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Abstract

The remarkable theory of general relativity is fundamental for understanding many
physical properties of our Universe. The theory connects curvature of 4-dimensional
spacetime to gravity. This thesis focuses on the mathematical foundation of curvature,
a property of shapes and geometries. The curvature of shapes in Euclidean geometry,
i.e. shapes in R3, are particularly easy to analyse since R3 has zero curvature.
The generalisation of Euclidean geometry is called Riemannian geometry. Useful
concepts in Riemannian geometry are defined and derived. Then, using differential
forms (multilinear antisymmetric tensor fields), Cartan’s structural equations and the
Riemann curvature tensor, it is shown how to calculate curvature. This is applied to
general relativity and used to illustrate how the existence of gravitational waves can
be predicted in theory. Such a prediction was verified in 2016 with the detection of
gravitational waves from two merging black holes in a galaxy far, far away.

Keywords: Cartan’s structural equations, differential forms, general relativity, gravita-

tional waves, Riemann curvature tensor, Riemann geometry.



I INTRODUCTION

I. Introduction

Since Albert Einstein first introduced his theory of general relativity gravity has
become synonymous with curved spacetime. A popular way to illustrate gravity is to
place a heavy ball on a stretched smooth blanket and roll a marble around the curved

blanket. But the true nature of gravity is far from as intuitive as this illustration suggests.
There is curvature, a concept in geometry and it needs a mathematical approach described
by differential forms. Spacetime can be treated as a four dimensional manifold, three spa-
tial dimensions and one time dimension. General relativity (GR) connects the curvature
of spacetime to matter and energy, and for this one needs an approach founded in physics.

Clearly, the subject of differential forms and GR is not an easy one, so this thesis focuses
on mathematics and not on physics. However, some GR is needed and these parts will
be explained, but not fully derived nor proved, in order for the reader to follow. The
ambition is that those with previous knowledge in elementary differential geometry (in
Rn), the basics of curvature in R3 and with a personal interest in physics will follow with
ease and hopefully build a natural next step in the understanding of curvature and its
application to GR.

The motivation behind this thesis comes from the fact that many courses in GR taught to
physics students appear, at least to the experience of the author, to neglect the existence of
differential forms and work exclusively with classical tensor calculus. As a consequence,
the calculations can become more complex and lengthy than necessary. There are some
beautiful results in differential geometry, for instance Cartan’s structural equations, that
are useful for reducing complexity and should be included in every physicist’s toolbox.

Section II reviews curvature in R3, defining concepts such as ON-basis and intrinsic
curvature in Euclidean geometry. Sections III and IV introduce Riemannian geometry and
generalise many of the concepts of curvature in this setting. The last two sections V and
VI connects curvature in Riemannian geometry to GR, which is used to show how the
existence of gravitational waves can be predicted.

Notational conventions

A list of the notational conventions used throughout the thesis follows here. For a more
detailed background see [Munkres, 1997], [Lee, 2013] and [Dray, 2015] where much of the
inspiration is drawn from.

Convention. Only C∞ manifolds, maps, vector fields and forms are considered unless
anything else is explicitly stated.

Convention. Only finite vector spaces are considered. Hence, the explicit index
notation {·}n

i=1 for sets of coordinates or bases is omitted and simply written {·}.
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I INTRODUCTION

Convention. The Einstein summation convention, where a sum is implied by repeated
indices, is used. Lower-case index letters are used for 1-forms and upper-case letters
for k-forms where k > 1. For example, given coordinates {xi} on a 3-dimensional
space. If {dxi} is a basis for 1-forms then the 1-form α can be expressed as

α = αidxi = α1dx1 + α2dx2 + α3dx3, (1)

where the coefficients αi are 0-forms.

Remark. The theory in this thesis is mostly local in the sense that many concepts are
defined pointwise. This pointwise dependence is not always explicitly written out, but
rather implied or clear from previous definitions.
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II REVIEW OF CURVATURE IN R3

II. Review of curvature in R3

A natural start is to consider flat Euclidean space, Rn. The meaning of flat is of course
ambiguous so far, but this will become clearer later on. Most of the content here will be
defined for Rn, but curvature will only be considered for 1- and 2-dimensional objects
in R3. This section should be familiar to the reader, therefore proofs will be omitted but
referenced instead. Nonetheless, these concepts are good for understanding curvature in
a more abstract setting and worth a review.

Tangent spaces and differential forms in Rn

A full review of tensors and differential forms are not given here, so for a complete
background see either [Munkres, 1997] or [Lee, 2013].

One definition of the tangent space to Rn at a point x0 ∈ Rn is given by

Rn
x0
= {x0} ×Rn = {(x0 ; v) : v ∈ Rn}. (2)

A tangent vector, denoted by either (x0 ; v) or vx0 , is an element of this set. Adding
the operations vx0 + wx0 = (v + w)x0 and c(vx0) = (cv)x0 , where c is a real constant, for
the elements of Rn

x0
makes this into a vector space with the standard basis {ei}1. The

vector part of vx0 can then be written v = vi ei, where vi are scalars. Tangent spaces to
submanifolds in Rn can be considered as subsets of Rn

x0
. An example is the 2-sphere in R3,

where a tangent space is defined as the set of tangent vectors orthogonal to the radial unit
vector through a point on the sphere. This construction is possible since submanifolds
in Euclidean space inherits the dot product, from which orthogonality can be defined.
However, a problem with orthogonality would arise if this definition were to be carried
over to a non-Euclidean manifold where, in lack of a natural inner product, orthogonality
is undefined. Therefore, the idea of a tangent space is developed further.

Definition 1. Consider a point x0 ∈ Rn. A map w : C∞(Rn)→ R which is linear over
R and satisfy the product rule

w( f g) = (w f )g(x0) + f (x0)(wg) (3)

for f , g ∈ C∞(Rn) is a derivation at x0. The set of all such derivations at x0 is denoted
Tx0(R

n).

Under the operations w1 f + w2 f = (w1 + w2) f and c(w) f = (cw) f , Tx0(R
n) is a vector

space. The following proposition binds the two definitions in Rn together.

1The standard basis is the usual basis e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), etc.
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II REVIEW OF CURVATURE IN R3

Proposition 1. For each tangent vector vx0 ∈ Rn
x0

, the directional derivative map
Dv|x0 : C∞(Rn)→ R, given by

Dv|x0 f =
d
dt

∣∣∣∣
t=0

f (x0 + tv) or (4)

Dv|x0 f = vi ∂ f
∂xi (x0) in the standard basis {ei}, (5)

is a derivation at x0. Moreover, the map vx0 7→ Dv|x0 is an isomorphism from Rn
x0

onto
Tx0(R

n).

Due to the above proposition, from here on the tangent space to Rn at x0 refers to Tx0(R
n)

and tangent vectors to elements of this set.

Example 1. The tangent space to the 2-sphere S2 at a point p can be calculated using the
function f which maps from spherical coordinates (θ, φ) to the Cartesian (x, y, z) by

f (θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ), (6)

where θ ∈ (0, 2π) and φ ∈ (0, π). The basis vectors for Tp(S2) are calculated by Dv|p
where vp is taken to be one of the basis vectors θ̂ or φ̂.

vp = θ̂ ⇒ Dv|p f =
∂ f
∂θ

(p) = (− sin θ sin φ, cos θ sin φ, 0)|p (7)

vp = φ̂ ⇒ Dv|p f =
∂ f
∂φ

(p) = (cos θ cos φ, sin θ cos φ,− sin φ)|p. (8)

The tangent space Tp(S2), a plane in R3, is spanned by the above vectors after normalisa-
tion. //

Definition 2. The set of all k-tensors on a vector space V is denoted Lk(V). The
subspace of all alternating k-tensors on V is denoted Ak(V), where k ≥ 0

The concept of differential forms is based on tensor fields and tangent spaces.

Definition 3. Let U be an open set in Rn. A k-tensor field in U is a function η that
for each point x ∈ U assigns a k-tensor defined on the vector space Tx(Rn). That is,
η(x) ∈ Lk(Tx(Rn)) for all x.

If the assigned k-tensor is alternating for each point x ∈ U, η is called a differen-
tial k-form, a k-form or simply a form. So for each point x it follows that
η(x) ∈ Ak(Tx(Rn)) ⊂ Lk(Tx(Rn)) 2.

2In [Lee, 2013], Lk(Tx(Rn)) is referred to the covariant k-tensor field and has a quite different notation. The
rationale behind the notational difference can be found in [Munkres, 1997] p.235.
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II REVIEW OF CURVATURE IN R3

For a general submanifold M in Rn where p ∈ M, the bundle of all differential k-forms
on M is then

Ak(T(M)) =
⋃

p∈M

Ak(Tp(M)). (9)

Definition 4. Let M be a manifold in Rn. The sum of two k-forms of the bundle
Ak(T(M)) is also a k-form, and so is the product of a k-form and a scalar. Thus, under
these two operations Ak(T(M)) is a vector space. Since this vector space is constantly
in use it will be denoted

∧k (M) or
∧k and referred to as the linear space of k-forms on

M.

In order to get a sense for the structure of these spaces let dim(Tp(M)) = n. The
dimension of

∧k (M) |p, at a given point p, is then given by the binomial coefficient,
dim(

∧k (M) |p) = (n
k).

Coordinate basis for differential forms

The simplest case is k = 0.

Definition 5. Let A be an open subset of Rn. A function f : A→ R where f ∈ C∞(Rn)

is a scalar field or a 0-form.

This definition implies that for manifolds in Rn the set
∧0 (M) is the set of all scalar fields

over M.

For k = 1, consider first the tangent space Tx0(R
n). A basis for this space can be defined

by calculating Dei |x0 , i = 1, 2, . . . , n. This gives the coordinate basis { ∂
∂xi |x0} for Tx0(R

n).
For differential forms, the corresponding coordinate basis is the basis dual to { ∂

∂xi |x0}.

Definition 6. Let M be a manifold in Rn and {xi} coordinates on an open subset
U ⊂ M. For each p ∈ U the dual basis to { ∂

∂xi |p} is {dxi|p}, also called a coordinate
basis. The basis elements dxi are called differentials.

Considering that Tp(U) is n-dimensional, the dual basis {dxi|p} must also span
an n-dimensional vector space which is the space of 1-forms at p, i.e.

∧1 (U) |p.

A fundamental theorem in differential geometry defines this differential operator.

Theorem 1. Let M be a manifold in Rn. There exists a unique linear transformation

d :
∧k

(M)→
∧k+1

(M) , (10)

for all k ≥ 0 called the exterior differential. The following properties hold for d:
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II REVIEW OF CURVATURE IN R3

(1) If f is a 0-form, then d f is the 1-form

d f =
∂ f
∂xi dxi. (11)

(2) If α = f dxi1 ∧ . . . ∧ dxik is a k-form, then dα is the k + 1 form

dα = d f ∧ dxi1 ∧ . . . ∧ dxik (12)

(3) If β and γ are k and l forms, then

d(β ∧ γ) = dβ ∧ γ + (−1)kβ ∧ dγ. (13)

(4) For every form α or f
d(dα) = d(d f ) = 0. (14)

The proof can be found in [Munkres, 1997] or [Lee, 2013].

For k > 1, take for example k = 2 and n = 3. Let M be a manifold in R3 and {xi} =
{x1, x2, x3} coordinates on an open subset U ⊂ M. The vector space

∧2 (U) |p has
dimension 3, so the basis must consist of three independent basis elements. It is clear
that for each p ∈ U, the 1-forms {dx1, dx2, dx3}|p span

∧1 (U) |p. Moreover, the wedge
product of two 1-forms α and β is a 2-form α ∧ β. In a coordinate basis,

α ∧ β = αi dxi ∧ β j dxj = αiβ j dxi ∧ dxj. (15)

Since dxi ∧ dxi = 0 and dxi ∧ dxj = −dxj ∧ dxi, a natural choice of a basis for
∧2 (U) |p is

the coordinate basis
{dx1 ∧ dx2, dx1 ∧ dx3, dx2 ∧ dx3}|p. (16)

The more general definition is

Definition 7. Let M be a manifold in Rn and {xi} coordinates on an open subset
U ⊂ M. For each p ∈ U the coordinate basis

{dxi1 ∧ dxi2 ∧ · · · ∧ dxik |p : 1 ≤ i1 < i2 · · · < ik ≤ n} (17)

spans
∧k (U) |p. For k > 1 the notation dxI is used. Capital I denotes the index set

I = (i1, . . . , ik) of length k.

Before the next part, let’s introduce an additional convention.

Convention. The coordinate basis {dxi|p} or {dxI |p} is always pointwise defined.
From here on, this dependence on p is implicit when {dxi}, {dxI} or

∧k (U) are
written.
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II REVIEW OF CURVATURE IN R3

ON-basis for differential forms

For tangent vectors in Tx0(R
n), an orthonormal basis can always be ensured by the dot

product and the Gram-Schmidt theorem ([Holst & Ufnarovski, 2014]), but the same tools
do not work on forms. The construction of an orthonormal basis of forms requires an
inner product that can act on forms, and this inner product is yet to be defined. A good
starting point is the following theorem from [Munkres, 1997].

Theorem 2. Let A be an open set in Rn, f a scalar field in A and

F(x) =
n

∑
i=1

fi(x)ei (18)

a vector field in A. There exist a vector space isomorphism, α, between vector fields in
A and

∧1 (A), given by
α(F) = fi dxi. (19)

Based on this theorem one can identify the standard basis vectors {ei} in Rn with the
coordinate basis {dxi}. Since the former is an orthonormal basis it is reasonable to define
an inner product on 1-forms where {dxi} is an orthonormal basis as well.

Definition 8. A function g :
∧1×∧1 → R which satisfy the inner product properties,

i.e. g is linear, symmetric and non-degenerate (positive definiteness is not a necessary
criteria), and for which

g(dxi, dxj) = ±δij (20)

holds is called an inner product on 1-forms.

Definition 9. An orthonormal basis (ON-basis) for 1-forms is a basis {σi} which is
orthonormal under an inner product on 1-forms.

By definition, {dxi} is both a coordinate basis and an ON-basis for 1-forms. However, the
following example illustrates that this is not always true in other coordinate systems.

Example 2. Consider the spherical coordinates (r, θ, φ). They are related to the Cartesian
coordinates by

r =
√

x2 + y2 + z2, θ = cos−1

(
z√

x2 + y2 + z2

)
, φ = tan−1

(y
x

)
. (21)

The set {dr, dθ, dφ} is a coordinate basis for
∧1 and can be calculated in terms of dxi using
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II REVIEW OF CURVATURE IN R3

Theorem 1.

dr =
1
r
(x dx + y dy + z dz), (22)

dθ =
1
r2

(
xz√

x2 + y2
dx +

yz√
x2 + y2

dy−
√

x2 + y2 dz

)
, (23)

dφ =
1

x2 + y2 (−y dx + x dy). (24)

Normality does not hold and this can be seen using the the fact that {dxi} is an ON-basis
and with linearity of the inner product g, for example

g (dφ, dφ) =
1

(x2 + y2)2 g ((−y dx + x dy), (−y dx + x dy)) =
1

x2 + y2 , (25)

g (dφ, dr) =
1

r(x2 + y2)
g ((−y dx + x dy), (x dx + y dy + z dz)) (26)

=
1

r(x2 + y2)
(−xy g (dx, dx) + xy g (dy, dy)) = 0. (27)

Instead, one can define the ON-basis {dr, r dθ, r sin θ dφ}. An easy check with g verifies
the ON-property. //

An ON-basis for higher order forms can be constructed in a similar manner.

Definition 10. Let {αi}k
i=1, {βi}k

i=1 be 1-forms and consider the k-forms

α1 ∧ · · · ∧ αk and β1 ∧ · · · ∧ βk. (28)

These two k-forms are called decomposable forms and one can show that any non-
decomposable form can be expressed as a linear combination of decomposable forms.
Since an inner product need to be linear, it is enough to define this over decomposable
k-forms. Thus, the function g :

∧k×∧k → R, k > 1, given by the k× k determinant

g(α1 ∧ · · · ∧ αk, β1 ∧ · · · ∧ βk) =

∣∣∣∣∣∣∣∣∣

g(α1, β1) g(α1, β2) · · · g(α1, βk)

g(α2, β1) g(α2, β2) · · · g(α2, βk)
...

...
. . .

...
g(αk, β1) g(αk, β2) · · · g(αk, βk)

∣∣∣∣∣∣∣∣∣
, (29)

is called an inner product on k-forms. Moreover, the inner product of two forms of
different degrees are zero.

Definition 11. An orthonormal basis (ON-basis) for k-forms, where k > 1, is a basis
{σI} which is orthonormal under the inner product on k-forms.
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II REVIEW OF CURVATURE IN R3

Based on the definition of an inner product on 1-forms, one can show that

g(dxI , dx J) = ±δI J , (30)

i.e. the coordinate basis {dxI} is also an ON-basis.

Vector-valued differential forms in Rn

For a manifold M in Rn, a differential k-form at p ∈ M is an alternating k-tensor. An
alternating k-tensor is, in turn, a real-valued function. A generalisation of an alternating
k-tensor is when the function assigned at p is, instead of real-valued, vector-valued.

Definition 12. Let M be a manifold in Rn and E a smooth (i.e. class C∞) vector
bundle3 over M. The linear space of E-valued k-forms is defined as

∧k
(M, E) = E⊗Ak(T(M)). (31)

In this notation, ordinary k-forms are elements of the linear space of R-valued k-forms,∧k (M, R).

Vector-valued forms are also pointwise defined. Essentially, this means that for all p ∈ M
they behave like ordinary forms, but in a local basis that span E|p. The full structure of
these vector bundles are too complex to cover in this thesis. Therefore, assume that a local
basis of E|p always exist, is finite and orthonormal.

Definition 13. Consider a vector-valued k-form β ∈ ∧k (M, E) for a manifold M in
Rn and a vector bundle E. For p ∈ M let {êi|p} denote the local orthonormal basis of
E|p and {σJ} an ON-basis for k-forms. Locally, β can then be written

β = αi êi = αi
J σJ êi, (32)

where αi are k-forms.

Again, the explicit p-dependence for E and {êi} is from here on made implicit.

A geometric introduction to connection forms

In order to proceed with curvature in R3 the concept of a connection 1-form need to be
introduced. This concept relies on exterior differentiation of vector-valued k-forms and
since we do not yet have access to any formal theory about this, only heuristic arguments
are given here. In the two following sections these concepts will be more rigorously
introduced.

3See [Lee, 2013] p.249 for the definition of a vector bundle.
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II REVIEW OF CURVATURE IN R3

To understand why a connection 1-form is needed, consider Euclidean geometry and
more specifically R3. The dot product induces the standard Euclidean norm which in
turn makes R3 a normed vector space. It is possible to define orthonormality and the
standard basis {e1, e2, e3}. The structure is then naturally passed on to any manifold M
in R3.

Due to this structure on M, the space of k-forms,
∧k (M), can be defined as in Definition

4. Moreover, since we’re dealing with differential geometry, it is natural to extend this
structure with a differential operator

d :
∧k

(M)→
∧k+1

(M) , (33)

as in Theorem 1. Now, instead of using
∧k (M), a more general vector space is the space

of vector-valued k-forms, defined as in Definition 12. For example,
∧k (M, R) is the space

of R-valued k-forms (which is equal to
∧k (M)) and

∧k (M, R3) is the space of R3-valued
k-forms, which is a k-form in the standard basis {e1, e2, e3}. Again, it is natural to extend
this structure with a differential operator on vector-valued k-forms, but without any
formal theory this concept can only be investigated heuristically.

Three reasonable assumptions about this differential operator, also denoted by d, are that

d :
∧k (

M, R3)→
∧k+1 (

M, R3) , (34)

it is linear and obeys the product rule. Thus, from Definition 13

dβ = d(αi êi) = dαi êi + (−1)kαi ∧ dêi. (35)

Since d is linear over αi, the first term dαi êi is well defined if the rules for d over ordinary
k-forms coincides with those in Theorem 1, which is also reasonable to assume. Moreover,
the structure of the first term is a vector of k + 1 forms in the basis {êi}. Consequently,
the second term αi ∧ dêi must match this structure. This implies that the objects dêj are
vector-valued 1-forms in the same basis {êi}, i.e.

dêj = ωi
j êi. (36)

The 1-forms ωi
j are called connection 1-forms.

For example, the exterior differential (using the above) of an R3-valued 1-form in the

10



II REVIEW OF CURVATURE IN R3

standard basis is

d(αi ei) = dαi ei + (−1)1αi ∧ dei (37)

= dα1 e1 + dα2 e2 + dα3 e3 −
(

α1 ∧ de1 + α2 ∧ de2 + α3 ∧ de3

)
(38)

= dα1 e1 + dα2 e2 + dα3 e3 −
(

α1 ∧ (ω1
1e1 + ω2

1e2 + ω3
1e3) (39)

+ α2 ∧ (ω1
2e1 + ω2

2e2 + ω3
2e3) + α3 ∧ (ω1

3e1 + ω2
3e2 + ω3

3e3)

)
(40)

=
(

dα1 − α1 ∧ω1
1 − α2 ∧ω1

2 − α3 ∧ω1
3

)
e1 (41)

+
(

dα2 − α1 ∧ω2
1 − α2 ∧ω2

2 − α3 ∧ω2
3

)
e2 (42)

+
(

dα3 − α1 ∧ω3
1 − α2 ∧ω3

2 − α3 ∧ω3
3

)
e3. (43)

The explicit calculations of the connection 1-forms depends on the geometry and addi-
tional work is needed before it is possible to construct these. The geometrical interpretation
is easier to grasp. From (35) and (36) it is clear that the connection 1-forms describe the
infinitesimal change of one basis vector in terms of the basis itself when moving from one
point to another, along a manifold. It gives an explicit and well defined way to connect
the local frame spanned by {êi} from a point p to a close point q. In R3 this frame is
easy to visualise as a cubic "box" spanned by {ê1, ê2, ê3}, see Figure 1 for two examples.
Curvature will force this frame to twist and turn in various ways and this will manifest
itself as non-zero connection 1-forms. The following lemma and examples illustrates this.

Two algorithms for calculating an ON-basis of k-forms and the connection 1-forms in Rn

are given by the following lemma ([O’Neill, 1997]).

Lemma 1. Let {êi} be an orthonormal vector basis in Rn expressed in the standard
Cartesian vector basis

êi = ∑
j

ai
j ej. (44)

The corresponding ON-basis {σi} and the connection 1-forms ωi
j can be calculated in

the following way

σi = ai
j dxj, (45)

ωi
j = ak

j dai
k, (46)

where d is the exterior derivative for ordinary k-forms. Moreover, it holds that

ωi
j = −ω

j
i, (47)

ωi
i = 0. (48)

11



II REVIEW OF CURVATURE IN R3

Example 3. In R3, the geometrical meaning of the connection 1-forms translates to mea-
suring the rate of rotation4 of the frame field (the cubic "box") along a path. Consider
three different paths, (i) along a straight line, (ii) along a spherical surface and (iii) along
a general curved line. All of these paths have natural coordinate systems for which there
exist a natural choice of frame field. Take note that all paths are embedded in R3 with the
Cartesian vector basis {ei} = {x̂, ŷ, ẑ}.

(i) Along a straight line the usual Cartesian coordinates are the natural choice, that
is {êi} = {ei}. Applying Lemma 1, the ai

j coefficients are given by the matrix a

a =




1 0 0
0 1 0
0 0 1


 . (49)

This implies that the exterior derivative dêi is zero along all directions (exterior derivative
of a constant vector is zero), i.e. this frame field does not rotate.

(ii) Along a spherical surface, spherical coordinates

x = r sin θ cos φ (50)

y = r sin θ sin φ (51)

z = r cos θ, (52)

are the natural choice. Thus, in the {r̂, θ̂, φ̂}-frame the ai
j coefficients are given by matrix

a, from which the connection 1-forms can be calculated.

a =




sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos θ 0


 , (53)

(ωi
j) =




0 dθ sin θ dφ

−dθ 0 cos θ dφ

− sin θ dφ − cos θ dφ 0


 . (54)

Clearly, this frame field will rotate due to curvature of the path, manifested by non-zero
connection 1-forms. Example (i) and (ii) are illustrated in Figure 1 below.

4This is not the same as the rotation, rot(F), of a vector field F in R3.

12
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x

y

z
p

q

x̂
ŷ

ẑ

x̂
ŷ

ẑ

(a) No rotation along a straight line.

x

y

z

p

q

r̂

θ̂ φ̂

r̂
θ̂

φ̂

(b) A frame spanned by the spherical unit vectors
will rotate as it travels along the surface of a
sphere.

Figure 1: A geometrical interpretation of connection 1-forms in R3. In this context, the connection 1-forms
gives an explicit expression for the rate of rotation of a frame field along a curve.

(iii) Along a general curve Γ the preferred coordinates are given by parametrising the
curve, Γ(t). Thereafter, a natural frame field is built up by constructing the tangent vector
T(t), the normal vector N(t) and the binormal vector B(t). From this, the connection
1-forms can be calculated. //

Curvature in R3

Calculating curvature in R3 relies on Cartan’s structural equations [Dray, 2015]. No
derivations of these formulas will be given here. These are in fact special cases in
Euclidean space and more general derivations will be made in section IV.

Theorem 3 (Cartan’s structural equations in Rn). Let {σj} be an ON-basis to a vector-
valued 1-form and ωi

j its corresponding connection 1-forms. Then, in Euclidean space
Rn

(1) the first structure equation (torsion) states that

0 = dσi + ωi
j ∧ σj, (55)

(2) the second structure equation (curvature) states that

0 = dωi
j + ωi

k ∧ωk
j. (56)

There exist many definitions that involve curvature, e.g. principal curvature, mean
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II REVIEW OF CURVATURE IN R3

curvature, Serret-Frenet formulas (for extrinsic curvature of parametrised curves), but the
reason why intrinsic curvature or Gaussian curvature remains the most important follows
from Gauss’s Theorema Egregium. Two versions are given, a translation of the original
Latin text into English and a more modern one.

Theorem 4 (Theorema Egregium).

(I) If a curved surface is developed upon any other surface whatever, the measure
of [Gaussian] curvature in each point remains unchanged. Also, any finite part
whatever of the curved surface will retain the same integral [Gaussian] curvature
after development upon another surface.

(II) Let Φ : M1 → M2 be a local isometry between regular surfaces M1, M2 ⊂ R3.
Denote the Gaussian curvatures of M1 and M2 by K1 and K2. Then

K1 = K2 ◦Φ. (57)

The proof of (I) can be found in [Gauss, 1827] 5, and (II) in [Gray, 1999]. Based on these
two theorems it is now possible with the help of Lemma 1 to calculate the intrinsic
curvature of different geometrical objects in R3. Collectively, these can be investigated as
general 1- and 2-dimensional submanifolds in R3.

Intrinsic curvature of curves in R3

The simplest object is a smooth parametrised curve Γ(t). It will also turn out to be
the least interesting object. The Frenet formulas ([Kühnel & Hunt, 2015]) describe the
extrinsic curvature for Γ and these can be used to calculate the intrinsic curvature. The
frame field is

ê1 = T(t) = Tx(t) x̂ + Ty(t) ŷ + Tz(t) ẑ, (58)

ê2 = N(t) = Nx(t) x̂ + Ny(t) ŷ + Nz(t) ẑ, (59)

ê3 = B(t) = Bx(t) x̂ + By(t) ŷ + Bz(t) ẑ. (60)

Omitting the t dependence and applying Lemma 1 gives the ON-basis

σ1 = Tx dx + Ty dy + Tz dz, (61)

σ2 = Nx dx + Ny dy + Nz dz, (62)

σ3 = Bx dx + By dy + Bz dz. (63)

5For the interested reader, this is a text translated into English 1902
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II REVIEW OF CURVATURE IN R3

Note that x(t), y(t), z(t) are simply parametrised by t, so dx = x′(t) dt and similar for dy
and dz. Hence, by the Frenet formulas

σ1 = (Tx x′(t) + Ty y′(t) + Tz z′(t)) dt = 〈T , Γ
′
(t)〉 dt = 〈T , T〉 dt = dt, (64)

σ2 = 〈N , T〉 dt = 0, (65)

σ3 = 〈B , T〉 dt = 0. (66)

As seen in Example 3 (i) the exterior derivative of the Cartesian vector basis is zero in all
directions. This can be used to calculate the connection 1-forms by noting that

dT = d(Ti) ei + Ti dei = d(Ti) ei (67)

= ((Tx)
′
dt , (Ty)

′
dt , (Tz)

′
dt) (68)

Hence, the connection 1-forms are

ω1
2 = Nx d(Tx) + Ny d(Ty) + Nz d(Tz) (69)

= Nx(Tx)
′
dt + Ny(Ty)

′
dt + Nz(Tz)

′
dt (70)

= 〈N , T′〉 dt Frenet
= 〈N , κN〉 dt = κ(t) dt, (71)

ω3
2 = 〈B , N′〉 dt Frenet

= 〈B , −κT + τB〉 dt = τ(t) dt, (72)

ω3
1 = 〈B , T′〉 dt Frenet

= 〈B , κN〉 dt = 0. (73)

where κ and τ are extrinsic measures of curvature and torsion of Γ. However, the intrinsic
geometry which is analysed by applying Cartan’s structural equations only produce
zeros, for example dω1

2 = κ′(t) dt ∧ dt = 0. Hence, the conclusion is that a 1-dimensional
submanifold is not particularly interesting in terms of intrinsic curvature.

Gaussian curvature of surfaces in R3

From Theorema Egregium, the Gaussian curvature of surfaces are known to be indepen-
dent of the embedding. Therefore, Cartan’s second structure equation can be applied
from two different point of views and the result should be the same. First, consider
a surface (2-dimensional) embedded in flat Euclidean geometry R3. Still, the tools for
defining flatness are not developed, but for the case of argument take flatness to be zero
curvature of the geometry itself, i.e. specifically not for shapes in the geometry. For the
surface, the frame field is obviously spanned in three dimension and for dω1

2

0 = dω1
2 + ω1

k ∧ωk
2 = dω1

2 + ω1
3 ∧ω3

2. (74)

Second, consider instead the surface by itself, i.e. not embedded in a surrounding
geometry. This is perhaps where this review start to become unfamiliar, because now
the surface is its own geometry. Unlike the flat Euclidean geometry the surface’s own
geometry need not to be flat, it can be curved in different ways. From this point of view,
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Cartan’s structural equations, Theorem 3, now becomes a special case for flat geometries.
More on this in section III and IV, but for a general surface

0 6= dω1
2 + ω1

k ∧ωk
2 = dω1

2, (75)

where the intrinsic frame field is only spanned in 2 dimensions and the wedged connection
1-forms vanishes completely. Then, as a consequence of Theorema Egregium, (74) and
(75) must contain the same information about curvature and, thus, be equal. From this
conclusion the following result can be derived ([Dray, 2015])

dω1
2 = −ω1

3 ∧ω3
2 = −K σ1 ∧ σ2, (76)

where K is the Gaussian curvature of the surface and an adapted frame field is used (an
adapted frame field is when the third basis vector of the frame field, ê3, equals the normal
unit vector to M).

Example 4. The curvature of the unit 2-sphere can be calculated using the result from
Example 3 (ii), Lemma 1 and (76). The normal vector field is given by r̂ (this is clear from
Figure 1b). So the adapted frame-field is {ê1 = θ̂, ê2 = φ̂, ê3 = θ̂× φ̂}.

Calculating the ON-basis and their wedge product gives the right-hand side of (76). The
connection 1-form ω1

2 and the exterior derivative dω1
2 gives the left-hand side.

σ1 = dθ, σ2 = sin θ dφ ⇒ σ1 ∧ σ2 = sin θ dθ ∧ dφ, (77)

ω1
2 = cos θ dφ ⇒ dω1

2 = − sin θ dθ ∧ dφ. (78)

Equating these two gives

− sin θ dθ ∧ dφ = −K sin θ dθ ∧ dφ, (79)

and the constant Gaussian curvature K = 1. //

The intrinsic curvature of volumes in R3 require the development of Riemann curvature,
which is the corresponding measure of intrinsic curvature in higher dimensions and in
other geometries. This is a natural step to take in section IV, after introducing Riemannian
geometry.
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III RIEMANNIAN GEOMETRY

III. Riemannian geometry

Manifolds in Rn inherit the dot product as the natural inner product, a claim to be
proven later. This inner product induces a metric which allow measurements of e.g.
distance, volume, angle and consequently the construction of orthonormality. For general
manifolds without a well defined inner product it is pointless to try develop any struc-
ture for curvature. Hence, it is necessary to generalise the concepts, such as an inner
product, from Euclidean geometry. This generalisation is called Riemannian geometry.
Riemannian geometry is an extensive subject, so the focus will be to develop the tools for
curvature. Much of the content is inspired by the books of [Lee, 2013], [Munkres, 1997],
[Godinho & Natário, 2014] and [Dray, 2015].

Differentiable manifolds and their fundamental structure

By removing the dependence on Euclidean geometry some structure of the manifold,
noticeably the Cartesian coordinate system and the dot product, are lost. This new, more
abstract manifold is called a differentiable manifold. In order to define a differentiable
manifold it is necessary to redefine the notion of a coordinate patch.

Definition 14. Let Ui be open subsets in Rk and Vi open subsets in a metric space M
such that {Vi} covers M. A collection of functions ϕi : Ui → Vi, where ϕi and ϕj are

(i) bijective,

(ii) continuous,

(iii) has a continuous inverse, and

(iv) the transition function ϕ−1
i ◦ ϕj is C∞ (if the intersection is non-empty),

is called a collection of coordinate patches6 and ϕi a coordinate patch.

Definition 15. Let M be a metric space. If there exist a collection of coordinate patches
{ϕi} where ϕi is defined as in Definition 14, the pair (M, {ϕi}) is called a differentiable
k-manifold or simply a differentiable manifold.

It is possible to add additional structure in order to generalise concepts such as tangent
spaces, differential forms and coordinate bases, and many of these transfers easily from
Rn.

Definition 16. Let M be a differentiable manifold, p a point in M and ϕ : U → V a
coordinate patch covering p. A function ω : M→ R is of class C∞(M) if for all p ∈ M
there exist a coordinate patch ϕ (covering p) such that w ◦ ϕ ∈ C∞(U).

6In some literature, an atlas.
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Definition 17. Let M be a differentiable manifold and p a point in M. A linear map
w : C∞(M)→ R which satisfy the product rule

w( f g) = (w f )g(p) + f (p)(wg) (80)

for f , g ∈ C∞(M) is a derivation at p. The set of all such derivations at p is denoted
Tp(M) and it is a vector space called the tangent space to M at p. The dimension is
dim(Tp(M)) = dim(M). Elements of Tp(M) are called tangent vectors at p.

For an open subset V ⊂ M and p ∈ V, the definitions of a k-tensor field and a differential
k-form at p are identical to those in Definition 3 but with Tp(M) instead of Tx(Rn). This
leads to

Definition 18. Let M be a differentiable manifold. The set Ak(T(M)) is a vector space
denoted

∧k (M) or
∧k and referred to the linear space of k-forms on M.

A coordinate basis is created analogously to the case in Rn. The following proposition is a
result based on a coordinate basis in Rn and the use of coordinate patches, for a detailed
proof see [Lee, 2013].

Proposition 2. Let M be a differentiable manifold and p ∈ M. Then Tp(M) is a
k-dimensional vector space. For any smooth coordinate patch ϕ whose image contains
p and gives p a local coordinate representation {xi}, the set of vectors { ∂

∂xi } forms a
basis for Tp(M) and this basis is called a coordinate basis for Tp(M).

The dual basis {dxi} or {dxI} [which is possible to define without an inner product]
is the corresponding coordinate basis for 1- or k-forms at p.

The properties of the exterior differential d relies on the concept of a pullback, which is
defined below.

Definition 19. Let M and N be two differentiable manifolds and F : M→ N a smooth
map between these. The pullback of F is a function

F∗ :
∧k

(N)→
∧k

(M). (81)

If α ∈ ∧k(N), the coordinate basis representation of α is α = αI dyI for any set of
locally smooth coordinates {yi}. The pullback form in

∧k(M) is then given by

F∗α = (αI ◦ F) d
(

yI ◦ F
)

. (82)

Existence, uniqueness and the properties of the exterior differential d :
∧k(M)→ ∧k+1(M)
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are almost identically defined as in Theorem 1. The only differences are (i) M is not
necessarily in Rn, but rather a differentiable manifold, and (ii) if α ∈ ∧k(M), for every
coordinate patch ϕ on M, dα is the unique k + 1 form to satisfy

ϕ∗(dα) = d(ϕ∗α). (83)

The above structure on a differentiable manifold is fundamental for doing calculus.
However, since orthogonality remains undefined, this approach is limited and obviously
not enough to compute curvature. It is necessary to introduce an inner product.

Riemannian manifolds

An inner product on M enables the definition of length and angle, which is necessary
for orthonormality on a vector space. There are a few conditions to consider. First,
an inner product has two arguments and in this case each argument is a vector in
Tp(M). Consequently, the inner product must be a 2-tensor. Second, the properties of
an inner product (linearity, symmetry, positive definiteness and non-degeneracy) need
to be considered and this gives rise to the Riemannian metric. However, not all of these
properties need to be fulfilled in order to define orthogonality. Linearity follows trivially
from assuming it to be a tensor and symmetry is clearly necessary for uniqueness. But
it turns out that positive definiteness cannot be assumed to hold in GR. Relaxing this
condition gives rise to the pseudo-Riemannian metric.

Definition 20. Let M be a differentiable manifold and p a point in M.
A Riemannian metric on M, denote it g, is a 2-tensor g ∈ L2(Tp(M)) which is

(i) symmetric: g(v, w) = g(w, v) for all v, w ∈ Tp(M),

(ii) non-degenerate: if g(v, w) = 0 for all w ∈ Tp(M), then it implies v = 0, and

(iii) positive definite: g(v, v) > 0 for all v ∈ Tp(M) \ {0},
for all p ∈ M. From the previous conventions made, it follows that g is of class C∞.

With a Riemannian metric all the separate tangent spaces Tp(M) are equipped with an
inner product, which may vary smoothly with p. Due to this dependence on p there exist
different notations for g. In this thesis the following notations are used.

Convention. g denotes a Riemannian metric and g denotes the usual dot product in
Rn.

Definition 21. A Riemannian manifold is a differentiable manifold M equipped with a
Riemannian metric g, denoted (M, g).
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Proposition 3. A differentiable manifold has a Riemannian metric.

Proof. Let M be a differentiable manifold, Ui an open subset in Rk and Vi an open
subset in M, then M is covered by the coordinate patches {ϕi}, ϕi : Ui → Vi.

For submanifolds in Rk, the Riemannian metric is given by the dot product g (this
is rigorously proven in Corollary 1). Using this, and the pullback of the coordinate
patches, each set Vi has it is own Riemannian metric gi = (ϕ−1

i )∗g.

It is also clear from [Munkres, 1997] (Theorem 41.1) that there exist a partition of
unity, {φi}, where φi : M→ R is C∞ and where {φi} is dominated by {ϕi}. With gi
and ϕi, it is possible to (pointwise) define a new metric on M

g = ∑
i

φigi. (84)

Since supp φi is locally finite, terms outside of this are zero. Moreover, gi is pointwise
defined for a finite subset Vi. This implies that {φigi} is locally finite and, thus, only
finitely many non-zero points in a neighbourhood around each point. Hence, the sum
g is well defined and C∞ for all points p in M. Moreover, for v, w ∈ Tp(M)

g(v, w) = ∑
i

φi(p)gi(v, w) = ∑
i

φi(p)gi(w, v) = g(w, v) (85)

so symmetry holds. Next, consider the case

g(v, w) = ∑
i

φi(p)gi(v, w) = 0 (86)

for all w ∈ Tp(M). The dot product is obviously non-degenerate, so the only other
possibility for this to hold, except non-degeneracy, is if φi(p) = 0 for all i. But this
is a direct contradiction of a partition of unity. Consequently, g must also be non-
degenerate. The last property is positive definiteness. For a non-zero vector v ∈ Tp(M),
gi(v, v) > 0 clearly holds. Also, at least one term φi(p) must be positive not to violate
the properties of a partition of unity. Thus, g(v, v) > 0 and all properties are verified.
This g is the sought Riemannian metric. �

Example 5. The metric space M = Rn together with the collection of {ϕi = id : Ui → Ui}
where Ui is an open subset of Rn is a differentiable n-manifold. When adding the
Riemannian metric g = g the pair (Rn , g) is a Riemannian manifold.

Another example is the Poincaré upper half-space which in one sense is an embedding in
R2, but with another Riemannian metric than the usual dot product. The differentiable
manifold M = H = {(x, y) ∈ R2 : y > 0} together with

g =
g
y2 (87)
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is a Riemannian manifold. //

Orthogonality and the norm of a tangent vector can now be defined.

Definition 22. Let v ∈ Tp(M) be a tangent vector. The norm of v is defined

|v|g = g(v, v)
1
2 . (88)

Definition 23. For two non-zero vectors v, w ∈ Tp(M), the angle between them is
defined as the unique value θ ∈ [0, π] where

cos θ =
g(v, w)

|v|g|w|g
. (89)

Two vectors are orthogonal if g(v, w) = 0.

Submanifolds and the Riemannian metric

A useful property of Riemannian manifolds is that submanifolds inherit the Riemannian
metric. This is a natural thing to assume for the dot product and submanifolds in Rn and
it can be proven more generally for Riemannian manifolds. In order to do so the concepts
of an immersion and a pushforward between manifolds needs to be defined.

Consider two differentiable manifolds M, N and a smooth function F : M → N. Any
point p ∈ M will map to F(p) ∈ N, but how will F act on a tangent vector v ∈ Tp(M)?
This is given by the pushforward of F.

The pushforward can be identified with a linear map, i.e. a matrix, between tangent
spaces. When M and N are Euclidean spaces this matrix is the Jacobian of F. When M
and N are not Euclidean spaces, use the fact that both are differentiable manifolds and
can be mapped to Euclidean spaces via coordinate patches. For open subsets U ⊂ M and
V ⊂ N, if ϕ : U → Rk and ψ : V → Rk are two such patches covering p and F(p), by
defining

p̃ = ϕ(p) (90)

F̃ = ψ ◦ F ◦ ϕ−1 : ϕ(U ∩ F−1(V))→ ψ(V), (91)

the linear map of interest is the Jacobian of F̃ at p̃ ([Lee, 2013]). See Figure 2 for the
complete picture. For simplicity, both the Euclidean and the non-Euclidean case are
referred to the Jacobian of F at p or the matrix F∗ at p.
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M
F

N

F

p F(p)U V

ψ(V)(U)

ψ

(   )

Figure 2: Illustration of the functions involved to construct the matrix F∗ at p.

Proposition 4. Let M, N be two differentiable manifolds and F : M → N a smooth
function. If {xi} and {yi} are local coordinates in ϕ(U) and ψ(V), the pushforward of
F at p ∈ M is defined

F∗ : Tp(M)→ TF(p)(N). (92)

Where F∗(v) for v ∈ Tp(M) is given by

F∗(v) = F∗

(
vi ∂

∂xi

∣∣∣∣
p

)
= vi ∂F̃j

∂xi ( p̃)
∂

∂yj

∣∣∣∣
F(p)

. (93)

The below figure illustrates this geometrically. The proof can be found in [Lee, 2013].

M
p

F

N
F(p)

vTp(M
)

TF(p)(N
)

F (v)

Figure 3: Geometrical illustration of the pushforward F∗ of a smooth function F : M → N acting on a
tangent vector v ∈ Tp(M). M, N are differentiable manifolds.
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Example 6. Let M = R2, N = R3 and F : R2 → R3,

F(x, y) = (x, y, f (x, y)), (94)

for a real-valued smooth function f . The matrix F∗ at p ∈ M is



1 0
0 1

∂ f
∂x (p) ∂ f

∂y (p)


 . (95)

Consider now a tangent vector v = v1 ∂
∂x + v2 ∂

∂y in Tp(M). By proposition 4, the pushfor-
ward F∗(v) ∈ TF(p)(N) is given by




v1 0
0 v2

v1 ∂ f
∂x (p) v2 ∂ f

∂y (p)


 , (96)

in the coordinate basis { ∂
∂x |F(p),

∂
∂y |F(p),

∂
∂z |F(p)}. //

The matrix F∗ can be analysed using linear algebra and this is the rationale behind an
immersion.

Definition 24. A smooth function F : M → N between differentiable manifolds is
called a smooth immersion if the rank of the matrix F∗ fulfils rank(F∗) = dim(M) at
each point of M.

Proposition 5. Let (N, g) be a Riemannian manifold and suppose F : M → N is a
smooth immersion. Then F∗g is a Riemannian metric on M.

Proof. Verify that F∗g satisfies the properties of a Riemannian metric. First, let p ∈ M
and consider the tangent vectors v1, v2, v3 ∈ Tp(M). Then,

(F∗g)(v1, v2) = g(F∗(v1), F∗(v2)) = g(F∗(v2), F∗(v1)) = (F∗g)(v2, v1), (97)

(F∗g)(v3, v3) = g(F∗(v3), F∗(v3)) > 0 (98)

from the symmetric and positive definite properties of g, assuming v3 is non-zero.
Second, let

(F∗g)(v, w) = g(F∗(v), F∗(w)) = 0 (99)

for all w ∈ Tp(M). Since g is non-degenerate this implies F∗(v) = 0. By assuming F is
a smooth immersion, the matrix F∗ is non-singular for all p and consequently the only
possibility is that v = 0. Hence, F∗g is a Riemannian metric. �
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Corollary 1. Submanifolds in Rn inherit the dot product and are therefore Riemannian
manifolds.

Proof. From Example 5, (Rn, g) is a Riemannian manifold. Consider a submanifold
M in Rn and the trivial construction of g restricted to M, g M. In this case F is just
the identity matrix for all p ∈ M and clearly a smooth immersion. Applying the
above proposition, (M, g M) is a Riemannian manifold and M trivially inherit the dot
product. �

Pseudo-Riemannian manifolds

By relaxing the condition of positive definiteness in Definition 20 the sign of g can either
be positive, negative or zero.

Definition 25. Let M be a differentiable manifold and p a point in M.
A pseudo-Riemannian metric on M, also denoted by g, is a C∞ 2-tensor g ∈ L2(Tp(M))

which is (i) symmetric and (ii) non-degenerate for all p ∈ M.

A pseudo-Riemannian manifold is a differentiable manifold M equipped with a pseudo-
Riemannian metric g: (M, g).

This is an important property because some pseudo-Riemannian manifolds turns out
to solve the Einstein field equations. Hence, these manifolds admits a good way for
modelling spacetime itself and other physical phenomena therein.

The components of g, in a basis, constitutes a matrix. Since g is symmetric, so is the
matrix. Moreover, every symmetric matrix is orthogonally diagonalisable, so when
acting on an orthonormal basis, g is similar to a diagonal matrix with entries ±1
([Holst & Ufnarovski, 2014]). More on the components of g is given later on. For different
pseudo-Riemannian metrics the relaxation of positive definiteness creates a variable in the
number of positive and negative values. When acting on an arbitrary basis the variable is
the composition of signs of the eigenvalues, which for a diagonal matrix are the diagonal
values. The formal definition is

Definition 26. Let g be a pseudo-Riemannian metric represented by a real symmetric
matrix. The signature of g is the pair (p, q) of the number of positive, p, and negative,
q, eigenvalues counted with multiplicity. 7

7Sometimes the definition of the signature also includes the number of zero values, denoted r. But,
assuming non-degeneracy excludes zero as an eigenvalue, i.e. for all pseudo-Riemannian metrics the
signature in this notation is (p, q, r = 0).
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The signature is an important invariant property for g specified by Sylvester’s law of
inertia.

Theorem 5 (Sylvester’s law of inertia). Let g be a symmetric 2-tensor. Then the number
of positive diagonal entries and the number of negative diagonal entries in any diago-
nal matrix representation of g are each independent of the diagonal representation.

The original theorem is more general than for 2-tensors, but considering the purpose
of this thesis this formulation is enough. For the original theorem and the proof see
[Friedberg et al., 2003].

Remark. Sylvester’s law of inertia states that (p, q) is an invariant of g. However, different
sign conventions are used in different areas of physics. For example, in GR the same g
is used but applying the timelike convention comes with the signature (1, 3) while the
spacelike convention has signature (3, 1), both equivalent ([Hartle, 2003]).

Remark. Neither Proposition 3 nor 5 holds in general for pseudo-Riemannian manifolds.
Due to the relaxation of positive definiteness a few extra conditions need to be satisfied
in order to guarantee the existence of a metric. This is not a problem in GR where these
conditions are satisfied, but for other mathematical applications one need to be aware of
this.

While introducing an inner product on tangent vectors, it is reasonable to also transfer
the idea of an inner product on k-forms from Rn to pseudo-Riemannian manifolds.

Definition 27. Let (M, g̃) be a pseudo-Riemannian or Riemannian manifold. The
function g :

∧k×∧k → R, k ≥ 1, defined similarly as Definition 8 or 10 is an inner
product on k-forms.

An ON-basis for k-forms is a basis {σi} for k = 1 or {σI} for k > 1 that is orthonormal
under an inner product on k-forms.

Convention. The letter g is used for both pseudo-Riemannian metrics and for inner
products on k-forms. This is no coincidence since they behave exactly the same on
tangent vectors and forms and one can think of them as "duals of inner products".
Hence, from this point onwards, the name pseudo-Riemannian metric will also include
inner products on k-forms and both will be denoted with g.

Vector-valued differential forms

The full theory and structure of vector-valued forms can be found in [Taubes, 2011]. In
this context, the starting point is
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Definition 28. Let M be a differentiable manifold, p a point in M and E a smooth
vector bundle over M. Assume that for each p ∈ M there exist an orthonormal and
finite basis {êi} that locally span E. The linear space of E-valued k-forms is defined

∧k
(M, E) = E⊗Ak(T(M)), (100)

where β ∈ ∧k (M, E) is written

β = αi êi = αi
J σJ êi. (101)

The following properties holds and the proofs can be found in [Taubes, 2011].

Proposition 6. Let M be a differentiable manifold.

Wedge product. If E1 and E2 are two smooth vector bundles over M, there exist
a wedge product that takes

∧ :
∧p

(M, E1)×
∧q

(M, E2)→
∧p+q

(M, E1 ⊗ E2) . (102)

All properties of the usual wedge product also holds for vector-valued k-forms.

Connection. Let E be a smooth vector bundle over M. It is possible to define a
connection on

∧0 (M, E) which connects sections of E, take this to be the local frames
{êi}, to the corresponding E-valued 1-forms

∧1 (M, E). Formally, a connection on E
is a map

5 :
∧0

(M, E)→
∧1

(M, E) (103)

that (i) respects the vector space structure

5(c êi) = c5 êi (104)

5(êi + êj) = 5êi +5êj, (105)

for a real constant c, and (ii) obeys the analogue of Leibnitz’s rule

5(F êi) = F 5 êi + êi ⊗ dF, (106)

for all F ∈ C∞(M).

Exterior differential. An analogue to the usual exterior differential d is the exte-
rior differential of vector-valued forms which is an extension of a connection. If E is
equipped with the connection 5, there exist a unique operator d5 for all p ∈ M where

d5 :
∧k

(M, E)→
∧k+1

(M, E) , (107)
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for each k ≥ 0. The differential d5 is defined by the rules

(i) If α is a k-form and êi an element of E, then

d5(α êi) = dα êi + (−1)kα ∧5êi. (108)

(ii) If β1 and β2 are two vector-valued k-forms, then

d5(β1 + β2) = d5β1 + d5β2. (109)

Additionally, and in big contrast to the ordinary exterior differential d, the general
case for a vector-valued k-form β is

d2
5β 6= 0. (110)

The property d2
5β 6= 0 will turn out to be related to curvature.

The metric tensor and its components

In theoretical physics and GR, the pseudo-Riemannian metric g is almost exclusively
referred to as the metric tensor or the metric. From here on these will be used synonymous.
The metric tensor is perhaps the single most important tool for understanding GR which
is why understanding its components are equally important. Consider first g acting on
forms.

Definition 29. If g is a metric tensor, then the components of g expressed in an ON-basis
are given by

gI J = g(σI , σJ). (111)

In a general coordinate basis

gI J = g(dxI , dx J). (112)

Trivially, in an ON-basis gI J = ±δI J whereas in a coordinate basis gI J can be real-valued
functions. It follows that g, summed over all its components, is a matrix which can be
expressed in an ON-basis

g = ±δI J σI ⊗ σJ = ±δI J σI σJ , (113)

or in a coordinate basis
g = gI J dxI ⊗ dx J = gI J dxI dx J . (114)

Remark. First, make a distinction between the symmetry properties of g itself and the
symmetry properties of the arguments σI or dxI . While the arguments are forms and
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therefore antisymmetric tensors, the metric tensor as a function of forms is symmetric,
which follows from the definition. Second, in equation (113) and (114), since g is symmetric
the tensor product can be written as a symmetric product, i.e σI ⊗ σJ = σI σJ and
dxI ⊗ dx J = dxI dx J (for more details see [Lee, 2013]). The symmetric product leads to a
natural way of expressing the diagonal basis elements as squared, i.e.

Diag(g) = ±1 σI ⊗ σI = ±1
(

σI
)2

or (115)

Diag(g) = gI I dxI ⊗ dxI = gI I

(
dxI
)2

. (116)

The symmetric and non-degeneracy criteria from Definition 25 implies that g is a real
symmetric and invertible matrix. The components of the inverse matrix are denoted gI J ,
with the indices superscripted. This gives the identity matrix

gI J gJK = δI
K. (117)

Example 7. Consider the Riemannian manifold (R3 , g) with the coordinate basis
{dx, dy, dz}. The metric tensor is a function g :

∧1×∧1 → R given by

g = δij dxidxj = dx2 + dy2 + dz2. (118)

Clearly, representing g as a matrix is trivial

g =




1 0 0
0 1 0
0 0 1


 . (119)

The matrix is real symmetric and invertible. The inverse is g itself. Moreover, the
eigenvalues are +1 with multiplicity three which gives a metric signature of (3, 0).

Consider now a cylinder, C, as a submanifold in R3. The smooth function

F(r, θ, z) = (r cos θ, r sin θ, z), (120)

where r > 0 and θ is limited to a full rotation, maps between the cylindrical and Cartesian
coordinates injectively. Both manifolds are differentiable and in Euclidean space, so
investigating the rank of the Jacobian of F will tell if F is a smooth immersion. The
Jacobian of F, 


cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1


 (121)
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has rank 3 at each point. Thus, F is a smooth immersion. Since (R3 , g) is a Riemannian
manifold, it follows from Proposition 5 that (C , F∗g) is a Riemannian manifold. The
metric tensor on C can be calculated explicitly by the pullback

F∗g = d(r cos θ)2 + d(r sin θ)2 + dz2 (122)

=
(
cos2 θ + sin2 θ

)
dr2 + r2 (cos2 θ + sin2 θ

)
dθ2 + dz2 (123)

= dr2 + r2 dθ2 + dz2. (124)

In the coordinate basis {dr, dθ, dz}, the matrix F∗g is

F∗g =




1 0 0
0 r2 0
0 0 1


 , (125)

and in the ON-basis {dr, r dθ, dz} the matrix is

F∗g =




1 0 0
0 1 0
0 0 1


 . (126)

Both matrices are real symmetric, invertible and have signature (3, 0). //

Example 8. Let (R4 , g) be a pseudo-Riemannian manifold where g is given by

g = −dt2 + dx2 + dy2 + dz2. (127)

The matrix

g =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (128)

is real symmetric, invertible and has signature (3, 1). //

In Example 7 it is not a coincidence that both g and F∗g have the same signature. In the
next section it will become clear that the metric signature is connected to an isometric
relation between metrics.

Definition 30. If g is a metric tensor, then the components of g expressed in a basis to
E|p are

gij = g(êi, êj). (129)
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IV. Curvature in Riemannian geometry

With the structure of Riemannian geometry and vector-valued k-forms in place, curvature
of Riemannian manifolds can now be investigated.

Connection forms

In light of Proposition 6, the previous geometric introduction to connection 1-forms in
section II can now be justified.

Definition 31. A Lie algebra over R is a real vector space, denoted g, together with a
map called the Lie bracket that takes g× g→ g.

Remark. The structure of Lie algebras and Lie brackets are left to the reader to investigate
(see e.g. [Lee, 2013], [Taubes, 2011]). There is no explicit use of Lie brackets, but most of
the results derived here can also be derived using this.

Consider now a Lie algebra-valued k-form, β ∈ ∧k (M, g), over a differentiable manifold
M. As usual, β is written in its component form β = αi êi. Let g be equipped with the
connection 5. The exterior differential of β is

d5(β) = d5(αi êi) = dαi êi + (−1)kαi ∧5êi, (130)

where d5β ∈ ∧k+1 (M, g). The interesting part in the above calculation is 5êi. The vector
space

∧0 (M, g) is just a section of g that locally can be treated as a real vector space.
That is, the elements êi are vectors. The action of 5 on êi transforms this vector to a Lie
algebra-valued 1-form,

∧1 (M, g), and based on the importance of these, the components
are given a special name.

Definition 32. The 1-form components of the Lie algebra-valued 1-forms
5êi ∈

∧1 (M, g) are called connection 1-forms and are denoted ωi
j. In component form

5êj = ωi
j êi. (131)

Naturally, the next step is to derive a way to calculate these connection 1-forms. Let the
connections ωij, with both indices downstairs, be set to ωij = g(êi, 5êj). Then,

ωij = g(êi, 5êj) = g(êi, ωk
j êk) = g(êi, êk)ω

k
j = gikωk

j. (132)

Using the fact that g is invertible it is possible to deduce that

ωi
j = gikωkj. (133)
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This shows that raising or lowering an index of the connection will alter it and this
alteration depends on the metric g. If g = g raising or lowering the index will not make
any difference since all components are 1. But if the metric from Example 8 is used,
raising the index in the t-coordinate will change sign, i.e. ωtt = gtkωk

t = −ωt
t. This

alteration can also be a real function. The importance of the connection 1-forms motivates
a special notation for its components.

Definition 33. Let {σk} be an ON-basis for 1-forms. The connection 1-forms ωij are
written

ωij = Γijk σk, (134)

where Γijk are called Christoffel symbols of the first kind.

The connection 1-forms ωi
j are written

ωi
j = Γi

jk σk, (135)

where Γi
jk are called Christoffel symbols of the second kind. From

ωij = Γijk σk = gilω
l
j = gilΓl

jk σk, (136)

it is clear that these two components are related through

Γijk = gilΓl
jk. (137)

In order to derive an expression for the Christoffel symbols, called Koszul’s formula, a
couple of relations need to be investigated further. Start by defining a lower index for the
basis elements σk.

Definition 34. For an ON-basis of 1-forms, {σk}, the lower index components are
defined

σi = g(êi, σj êj) = g(êi, êj)σ
j = gijσ

j. (138)

It follows that

g(σi, σj) = g(σi, gjkσk) = g(σi, σk)gjk = gikgjk = gikgkj = δi
j, (139)

g(σi ∧ σj, σp ∧ σq) = δi
pδ

j
q − δi

qδ
j
p. (140)

The sum of two connection 1-forms with their index flipped is another 1-form, denoted
Φ = ωij + ωji. In the basis {σk}

Φkσk = Γijkσk + Γjikσk = (Γijk + Γjik)σ
k ⇒ Γijk = Φk − Γjik. (141)
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Next, consider g acting on êk and d5(σj êj), where σj is an ON-basis for 1-forms.

g(êk, d5(σj êj)) = g(êk, dσj êj − σj ∧5êj) (142)

= g(êk, dσj êj)− g(êk, σj ∧5êj) (143)

= g(êk, êj)dσj − g(êk, σj ∧ωi
j êi) (144)

= g(êk, êj)dσj − g(êk, êi)σ
j ∧ωi

j (145)

= gkjdσj − gkiσ
j ∧ωi

j = gkjdσj − σj ∧ gkiω
i
j (146)

= gkjdσj − σj ∧ωkj = gkjdσj + ωkj ∧ σj (147)

= dgkjσ
j + ωkj ∧ σj = dσk + ωkj ∧ σj (148)

= dσk + Γkjlσ
l ∧ σj. (149)

The result is a 2-form, which is denoted Ψk = dσk + Γkjlσ
l ∧ σj. Using the expression for

Ψk and (140), the last relation is given by g acting on the 2-forms dσi and σp ∧ σq.

g(dσi, σp ∧ σq) = g(Ψi − Γijkσk ∧ σj, σp ∧ σq) (150)

= g(Ψi, σp ∧ σq)− Γijkg(σk ∧ σj, σp ∧ σq) (151)

= g(Ψi, σp ∧ σq)− Γijk(δ
k
pδ

j
q − δk

qδ
j
p) (152)

= g(Ψi, σp ∧ σq) + Γipq − Γiqp. (153)

To summarise, the two fundamental relations for the derivation of Koszul’s formula are

Γijk = Φk − Γjik, (154)

Γipq − Γiqp = g(dσi, σp ∧ σq)− g(Ψi, σp ∧ σq). (155)

Proposition 7 (Koszul’s formula). The Christoffel symbols of the first kind are given by
the formula

Γijk =
1
2

(
g(dσi, σj ∧ σk)− g(dσj, σi ∧ σk)− g(dσk, σi ∧ σj) (156)

− g(Ψi, σj ∧ σk) + g(Ψj, σi ∧ σk) + g(Ψk, σi ∧ σj)−Φi + Φj + Φk

)
.

If all Ψ and Φ are known, Γijk are uniquely determined.
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Proof. Using (154) and (155),

2Γijk = Γijk + Γijk = Γijk + (Φk − Γjik) = Γijk − Γjik + Φk (157)

= Γijk + (Γikj − Γikj) + (Γjki − Γjki)− Γjik + Φk (158)

= (Γijk − Γikj) + Γikj − Γjki + (Γjki − Γjik) + Φk (159)

= (Γijk − Γikj) + (Φj − Γkij)− (Φi − Γkji) + (Γjki − Γjik) + Φk (160)

= (Γijk − Γikj) + (Γjki − Γjik) + (Γkji − Γkij) + Φj −Φi + Φk (161)

= g(dσi, σj ∧ σk)− g(Ψi, σj ∧ σk) + g(dσj, σk ∧ σi)− g(Ψj, σk ∧ σi) (162)

+ g(dσk, σj ∧ σi)− g(Ψk, σj ∧ σi) + Φj −Φi + Φk

= g(dσi, σj ∧ σk)− g(dσj, σi ∧ σk)− g(dσk, σi ∧ σj)− g(Ψi, σj ∧ σk) (163)

+ g(Ψj, σi ∧ σk) + g(Ψk, σi ∧ σj)−Φi + Φj + Φk.

Dividing each side by 2 gives the final formula. Moreover, since the basis {σk} and
the metric g are known and well defined, if all Ψ and Φ are known the values of Γijk
can be uniquely determined. �

There is an analogous formula for the Christoffel symbols of the second kind that can be
derived from (137) and the inverse metric, however, this is not shown here.

The Koszul formula shows that there are some freedom in choosing the connection forms.
The most obvious choice, and also the most useful, is to set both variables to zero. This
choice of connection is unique and comes with a name.

Definition 35. A Levi-Civita connection is a connection 1-form where Ψ = Φ = 0. This
is equivalent to

ωij = −ωji ⇔ Γijk = −Γjik or Γi
jk = Γi

kj, (164)

a relation called metric compatible. Moreover,

0 = dσk + ωkj ∧ σj, (165)

a relation called torsion free.

One advantage with a Levi-Civita connection is that the Koszul formula for the Christoffel
symbols reduces considerably.

Corollary 2. Given a Levi-Civita connection, the Koszul’s formulas for both kind of
Christoffel symbols are

Γijk =
1
2

(
g(dσi, σj ∧ σk)− g(dσj, σi ∧ σk)− g(dσk, σi ∧ σj)

)
, (166)
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Γi
jk =

1
2

(
g(dσi, σj ∧ σk)− g(dσj, σi ∧ σk)− g(dσk, σi ∧ σj)

)
. (167)

Proof. The formula for Γijk follows trivially from Proposition 7 and Ψ = Φ = 0. The
formula for Γi

jk follows from

Γijk = gilΓl
jk ⇔ Γl

jk = gilΓijk (168)

where the below derivation and a subsequent variable change l → i gives the final
result.

Γl
jk =

1
2

gil
(

g(dσi, σj ∧ σk)− g(dσj, σi ∧ σk)− g(dσk, σi ∧ σj)

)
(169)

=
1
2

(
g(dgilσi, σj ∧ σk)− g(dσj, gilσi ∧ σk)− g(dσk, gilσi ∧ σj)

)
(170)

=
1
2

(
g(dσl , σj ∧ σk)− g(dσj, σl ∧ σk)− g(dσk, σl ∧ σj)

)
.� (171)

Theorem 6 (Fundamental theorem of Riemannian geometry). Let (M, g) be a pseudo-
Riemannian manifold and p a point in M. Then there exist a unique Levi-Civita
connection at p.

The proof can be found in [Godinho & Natário, 2014]. The Levi-Civita connection is the
preferred connection and several intrinsic geometric properties are built around this.

Example 9. A good illustration and a useful result for later purposes is to calculate
the Christoffel symbols for the Levi-Civita connection in Euclidean space (Rn, g). The
Christoffel symbols are of course depending on the choice of basis, so this task implies
choosing a basis first.

Consider the Cartesian coordinate basis {σk} = {dx, dy, dz}. Since the metric is the usual
dot product there is no difference between up or down index, i.e. σk = σk for all k. From
(166), it is clear that all Γijk components is calculated by taking the exterior derivative of
the basis. But

d(dx) = d(dy) = d(dz) = 0 (172)

for all components. That is, Γijk = 0 for all i, j, k.

Changing basis to the ON-basis {dr, r dθ, r sin θ dφ} makes it a bit more complex. Still,
there is no difference between up or down index due to the metric. However, without
accounting for symmetries, there are 27 different Christoffel symbols to calculate. The
exterior derivative does not vanish for all basis elements and they need to be calculated
manually. A couple of chosen ones are calculated below.
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Denote the index i, j, k = r, θ, φ and set i = θ, then

Γθrr =
1
2

(
g(d(r dθ), dr ∧ dr)− g(d(dr), r dθ ∧ dr)− g(d(dr), r dθ ∧ dr)

)
= 0, (173)

Γθrθ =
1
2

(
g(d(r dθ), dr ∧ r dθ)− g(d(r dθ), r dθ ∧ dr)

)
= g(d(r dθ), dr ∧ r dθ) (174)

= g(dr ∧ dθ, dr ∧ r dθ) =
1
r

g(dr ∧ r dθ, dr ∧ r dθ) =
1
r

, (175)

Γθφφ =
1
2

(
− g(d(r sin θ dφ), r dθ ∧ r sin θ dφ)− g(d(r sin θ dφ), r dθ ∧ r sin θ dφ)

)
(176)

= −g((sin θ dr ∧ dφ + r cos θ dθ ∧ dφ), r dθ ∧ r sin θ dφ) (177)

= −g(r cos θ dθ ∧ dφ, r dθ ∧ r sin θ dφ) (178)

= − cosθ

r sin θ
g(r dθ ∧ r sin θdφ, r dθ ∧ r sin θ dφ) = −cot θ

r
. (179)

The rest turns out to be zero, i.e.

Γθ jk =




0 1
r 0

0 0 0
0 0 − cot θ

r


 . (180)

The complete description of the Levi-Civita connection are given by the matrices Γθ jk, Γrjk
and Γφjk. //

Cartan’s structural equations

It is now possible to show the calculations leading up to the more general version of
Cartan’s structural equations, previously Theorem 3. First, torsion and curvature are
defined.

Definition 36. Let {σj} be an ON-basis and {êk} a local frame to a Lie algebra-valued
1-form on a pseudo-Riemannian manifold (M, g). The 2-forms Θi, given by

Θi = gkig(êk, d5(σj êj)), (181)

are called torsion 2-forms.

The 2-forms Ωi
j, given by

Ωi
j êi = d2

5(êj), (182)

are called curvature 2-forms.

Cartan’s structural equations gives a simpler and a more practical way to calculate torsion
and curvature, only in terms of the ON-basis and the connection 1-forms.
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Theorem 7 (Cartan’s structural equations). Let {σj} be an ON-basis to a Lie algebra-
valued 1-form and ωi

j its corresponding connection 1-forms, all on a pseudo-
Riemannian manifold (M, g). Then,

(1) the first structure equation (torsion) states that

Θi = dσi + ωi
j ∧ σj, (183)

(2) the second structure equation (curvature) states that

Ωi
j = dωi

j + ωi
k ∧ωk

j. (184)

Proof. The torsion 2-form is related to g(êk, d5(σj êj)) = Ψk, previously derived in
(143) - (149).

Ψk = gkjdσj − gkiσ
j ∧ωi

j [relabel gkjdσj → gkidσi] (185)

= gkidσi − gkiσ
j ∧ωi

j = gki

(
dσi − σj ∧ωi

j

)
= gki

(
dσi + ωi

j ∧ σj
)

, (186)

taking the inverse of g gives the final result

gkiΨk = Θi = dσi + ωi
j ∧ σj. (187)

For curvature, remember in Proposition 6 that in general d2
5β 6= 0 for a vector-valued

k-form. The calculations for a basis element êj are easy to show. The composition d2
5

will act on êj by taking it into
∧2 (M, g), i.e. a Lie algebra-valued 2-form is sought.

d2
5(êj) = d2

5(1 · êj) = d5(d5(1 · êj)) = d5(1∧5êj) = d5(5êj) (188)

= d5(ωi
j êi) = dωi

j êi −ωi
j ∧5êi = dωi

j êi −ωi
j ∧ωk

i êk (189)

[relabel ωi
j ∧ωk

i êk → ωk
j ∧ωi

k êi] (190)

= dωi
j êi −ωk

j ∧ωi
k êi = (dωi

j −ωk
j ∧ωi

k) êi (191)

= (dωi
j + ωi

k ∧ωk
j) êi. (192)

Fixing i and j gives the curvature 2-forms Ωi
j = dωi

j + ωi
k ∧ωk

j. �

With the Levi-Civita connection the torsion is always zero. This reduces the first structure
equation to the one given in Theorem 3. Since the Levi-Civita connection is always in use,
there is no need to derive an expression for the components of a torsion 2-form. However,
this is not the case for a curvature 2-form.
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Definition 37. Consider a curvature 2-form in the following component form

Ωi
j =

1
2

Ri
jkl σk ∧ σl . (193)

The elements Ri
jkl are called components of the Riemann curvature tensor.

Proposition 8. The components of the Riemann curvature tensor are given by8:

Ri
jkl = ∂kΓi

jl − ∂lΓi
jk + Γi

ksΓ
s
jl − Γi

lsΓ
s
jk. (194)

The only non-trivial trace of the Riemann curvature tensor is called the Ricci curvature
tensor and is given by

Rm
imj σj = Rij σj (195)

where
Rij = ∂lΓl

ij − ∂jΓl
il + Γm

ijΓ
l
lm − Γm

ilΓ
l
jm. (196)

Last, the trace of the Ricci curvature tensor is called the Ricci curvature scalar and is
denoted

R = Rijgij. (197)

In an ON-basis, the curvature 2-forms satisfies the symmetries

Ωij = −Ωji, (198)

Ri
jlk = −Ri

jkl . (199)

The proof is omitted due to being more or less straight forward, although tedious,
calculations using Cartan’s structural equations, a Levi-Civita connection, the definition
of the Christoffel symbols and the Bianchi identities which are two identities for Ri

jkl . For
more details see e.g. [Dray, 2015].

An important result for defining flatness is the following Corollary.

Corollary 3. In Euclidean space (Rn, g), all the curvature 2-forms vanishes, i.e. Ωi
j = 0

for all i, j.

Proof. As previously shown, the Christoffel symbols vanishes using a Cartesian
coordinate basis. From (194), it is clear that in this basis Ri

jkl = 0 for all i, j, k, l and
consequently, Ωi

j = 0 for all i, j.

8Since Γ is a 0-form, the exterior derivative dΓ is a 1-form. Hence, the following notation is used:
dΓi

jl ∧ σl = ∂kΓi
jl σk ∧ σl .
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Assume a coordinate transformation from {xi} to {yi}. In terms of tensor calculus, a
general tensor will be transform

T I
′

J′ (y
1, · · · yn) =

∂yI
′

∂xI
∂x J

∂yJ′
T I

J (x1, · · · xn), (200)

where I
′
, J
′

are index set for the new variable y and I, J index set for the old variable x.
Using this, the Riemann curvature tensor will transform accordingly

Ri
jkl(y

1, · · · yn) =
∂yi

∂xm
∂xn

∂yj
∂xs

∂yk
∂xt

∂yl Rm
nst(x1, · · · xn). (201)

Since Rm
nst = 0, the transformed curvature tensor also vanish. Hence, Ω

i
j = 0 for all

i, j in any coordinate system. �

This corollary together with a Levi-Civita connection proves the Cartan’s structural
equations in Rn, Theorem 3. Moreover, in a coordinate transformation from Cartesian to
a general set of coordinates, the Christoffel symbols can be shown to transform

Γk
ij(y) =

∂xs

∂yi
∂xt

∂yj
∂yk

∂xm Γm
st(x) +

∂yk

∂xm
∂2xm

∂yi∂yj =
∂yk

∂xm
∂2xm

∂yi∂yj , (202)

where the first term vanish since Γm
st(x) = 0. The fact that Γk

ij not necessarily vanishes
can be interpret as a measure of how much the new coordinate basis "curve". This is not
a measure of curvature in the way previously defined, but rather a consequence of the
coordinates in use. Since curvature is an invariant property of the geometry, the curvature
tensor must vanish regardless of the choice of coordinates. A common way to separate
coordinate systems based on whether or not the Christoffel symbols vanishes is given by

Definition 38. A coordinate system where the Christoffel symbols vanishes completely
is called a flat coordinate system. It is possible to do a change of variables from this flat
coordinate system to another (in the same geometry). If this new coordinate system
has non-zero Christoffel symbols it is called a curvilinear coordinate system.

As seen in Example 9, spherical coordinates in R3 is a curvilinear coordinate system.

Flatness

The Euclidean geometry was previously referred to as flat. A flat geometry can now be
accurately defined.

Definition 39. A pseudo-Riemannian manifold (M, g) is called flat if all the curvature
2-forms vanishes. That is, Ωi

j = 0 for all i, j.
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A common misunderstanding with this definition is to assume that if a geometry (i.e. a
pseudo-Riemannian manifold) is flat, the curvature of embedded shapes in this geometry
are also flat. This is not correct and the classical example of the sphere with non-flat
curvature embedded in Euclidean space proves this. Rather, if a geometry is flat the
curvature 2-forms in Cartan’s second structure equation vanishes. This implies that
the intrinsic curvature of an embedded shape in this geometry can be calculated by
dωi

j = −ωi
k ∧ωk

j. Shapes in a flat geometry can be flat or curved. Likewise, shapes in a
curved geometry, where the curvature 2-forms are non-zero, can also be flat or curved.
In this case the calculations usually becomes more complex due to a non-zero Riemann
curvature tensor.

The method for proving Corollary 3 was to find one set of coordinates for which the
Riemann curvature tensor vanish and then prove that regardless of the basis, the curvature
will remain zero. An alternative way to show that a general Riemannian manifold is
flat is to use the fact that Euclidean space is flat and find an isometry between the two
manifolds. The same holds for a general pseudo-Riemannian manifold. In this case, the
analogy of a flat geometry is a Minkowski manifold, (Rn, gMink), where the metric is called
a Minkowski metric. This metric is given by

gMink = −(dx1)2 + (dx2)2 + · · ·+ (dxn)2 (203)

and has the signature (n− 1, 1).

Definition 40. Let (M, g) and (M̃, g̃) be pseudo-Riemannian manifolds. A function
F : M → M̃ is called a Riemannian isometry if F is a diffeomorphism and F∗ g̃ = g
holds. In that case (M, g) and (M̃, g̃) are isometric.

A function F : M→ M̃ is called a local Riemannian isometry if for all points p ∈ M, F
is a local diffeomorphism where F∗ g̃ = g holds. Then (M, g) and (M̃, g̃) are locally
isometric.

Proposition 9. Consider a Riemannian manifold (M, g). If (M, g) is (locally) isometric
to (Rn, g), then (M, g) is (locally) flat. In this case one also refers to g as a (locally)
flat metric.

Identically, a pseudo-Riemannian manifold (locally) isometric to (Rn, gMink) is (locally)
flat.

Proof. Let (M, g) be locally isometric to (Rn, g). There exist a neighbourhood V
around each p ∈ M where F∗g = g holds and F : V → Rn is a diffeomorphism. Also,
let F(p) = x0. For each point p and x0 let {dyi} and {dxi} be the local coordinate bases
in M and Rn. It is possible, if necessary, to shrink V in order for the two coordinate
bases to be simultaneously valid over V and F(V).
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The relation between the metric components are

gij(p) dyidyj = F∗(gij(p) dyidyj) (204)

= gij(x0)
∂Fi

∂xs (x0) dxs ∂Fj

∂xt (x0) dxt (205)

= gij(x0)
∂Fi

∂xs (x0)
∂Fj

∂xt (x0) dxsdxt (206)

Based on g being a diagonal matrix where gij = δij

gij = 0, if i 6= j, (207)

gii =
n

∑
s=1

(
∂Fi

∂xs

)2

, if i = j. (208)

Assume a Levi-Civita connection, then it is possible to derive an alternative Koszul’s
formula where

2Γijk = ∂kgij + ∂jgik − ∂igjk. (209)

The Christoffel symbols can now be calculated.

Γijk = 0 if i 6= j, (210)

⇒ Γi
jk = 0 if i 6= j, (211)

Γiik = ∂kgii =
n

∑
s=1

∂Fi

∂xs
∂2Fi

∂xs∂xk , if i = j, (212)

⇒ Γi
ik = giiΓiik =

1

∑n
m=1

(
∂Fi
∂xm

)2

n

∑
s=1

∂Fi

∂xs
∂2Fi

∂xs∂xk , if i = j. (213)

The Riemann curvature tensor is given by (194) and there exist three different cases:
(i) i 6= j, (ii) i = j and k = l and (iii) i = j and k 6= l.

(i) If i 6= j all Christoffel symbols vanishes and Ri
jkl = 0.

(ii) If i = j and k = l

Ri
ikk = ∂kΓi

ik − ∂kΓi
ik + Γi

ksΓ
s
ik − Γi

ksΓ
s
ik = 0. (214)

(iii) If i = j and k 6= l, consider first the last two terms Γi
ksΓ

s
il − Γi

lsΓ
s
ik. They are

only non-zero of i = k or i = l. Thus, using the symmetry of Γ under a Levi-Civita
connection (Definition 35), for i = k

Γi
isΓ

s
il − Γi

lsΓ
s
ik = Γi

isΓ
s
il = Γi

iiΓ
i
il = Γi

iiΓ
i
li = 0. (215)
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The same holds for i = l, so Γi
ksΓ

s
il − Γi

lsΓ
s
ik = 0. This reduces the components to

Ri
ikl = ∂kΓi

il − ∂lΓi
ik (216)

=
∂

∂xk


 1

∑n
m=1

(
∂Fi
∂xm

)2

n

∑
s=1

∂Fi

∂xs
∂2Fi

∂xs∂xl


 (217)

− ∂

∂xl


 1

∑n
m=1

(
∂Fi
∂xm

)2

n

∑
s=1

∂Fi

∂xs
∂2Fi

∂xs∂xk


 = 0.

This expression vanish due to the commutative nature of partial derivatives.

Hence, taking all cases together, Ri
jkl = 0 and (M, g) is flat. The proof for a Minkowski

manifold is identical up to a sign in the first coordinate and the same calculations will
produce a vanishing Riemann curvature tensor. Also, the first part of the proposition
is given if V = M and the coordinate bases {dyi} and {dxi} are valid for all of M and
F(M). �

The following theorem can be useful for deciding whether or not a particular geometry is
flat. The proof is not given here, but it relies on Sylvester’s law of inertia and the existence
of an orthonormal basis (See e.g. [Friedberg et al., 2003] and [Lee, 2013]).

Theorem 8. A necessary (but not sufficient) condition for two pseudo-Riemannian
manifolds, (M, g) and (M̃, g̃), to be locally isometric is that the signatures of g and g̃
are locally equal.

Thus, an arbitrary geometry (M, g) can be evaluated based on the eigenvalues of the
matrix g. If the signature of g does not (locally) equal either the signature of g or gMink,
the geometry is certain to be locally curved.

Example 10. The cylinder manifold (C, F∗g) from Example 7, where

F∗g =




1 0 0
0 r2 0
0 0 1


 , (218)

has signature (3, 0). Moreover, the function

F(r, θ, z) = (r cos θ, r sin θ, z) (219)

is a diffeomorphism in the chosen domain. This implies that (C, F∗g) is isometric to
(R3, g) and flat. //
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Example 11. The geometry (M, g), where

g = −dt2 + a2
(

1
1− kr2 dr2 + r2 dθ2 + r2 sin2 θ dφ2

)
, (220)

for a constant a > 0 and k = −1, 0, 1 is called the Robertson-Walker geometry. In the
ON-basis {dt, a/

√
1− kr2 dr, ar dθ, ar sin θ dφ} the signature (p, q)(k), depends on k

(p, q)(k) =

{
(3, 1), k = −1, 0

(2, 2), k = 1, r > 1
. (221)

The signature for k = 1 and r > 1 is clearly not compatible with flat space, so this
geometry is curved. For k = −1, despite having the same signature as gMink it turns
out that there exist no isometry between the two, i.e. it is also curved. The geometry
where k = 0 together with the diffeomorphism F(t, r, θ, φ) = (t, ar, θ, φ) is isometric to
(R4, gMink) and therefore flat. //

Example 12. The geometry (M, g), where

g = −
(

1− a
r

)
dt2 +

1
1− a

r
dr2 + r2 dθ2 + r2 sin2 θ dφ2, (222)

for M = R×R+ × S2 and a constant a > 0 is called the Schwarzschild geometry. In the
ON-basis {

√
1− a/r dt, (

√
1− a/r)−1 dr, r dθ, r sin θ dφ} the signature (p, q)(r), depends

on r as (p, q)(r) = (3, 1) for r ∈ (0, ∞) \ {0, a}. The signature corresponds to gMink which
makes this whole region a candidate for flat geometry. However, it turns out that due to
the r dependence the geometry is only asymptotically flat, i.e. asymptotically isometric to
(R4, gMink) as r → ∞.

For the space enthusiast, this metric models the gravitational field outside of a point
mass at r = 0. One application is a black hole where all the mass is concentrated at a
singular point. At r = a, there exist a "fake" singularity due to the choice of coordinates.
This coordinate singularity is the event-horizon of a black hole. Physically, it is not a
true singularity since it can be removed by changing to Eddington-Finkelstein coordinates,
where the only singularity occurs at r = 0. But strange things happens when r < a. In
this domain time (dt) and space (dr) switch sign and place. Consequently, the singularity
at r = 0 is not a position in space, but rather a moment in time. So, the unlucky person
who finds himself inside the event horizon will not be able to escape the singularity since
one cannot escape a moment in time. //
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V. General relativity and the connection to Riemannian
geometry

With Riemannian geometry it is now possible to introduce the basic ideas in general
relativity. The first step is to mathematically define spacetime. Thereafter Einstein’s field
equations, and how to solve these, will be presented.

Most of the results in this section and the next requires additional concepts from physics,
which is why no proofs are presented. If no explicit reference is given, proofs and detailed
derivations can be found in [Hartle, 2003] or [Dray, 2015].

Lorentzian manifolds

An important subclass of pseudo-Riemannian manifolds is generated by a Lorentz metric.

Definition 41. A pseudo-Riemannian metric with signature (n − 1, 1) is called a
Lorentz metric.

A Lorentzian manifold is a differentiable manifold equipped with a Lorentz metric.

The flat Minkowski manifold (Rn, gMink) is a Lorentzian manifold, but a Lorentzian
manifold need not to be flat. The convention is to use Minkowski space when one talks
about flat space.

The geometry of spacetime is almost self explanatory. Space has three spatial dimensions
and time one dimension. Hence, spacetime is modelled as a four dimensional manifold,
either flat or curved.

Definition 42. The Minkowski manifold (R4, gMink) is called flat spacetime or
Minkowski spacetime.

A Lorentzian manifold (M, g), where M has four dimensions and g is not a flat metric,
is called curved spacetime.

The existence of a Riemannian metric on a differentiable manifold is ensured by Propo-
sition 3. However, the same result does not hold for pseudo-Riemannian metrics and
Lorentz metrics for which there are additional conditions. It turns out that the only rea-
sonable model of spacetime is a non-compact manifold and, fortunately, a non-compact
manifold satisfy these extra conditions to guarantee the existence of a Lorentz metric. For
more details see [Hawking & Ellis, 1973].
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Einstein’s field equations

Consider a spacetime (M, g) where M is a Lorentzian manifold. The metric is either flat
or curved and has signature (3, 1). The Einstein field equations (EFE) are then given by

G + Λ =
8πG

c2 T, (223)

or in component form

Rij −
1
2

gijR + Λgij =
8πG

c2 Tij. (224)

The left side consist of the Einstein tensor G and the cosmological constant Λ. The right
side of the stress-energy tensor T scaled by the gravitational constant G and the speed of
light in vacuum c.

The Einstein tensor can be expressed as a Lie algebra-valued 1-form which describes the
curvature of spacetime.

G = Giêi = Gi
jσ

jêi, (225)

where {σj} is an ON-basis of 1-forms, {êi} an orthonormal vector basis and Gi
j the

components given by

Gi
j = Ri

j −
1
2

δi
jR. (226)

Or equivalently

Gi
j = Ri

j −
1
2

δi
jR = gikRkj −

1
2

gikgkjR ⇔ (227)

gikGi
j = gikgikRkj −

1
2

gikgikgkjR ⇔ (228)

Gkj = Rkj −
1
2

gkjR ⇔ (229)

Gij = Rij −
1
2

gijR. (230)

Rij are the components of the Ricci curvature tensor and R the Ricci curvature scalar. The
Einstein tensor is truly curvature of spacetime.

The cosmological constant is an attempt to model the acceleration of the expansion of the
Universe and is related to the mysterious source of dark energy. The components simply
consist of a constant real value Λ. The value of Λ is a matter of observational cosmology,
but in most rough models one can assume it is zero.

If the left side of EFE represents curvature then the right side represents matter. By
the famous E = mc2, matter is simply a representation of energy. In the three spatial
dimensions, {x̂, ŷ, ẑ}, energy takes the form of forces acting along each axis. Three spatial
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dimensions creates a nine component tensor Tij where i, j = x, y, z. In physics, forces
acting along different axes i 6= j are called stress. This is a quite natural wording if one
thinks of applying asymmetric force to e.g. a piece of paper. The paper will experience
stress and likely tear apart. In the temporal dimension, t̂, the corresponding tensor
components are called energy and momentum density. For Ttt, think of a scientist sitting
completely still in space, preferably in a spacesuit. This scientist would be able to measure
the amount of energy in this resting frame of space, a measure called energy density. The
Tit = Ttj components (i, j = x, y, z) represents the flow of energy, also called momentum
density, in the ith or jth direction, measured by a scientist sitting in different resting frames.
The summarising picture is

Tij =




energy momentum
density density

m
om

en
tu

m
de

ns
it

y

stress




(231)

Energy and momentum densities are far from intuitive concepts and a good source
for deeper understanding is [Hartle, 2003].

Similarly as the Einstein tensor, instead of using tensor notation the stress-energy tensor
is expressed as a Lie algebra-valued 1-form.

T = Tiêi = Ti
jσ

jêi, (232)

where the components Ti
j, or Tij = gikTk

j, can be derived from Tij.

Solutions to Einstein’s field equations

A solution to EFE is a specific Minkowski or Lorentzian spacetime that match a certain
matter distribution. This is more or less a way to say that the left side need to equal the
right side. But finding a solution is hard and the complexity is hidden in the deceivingly
simple looking equation (224). The left side of the equation consists of non-linear partial
differential equations given by (196) and (197). The right side constitutes a dynamical
system (potentially non-linear in itself) of how matter is distributed in spacetime. This
dynamical system describes matter and energy based on physical laws of nature, their
coupling with each other and in some cases the coupling with gravitational fields.

In practice, there exist two different methods to approach a solution. One way is to
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fix the right side, i.e. choose a matter distribution T, and then try to find a Lorentzian
manifold, a spacetime, to match this. The other way is to fix the left side G by choosing
a specific spacetime and then try to find a physical matter distribution. Due to the
non-linearity of EFE exact solutions are rare. In order to handle this, there exist three
common approximations: vacuum, weak field and linearised weak field solutions.

For vacuum, consider completely empty space9 and a cosmological constant equal to zero,
then Tij = 0 and

Rij =
1
2

gijR ⇒ (233)

gijRij =
1
2

gijgijR ⇒ (234)

R =
1
2

R ⇒ (235)

R = 0. (236)

Definition 43. The reduced EFE Rij = 0 are called the vacuum equations, and a solution
is called a vacuum solution.

A vacuum solution is one of the few solutions that can be shown in detail without too
lengthy calculations, the most trivial being flat spacetime.

Example 13. Let the matter distribution be vacuum, i.e. Tij = 0 and Λ = 0. Consider
Minkowski spacetime as a candidate solution to the EFE. The vacuum equations states
that

Rij = ∂lΓl
ij − ∂jΓl

il + Γm
ijΓ

l
lm − Γm

ilΓ
l
jm = 0. (237)

Since gMink is a flat metric all the Christoffel symbols vanishes and solves the vacuum
equations. Clearly then, Minkowski spacetime is an exact vaccum solution. //

Assume now that one is situated in flat space, far away from a source of gravity. Over
the distance, this source creates a weak field of gravity only with the strength of a small
perturbation.

Definition 44. A weak field solution is a metric

g = gMink + h, (238)

where h is small compared to gMink and solves the EFE. Applying perturbation theory,
a solution can be expanded in terms of h and, if necessary, truncated to first order

9Completely empty space does not exist. Even in the darkest part of this vast emptiness the cosmic
microwave background radiation makes a mark. So, this assumption is an approximation.
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for a linearised solution. This linearisation is very common to make in weak field
solutions and they are referred to linearised weak field solutions.

A rough sketch for common ways of solving EFE is given in Figure 4. If the method is
to fix T, T might be coupled to G via some law of nature that binds a specific matter
distribution to gravitational fields. Since the sought solution is gravity, this coupling
might be problematic. One way to proceed is to solve for g and T simultaneously, most
likely numerically. Another way is to approximate T with an uncoupled approximation, if
this is possible. The uncoupled version of T is a system of linear or non-linear differential
equations that need to be solved. Based on the complexity of this system, there exist either
an analytic solution or one need to approximate T further to find a solution. Vacuum is
one approximation, perfect fluid another. For perfect fluid

Tij = (ρ + p)uiuj + pgij, (239)

where ρ is energy density, p the pressure density and u the velocity vector. The uncoupled
version is an approximation where p = 0 and this model is called dust. After an expression
for T is finally given, this is plugged into EFE and then one proceeds by solving this
system of equations in some manner.

Fix T based on physical laws

T uncoupled to G

T linear

Solve T and 
plug T into EFE

Approximate 
T

Solve EFE exact 
or use an 

approximation 
method

Solve T and 
plug T into EFE

Solve EFE as is 
or use an 

approximation 
method

Approximate 
and uncouple T  

from G

T coupled to G

T non-linear

Solve EFE for g 
and T 

simultaneously 
(usually done 
numerically)  

Fix G

Find a matter 
distribution T

Figure 4: Possible ways to approach a solution to EFE.
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VI. Predicting and detecting gravitational waves

General relativity is a theory from which predictions can be made. A prediction is a
consequence of solving the EFE and analyse what the solution means physically. Theory
must of course be verified by observations and this can be a matter of months, years or
even centuries, and GR had it all. The prediction about the bending of light around stars
was verified early. Also Mercury’s orbit precession could be explained by GR. In recent
years, as the observational technology has become more accurate, black holes have been
verified to exist and the GPS is perhaps the most widely used application relying on GR.
For long, gravitational waves were assumed impossible to detect. The prediction was that
a passing gravitational wave, here on Earth, would curve the space around it by about
1/10000th the diameter of a proton, or around 10−19 m. But with over 40 years of research
the prediction was verified in 2016.

Weak gravitational waves

The physics behind predicting the existence of gravitational waves can be divided into two
different regimes, strong and weak gravitational waves. The strong regime is close to the
source. In terms of a solution to EFE, this regime is where any weak field approximation
breaks down and the curvature from the source can no longer be handled as a small
perturbation of flat spacetime. There are no known analytical solutions to these strong
gravitational waves and the numerical models require supercomputers to work out a
viable solution.

Weak gravitational waves origin from strong regime events. Over the distance travelled
to Earth, the wave loses its strength and becomes, eventually, a small perturbation. The
properties of these weak gravitational waves are (i) they propagate with the speed of light,
(ii) they are weak enough that a weak field solution is possible and (iii) they satisfies the
wave equation. A simplifying assumption is that they propagate through vacuum, i.e.
they are a vacuum solution. The general solution can be derived from these properties
and with the help of gauge theory. The full derivation can be found in [Hartle, 2003].

The general solution for weak gravitational waves is

g = gMink + h, (240)

hij(p) = aijeιks ps , (241)

where aij are constants, ι the imaginary unit, k the wave vector and p a point in spacetime.
The temporal part of the wave vector k consist of the angular wavenumber kt = K which is
related to the wavelength λ as K = 2π/λ. The spatial components describes the direction
of the wave and the magnitude of this vector must equal K.

If the wavelength is fixed and the wave assumed to travel along a single axis, say the
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positive x-direction, the solution can be simplified to

hij(p) =




0 0 0 0
0 0 0 0
0 0 a33 a34

0 0 a34 −a33


 e−ιK(t−x) =




0 0 0 0
0 0 0 0
0 0 A B
0 0 B −A


 e−ιK(t−x), (242)

where A, B are constants. The full solution is given by different waves superimposed on
each other. Each wave has a unique K and the constants A(K) and B(K) will also depend
on K. Still, assume the wave travels along the positive x-direction, then

hyy = −hzz =
∫

K
A(K)e−ιK(t−x) = f (t, x), (243)

hyz = hzy =
∫

K
B(K)e−ιK(t−x) = u(t, x), (244)

gij =




−1 0 0 0
0 1 0 0
0 0 1 + f (t, x) u(t, x)
0 0 u(t, x) 1− f (t, x)


 . (245)

Mathematically, solving the EFE when the candidate solution is more complex than
Minkowski spacetime the true use of differential forms becomes obvious. Instead of using
Koszul’s formula to calculate an endless amount of Christoffel symbols, one can simply
derive the connection 1-forms from Cartan’s first structure equation and then derive
the Riemann curvature tensor from Cartan’s second structure equation. The following
example illustrates this, as well as what gravitational waves might look like.

Example 14. Consider the Lorentz spacetime (R4, g), where

g = −dt2 + dx2 + (1 + f (t, x)) dy2 + (1− f (t, x)) dz2 (246)

and f is small compared to 1. A linearised weak field solution, with the off-diagonal
elements u set to zero, is sought. In spacetime coordinates, {êi} = {t̂, x̂, ŷ, ẑ}, the
ON-basis {σt, σx, σy, σz} = {dt, dx,

√
1 + f dy,

√
1− f dz} is a natural choice of basis.

Assuming a Levi-Civita connection, Cartan’s first structure equation gives the following
system of equations (let ft and fx denote the partial derivatives of f ):

0 = ωt
t ∧ σt + ωt

x ∧ σx + ωt
y ∧ σy + ωt

z ∧ σz, (247)

0 = ωx
t ∧ σt + ωx

x ∧ σx + ωx
y ∧ σy + ωx

z ∧ σz, (248)
1

2(1 + f )
(

ft σt ∧ σy + fx σx ∧ σy) = ω
y
t ∧ σt + ω

y
x ∧ σx + ω

y
y ∧ σy + ω

y
z ∧ σz, (249)

− 1
2(1− f )

(
ft σt ∧ σz + fx σx ∧ σz) = ωz

t ∧ σt + ωz
x ∧ σx + ωz

y ∧ σy + ωz
z ∧ σz. (250)
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By Theorem 6 the sought solution is unique and there are two ways to proceed to find
this. One way is to use the symmetry of the connection 1-forms to set up a system of 16
equations and solve for the 16 unique variables ωi

j. Another way is to guess a solution
from the last two equations with a non-zero left-hand side and then use the symmetry of
the connection forms to derive the corresponding forms with flipped index. If this guess
solves the system, it is the correct solution. In most easy cases, such as this, this is the
best way to proceed. From the last two equations, a possible solution is

ω
y
t = −

ft

2(1 + f )
σy, (251)

ωz
t =

ft

2(1− f )
σz, (252)

ω
y
x = − fx

2(1 + f )
σy, (253)

ωz
x =

fx

2(1− f )
σz, (254)

as well as putting all other connections in these two equations to zero. Using the symmetry
ωij = −ωji and ωij = gilω

l
j the other non-zero connections are

ωty = gtlω
l
y = −ωt

y = −ωyt = −(gylω
l
t) = −((1 + f )ωy

t) (255)

⇒ ωt
y = (1 + f )ωy

t = −
ft

2
σy, (256)

ωt
z = (1− f )ωz

t =
ft

2
σz, (257)

ωx
y = −(1 + f )ωy

x =
fx

2
σy, (258)

ωx
z = −(1− f )ωz

x = − fx

2
σz. (259)

It is easy to check that these eight connection forms solves the system. Using Cartan’s
second structure equation the curvature 2-forms can be calculated. The ten non-zero
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2-forms are

Ωt
y = − 1

4(1 + f )
(

f 2
t + 2(1 + f ) ftt σt ∧ σy + fx ft + 2(1 + f ) ftx σx ∧ σy) , (260)

Ωt
z = −

1
4(1− f )

(
f 2
t + 2( f − 1) ftt σt ∧ σz + fx ft + 2( f − 1) ftx σx ∧ σz) , (261)

Ωx
y =

1
4(1 + f )

(
fx ft + 2(1 + f ) ftx σt ∧ σy + f 2

x + 2(1 + f ) fxx σx ∧ σy) , (262)

Ωx
z =

1
4(1− f )

(
fx ft + 2( f − 1) ftx σt ∧ σz + f 2

x + 2( f − 1) fxx σx ∧ σz) , (263)

Ωy
t =

1
4(1 + f )2

(
f 2
t − 2(1 + f ) ftt σt ∧ σy + fx ft − 2(1 + f ) ftx σx ∧ σy) , (264)

Ωy
x =

1
4(1 + f )2

(
fx ft − 2(1 + f ) ftx σt ∧ σy + f 2

x − 2(1 + f ) fxx σx ∧ σy) , (265)

Ωy
z =

f 2
x − f 2

t
4(1 + f )

σy ∧ σz, (266)

Ωz
t =

1
4(1− f )2

(
f 2
t − 2( f − 1) ftt σt ∧ σz + fx ft − 2( f − 1) ftx σx ∧ σz) , (267)

Ωz
x =

1
4(1− f )2

(
fx ft − 2( f − 1) ftx σt ∧ σz + f 2

x − 2( f − 1) fxx σx ∧ σz) , (268)

Ωz
y =

f 2
t − f 2

x
4(1− f )

σy ∧ σz. (269)

The non-zero curvature 2-forms imply that the chosen Lorentz spacetime is indeed curved.
Moreover, from Proposition 8 the components of the Riemann curvature tensor can be
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derived.

Rt
yty = − 1

2(1 + f )
( f 2

t + 2(1 + f ) ftt), Rt
yxy = − 1

2(1 + f )
( fx ft + 2(1 + f ) ftx), (270)

Rt
ztz = −

1
2(1− f )

( f 2
t + 2( f − 1) ftt), Rt

zxz = −
1

2(1− f )
( fx ft + 2( f − 1) ftx), (271)

Rx
yty =

1
2(1 + f )

( fx ft + 2(1 + f ) ftx), Rx
yxy =

1
2(1 + f )

( f 2
x + 2(1 + f ) fxx), (272)

Rx
ztz =

1
2(1− f )

( fx ft + 2( f − 1) ftx), Rx
zxz =

1
2(1− f )

( f 2
x + 2( f − 1) fxx), (273)

Ry
tty =

1
2(1 + f )2 ( f 2

t − 2(1 + f ) ftt), Ry
txy =

1
2(1 + f )2 ( fx ft − 2(1 + f ) ftx), (274)

Ry
xty =

1
2(1 + f )2 ( fx ft − 2(1 + f ) ftx), Ry

xxy =
1

2(1 + f )2 ( f 2
x − 2(1 + f ) fxx), (275)

Rz
ttz =

1
2(1− f )2 ( f 2

t − 2( f − 1) ftt), Rz
txz =

1
2(1− f )2 ( fx ft − 2( f − 1) ftx), (276)

Rz
xtz =

1
2(1− f )2 ( fx ft − 2( f − 1) ftx), Rz

xxz =
1

2(1− f )2 ( f 2
x − 2( f − 1) fxx), (277)

Ry
zyz =

1
2(1 + f )

( f 2
x − f 2

t ), Rz
yyz =

1
2(1− f )

( f 2
t − f 2

x ). (278)

These are the independent components and applying the symmetry Ri
jlk = −Ri

jkl gives
the additional ones. It is now a simple matter to calculate the Ricci curvature tensor
Rij = Rm

imj. The non-zero components are

Rtt =
1

( f 2 − 1)2 (2 f ( f 2 − 1) ftt − (1 + f 2) f 2
t ), (279)

Rtx = − 1
( f 2 − 1)2 (2 f (1− f 2) ftx + (1 + f 2) fx ft), (280)

Rxt = Rtx, (281)

Rxx = − 1
( f 2 − 1)2 (2 f ( f 2 − 1) fxx − (1 + f 2) f 2

x ), (282)

Ryy =
1

f 2 − 1
( ftt − fxx + f 2( fxx − ftt) + f 2

t − f 2
x ), (283)

Rzz =
1

f 2 − 1
( fxx − ftt + f 2( ftt − fxx) + f 2

t − f 2
x ). (284)

The vacuum equations Rij = 0 can be reduced down to

( f 2 − 1)( ftt − fxx) = 0, (285)

2 f ( f 2 − 1)( ftt − fxx + ftx) + ( f 2 + 1)( f 2
x − f 2

t − ft fx) = 0 (286)
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and clearly this is not easy to solve for the non-linear case. For the linearised solution,
think of f as a function f (t, x) = εX(t, x) where ε is the small perturbation variable.
The second order factor ε2 will be truncated, i.e. ε2 ≈ 0. In case of real detections, this
perturbation will be of the order ε = 10−19, so removing the second order ε2 = 10−38

truly makes sense since there is no way to detect such small vibrations. Thus, the above
vacuum equations becomes

(ε2X2 − 1)(εXtt − εXxx) ≈ εXxx − εXtt = fxx − ftt = 0, (287)

2εX(ε2X2 − 1)(εXtt − εXxx + εXtx) + (ε2X2 + 1)(ε2X2
x − ε2X2

t − εXtεXx) (288)

= 2ε2X(ε2X2 − 1)(Xtt − Xxx + Xtx) + ε2(ε2X2 + 1)(X2
x − X2

t − XtXx) ≈ 0. (289)

The linearised weak field solution has only one condition and that is fxx − ftt = 0, i.e. f
need to be a wave function.

In order to understand what these waves look like consider the wave function

f (t, x) = A sin(ω(t− x)), (290)

with a small amplitude A and frequency ω. The metric g is

g = −dt2 + dx2 + (1 + A sin(ω(t− x))) dy2 + (1− A sin(ω(t− x))) dz2 (291)

and the wave only affects spacetime in the y− z plane. For fixed x, A and ω, think of a
stationary circle of small mass elements. When this gravitational wave passes the ring,
the particles will remain stationary in terms of their coordinate positions because these
coordinates move in symmetry with the wave and no forces are involved. That is, the
circle stays as a perfect circle in the spacetime it is embedded in. Instead, in order to
measure this wave it is necessary to measure the distance over time between two such
mass elements. In Riemannian geometry, the distance is given by the Riemannian distance
function.

Definition 45. Consider a parametrised curve γ(t) : [a, b] → M. If γ is a smooth
curve with γ′(t) 6= 0 for t ∈ [a, b], it is called a regular curve.

Definition 46. If γ(t) : [a, b]→ M is a regular curve, the length of γ is given by

L(γ) =
∫

[a,b]
|γ′(t)|g. (292)

For two points p, q ∈ M (M need to be connected) the Riemann distance, or simply the
distance, is then given by

d(p, q) = inf{L(γ) : γ is a regular curve joining p and q}. (293)
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In terms of how much the distance changes it is possible to illustrate how this ring, in
this case squeeze and stretch, due to the curvature of spacetime. Figure 5 shows a few
instances in time t.

t

y

z

mass element
distance

y
z

mass element
distance

Figure 5: The wave function f (t, x) = A sin(ω(t− x)) perturbing the distance between mass elements in
a circle in the y− z plane. This measured change in distance is not due to any forces, but rather
curved spacetime.

Consider instead the wave function

f (t, x) = Ae−(t−x)2/σ2
, (294)

with a maximum height A and width σ. A similar illustration using the distance between
the mass elements in a circle is given below.

t

y

z

mass element

y

z

mass element
distance

Figure 6: The wave function f (t, x) = Ae−(t−x)2/σ2
perturbing the distance between mass elements in a

circle in the y− z plane.

This function models a single Gaussian wave packet, squeezing the distance in the
z-direction and expanding it in the y-direction as it propagates through spacetime. //
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LIGO and the detection of gravitational waves

In 2016 the first detection of a gravitational wave was published and presented in
[Abbott et al., 2016]. The detection happened in 2015 and the wave originated from
the inspiral and merger of two black holes. The event was estimated to release about 3
solar masses of pure energy into gravitational waves, an amount incomprehensible to any
source of energy we can relate to. The waves travelled about 1.3 billion light years until it
reached earth as a tiny perturbation of order ε = 10−21.

The discovery was made possible by the Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) and the use of a laser interferometer. This tool measures the deviation
of distances between test particles very accurately by using constructive and destructive
interference of a laser beam.

Definition 47. Denote the distance between two test particles in flat spacetime by L∗
and the perturbation of this distance due to curvature by δL. The relative deviation
from flat spacetime is called strain and defined as the ratio δL/L∗.

The figure below shows the strain for the two wave functions in Example 14.

t

0

S
tr

a
in

y-direction
z-direction

(a) Perturbation factor A sin(ω(t− x)).

t

0

S
tr

a
in

y-direction
z-direction

(b) Perturbation factor Ae−(t−x)2/σ2
.

Figure 7: Strain calculated for two wave functions.

In order to predict how the event in 2015 would look like here on Earth, theorists needed
to numerically work out the strong gravitational wave pattern at the event and then
predict the decay in strength and pattern over the distance to Earth. Quite remarkably the
predictions were almost spot on as can be seen in the two below figures.
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Figure 8: Numerical predictions of the wave pattern on Earth following the event of two merging black
holes. Source: [Abbott et al., 2016].
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Figure 9: Weak gravitational wave observations of strain and frequency at two separate observatories vs. the
numerical predictions. The residual is sorted out background noise. Source: [Abbott et al., 2016].
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VII. Summary and concluding remark

The generalisation of Euclidean geometry leads to the extensive subject of Riemannian
geometry. Introducing an inner product, also known as a metric tensor, together with a
differentiable manifold creates the structure of a pseudo-Riemannian or a Riemannian
manifold, differing only in the signature of the metric tensor. While this generalisation
opens up a wide field of mathematics, it also redefine concepts in Calculus. Differential
forms are a perfect tool for differential calculus in Riemannian geometry. On Riemannian
manifolds, vector-valued differential forms and Lie-algebra valued 1-forms can be devel-
oped. This leads to the definition of a connection 1-form. The components of a connection
1-form are called Christoffel symbols and they can be uniquely determined with the use
of a Levi-Civita connection.

Curvature is an important property of Riemannian manifolds, described by the Riemann
curvature tensor and curvature 2-forms. Calculating these 2-forms relies on Cartan’s
structural equations. Curvature is essential for theoretical physics, especially in GR where
curved spacetime is related to gravity via Einstein’s field equations. Cartan’s structural
equations are also practical for reducing the number of calculations needed.

The Universe, as we know it today, consist of four dimensions: space and time. This
is best modelled by a pseudo-Riemannian manifold with signature (3, 1), also called
a Lorentzian manifold. Solving Einstein’s field equations means finding a Lorentzian
manifold to satisfy the requirements of a specific matter and energy distribution. Usually,
one has to approximate this distribution by e.g. perfect vacuum or a perfect fluid. A
particularly interesting vacuum solution is weak gravitational waves, which are wave
perturbations of flat spacetime. If flat spacetime is set to a magnitude of 1, then these
perturbations have a magnitude of around 10−21.

Final remark. This thesis puts focus on a particular path through Riemannian geometry
leading to GR and gravitational waves. However, there are many related areas not
included and the two most obvious are geodesics and global curvature. Geodesics are
the generalisation of straight lines in Riemannian geometry and they can be used in
measuring curvature, both locally for paths on a manifold and globally with Gauss-
Bonnet theorem. In GR, geodesics are also a tool for doing analysis on particles in space
and how their paths are effected by gravity. For example, photons (i.e. light) always
travel along geodesics in spacetime. The global curvature of a 2-dimensional manifold is
given by the Gauss-Bonnet theorem and higher 2n-dimension manifolds can be analysed
with the generalised Gauss-Bonnet theorem, where both theorems are related to the Euler
characteristic of the manifold. Global curvature can be used in e.g. Einstein-Gauss-Bonnet
gravity, which is a generalisation of spacetime gravity to higher dimension gravity. Even
if these subjects are excluded here, they make up a perfect continuation for the study of
differential forms and Riemannian geometry.
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