] , p ] , Modulus −> p ]

Computes eigenvectors, where eigenvalue equals 1, to Mp
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