
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Post-Quantum Cryptography: Supersingular Isogeny
Diffie-Hellman Key Exchange

av

Erik Thormarker

2017 - No 42

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Post-Quantum Cryptography: Supersingular Isogeny
Diffie-Hellman Key Exchange

Erik Thormarker

Självständigt arbete i matematik 30 högskolepoäng, avancerad nivå

Handledare: Jonas Bergström, John Mattsson

2017

Abstract

If large-scale quantum computers can be built, then we need to replace our most
commonly used public key cryptosystems with post-quantum public key cryptosys-
tems. These are the public key cryptosystems that are believed to remain secure
even if large-scale quantum computers can be built. One relatively recent proposal
for such a cryptosystem is the Supersingular isogeny Diffie-Hellman (SIDH) key ex-
change by Jao and De Feo. The purpose of this thesis is to explain the theoretical
background of SIDH and to evaluate the current status of the cryptosystem. Along
the way we will discuss how the isogenies in SIDH give rise to non-backtracking
walks in supersingular isogeny graphs and we perform simulations in order to study
the behaviour of these walks. To our knowledge such simulations have not been
documented elsewhere in the literature about SIDH. We also study a simple reduc-
tion between two computational problems related to SIDH on supersingular isogeny
graphs. A very similar reduction was recently mentioned in independent work by
Galbraith and Vercauteren. While studying the implementation status of SIDH
we describe a KEM built on SIDH that is IND-CCA2 secure in the random ora-
cle model. To our knowledge, in doing so we answer an open question posed by
Kirkwood et al. in the context of SIDH. Finally we give theoretical estimates of
computational work, memory usage and key sizes in different variants of SIDH as
functions of the quantum security level. This is straightforward thanks to analyses
by earlier authors in work on SIDH.

i

Acknowledgements

I want to thank my supervisors Jonas Bergström, H̊akan Englund, Christine
Jost and John Mattsson for all of their patience, help and ideas.

ii

Contents

1 Introduction 1
1.1 The contributions of this thesis . 2
1.2 List of notation . 3

2 Elliptic curves 5
2.1 A group operation on elliptic curves . 5
2.2 Torsion points and the Weil pairing . 7

3 Elliptic curve Diffie-Hellman key-exchange 9
3.1 Key exchange . 9
3.2 Attacks on ECDLP . 10

3.2.1 Pohlig-Hellman algorithm . 10
3.2.2 Pollard’s rho algorithm . 11
3.2.3 The MOV algorithm . 12

4 Quantum computing and post-quantum cryptography 14
4.1 Quantum computing . 14
4.2 Grover’s algorithm . 15
4.3 Shor’s algorithm . 16
4.4 Post-quantum cryptography . 18

5 Isogenies and supersingular elliptic curves 20
5.1 Isogenies . 20
5.2 Supersingular elliptic curves . 25
5.3 Vélu’s formulae . 28
5.4 Supersingular elliptic curves defined over Fp 29

6 Supersingular isogeny Diffie-Hellman key exchange 30
6.1 Background . 30
6.2 SIDH key exchange . 30
6.3 Normalised secret keys . 34
6.4 Computing power-smooth isogenies efficiently 34

7 Computational problems on supersingular isogeny graphs 37
7.1 Supersingular isogeny graphs . 37
7.2 Non-backtracking walks in G`A . 38
7.3 Estimating the distribution of j(EA) . 39
7.4 Estimating the distribution of j(EAB) . 44
7.5 SIDH computational problems . 46
7.6 A simple heuristic reduction from the CSSI problem to the DSSI problem . 47

7.6.1 Description of the reduction . 48
7.6.2 Analysis of the reduction . 49
7.6.3 On the probability that there is an `eAA -isogeny from E ′i+1 to EeA+i+1 49
7.6.4 Simulation results providing heuristic proof that the reduction works 50
7.6.5 Relaxing our assumption on the DSSI-algorithm A 51

7.7 A hash function on G2 . 51
7.8 Algorithms for solving isogeny problems 52

iii

8 Attacks on SIDH 54
8.1 The claw-problem . 54
8.2 An attack on static keys . 55
8.3 The torsion points in SIDH . 55

9 SIDH implementation status 57
9.1 Optimising performance . 57
9.2 Implementations in hardware . 57
9.3 Perfect forward secrecy . 58
9.4 Key compression . 58
9.5 Protocol support . 59
9.6 Patents . 59
9.7 Hybrid schemes . 60
9.8 Using a static key in SIDH . 60

9.8.1 A suggested counter-measure to the static key attack 60
9.8.2 IND-CCA2 secure public key encryption from SIDH 61
9.8.3 SIDH as a KEM . 64
9.8.4 An IND-CCA2 secure KEM from SIDH 64
9.8.5 Fault attacks . 70

9.9 SIDH benchmarks . 70
9.9.1 Memory usage . 74
9.9.2 Several PQ-cryptosystems benchmarked as KEM schemes 74

9.10 Estimations of work, memory usage and key sizes as functions of λ 75
9.10.1 Estimating the computational work in uncompressed SIDH 75
9.10.2 Estimating the memory usage in uncompressed SIDH 78
9.10.3 Estimating the computational work in compression and decompres-

sion of public keys . 78
9.10.4 Estimating the memory usage in compression and decompression of

public keys . 82
9.10.5 Overview of estimates . 82

9.11 Random bit usage . 83
9.12 How small can we make λ in practice? . 84

10 Conclusions 86
10.1 Future work . 88

References 89

Appendix 95
A Notions of formal security . 95

iv

1

1 Introduction

Many applications on today’s Internet rely on the existence of fast public key cryptog-
raphy that can be done with low bandwidth. In RSA and Elliptic curve Diffie-Hellman
(ECDH) we have two well understood (and at least in the case of ECDH, very efficient)
public key cryptosystems. Unfortunately there is a threat on the horizon. Both cryp-
tosystems are built on problems that can be efficiently solved if sufficiently large quantum
computers are built. Whether large-scale quantum computers will ever be built is an open
research question. However, selecting and evaluating new cryptosystems is a necessarily
slow process, therefore preparing for the worst and evaluating our alternatives for doing
public key cryptography in a post-quantum world is necessary. There is also the threat
of encrypted data being collected and archived with the intent to break its encryption
if/when large-scale quantum computers are successfully built.

In this thesis we look at the Supersingular isogeny Diffie-Hellman (SIDH) key ex-
change. Other suggested post-quantum public key cryptosystem include code-based and
lattice-based cryptosystems. The main advantage of SIDH is that is has relatively small
key sizes. Unfortunately, the performance of the cryptosystem has been relatively poor
in the past. The main purpose of this thesis is to explain the theoretical foundation of
SIDH and to evaluate the status of the cryptosystem.

We start in Section 2 with defining elliptic curves and a group operation on them. In
Section 3 we explain how we can implement a Diffie-Hellman key exchange with this group
operation and we talk about the computational problem, the Elliptic curve discrete loga-
rithm problem (ECDLP), on which it is based. Section 4 gives a very brief introduction
to quantum computers and some of the most important quantum algorithms. It turns out
that the ECDLP is no longer infeasible to solve if we have a quantum computer. This mo-
tivates our interest in SIDH and other post-quantum public key cryptosystems. In Section
5 we define isogenies between elliptic curves. It turns out that, although both take place
on elliptic curves, ECDH and SIDH have very little in common. In ECDH we used secret
scalars, in SIDH we use secret isogenies instead. In Section 6 we finally present SIDH. We
discuss its underlying computational problems in Section 7 and explain how the isogenies
in SIDH give rise to non-backtracking walks in supersingular isogeny graphs. These walks
are too short to reach every vertex of such a graph, but through simulations for small
examples we note that the distributions of the variables j(EA), j(EB) and j(EAB) (which
are vertices of the graphs) in SIDH appear to be essentially the best possible. Inspired by
our simulation results, we give a simple reduction between two computational problems
related to SIDH. In Section 8 we describe the best known attacks against SIDH. The best
attack turns out to be a ”generic” algorithm for the claw problem. It also turns out that
there is a powerful attack that Bob can do when Alice is using a static key in SIDH to
recover Alice’s secret key. In Section 9 we review the progress made in improving the
performance of SIDH. We also describe a proposed counter-measure that Alice can per-
form when using a static key to thwart Bob’s attack mentioned above. In addition to this
counter-measure, we propose a slightly different one for which we can prove IND-CCA2
security. We also use analyses from earlier papers about SIDH to give total estimates of
computational work, memory usage and key size as functions of the quantum security in
several variants of SIDH. At last, in Section 10, we present our conclusions about SIDH
as a viable post-quantum alternative.

The reader is assumed to be familiar with:

• Basic abstract algebra: the order of a group element, finite fields, Lagrange’s theo-

1.1 The contributions of this thesis 2

rem, group homomorphisms, etc.

• Basic computational complexity theory: Ω-notation, O-notation, Θ-notation, poly-
nomial time algorithms, etc.

• Basic cryptography: asymmetric encryption, symmetric encryption, cryptographic
hash functions, negligible functions, security strength in bits, etc.

All logarithms in this thesis have base 2 unless stated otherwise.

1.1 The contributions of this thesis

• We give a construction of a KEM based on SIDH that is similar to the construction
suggested in [KLM+15, p. 14]. As noted in [GPST16, Section 2.5], [KLM+15] do
not give a formal security proof for their construction. We prove that our KEM is
secure in the sense of IND-CCA2 in the random oracle model under the SSDDH
assumption. The message overhead for our KEM is the same as the overhead for the
suggestion in [KLM+15]. To this author’s knowledge this answers an open question
in [KLM+15, p. 18] in the context of SIDH. Our KEM is based on the Fujisaki-
Okamoto transform in [FO00]. See Section 9.8.4 for details.

• Through simulations for small examples we observe that the number of distinct j-
invariants j(EA) that Alice’s isogeny φA : E0 → EA can take her to is on average
very close to the number of distinct j-invariants we get when we choose uniformly
at random (with repetition) from the set of all supersingular j-invariants defined
over Fp2 . To this author’s knowledge, simulations similar to these for SIDH have
not been documented elsewhere in the literature. See Section 7.3 for details.

• Through simulations for small examples we observe that the distribution of j(EAB)
in SIDH appears to be essentially the best possible. To this author’s knowledge,
simulations similar to these for SIDH have not been documented elsewhere in the
literature. See Section 7.4 for details.

• As other authors have noted before us, we make the simple observation that the
isogenies in SIDH give non-backtracking walks in supersingular isogeny graphs. This
observation and our simulation results for j(EA) inspire us to give a simple heuristic
reduction from the CSSI problem to the DSSI problem. A very similar reduction
was recently mentioned in independent work in [GV17, Section 6.2]. We work with a
slightly different formulation of the DSSI problem than that in [GV17] and also give
simulation results that prove convincingly that the reduction works. See Section 7.6
for details.

• We give estimations of computational work, memory usage and public key size in
state-of-the-art implementations of SIDH as functions of the quantum security in
bits λ. These estimations are straightforward to do thanks to earlier analyses in
[CLN16], [CJL+16b] and [DFJP14]. See Section 9.10 for details.

1.2 List of notation 3

1.2 List of notation

Notation Meaning
a Finite field addition (see Section 9.10)
codomain(f) The codomain of the function f : A→ B, i.e., B
char(K) The characteristic of the field K
CSSI Computational supersingular isogeny problem (see Problem 7.5.1)
deg(φ) The degree of the isogeny φ (see Definition 5.1.2)
domain(f) The domain of the function f : A→ B, i.e., A
DSSI Decisional supersingular isogeny problem (see Problem 7.5.2)

E,E(K) Will be an elliptic curve defined over K in general (see Section 2.1)
[E] The equivalence class of E in V (G`) (see Definition 7.1.1)
E(L) The L-rational points on the elliptic curve E (see Section 2.1)

E[m], E(K)[m] The m-torsion points on the elliptic curve E (see Section 2.2)
E(L)[m] The L-rational m-torsion points on the elliptic curve E (see Section 2.2)
End(E) The endomorphism ring of the elliptic curve E (see Definition 5.2.4)
(EC)DH (Elliptic curve) Diffie-Hellman key exchange (see Section 3)
(EC)DHP (Elliptic curve) Diffie-Hellman problem (see Section 3)
(EC)DLP (Elliptic curve) discrete logarithm problem (see Section 3)
E(G`) The edge set of G` (see Definition 7.1.1)
em(·, ·) The Weil-pairing on E[m] (see Section 2.2)
eA, eB exponents in the public parameter p of SIDH (see Section 6.2)
G` The supersingular isogeny graph with respect to ` (see Definition 7.1.1)
I Finite field inversion (see Section 9.10)
id The identity isogeny (see Section 5.1)
j(E) The j-invariant of the elliptic curve E (see Definition 5.1.11)
K,L Will be fields in general
K∗ The multiplicative group of the field K, i.e., the non-zero elements
Kn Affine n-dimensional space with respect to a field K (see Section 2.1)
K[x] The ring of polynomials with coefficients in K
KEM Key encapsulation mechanism (see Appendix A)
`A, `B Prime factors in the public parameter p of SIDH (see Section 6.2)
[m] The multiplication by m-map (see the proof of Theorem 2.2.2)
M Finite field multiplication (see Section 9.10)
non-backtracking See Section 7.2
O The point at infinity (see Section 2.1)
〈P 〉 The subgroup generated by a group element P
〈P,Q〉 All linear combinations of the group elements P and Q (see Section 2.2)
o(P) The order of a group element P (see Section 2.2)
P2(K) Projective 2-space with respect to a field K (see Section 2.1)
S Finite field squaring (see Section 9.10)
separable See Definition 5.1.3

1.2 List of notation 4

Notation Meaning
SIDH Supersingular isogeny Diffie-Hellman key exchange (see Section 6)
SSDDH Supersingular isogeny decisional Diffie-Hellman problem (see Problem 9.8.1)
Trace(A) The sum of the elements on the main diagonal of the n× n-matrix A
V (G`) The vertex set of G` (see Definition 7.1.1)
x(P) The x-coordinate of the elliptic curve point P
|x| The length of a bitstring x
(x)i The ith leftmost bit of a bitstring x
x||y The concatenation of the bitstrings x and y
y(P) The y-coordinate of the elliptic curve point P
θ Will be an isomorphism in general (see Section 5)
λ Will be the quantum security in bits of SIDH in general
Π = (E ,D) A public key encryption scheme (see Appendix A)
πq The Frobenius endomorphism (see Section 5)
φ Will be an isogeny in general (see Section 5)

φ̂ The dual of the isogeny φ (see Theorem 5.1.15)
⊥ Decryption failure for a public key encryption scheme
#A The cardinality of the set A

2.1 A group operation on elliptic curves 5

2 Elliptic curves

We mainly follow [Was08] in this section. We define elliptic curves and a group operation
on them in Section 2.1. In Section 2.2 we talk about torsion subgroups with respect to
the group operation, a concept that will be central to our applications in Section 6. In
what follows K will be a field and K its algebraic closure. Unless otherwise stated, L will
be a field such that K ⊇ L ⊇ K. For our applications later in this text K will always
be a finite field Fq with q a prime power. Therefore our focus in this overview of elliptic
curves will be on curves defined over fields with positive characteristic p. We will also
assume that p 6∈ {2, 3}. It turns out that we can limit ourselves to particularly simple
equations defining our elliptic curves when we make this assumption [Sil09, Remark 1.3]
and it will not be a restriction in our applications.

We will refer the reader to other texts for proofs of most of the theorems and proposi-
tions that we state. But we will often say something about a proof or for instance prove
one direction of an if and only if-statement.

2.1 A group operation on elliptic curves

We start with a Weierstrass equation. This is an equation in variables x and y of the
form

y2 = x3 + Ax+B (1)

with A,B ∈ K.

Definition 2.1.1. An elliptic curve E(K) is a set

{(x, y) ∈ K ×K : y2 = x3 + Ax+B} ∪ {O}

for fixed A,B ∈ K such that 4A3 + 27B2 6= 0. The element O is called the point at
infinity. When A,B ∈ L we say that E(K) is defined over L. As is standard, we
will call the elements of E(K) points. There is another way to define elliptic curves
that requires more algebraic geometry than we have space to develop here, the standard
textbook is [Sil09]. Definition 2.1.1 is sufficient for our purposes.

We let E be short-hand for E(K). In general we need to work over the algebraic closure
K when developing the theory of elliptic curves. For example, the functions (isogenies)
between elliptic curves that we will study will in general be defined over K and this is
where they will be surjective. However in our applications we will want to work with the
subset of points on E(K) that lie in L. For a given elliptic curve E defined over K we
therefore let the set E(L) be the points

{(x, y) ∈ L× L : y2 = x3 + Ax+B} ∪ {O}

The set E(L) is often referred to as the L-rational points on E. The space

Ln = L× · · · × L︸ ︷︷ ︸
n times

is called affine n-dimensional space (with respect to L).
To explain the point at infinity O we need the following definition.

2.1 A group operation on elliptic curves 6

Definition 2.1.2. Projective 2-space over L (denoted by P2(L)) are the equivalence
classes of the set

{(x0, x1, x2) ∈ L3 : xi 6= 0 for some i}
under the equivalence relation

(x0, x1, x2) ∼ (y0, y1, y2)

if there exists a λ in L∗ such that xi = λyi for 0 ≤ i ≤ 2. As usual, L∗ denotes the
multiplicative group of L, i.e., the non-zero elements of L. We write the equivalence class
of (x0, x1, x2) as (x0 : x1 : x2).

A homogeneous Weierstrass equation is an equation of the form

y2z = x3 + Axz2 +Bz3 (2)

with A,B ∈ K. The equation is homogeneous since (x, y, z) ∈ K
3

is a solution if and
only if (λx, λy, λz) is a solution for every λ ∈ K∗. This means it makes sense to ask which
equivalence classes (x : y : z) ∈ P2(K) are solutions to the equation. By inspection we
see that (0 : 1 : 0) is always a solution of a homogeneous Weierstrass equation. Keep in
mind that some component must be non-zero so (0 : 0 : 0) is not a solution. One can
verify that (0 : 1 : 0) is the only solution with z = 0. Also, since

(x : y : z) = (x/z : y/z : z/z) = (x/z : y/z : 1) (3)

when z 6= 0, we may assume that z = 1 when z 6= 0. But when z = 1, equation (2)
becomes

y2 = x3 + Ax+B

so the solutions (x : y : 1) correspond exactly to the solutions (x, y) of the non-homogeneous
Weierstrass equation (1) with the same constants A and B. The extra solution (0 : 1 : 0)
that we get in projective space is the point at infinity O. Washington [Was08, p.18] sug-
gests that we think of the point at infinity as dividing by z = 0 in (3) and obtaining ∞
in the non-zero y-coordinate.

Remarkably, we are able to define a binary operation + on the points in E(L), under
which E(L) becomes an abelian group. The point at infinity O acts as the identity element
under +. For any O 6= P ∈ E we refer to the x and y-coordinate of P as x(P) and y(P),
respectively. Let P,Q ∈ E(L). The rules for computing P + Q are as follows, where the
first rule that applies is used:

i) If P = O, then P +Q = Q.

ii) If Q = O, then P +Q = P .

iii) If x(P) 6= x(Q), then

x(P +Q) = m2 − x(P)− x(Q), y(P +Q) = m(x(P)− x(P +Q))− y(P)

where m = y(Q)−y(P)
x(Q)−x(P)

.

iv) If x(P) = x(Q) and y(P) 6= y(Q), then P +Q = O.

2.2 Torsion points and the Weil pairing 7

v) If P = Q and y(P) 6= 0, then

x(P +Q) = m2 − 2x(P), y(P +Q) = m(x(P)− x(P +Q))− y(P)

where m = 3x(P)2+A
2y(P)

.

vi) If P = Q and y(P) = 0, then P +Q = O.

The rules are derived from the idea that three points on a line in L2 should sum, with
regards to +, to O. We refer to [Was08, p.12] for details. Some extra care is needed for
special cases such as P + P . To motivate the rule for this case one looks at the tangent
of the curve defining E(L) at the point P . Note that Rule (iii) for adding P and Q 6= P
differ from Rule (v) for adding P to itself (doubling).

Theorem 2.1.3. E(L) is an abelian group under +. The element O is the identity
element.

Proof. See [Was08, Theorem 2.1]. The part of the proof that requires the most work is
proving that + is associative. It is intuitively clear that + is abelian since the line through
P and Q is the same as the line through Q and P . Note that if P = (x, y) is in E(L),
then (x,−y) is also in E(L). By Rule (iv), the point (x,−y) is the inverse of P . The
inverse is indeed unique since the equation y2 = a, for a = x3 +Ax+B, has at most two
solutions in K.

2.2 Torsion points and the Weil pairing

For a positive integer m we write
P + · · ·+ P︸ ︷︷ ︸

m times

as mP . We also let 0P = O and if m is a negative integer we let mP = (−m)(−P)

Definition 2.2.1. Let m be a positive integer. The set

{P ∈ E(L) : mP = O} ⊆ E(L)

is denoted by E(L)[m]. We let E[m] be short-hand for E(K)[m].

It is easy to verify that E(L)[m] is a subgroup since E(L) is abelian. The points in
E(L)[m] are referred to as the m-torsion points of E(L). As usual, when we talk about
the order of a point P (denoted by o(P)) we mean the smallest positive integer m such
that mP = O.

The following theorem will be very important in our applications in Section 6.

Theorem 2.2.2. Let E be an elliptic curve defined over K and let m be a positive integer.
If char(K) = 0 or char(K) does not divide m, then

E[m] ∼= Zm ⊕ Zm

2.2 Torsion points and the Weil pairing 8

Proof. See [Was08, Theorem 3.2]. By studying the rules for adding points [Was08, Section
3.2], it is possible to show that the multiplication by m-map [m] : E → E defined by

[m](P) = mP, for all P ∈ E

is group homomorphism with respect to +. It is also possible to show that # ker[m] = m2.
By the fundamental structure theorem for finite abelian groups [BB06, Theorem 7.5.7]

ker[m] ∼= Zn1 ⊕ ...⊕ Znk (4)

with ni | ni+1 for all 1 ≤ i < k. Just like for m, one can show that # ker[`] = `2 for any
prime ` | n1. So we must have k ≤ 2 in (4) since ` | n1 and ni | ni+1 for all 1 ≤ i < k.
Since also any point P in ker[m] has o(P) | m, we must have nk ≤ m and hence

ker[m] ∼= Zm ⊕ Zm

Finally, note that E[m] = ker[m].

Let E[m] be as in Theorem 2.2.2, it then follows from the theorem that there are
points P,Q ∈ E[m] such that linear combinations of P and Q generate all of E[m], i.e.,

{aP + bQ : a, b ∈ Zm} = E[m]

In general for P,Q ∈ E, we denote the set of all linear combinations of P and Q by 〈P,Q〉.

Theorem 2.2.3. Let E be an elliptic curve defined over K. Let m be a positive integer
such that char(K) does not divide m (if char(K) is non-zero) and let µm be the mth roots
of unity in K. Then there is a pairing

em : E[m]× E[m]→ µm

called the Weil pairing such that for all P,Q, S ∈ E[m]

i) em is bilinear, that is

em(P +Q,S) = em(P, S)em(Q,S)

em(P,Q+ S) = em(P,Q)em(P, S)

ii) em(P, P) = 1

iii) em(P,Q) = em(Q,P)−1

iv) em is non-degenerate. That is, if

(P, T) = 1, for all T ∈ E[m],

then P = O. Similarly, if

(P, T) = 1 for all P ∈ E(K)[m],

then T = O.

Proof. See [Was08, Section 11.2].

3.1 Key exchange 9

3 Elliptic curve Diffie-Hellman key-exchange

We mainly follow [Was08] and [BSS99] in this section. We let E be an elliptic curve
defined over a finite field Fq and P be a fixed point in E(Fq) whose order N is close in bit
size to that of #E(Fq). In Section 3.1 we define the Elliptic curve Diffie-Hellman (ECDH)
key exchange and the related Discrete logarithm problem (DLP). In Section 3.2.1 we give
an algorithm that will be used to solve any DLP instances that arise in our applications.
In Section 3.2.2 we describe an exponential time random walk algorithm for solving the
DLP on elliptic curves. For well chosen elliptic curves, exponential time attacks on ECDH
such as this are the best known [BSS99, I.3]. Another exponential time algorithm (with
large space requirements) that we do not discuss here is Shank’s baby-step giant-step
algorithm (see for example [Was08, Section 5.2.1]). In Section 3.2.3 we describe the MOV
algorithm that is especially well suited for solving the DLP on the particular class of curves
called Supersingular elliptic curves that we will use in our applications in Section 6. This
has given the supersingular elliptic curves somewhat of bad reputation in cryptographic
applications with elliptic curves. However, as we will see, this is no longer relevant in our
applications.

3.1 Key exchange

The Elliptic curve Diffie-Hellman (ECDH) key exchange is as follows:

1. Alice picks a secret key skA = a ∈R ZN and sends her public key pkA = aP to Bob.
Bob similarly picks a secret key skB = b ∈R ZN and sends his public key pkB = bP to
Alice.

2. Alice computes
a(bP) = (ab)P

Similarly, Bob computes
b(aP) = (ba)P = (ab)P

They can now use (ab)P as a shared key SK.

The problem facing an eavesdropping adversary is the following.

Problem 3.1.1 (Elliptic curve Diffie-Hellman problem (ECDHP)). Given P , aP and
bP , find (ab)P .

Our interest in ECDH comes from our belief that ECDHP is hard (on a classical com-
puter) combined with the fact that there are efficient ways to compute the multiplication
mP for an integer m. One of the simplest effective ways to compute such a multiplication
is the Double-and-add algorithm [Sil09, XI.1.1] that is similar to the Square-and-multiply
algorithm used for exponentiation modulo an integer. It is an open problem whether
ECDHP is as hard as the following problem.

Problem 3.1.2 (Elliptic curve discrete logarithm problem (ECDLP)). Given P and a
point Q ∈ 〈P 〉, find an integer m such that mP = Q.

If we can solve ECDLP, then we can solve ECDHP. So by our discussion above we
believe ECDLP is hard in the classical setting as well. There are some special classes
of elliptic curves for which ECDLP is easier than in the general case, one such class is

3.2 Attacks on ECDLP 10

that of supersingular elliptic curves (see Section 3.2.3). For these curves, by reduction
to a discrete logarithm problem in F∗q2 , subexponential algorithms such as index calculus
[Was08, Section 5.1] are available. For an elliptic curve that is chosen with known attacks
in mind, only exponential (in logN) time algorithms are known. Since no sub-exponential
algorithms are known for ECDLP, we have significantly smaller key sizes than for say RSA
cryptosystems of the same security level, where the sub-exponential General number field
sieve applies [BSS99, Section I.3]. In the next section we survey some algorithms for
solving ECDLP.

3.2 Attacks on ECDLP

Now we assume that we have been given P and Q ∈ 〈P 〉 and are trying to find an integer
m such that

mP = Q

We will assume that N = #〈P 〉 is known to us.

3.2.1 Pohlig-Hellman algorithm

Suppose for now that N is smooth, i.e., that it factors as

pα1
1 . . . pαnn

for small primes pi. Factoring smooth numbers is easy and we may assume that we know
the factorisation.

By assumption
Q = mP

for some m ∈ ZN . For each pi, we will do the following. We know m can be written in
base pi

m = e0 + e1pi + e2p
2
i + . . .

for some coefficients e0, e1, ... < pi that are unknown to us. We want to determine m
mod pαii and therefore we seek the coefficients e0, e1, ..., eαi−1. We start by computing a
searchable list A of eN

pi
P for 0 ≤ e < pi.

We set Q0 = Q and compute
N

pi
Q0 (5)

The expression (5) will be in A since

N

pi
Q0 =

N

pi
mP = e0

N

pi
P + e1NP + e2NpiP + ... = e0

N

pi
P

So we can identify e0. We then set

Q1 = Q− e0P = (e1pi + e2p
2
i + ...)P

and compute
N

p2i
Q1 (6)

3.2 Attacks on ECDLP 11

The expression (6) will be in A since

N

p2i
Q1 =

N

p2i
(e1pi + e2p

2
i + ...)P = e1

N

pi
P + e2NP + ... = e1

N

pi
P

So we can identify e1. We then set

Q2 = Q− (e0 + e1pi)P = (e2p
2
i + ...)P

Continuing in this manner we will be able to identify all the coefficients e0, . . . , eαi−1.
We can now determine mi = m mod pαii for all i. Using the Extended euclidean

algorithm we can find integers ai and bi such that

ai
N

pαii
+ bip

αi
i = 1

Note that

ai
N

pαii
= 1− bipαii = 1 mod pαii

Hence

m =
n∑

i=1

ai
N

pαii
mi mod N

by the Chinese remainder theorem.
If some pi in the factorisation of N is very large, then computing the list eN

pi
P for

0 ≤ e < pi becomes infeasible. This is the reason we usually assume that N is a large
prime (or that there is some large prime p in the factorisation of N).

3.2.2 Pollard’s rho algorithm

The following probabilistic algorithm due to Pollard runs in expected time O
(
N1/2

)
.

1. Partition E(Fq) into K disjoint sets Si for 0 ≤ i ≤ K − 1.

2. Define f : E(Fq)→ ZK by f(T) = i, where i is the index of the Si that contains T .

3. For each 0 ≤ i ≤ K − 1, pick ai, bi ∈R ZN and let

Mi = aiP + biQ

4. Pick a, b ∈R ZN and let
P0 = aP + bQ

5. Iteratively compute Pi for i ≥ 1 using the formula

Pi = Pi−1 +Mf(Pi−1)

The idea is that the sequence {Pi} gives us walk in 〈P 〉 that behaves sufficiently random.
So random that by the Birthday paradox we will have Pj = Pi for some j < i ≤ √p with
good probability. Then, since Pj = cP + dQ and Pi = eP + fQ for some c, d, e, f ∈ ZN ,

Pj = Pi ⇒ cP + dQ = eP + fQ ⇒ (c− e)P = (f − d)mP

So we can take
m = (f − d)−1(c− e) mod N

as long as (f − d) is invertible modulo N.

3.2 Attacks on ECDLP 12

Remark 1. The number K = 20 appears to do well in practice [BSS99, p.95].

As the algorithm is stated above we need to save the whole sequence {Pi} to check for
repetitions. We can do better space-wise by running two sequences Pi and P2i simultane-
ously in step 5. Note that once Pj = Pi for some j < i, then we will have Pj+` = Pi+` for
all positive integers ` since Pi+1 only depends on Pi. If we save only the current values of
Pi and P2i then it is easy to see that we will have Pi = P2i for some i after Pi has become
periodic.

Another alternative is to have many sequences {Pi} with different start values a, b
running in parallel on client computers. If one sequence Pi hits a point T that another
sequence P ′i was at ` iterations earlier, then we will have

Pi+` = P ′i (7)

for all i from then on. By saving distinguished points (chosen by e.g. patterns in the least
significant bits of the x-coordinate) in sequences to a central server, the server can detect
when two sequences have a relation such as (7). The more distinguished points that are
saved, the sooner the server will detect a relation. So it is a time-space trade-off.

3.2.3 The MOV algorithm

We will assume that N is prime in this section to simplify matters. See [Was08, Section
5.3.1] for the more general case when N is composite. We also assume N is relatively
prime to q.

The idea of the MOV algorithm is to reduce the ECDLP in E(Fq) to a discrete
logarithm problem in F∗

qk
. There we can use other tools, such as index calculus [Was08,

Section 5.1]. Whether the reduction is helpful or not depends on how large k is.

Definition 3.2.1. The embedding degree of E(Fq) with respect to N is the smallest
positive integer k such that

E(Fqk)[N] = E[N]

or by Theorem 2.2.2 equivalently (since N is relatively prime to q) the smallest positive
integer k such that

E(Fqk)[N] ∼= ZN ⊕ ZN

Note that k exists since

i) E[N] is a finite group by Theorem 2.2.2,

ii) Fq = ∪i≥1Fqi by [NX09, Theorem 1.2.1], and

iii) Fqi ⊆ Fqij for any integer j ≥ 1 by [NX09, Lemma 1.1.4].

If E(Fqk)[N] = E[N], then µN ⊂ F∗
qk

[Was08, Corollary 3.11]. Also, when N and q

are relatively prime then we have #µN = N [Was08, p.86]. We want to find to find the
integer m such mP = Q. Note that we can only retrieve m modulo N from Q, where N
is the order of P . An outline of the MOV algorithm is as follows:

1. Pick T ∈R E(Fqk) where k is the embedding degree of E(Fq) with respect to N .

2. Compute the point T ′ =
#E(F

qk
)

N
T .

3.2 Attacks on ECDLP 13

3. Note that T ′ ∈ E[N]. Compute the Weil pairings

a = eN(P, T ′)

b = eN(Q, T ′)

If a = 1, go back to step 1.

4. Solve the discrete logarithm problem in F∗
qk

of finding an integer j such that

b = aj

The integer j is a solution (mod N) to our ECDLP instance since

eN(Q, T ′) = eN(mP, T ′) = eN(P, T ′)m

and at the same time

b = aj ⇒ eN(Q, T ′) = eN(P, T ′)j

Thus, eN(P, T ′)m−j = 1. But this means that

m− j mod N = 0

since 1 6= a = eN(P, T ′) ∈ µN and #µN = N is prime.

For a discussion on computing the Weil pairing in step 3 and more details of the MOV
algorithm, see [HPSS08, Section 6.9.1].

As hinted at in the introduction this section, (under certain conditions) supersingular
elliptic curves have the particularly low embedding degree 2 with respect to N (see [Was08,
Proposition 5.3]). This will be irrelevant to our applications with supersingular elliptic
curves in Section 6. Besides, any discrete logarithm problems on those curves will be easy
anyway with the Pohlig-Hellman algorithm. In fact, the key compression for SIDH that
we will discuss in 9.4 relies on this.

4.1 Quantum computing 14

4 Quantum computing and post-quantum cryptogra-

phy

This section provides a very brief and informal introduction to quantum computing and
some of the most important quantum algorithms. We will mainly follow [DPV06, Chapter
10] and [Vaz05]. In Section 4.1 we introduce the qubit and quantum superpositions. In
Sections 4.2 and 4.3 we outline two quantum algorithms that are usually singled out as
the two most important quantum algorithms, Grover’s algorithm and Shor’s algorithm.
Both algorithms, but perhaps Shor’s in particular, have important practical applications
in cryptanalysis. Another important problem with a related algorithm that we do not
discuss here is the Hidden subgroup problem [BBD09, Section 4]. In Section 4.4 we survey
some alternative post-quantum cryptosystems that have been studied extensively.

4.1 Quantum computing

The quantum analogue of the classical bit is the qubit. A qubit can be represented by a
vector of unit length in a complex two-dimensional Hilbert space H. Recall that a Hilbert
space is a complete vector space with an inner product. Let 0 and 1 be two orthonormal
basis vectors in H. While the classical bit is either in state 0 or 1, the qubit is in the
superposition state

α0 + β1

for α, β ∈ C such that |α|2 + |β|2 = 1. Following standard notation we will write column
vectors ψ in ket-notation |ψ〉. So our qubit is in the state α |0〉 + β |1〉. This is the
mathematical model. Physically there is unfortunately no way to ”read off” the coefficients
α and β by looking at our system. What we can do is to choose a basis such as {|0〉 , |1〉}
and ”measure” our qubit in this basis. Then we will see |0〉 with probability |α|2 and |1〉
with probability |β|2. At the same time our qubit will change state to the basis vector we
observed in our measurement. For our discussion here we assume that such a measurement
is possible. The coefficients α and β are commonly called amplitudes.

We manipulate qubits using quantum gates. A quantum gate is a unitary complex
matrix of suitable dimension. Recall that a matrix U is unitary if

U †U = I

where U † is the matrix obtained from U by taking the transpose, and then the complex
conjugate of each entry. A quantum gate U acts linearly on a qubit’s state through matrix
multiplication. A quantum computation (applying a series of quantum gates to our qubit)
is therefore a reversible process. We can work with systems of n qubits. Our system is
then in the superposition ∑

i∈{0,1}n
αi |i〉

where
∑

i∈{0,1}n |αi|2 = 1 just like in the single qubit system. Now suppose that we have

a system |ψ〉 of two qubits. That is,

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

Suppose now that we measure the first qubit of |ψ〉 and the outcome is |0〉. How does that
effect the whole state of |ψ〉? Well what happens is that |ψ〉 changes into a superposition

4.2 Grover’s algorithm 15

of the basis states that are consistent with the measurement, i.e., the basis states |00〉
and |01〉,

|ψ〉 =
α00√

|α00|2 + |α01|2
|00〉+

α01√
|α00|2 + |α01|2

|01〉 (8)

This phenomena extends to general n-qubit systems and is very useful. It is crucial to all
algorithms we will describe.

4.2 Grover’s algorithm

Suppose we are given black box access to a function f : {0, 1}n → {0, 1}. Suppose also
that we know that there is a unique a ∈ {0, 1}n such that f(a) = 1. Classically we
need 2n−1 queries in expectation to find a. Remarkably, on a quantum computer Grover’s
algorithm finds a in O

(√
2n
)

= O
(
2n/2

)
queries in expectation.

We will now outline Grover’s algorithm [Vaz05, Lecture 11]. We will assume that the
amplitudes αi are real through all of the algorithm. As before a is the unique bitstring
such that f(a) = 1 that we are trying to find.

1. Start with a uniform superposition

∑

i∈{0,1}n
αi |i〉 , αi =

1

2n/2
for all i

2. Repeat O
(
2n/2

)
many times:

(a) Do ∑

i∈{0,1}n
αi |i〉 7→

∑

i∈{0,1}n
αi(−1)f(i) |i〉

(b) Apply inversion about the mean. By this we mean the following. Let µ =∑
i∈{0,1}n αi

2n
and do

∑

i∈{0,1}n
αi |i〉 7→

∑

i∈{0,1}n
(2µ− αi) |i〉

3. We claim that |a〉 now has amplitude αa such that |αa|2 ≥ 1
2
. Thus, we measure

and see |a〉 with at least probability 1
2
.

After the first time we apply step 2a, we have

µ− αa ≈ 2µ

when we approximate µ with 1
2n/2

(αa is − 1
2n/2

and not 1
2n/2

, which slightly effects µ).
After applying inversion about the mean in step 2b (which makes αa positive again) we
have

αa − µ ≈ 2µ

For each iteration in step 2, the distance between αa and µ will continue to increase
with approximately 2µ. After at most O

(
2n/2

)
iterations we therefore have |αa|2 ≥ 1

2
as

claimed in step 3.

4.3 Shor’s algorithm 16

It is not at all clear that the algorithm we described can be implemented with a
sequence of quantum gates. We refer the interested reader to [Gro96].

Researchers estimate that Grover’s algorithm can retrieve a 128 bit AES-key in about
286 (quantum) operations [GLRS16, Table 5]. The attack requires about 3000 qubits.

Grover’s algorithm cannot be efficiently parallelised. The obvious parallelisation is to
split the domain of f in K equally large parts over K quantum computers. Then Grover’s
algorithm runs in time

O
(√

2n/K
)
) = O

(
2n/2/

√
K
)
),

which is only a factor
√
K speed-up, and this is the best we can do [Zal99, Section 1].

4.3 Shor’s algorithm

The hardness of the RSA cryptosystem depends on the hardness of integer factoring. For
classical computers, the state-of-the-art factoring algorithm is the general number field
sieve which runs in sub-exponential, but super-polynomial time (in the bit size of the
number to be factored). On a quantum computer we can do better, Shor’s algorithm
factors a number in polynomial time. Along with Grover’s algorithm, Shor’s algorithm is
one of the great discoveries of quantum computing.

The quantum Fourier transform (QFT) is an essential part of Shor’s algorithm. The
discrete Fourier transform (DFT) acts on a complex vector α = (α0, ..., αN−1) producing
the complex output β = (β0, ..., βN−1), where

βj =
N−1∑

k=0

αke
2kjπi
N , 0 ≤ j ≤ N − 1 (9)

A naive implementation of DFT runs in O
(
N2
)

operations. The fast Fourier transform
(FFT) computes the DFT classically in O

(
N logN

)
operations. With a quantum com-

puter we can do even better. For N = 2n, the QFT takes a superposition
∑

k∈{0,1}n
αk |k〉

to ∑

j∈{0,1}n
βj |j〉 , (10)

where βj are as in (9), in O
(
log2N

)
= O

(
n2
)

quantum operations. Keep in mind though
that we have no way to physically ”read off” the coefficients βj. All we can do is measure
(10) and see |j〉 with probability |βj|2.

Suppose ` is a non-trivial factor of a positive integer N . Suppose also that we have a
superposition α whose amplitudes have uniform periodic support with period ` and offset
l < `, that is,

α =

N/`−1∑

k=0

√
`

N
|k`+ l〉 ,

Here we write the basis vectors in decimal base instead of binary base. It can be shown
[DPV06, p. 320] that the QFT applied to α produces

β =
`−1∑

j=0

1√
`
e
lj2πi
` |jM

`
〉 (11)

4.3 Shor’s algorithm 17

So if we measure β we see any of the first ` multiples of M
`

with equal probability.
An outline of Shor’s algorithm is as follows [DPV06, Section 10.7]:

1. Choose an integer 2 ≤ x ≤ N − 1 uniformly at random. Let M be a power of two
such that M ≈ N2. Start with two quantum registers (a register is a sequence of
qubits), both set to 0. The first register should be large enough to fit M values and
the second one N values.

α = |0, 0〉

2. For 1 ≤ i ≤ 2 logN , do:

(a) Apply QFT to the first register of α to get a uniform superposition

β =
M−1∑

k=0

1√
M
|a, 0〉

This works since the first register can be considered to be a periodic superpo-
sition with period M , that is, ` = M in the discussion above (and no offset).
Thus, the QFT produces a uniform superposition β over all possible values of
the first register, according to (11).

(b) Apply the function f(a) = xa mod N to the value a in the first register and
save the result in the second register.

β =
M−1∑

k=0

1√
M
|a, xa mod N〉

(c) Measure the second register. Suppose we get the result |b〉. Let the multi-
plicative order of x modulo N be r. By (8), this means that β is now in the
superposition

β =

M/r−1∑

k=0

√
r

M
|kr + l, b〉

where 0 ≤ l ≤ r − 1 is the unique integer such that xl mod N = b. Applying
the quantum Fourier transform to β and measuring gives a multiple of M

r
as

discussed above. Let gi be the measured value.

3. Let g be the gcd of all gi. Then with high probability g = M
r

. It can be shown
that, with high probability, g is even and gcd(xg/2 + 1, N) is a non-trivial factor of
N [DPV06, p. 320].

We have made the same simplification as in [DPV06, Section 10.7] and ignored the
fact that r does not necessarily divide M . We refer to [DPV06, Section 10.7] for details.

A version of Shor’s algorithm described in [Bea02] runs on 2n + 3 qubits and uses
O
(
n3 log(n)

)
elementary quantum gates, where n = logN . Another version of Shor’s

algorithm solves the discrete logarithm problem [PZ03, Section 2.3.3].

4.4 Post-quantum cryptography 18

4.4 Post-quantum cryptography

Some researchers estimate that a quantum computer capable of attacking current cryp-
tosystems could possibly be built by 2030 at a cost of one billion dollars [CJL+16a, p.
6]. While there may be some as-yet undiscovered critical obstacle in implementing quan-
tum computers, the research community knows of no such problem at this time. In fact,
many researchers now believe it to be merely a significant engineering challenge to con-
struct a large-scale quantum computer, according to National Institute of Standards and
Technology (NIST)1. NIST is currently accepting submissions in its post-quantum cryp-
tography standardisation process with submission deadline 30 November 20172. Besides
SIDH, which provides a key exchange, the most studied alternatives for post-quantum
cryptosystems are [BL17]:

• Code-based encryption
Code-based encryption uses error-correcting codes to achieve asymmetric encryp-
tion. The security of the original proposal by McEliece [McE78] is well studied.
The parameters suggested by McEliece were intended to provide 64 bits of security
[BL17, p. 6] and a state-of-the-art attack runs in 260 operations [BLP08]. The
drawback of the system is the large key size, almost 1 MB at 128 bits of quantum
security [ABB+, Section 4][BL17, p. 7].

• Lattice-based encryption
There are several public key encryption schemes built on lattice problems. One
of the oldest and most studied is the NTRU encryption system [HPS98]. There
is also an encryption system based on the Learning with errors (LWE) problem
that has a security reduction to a lattice problem which is believed to be hard
[BBD09, Section 5.4] [Reg09]. Although lattice systems show a lot of promise as
post-quantum alternatives, some authors argue that much study remains before
declaring these systems secure [BL17, p. 8].

• Lattice-based signatures
BLISS and its variants are promising candidates for an efficient post-quantum sig-
nature scheme that also offer relatively small signatures [DDLL13]. Older proposals
include NTRUSign [HHGP+] and GGH [GGH97]. Cryptanalysis for these two sys-
tems were done in [NR06]. A version of NTRUSign that was updated as a result of
this cryptanalysis remains relatively efficient [BBD09, p. 182].

• Multivariate equations-based signatures
Several multivariate equations-based signature schemes have been considered. These
are based on the NP-hard problem of solving multivariate quadratic polynomial
equations over finite fields. However, special subclasses of equation systems with
trapdoors must be considered in the signature schemes. One promising system is
Rainbow [DS05]. The system that the authors of [BL17] recommend (among the
multivariate systems) is HFE [Pat96] in its v−-variant. In general these systems
have large keys, but small signatures.

1http://csrc.nist.gov/groups/ST/post-quantum-crypto/
2http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-

2016.pdf

4.4 Post-quantum cryptography 19

• Hash-based signatures An early scheme is Lamport’s one-time signatures [p.
650][DH76]. The signer holds a private key consisting of 2n bitstrings

((x1,0, x1,1), (x2,0, x2,1), ..., (xn,0, xn1))

The public key is

((H(x1,0), H(x1,1)), (H(x2,0), H(x2,1)), ..., (H(xn,0), H(xn1)))

where H is a fixed hash function that outputs n bits. The signature of a message
m with

H(m) = 11010...1

is then
(x1,1, x2,1, x3,0, x4,1, x5,0, ..., xn,1)

The problem is that the signer can only sign one message per key.

A more advanced scheme uses a Merkle binary tree structure where the leafs are
Lamport one-time signature keys. This idea has been refined in the XMSS system
[BDH11]. One problem with the XMSS system is that it is stateful; the signer must
remember which keys have been used.

We will compare several PQ-cryptosystems when used as KEM schemes in Section 9.9.2.

5.1 Isogenies 20

5 Isogenies and supersingular elliptic curves

We mainly follow [Was08] and [Sut15] in this section. The most important concepts in
our applications in Section 6 will be isogenies and supersingular elliptic curves. Like in
Section 2, we assume that we have fixed fields K, L and K such that K ⊇ L ⊇ K. Unless
otherwise stated, E, E ′ and Ei will be elliptic curves defined over K. In Section 5.1 we
define elliptic curve isogenies, one of the most central concepts in this thesis. Another
central concept, that of supersingular elliptic curves, is introduced in Section 5.2. In
Section 5.3 we discuss how we can construct isogenies and in Section 5.4 we talk about
supersingular elliptic curves defined over finite fields, which will be the setting for our
applications in Section 6.

5.1 Isogenies

Definition 5.1.1. An isogeny is a non-constant group homomorphism

φ : E1 → E2

given by rational functions with coefficients inK. That is, there are polynomials r1, r2, r3, r4 ∈
K[x, y] such that

φ(P) = (R1(x, y), R2(x, y)) =

(
r1(x, y)

r2(x, y)
,
r3(x, y)

r4(x, y)

)

for all O 6= P = (x, y) ∈ E1 such that r2(P) 6= 0 and r4(P) 6= 0. We will discuss the points
(x, y) where r2 or r4 vanish below. Note that φ(O) = O since φ is a homomorphism.

We can put an isogeny φ in a standard form by noting that

r1(x, y)

r2(x, y)
=
f1(x) + yf2(x)

f3(x) + yf4(x)

for some f1, f2, f3, f4 ∈ K[x] since y2 = x3 + Ax+B. Then also

(
f1(x) + yf2(x)

f3(x) + yf4(x)

)(
f3(x)− yf4(x)

f3(x)− yf4(x)

)
=
f5(x) + yf6(x)

f7(x)
=
f5(x)

f7(x)
+ y

f6(x)

f7(x)

for some f5, f6, f7 ∈ K[x]. For any O 6= P = (x, y),

φ(−P) = −φ(P) ⇒ (R1(x,−y), R2(x,−y)) = (R1(x, y),−R2(x, y)),

so we must have f6(x)
f7(x)

= 0. Hence

R1(x, y) =
p(x)

q(x)

for some p, q ∈ K[x]. Similarly one can show that

R2(x, y) =
s(x)y

t(x)

5.1 Isogenies 21

for some s, t ∈ K[x]. We therefore always assume that our isogenies are on standard form

φ(x, y) =

(
p(x)

q(x)
,
s(x)y

t(x)

)

where p and q have no common factor f ∈ K[x] \K, and s and t have no such common
factor either. We say that φ is defined over L if λp, λq, λ′s, λ′t ∈ L[x] with λ, λ′ ∈ L∗.
Using that φ maps points satisfying a Weierstrass equation to points satisfying another
Weierstrass equation, one can show that q(x) and t(x) have the same set of roots (not
counting multiplicity) in K [Sut15, Lemma 5.22]. If (x, y) ∈ E1 and q(x) = 0, then we
should have that φ(x, y) = O.

We will assume that φ : E1 → E2 and

φ(x, y) =

(
p(x)

q(x)
,
s(x)y

t(x)

)
(12)

when we speak of an isogeny φ for the rest of this section.

Definition 5.1.2. The degree of an isogeny φ (denoted by deg(φ)) is the maximum
of the degrees of p and q. That is,

deg(φ) = max{degree(p(x)), degree(q(x))}

Definition 5.1.3. An isogeny φ is inseparable if d
dx

(
p(x)
q(x)

)
= 0. If φ is not inseparable,

then it is separable.

To assume that our isogenies are on standard form (12) is very helpful when proving
some of the theorems in this section.

Proposition 5.1.4. A separable isogeny φ : E1 → E2 has

deg φ = # kerφ

An inseparable isogeny φ has
deg φ > # kerφ

Proof. See [Was08, Proposition 12.8]. We will say something about the proof when φ is
separable. Suppose φ is on standard form (12), then

d

dx

(
p(x)

q(x)

)
6= 0 ⇒ p′(x)q(x)− p(x)q′(x) 6= 0 (13)

One then looks at a point (a, b) ∈ φ(E1) that satisfies certain properties. One required
property is that

max{degree(p(x)), degree(q(x))} = deg(φ) = degree(p(x)− aq(x))

Note that
p(x)− aq(x) = 0

for any (x, y) ∈ E1 such that φ((x, y)) = (a, b). We then use (13) to show that p(x)−aq(x)
has deg φ distinct roots of multiplicity one. After that we argue that there are deg φ
number of distinct (x, y) ∈ E1 such that φ(x, y) = (a, b). Since φ is a homomorphism this
means

kerφ = deg φ

5.1 Isogenies 22

It follows directly from Proposition 5.1.4 that the kernel of an isogeny is finite. It is
also a subgroup of E1 since an isogeny is a group homomorphism.

The identity map
id(P) = P, for all P ∈ (K)

is an isogeny. Usually in group theory two groups are isomorphic if there are bijective
group homomorphisms between them. For two elliptic curves to be isomorphic we will
also require that the bijective homomorphisms are isogenies, i.e., that they are given by
rational functions.

Definition 5.1.5. Two elliptic curves E1 and E2 are isomorphic if there are isogenies

φ : E1 → E2, ψ : E2 → E1

defined over K such that
φ ◦ ψ = idE2 , ψ ◦ φ = idE1

Theorem 5.1.6. An isogeny φ : E1 → E2 is surjective.

Proof. See [Was08, Theorem 12.9]. We will say something about the proof here. We know
that φ(O) = O. If O 6= (a, b) ∈ E2, we want to find (x, y) such that φ((x, y)) = (a, b).
Since φ is on standard form (12) this means

p(x)− aq(x) = 0

We will only discuss the case when p(x)− aq(x) is not constant here. We can use that we
are working in K to find (x0, y0) ∈ E1 such that p(x0)− aq(x0) = 0. Then

φ((x0, y0)) = (a, b′)

for some y0, b
′ ∈ K. This means (a, b) = (a,±b′), so φ((x0, y0)) = (a, b) or

φ((x0,−y0)) = φ(−(x0, y0)) = −φ((x0, y0)) = −(a, b′) = (a,−b′) = (a, b)

One can verify that a composition of isogenies is an isogeny.

Proposition 5.1.7. A composition ψ = ψn ◦ · · · ◦ ψ1 of separable isogenies ψ1, . . . , ψn is
separable.

Proof. See [Sut15, Lecture 14 p. 1].

Proposition 5.1.8. Let the isogeny ψ = ψn ◦ · · · ◦ ψ1 be a composition of isogenies
ψ1, . . . , ψn. Then

degψ = (degψn) . . . (degψ1)

Proof. See [Sut15, Lemma 7.8]. We will say something about the proof when we compose
separable isogenies. Suppose we have

φ = φ2 ◦ φ1

for separable isogenies φ1 and φ2. Let P ∈ kerφ2, then

#φ−11 (P) = # kerφ1

5.1 Isogenies 23

since φ1 is a surjective homomorphism by Theorem 5.1.6. Using also that φ is separable
by Proposition 5.1.7 and that separable isogenies have degree equal to the order of their
kernel by Proposition 5.1.4 we get

deg φ = # kerφ = (# kerφ1)(# kerφ2) = (deg φ1)(deg φ2)

By induction the proposition holds for any number of composed separable isogenies. We
will only compose separable isogenies in our applications.

The following theorem will be important for our applications in Section 6.

Theorem 5.1.9. If there are separable isogenies

φ : E1 → E2, ψ : E1 → E3

such that
kerφ = kerψ,

then E2 and E3 are isomorphic. In fact, there is an isomorphism θ such that

φ = θ ◦ ψ

Proof. See [Was08, Proposition 12.12].

An isogeny from E to itself is called an endomorphism. One can show [Sut15,
Definition 5.19] that for any E, defined over Fq for a prime power q = pk, there is an
endomorphism πq : E → E defined by

πq(x, y) = (xq, yq)

The endomorphism πq is called the Frobenius endomorphism. One can also study
the p-power Frobenius isogeny πp defined by

(x, y)→ (xp, yp)

When E is defined over Fpk , but not over Fp, πp is an isogeny but not an endomorphism
[Sut15, Lecture 5, p. 7]. The codomain of πp is commonly denoted by E(p) and is defined
by the Weierstrass equation

y2 = x3 + Apx+Bp

Theorem 5.1.10. Let φ be an isogeny defined over a finite field Fq of characteristic p.
Then φ can be written as

φ = φsep ◦ πnp
for some integer n ≥ 0 and a separable isogeny φsep.

Proof. See [Sut15, Corollary 6.4].

Note that πnp is inseparable. Since πnp has degree pn, Theorem 5.1.10 and Proposition
5.1.8 imply that any isogeny, over a finite field of characteristic p, whose degree is not a
multiple of p, is separable. All the isogenies we will work with in our applications will be
separable.

5.1 Isogenies 24

Definition 5.1.11. The j-invariant of an elliptic curve E given by the Weierstrass
equation

y2 = x3 + Ax+B

is

j(E) = 1728
4A3

4A3 + 27B2

Note that 4A3 + 27B2 6= 0 by assumption in Definition 2.1.1. If E is defined over K,
then the j(E) ∈ K.

Proposition 5.1.12. For any j ∈ L, there is an elliptic curve E defined over L such that

j(E) = j

Proof. See [Was08, p. 47]. When j 6= 0, 1728, one can verify that j is the j-invariant of
the elliptic curve E defined over L that is given by

y2 = x3 +
3j

1728− j x+
2j

1728− j

There are known Weierstrass equations (with coefficients A,B ∈ L such that 4A3+27B2 6=
0) that give the j-invariants 0 and 1728 as well [Was08, p. 46].

The j-invariant gets its name from being invariant under isomorphism.

Proposition 5.1.13. The elliptic curves E1 and E2 are isomorphic if and only if j(E1) =
j(E2).

Proof. See [Sut15, Theorem 15.11]. Here we only discuss one of the directions in the
statement. Suppose that j(E1) = j(E2). As one part of the proof that E1 and E2 are
isomorphic we want an isogeny φ : E1 → E2 with kerφ = {O}. Let E1 and E2 be given
by the Weierstrass equations

y2 = x3 + Ax+B, y2 = x3 + A′x+B,

respectively. It turns out [Was08, Theorem 2.19] that when j(E1) = j(E2) it is always
possible to find a λ ∈ K∗ such that

A′ = λ4A, B′ = λ6B

One can then show that φ can be defined by φ(x, y) = (λ2x, λ3y).

In our applications we will work with isogenies that are defined over Fp2 .

Proposition 5.1.14. Let E1 and E2 be elliptic curves defined over Fq for some prime
power q. If there is an isogeny φ : E1 → E2 that is defined over Fq, then

#E1(Fq) = #E2(Fq)

Proof. Let N be the degree of φ. Following [Was08, Excersise 12.12] we fix a prime ` -
qN . Let n ≥ 1 be an integer. For any P ∈ E1[`

n] we have o(φ(P)) | `n, so φ(P) ∈ E2[`
n].

Using Lagrange’s theorem it is also easy to see that φ restricted to E1[`
n] is injective since

kerφ | N by [Sut15, Corollary 6.9]. Thus, φ restricted to E1[`n] is a group isomorphism

5.2 Supersingular elliptic curves 25

from E1[`
n] to E2[`

n]. Pick {P1, P2} ⊆ E1[`
n] such that 〈P1, P2〉 = E1[`

n]. Then the
Frobenius endomorphism πq acts like

πq(P1) = aP1 + bP2

πq(P2) = cP1 + dP2

for some a, b, c, d ∈ Z`n . Let (πq)`n be the matrix

(
a b
c d

)

By [Was08, Proposition 4.11],

Trace((πq)`n) = q + 1−#E1(Fq) mod `n

As discussed in [Was08, proof of Lemma 4.5], πq commutes with φ when φ is defined over
Fq. Since 〈φ(P1), φ(P2)〉 = E2[`

n], it follows that

q + 1−#E1(Fq) = q + 1−#E2(Fq) mod `n

But this holds for arbitrarily large n so we must have

#E1(Fq) = #E2(Fq)

Tate in fact proved that the converse of Proposition 5.1.14 holds as well [Tat66, The-
orem 1.(c)].

Theorem 5.1.15. Let E1 and E2 be defined over L. For any isogeny φ : E1 → E2 defined
over L there exists an isogeny φ̂ : E2 → E1 defined over L, called the dual isogeny of φ,
such that

φ̂ ◦ φ = [deg φ]

Proof. See [Gal12, Theorem 9.6.21].

When we study supersingular isogeny graphs in Section 7.2, Theorem 5.1.15 will tell
us that if there is a directed edge from vertex A to vertex B, then there is a directed edge
from B to A as well.

5.2 Supersingular elliptic curves

Proposition 5.2.1. For an elliptic curve E defined over K with char(K) = p > 0 we
have

i) E[p] = {O}, or

ii) E[p] ∼= Zp

If i) holds, then we say that E is supersingular. If ii) holds, then we say that E is
ordinary.

5.2 Supersingular elliptic curves 26

Proof. See [Was08, Theorem 3.2]. It turns out that the multiplication by p-map [p], i.e.,

[p](P) = pP, for all P ∈ E,

is an inseparable endomorphism of degree p2 (when char(K) = p > 0). Then by Proposi-
tion 5.1.4, deg[p] > # ker[p]. So

p2 = deg[p] > # ker[p] = #E[p]

It follows from the fundamental structure theorem for finite abelian groups that E[p] has
an element of order ` for any prime ` dividing #E[p]. At the same time all elements in
E[p] have order dividing p. Since #E[p] < p2, the only possibilities are #E[p] = 1 or
#E[p] = p.

Theorem 5.2.2. Let E be an elliptic curve defined over Fq, where q = pk for a prime p
and a positive integer k. Then E is supersingular if and only if p | a where

a = q + 1−#E(Fq)

Proof. See [Was08, Theorem 4.31]. We will say something about one of the directions.
Suppose that

#E(Fq) = q + 1− a
with p | a. It turns out [Was08, Theorem 4.12] that there is a recursively defined sequence
an such that

#E(Fqn) = qn + 1− an (14)

for all positive integers n. The sequence is defined by

a0 = 2, a1 = a, an+2 = a1an+1 − qan, for all n ≥ 0

where a is as in the statement of the theorem. If p | a, then

an mod p = 0

for all n. Thus,
#E(Fqn) mod p = 1

for all n by (14). So there can be no elements of order p in any group E(Fqn). Since
Fq = ∪i≥1Fqi by [NX09, Theorem 1.2.1], this means

E[p] = {O}

As we saw in the proof of Proposition 5.1.14, we can represent the restriction of φq to
E[m] (with m relatively prime to q) by a 2× 2 matrix Am. For any such m, it turns out
that the integer a in Theorem 5.2.2 is the trace of Am modulo m [Was08, Theorem 4.10].
For this reason a is called the Trace of Frobenius.

Theorem 5.2.3. (Hasse’s theorem) The trace of Frobenius a in Theorem 5.2.2 satisfies

|a| ≤ 2
√
q = 2

√
pk

5.2 Supersingular elliptic curves 27

Proof. See [Was08, Theorem 4.2]. Let (x, y) = P ∈ E(Fq). It can be shown that

(x, y) = φq(x, y) = (xq, yq)

if and only if (x, y) ∈ E(Fq). One can also show that

φq − id

is a separable endomorphism. But then

a = q + 1−#E(Fq) = q + 1− ker(φq − id) = q + 1− deg(φq − id)

and it is possible to prove the theorem by studying deg(φq − id).

Remark 2. Let E be a supersingular elliptic curve defined over Fp for a prime p ≥ 5.
By Theorem 5.2.2 we have

#E(Fp) = p+ 1− a
with i) a = 0, or ii) p ≤ |a|. But by Theorem 5.2.3

|a| ≤ 2
√
p,

so case ii) can not occur since p ≥ 5.

Definition 5.2.4. The endomorphism ring of E (denoted by End(E)) is the set of all
endomorphisms φ : E → E (together with the constant zero-map) defined over K with
the following ring structure.

i) The neutral addition element is the constant zero-map φ(P) = O, for all P ∈ E(K).

ii) Addition is given by
(φ1 + φ2)(P) = φ1(P) + φ2(P)

for all φ1, φ2 ∈ End(E).

iii) The neutral multiplication element is the identity isogeny.

iv) Multiplication is given by

(φ1 · φ2)(P) = φ1 ◦ φ2(P)

for all φ1, φ2 ∈ End(E)

One can verify that multiplication is distributive with respect to addition.

Note that End(E) is not necessarily a commutative ring. The following theorem is
important background for our applications in Section 6.

Theorem 5.2.5. If E is a supersingular elliptic curve, then End(E) is a non-commutative
ring. If E is ordinary, then End(E) is commutative.

Proof. See [Sil09, Theorem III.9.4 and V.3.1].

5.3 Vélu’s formulae 28

5.3 Vélu’s formulae

Given a finite subgroup G ⊆ E1, the following formulae give us a separable isogeny φ and
an elliptic curve E2 such that

φ : E1 → E2

kerφ = G

By Theorem 5.1.9, E2 is unique up to isomorphism. Here we follow the presentation of
[Was08, Theorem 12.16]. The original formulae are due to Vélu [Vél71]. In general φ and
E2 will be defined over K. If G ⊆ E1(L) (so E1 is also defined over L by the definition of
E1(L)), then φ and E2 will also be defined over L. For our applications we are particularly
interested in L = Fq for a prime power q, see Remark 3.

Let E1 be given by the Weierstrass equation

y2 = x3 + Ax+B

with A,B ∈ K. Let G be a finite subgroup of E1. For any O 6= Q = (xQ, yQ) ∈ G let

gxQ = 3x2Q + A, gyQ = −2yQ

vQ =

{
gxQ, if 2Q = O

2gxQ, otherwise
, uQ = (gyQ)2

Let the following be a disjoint union

G = {O} tG2 tR t (−R)

where G2 are all points of order 2 in G. So R contains exactly one of Q and −Q for all
Q ∈ G \ ({O} ∪G2). Let S = R ∪G2 and define

v =
∑

Q∈S
vQ

w =
∑

Q∈S
(uQ + xQvQ)

The codomain of φ, the elliptic curve E2, will be given by the Weierstrass equation

Y 2 = X3 + (A− 5v)X + (B − 7w) (15)

The isogeny φ = (X(x, y), Y (x, y)) is given by

X(x, y) = x+
∑

Q∈S

(
vQ

x− xQ
+

uQ
(x− xQ)2

)
(16)

Y (x, y) = y −
∑

Q∈S

(
uQ

2y

(x− xQ)3
+ vQ

y − yQ
(x− xQ)2

−
gxQg

y
Q

(x− xQ)2

)
(17)

See [Was08, Theorem 12.16] for a proof of correctness of the formulae. Note that (16)
and (17) require us to iterate over all elements in S.

Remark 3. By inspecting (15), (16) and (17) we see that if E is defined over a finite
field Fq and G ⊆ E(Fq), then E2 and φ are defined over Fq. Hence

#E1(Fq) = #E2(Fq)

by Proposition 5.1.14.

5.4 Supersingular elliptic curves defined over Fp 29

5.4 Supersingular elliptic curves defined over Fp
Let p ≥ 5 be a fixed prime in this section.

Theorem 5.4.1. Let E be a supersingular elliptic curve defined over Fp. Then j(E) ∈ Fp2.

Proof. See [Sil09, Theorem V.3.1.(a)(iii)].

Proposition 5.4.2. Let j0 be a supersingular j-invariant in Fp2. Then there exists a
supersingular elliptic curve E defined over Fp2 with j(E) = j0 and

E(Fp2) ∼= Zp+1 ⊕ Zp+1

Proof. We will follow the proof of Lemma 3.21 in [BGJGP05]. By the proof of Proposition
5.1.13 there is a supersingular elliptic curve E1 with j(E1) = j0. By [Was08, Theorem
4.3] there exists a supersingular elliptic curve E2 defined over Fp with Trace of Frobenius
a = 0. By the sequence an from the proof of Theorem 5.2.2 we have that

#E2(Fp2) = p2 + 1− (−2p) = (p+ 1)2

By [Gal12, Theorem 25.3.17], all supersingular elliptic curves defined over Fp are isoge-
nous3. Let φ : E2 → E1 be an isogeny. By Theorem 5.1.10 we can write φ as

φ = φs ◦ πnp

for some non-negative integer n and some separable isogeny φs. We know that πp is an
endomorphism since E2 is defined over Fp. Hence φs is a separable isogeny from E2 to
E1. By [Was08, Theorem 4.10], πp satisfies the endomorphism equation

π2
p − πpa+ [p] = 0

on E2. Hence π2
p = [−p], since a = 0. Then

φs ◦ π2
p = φs ◦ [−p] = [−p] ◦ φs

So π2
p(kerφs) ⊆ kerφs. By (the discussion after) [Sut15, Theorem 6.8] and [BSS99, p. 45]

there is then a separable isogeny φ′s : E2 → E2/ kerφs that is defined over Fp2 , where the
elliptic curve E2/ kerφs is defined over Fp2 and isomorphic to E1. Let E = E2/ kerφs.
Since φ′s is defined over Fp2 we have that

#E(Fp2) = #E2(Fp2)

by Proposition 5.1.14. It now follows from [Was08, Theorem 4.4] that

E(Fp2) ∼= Zp+1 ⊕ Zp+1

3In fact, [Gal12, Theorem 25.3.17] says something stronger. It says that given two supersingular
elliptic curves defined over Fp and a prime ` 6= p we can find an isogeny, whose degree is a power of `,
between them. [Gal12] refers to [Mes86] for a proof, who in turn attributes the proof to Serre according
to [Gal12].

6.2 SIDH key exchange 30

6 Supersingular isogeny Diffie-Hellman key exchange

In this section we present SIDH. We describe the key exchange in Section 6.2, and discuss
picking secret keys and computing isogenies of power-smooth degree in Sections 6.3 and
6.4, respectively.

6.1 Background

In a way the history of SIDH starts before Jao and De Feo introduced it in [JDF11] in 2011.
Stolbunov suggested in [Sto10] to use isogenies between ordinary elliptic curves to obtain
a post-quantum key exchange. But the commutative structure of the endomorphism rings
of those curves was exploited in [CJS14] to give a sub-exponential attack. See [CJS14]
for details of the time complexity of the attack. Also, as pointed out in [JDF11, p. 1],
the performance of an early implementation of the cryptosystem was poor: about 230
seconds on a desktop PC for a single exchange at 128-bits of classical security. While the
cryptosystem of [Sto10] could possibly be adapted with the attack of [CJS14] in mind,
the already poor performance of the cryptosystem led [CJS14] to suggest that ”...attacks
such as ours would seem to disqualify such systems from consideration in a post-quantum
world.” Supersingular elliptic curves do not have a commutative endomorphism ring and
it appears that this led [JDF11] to present SIDH in 2011. Note however that there are
other differences between the two cryptosystems than just using different sets of elliptic
curves.

6.2 SIDH key exchange

We now describe the supersingular isogeny Diffie-Hellman (SIDH) key-exchange that was
introduced in [JDF11]. The public parameters of the cryptosystem are p, E0, (PA, QA)
and (PB, QB) such that:

i) p is a prime of the form
p = `eAA `

eB
B f − 1 (18)

where `A and `B are small distinct primes, and f is a small positive cofactor such
that p is prime. The number f is meant to give flexibility in selecting p and can be
set to 1. The cryptographic strength of the cryptosystems with regards to known
attacks depend on the size of `eAA or `eBB . Hence we want

`eAA ≈ `eBB

Most implementations use a prime p of the form p = 2ea3eB − 1. As an example,
[CLN16] uses

p = 23723239 − 1

when aiming for 128 bits of quantum security and 192 bits of classical security. Actu-
ally, [JDF11] define p to be of the form p = `eAA `

eB
B f±1. We have restricted ourselves to

the form in (18) since most implementations use this form [AFJ14][CLN16][KAJMK16a]
and since it fits well with our results in Section 5.4. However, it turns out that one
can prove results corresponding to those in Section 5.4 in the case of p = `eAA `

eB
B f + 1

as well. See Remark 9 in Section 7.1 for details. In this author’s experience, finding a
prime p of suitable form is not a problem in practice, but we refer to [JDF11, Section
4.1] for a discussion.

6.2 SIDH key exchange 31

ii) E0 is a supersingular elliptic curve defined over Fp2 such that

E0(Fp2) ∼= Z`eAA `
eB
B f ⊕ Z`eAA `

eB
B f (19)

By our results in Section 5.4 we know that any supersingular elliptic curve defined
over Fp is isomorphic to one defined over Fp2 with the same group structure as that
in (19). In this sense we are not missing anything by working over Fp2 . All the
vertices of the supersingular isogeny graph that we will study in Section 7.1 can be
represented in Fp2 . The group structure in (19) is important for us to be able to find
suitable rational points (PA, QA) and (PB, QB) in E(Fp2). On the problem of actually
finding a suitable curve E0 we note that [Brö09] gives an efficient algorithm to find
a supersingular elliptic curve defined over Fp2 with Trace of Frobenius −2p. Also,
there are several known Weierstrass equations for elliptic curves defined over Fp2 with
Trace of Frobenius −2p. For example, y2 = x3 + x is one such equation when p = 3
mod 4 [Was08, Proposition 4.37], which happens in particular if `A = 2 (assuming
eA ≥ 2). This is the Weierstrass equation used in [CLN16]. Once we have a curve
defined over Fp2 with Trace of Frobenius −2p, [Was08, Theorem 4.4] guarantees that
it has the same Fp2-rational group structure as in (19). In fact, we shall see in Section
7.1 and Theorem 7.1.4 that once we have one curve with the correct group structure,
then we can generate a ”random” curve with the same group structure. The curve
will be random in the sense that its j-invariant will be chosen (roughly) uniformly at
random from the set of all supersingular j-invariants in Fp2 .

iii) (PA, QA) is Alice’s public parameter. Recall that

E0[`
eA
A] ∼= Z`eAA ⊕ Z`eAA

by Proposition 2.2.2. By the group structure of E0(Fp2) in (19) we have

E0(Fp2)[`eAA] = E0[`
eA
A]

The points PA, QA ∈ E[`eAA] are chosen to be independent in the sense that linear
combinations of them generate all of E[`eAA]. As in Section 2.2, we denote this by
〈PA, QA〉 = E0[`

eA
A]. One can verify that if the Weil pairing e`eAA

(PA, QA) has order `eAA ,

then 〈PA, QA〉 = E0[`
eA
A]. The points (PA, QA) can be found by simply testing random

points and using the Weil pairing to check independence [JDF11, Section 4.1]. There
are also more efficient methods for certain starting curves E0 [CLN16, Choosing
generator points for torsion subgroups]. Bob’s corresponding public parameter is
(PB, QB) such that 〈PB, QB〉 = E0[`

eB
B].

Figure 1 explains the idea of SIDH.

6.2 SIDH key exchange 32

Figure 1: Alice will compute the red isogenies (with sub-index A) and Bob will compute
the blue ones (with sub-index B). Alice will know the codomain EBA of φ′A and Bob will
know the codomain EAB of φ′B. We will show that j(EBA) = j(EAB), so they can use the
j-invariants of the respective codomains as a shared key.

E

EA

EB

EBA

EAB

φA
φ′B

φB φ′A

Given the fixed public parameters p, E0, (PA, QA) and (PB, QB) the SIDH key ex-
change is as follows:

1. Alice picks mA, nA ∈R Z`eAA , under the constraint that not both of mA and nA are

divisible by `A. These two numbers make up Alice’s secret key skA = (mA, nA). She
lets

GA = 〈mAPA + nAQA〉
By Remark 4, the order of GA is `eAA . Alice computes (using for instance Vélu’s
formulae) a separable isogeny φA : E0 → EA that has kernel GA. Alice sends her
public key

pkA = (EA, φA(PB), φA(QB))

to Bob. Bob similarly picks mB, nB ∈R Z`eBB , computes a separable isogeny φB : E0 →
EB with kernel GB = 〈mBPB + nBQB〉 and sends

pkB = (EB, φB(PA), φA(QA))

to Alice.

2. Upon receiving
pkB = (EB, φB(PA), φA(QA))

from Bob, Alice computes a separable isogeny φ′A : EB → EBA that has kernel

〈mAφB(PA) + nAφB(QA)〉 = φB(〈mAPA + nAQA〉) = φB(GA)

Similarly, Bob computes a separable isogeny φ′B : EA → EAB with kernel φA(GB). By
Remark 5, EBA and EAB are isomorphic as elliptic curves, so, by Proposition 5.1.13,
Alice and Bob can take the j-invariant

j(EBA) = j(EAB)

as their shared key.

We stress that Alice can only evaluate the composition

φ = φ′A ◦ φB

6.2 SIDH key exchange 33

on 〈PA, QA〉 = E0[`
eA
A] and Bob can only evaluate the composition

φ′ = φ′B ◦ φA
on 〈PB, QB〉 = E0[`

eB
B]. If Alice could evaluate φ(PB) and φ(QB), then she retrieves Bob’s

secret key by solving a DLP instance in EBA(Fp2) since

φ(PB) = −m−1B nBφ(QB)

(assuming mA ∈ Z∗
`
eB
B

). We will see in next section that Alice in this case can assume

that Bob’s secret key is

(m′B, n
′
B) = (1,−m−1B nB mod Z`eBB)

The following remarks are meant to help the reader who wants justification for some of
the claims made in our description of the key exchange.

Remark 4. By construction mAPA + nAQA lies in E[`eAA] so its order is at most `eAA .
Without loss of generality we can assume that mA ∈ Z∗

`
eA
A

so

kmA 6= 0 mod `eAA

for any integer 1 ≤ k < `eAA . This means that

k(mAPA + nAQA) = kmAPA + knAQA 6= O

since
〈PA, QA〉 = E0[`

eA
A] ∼= Z`eAA ⊕ Z`eAA

Hence the order of mAPA + nAQA is `eAA .

Remark 5. Let φ : E0 → EBA be defined by

φ = φ′A ◦ φB
We want to show that

〈GA, GB〉 = 〈mAPA + nAQA,mBPB + nBQB〉 = kerφ

It is clear that by construction

〈mAPA + nAQA,mBPB + nBQB〉 ⊆ kerφ

Now suppose that P ∈ kerφ. If P 6∈ kerφB = 〈mBPB + nBQB〉, then we must have

φB(P) = φB(k(mAPA + nAQA))

for some integer k. Thus, for some integer k′

P − k(mAPA + nAQA) = k′(mBPB + nBQB) ∈ kerφB

so P ∈ 〈mAPA + nAQA,mBPB + nBQB〉. Similarly one can show that

〈GA, GB〉 = 〈mAPA + nAQA,mBPB + nBQB〉 = kerφ′

for φ′ : E0 → EAB defined by
φ′ = φ′B ◦ φA

Hence EAB and EBA are isomorphic as elliptic curves by Theorem 5.1.9.

6.4 Computing power-smooth isogenies efficiently 34

6.3 Normalised secret keys

As noted in [CLN16] and [GPST16] there are more ways to pick mA and nA in step 1 of
the key exchange than there are cyclic subgroups of order `eAA in E[`eAA]. As explained in
[GPST16, Lemma 2.1], an attacker can assume that mA = 1 or nA = 1 in Alice’s secret
key. To see this, assume without loss of generality that mA ∈ Z∗

`
eA
A

. Then

〈mAPA+nAQA〉 = Z`eAA m
−1
A (mAPA+nAQA) = Z`eAA (PA+m−1A nAQA) = 〈PA+m−1A nAQA〉

If we write Alice’s secret key as a tuple (1, α) (or (α, 1)), then it is easy to see that there
are `eA−1A (`A + 1) distinct (with respect to the subgroups that they generate) keys:

i) If α ∈ Z∗
`
eA
A

, then we can assume the private key has the form (1, α), since (α·α−1, α·1)

has this form. There are `eA−1A (`A − 1) such keys (1, α).

ii) If α 6∈ Z∗
`
eA
A

and the key has the form (1, α), then we can write the key as (1, `Aα
′)

with α′ ∈ Z
`
eA−1

A
. So there are `eA−1A such keys.

iii) If α 6∈ Z∗
`
eA
A

and the key has the form (α, 1), then we can write the key as (`Aα
′, 1)

with α′ ∈ Z
`
eA−1

A
. So there are `eA−1A such keys.

We call secret keys of the forms in i)-iii) normalised. Since any cyclic subgroup G ⊆
E0[`

eA
A] has a generator of the form mAPA + nAQA the normalised secret keys are in one-

to-one correspondence with the the cyclic subgroups of E[`eAA] of order `eAA . In [CLN16,
Sampling full order 2-torsion points] only secret keys from ii) are used.

6.4 Computing power-smooth isogenies efficiently

A critical question in implementing SIDH is how to efficiently compute the isogenies of
the key exchange. The isogeny φA computed by Alice in step 1 of the key exchange has
a kernel of order ≈ √p. For realistic choices of p it is infeasible to directly apply Vélu’s
formulas as they are written in Section 5.3, since that would involve iterating over roughly
half of the points in the kernel. The answer is to build φA as a composition of eA separable
isogenies of degree `A. Recall that a separable isogeny of degree `A has a kernel of order
`A.

Start with
R0 = mAPA + nAQA

Iteratively for 0 ≤ i < eA we do the following (we drop the subindex A from eA and `A
to simplify notation). Let E0 be as in the key exchange description.

1. Let φi be the separable isogeny from Ei with kernel

〈`e−i−1Ri〉 (20)

that Vélu’s formulae give. By Remark 6, #〈`e−i−1Ri〉 = `.

2. Let Ei+1 be the codomain of φi. This is the elliptic curve

Ei+1 = Ei/〈`e−i−1Ri〉

that Vélu’s formulae give.

6.4 Computing power-smooth isogenies efficiently 35

3. Let Ri+1 = φi(Ri).

Then Alice can set
EA = Ee

φA = φe−1 ◦ ... ◦ φ0 (21)

by Remark 7. Note that φ is separable by Proposition 5.1.7 since it is the composition of
separable isogenies.

Remarks 6 and 7 provide justification for the claims made above. Remark 8 is an
observation that will be useful later.

Remark 6. We claim that
o(Ri) = `e−i

for all 0 ≤ i ≤ e. We have already seen that o(R0) = `e. We proceed by induction.
Suppose that

o(Ri−1) = `e−(i−1) = `e−i+1

for some 0 < i ≤ e− 1. By definition of Ri, o(Ri) = o(φi−1(Ri−1)). Since

kerφi−1 = 〈`e−(i−1)−1Ri−1〉 = 〈`e−iRi−1〉

we have
`e−iRi = φi−1(`

e−iRi−1) = O

and
kRi = φi−1(kRi−1) 6= O,

for all 1 ≤ k < `e−i. So
o(Ri) = `e−i

Remark 7. We need to argue why

kerφA = 〈R0〉 = 〈mAPA + nAQA〉

By Remark 6, o(φ(R0)) = o(Re) = 1. So

〈R0〉 ⊆ kerφ

with #〈R0〉 = `e. The degree of the composition is the product of the degrees of the
composed isogenies by Proposition 5.1.8. Hence

〈R0〉 = kerφ

since deg φ = `e and deg φ ≥ # kerφ by Proposition 5.1.4.

Remark 8. Note that we can never have kerφi = ker φ̂i−1 for 1 ≤ i ≤ eA − 1 in (21). If

we did, then we would have (keep in mind that ker φ̂i−1 = φi−1(Ei−1[`]))

`e−i−1Ri = `e−i−1φi−1(Ri−1) = φi−1(S)

for some S ∈ Ei−1[`]. Here we have used that `e−i−1Ri generates kerφi. Hence

`e−i−1Ri−1 − S ∈ kerφi−1 ⊆ Ei−1[`],

but o(`e−i−1Ri−1) = `2 by Remark 6, which is a contradiction.

6.4 Computing power-smooth isogenies efficiently 36

The approach to computing φA given in steps 1-3 above is the multiplication-based
approach of [JDF11]. Another approach to computing φA in [JDF11] is the isogeny-based:

1. Compute Qi = `iR0 for all 0 ≤ i < e.

2. Note that 〈Qe−1〉 = 〈`e−1R0〉, so (just like in step 1 of the multiplication-based
approach) we can use it to obtain φ0. now apply φ0 to all Qi for 0 ≤ i < e − 1.
Then

〈Qe−2〉 = 〈`e−2φ0(R0)〉 = 〈`e−2R1〉
so we can use it to obtain φ1. now apply φ1 to all Qi for 0 ≤ i < e− 2. Then

〈Qe−3〉 = 〈`e−3φ1(R1)〉 = 〈`e−3R2〉

so we can use it to obtain φ2. Continuing in this manner gives φ.

The methods we discussed in this section work in general for all isogenies that Alice and
Bob need to compute in the key exchange. However, any competitive implementation
of SIDH must use a third more complex but much more efficient method introduced in
[DFJP14, Section 4.2.2]. The method is sort of a middle way between the two approaches
described here and it takes into account the cost ratio between scalar `-multiplications
and `-degree isogeny evaluations.

7.1 Supersingular isogeny graphs 37

7 Computational problems on supersingular isogeny

graphs

In Section 7.1 we define supersingular isogeny graphs whose vertices are the supersingular
j-invariants in Fp2 . Recall that any supersingular elliptic curve defined over Fp had its j-
invariant in Fp2 by our results in Section 5.4. In Section 7.2 we explain how the isogenies
in SIDH give rise to walks of a specific form in these graphs. In Section 7.3 and 7.4
we do simulations for small examples of p to see how these walks behave. In Section
7.5 we discuss some computational problems on supersingular isogeny graphs that are
related to SIDH. We give a heuristic reduction between two of them in Section 7.6. In
Section 7.7 and 7.8 we discuss a cryptographic application and computational problems
on supersingular isogeny graphs that predate SIDH.

7.1 Supersingular isogeny graphs

Definition 7.1.1. The supersingular isogeny graph G` for a prime p ≥ 5 and a prime
` 6= p is the directed multi-graph G` = G(V,E), where:

i) The vertex set V (G`) is the set of equivalence classes of the set of all supersingular
elliptic curves defined over Fp under the equivalence relation of being isomorphic.
The equivalence classes can be represented by j-invariants in Fp2 by Theorems 5.1.13
and 5.4.1.

ii) To get the edge set E(G`) we pick an elliptic curve representative E for each equiva-
lence class in V (G`). We know by Proposition 5.4.2 that, for each equivalence class,
we can pick a representative E defined over Fp2 such that

E(Fp2) ∼= Zp+1 ⊕ Zp+1

Each of the `+1 many cyclic `-order subgroups of E gives a separable `-isogeny with
domain E. For each such isogeny we add a directed edge from the equivalence class
[E] to the equivalence class of the codomain of the isogeny. Note that loops may
occur, i.e., the equivalence class of the codomain of the isogeny can be [E]. One can
verify that the edge set E(G`) does not depend on the choice of representatives.

Because of the dual isogeny, if there is an edge ([E1], [E2]) ∈ E(G`), then there is
always an edge ([E2], [E1]) ∈ E(G`). However, some special cases can occur where there
for instance are two edges ([E1], [E2]) ∈ E(G`), but only one edge ([E2], [E1]) ∈ E(G`)
[Gal12, Remark 25.3.2].

Theorem 7.1.2. G` is connected.

Proof. See [Koh96, Corollary 78] and [Gal12, 25.3.17].

Remark 9. In Section 6.2 we assumed that p was of the form p = `eAA `
eB
B f − 1, but we

mentioned that [JDF11] also considered primes p of the form p = `eAA `
eB
B f + 1. In that

case we want to work with curves E with Fp2-rational group structure

E(Fp2) ∼= Zp−1 ⊕ Zp−1 = Z`eAA `
eB
B f ⊕ Z`eAA `

eB
B f (22)

in SIDH. It turns out that it is still possible to choose a representative for each vertex in
V (G`A) (and V (G`B)) with group structure as in (22). By [Was08, Theorems 4.3 and 4.4],

7.2 Non-backtracking walks in G`A 38

a curve E defined over Fp2 with such group structure exists. We may assume that E is
the representative of its equivalence class (vertex) j in G`A . Since all `A-order subgroups
of E are Fp2-rational it follows from Remark 3 that we can choose representatives with
group structure as in (22) for all neighbours of j in G`A . Continuing in this manner and
using that G`A is connected we can show that we can choose a representative for each
vertex that has the sought group structure. We also note that one can use the sequence
an in the proof of Theorem 5.2.2 to show that any such representative must be minimally
defined over Fp2 , i.e., the coefficients of the representative’s Weierstrass equation can not
all lie in Fp.

Theorem 7.1.3.
#V (G`) =

⌊ p
12

⌋
+ ε

with ε ∈ {0, 1, 2}.
Proof. See [Gal12, Theorem 9.11.11].

It turns out that G` is an expander graph. In fact, it has very strong expansion
properties even among expander graphs. We refer to [JDF11, Section 2.1] for more details.
The following theorem is one consequence.

Theorem 7.1.4. If we walk at least

log(2#V (G`))
log((`+ 1)/(2

√
`))

random steps in G`, starting from any fixed vertex [E] ∈ V (G`), then we end up at any
vertex [E ′] ∈ V (G`) with at least probability 1

2#V (G`) .

Proof. See [DFJP14, Proposition 2.1] for references.

As mentioned in Section 6.2 ii), Theorem 7.1.4 gives us a way to generate a random
starting curve E0 for the SIDH key exchange. However, the starting curve is held fixed in
any SIDH implementation this author is aware of.

7.2 Non-backtracking walks in G`A
When Alice computed her isogeny φA of the SIDH protocol as in Section 6.4 she got a
composition of `A-isogenies

φA = φeA−1 ◦ ... ◦ φ0 (23)

These isogenies give a walk of length eA in G`A in the following natural way. We may
assume that E0 is the representative of the vertex [E0] in G`A . Write φA as

φA = (φeA−1 ◦ θ−1eA−2) ◦ (θeA−2 ◦ φeA−2 ◦ θ−1eA−3) ◦ ... ◦ (θ1 ◦ φ1 ◦ θ−10) ◦ (θ0 ◦ φ0) (24)

where each θi is the isomorphism that takes codomain(φi) to the representative of [codomain(φi)]
in G`A . Thus, (24) is a walk in G`A . One can verify that each possible normalised secret
key skA = (mA, nA) gives a unique walk with respect to edges traversed. These walks are
non-backtracking in the sense that we have

ker(θi ◦ φi ◦ θ−1i−1) 6= ker((θi−1 ◦ φi−1 ◦ θ−1i−2)∧)
for any i. We give the details of this argument in Remark 10. Here, ψ∧ for an isogeny ψ
means ψ̂.

7.3 Estimating the distribution of j(EA) 39

Remark 10. Note that

(θi−2 ◦ φ̂i−1 ◦ θ−1i−1) ◦ (θi−1 ◦ φi−1 ◦ θ−1i−2) = [`]

Hence
ker((θi−1 ◦ φi−1 ◦ θ−1i−2)∧) = θi−1(ker φ̂i−1)

Note also that
ker(θi ◦ φi ◦ θ−1i−1) = θi−1(kerφi)

But by Remark 8 in Section 6.4

kerφi 6= ker φ̂i−1

Thus,
ker(θi ◦ φi ◦ θ−1i−1) 6= ker((θi−1 ◦ φi−1 ◦ θ−1i−2)∧)

7.3 Estimating the distribution of j(EA)

There are (`A+1)`eA−1A many non-backtracking walks of length eA from [E0] in G`A . Each is
given by a normalised secret key skA = (mA, nA). Hence there are as many possible values
of j(EA) as there are distinct j-invariants we can end up at when we take non-backtracking
walks of length eA in G`A starting at [E0]. Note that we have similar situations for the
other isogenies φB : E0 → EB, φBA : EB → EBA and φAB : EA → EAB that are computed
in the key exchange. As mentioned in [DFJP14, Section 5.1] and [GPST16, Section 6]
we are not guaranteed mixing under Theorem 7.1.4 when only walking eA steps in G`A .
It is therefore interesting to estimate the number of distinct j-invariants that Alice can
get to by taking non-backtracking eA-walks in G`A . We will make the following heuristic
estimation. For this estimation to make sense one should think of the starting curve E0

as randomly generated among the representatives of the vertices of V (G`A).

Estimation 7.3.1. We estimate that j(EA) in the SIDH key exchange is distributed as
when we pick a random j from the multiset S that we construct in the following way.

1. Pick `eA−1A (`A + 1) vertices of G`A uniformly at random with repetition. Each time
a vertex j is picked, put a copy of it in S.

We will assume that the corresponding estimation holds for j(EB). To provide an
indication that this is a good heuristic estimation we run simulations for three small
values of p. The Sage code is available for download4. We start from a fixed vertex [E]
of G`B . We then walk enough random steps to ensure mixing under Theorem 7.1.4 to
obtain a starting vertex [E0]. We then record the number of distinct j-invariants j(EA)
that Alice can get to by taking non-backtracking eA-walks in G`A starting at [E0]. There
are (`A + 1)`eA−1A such non-backtracking walks starting at [E0], so this is the maximum
possible number of distinct j-invariants. We repeat this whole procedure 500 times and
use the results to get an estimate on the distribution of the number of distinct j-invariants
j(EA) that Alice can get. We do this for a small example

p = `eAA `
eB
B f − 1 = 2835 − 1

4https://github.com/eriktho/thesis-sage-code

7.3 Estimating the distribution of j(EA) 40

in Figure 2. There we show the fraction of times (out of 500) that Alice got x distinct
j-invariants, where x is the value on the horizontal axis. Figure 3 shows the fraction
of times (out of 500) that we got x distinct elements j in S, where x is the value on
the horizontal axis, when S is constructed as in Estimation 7.3.1. The mean of both
simulations (i.e., the mean of x) is given in Alice’s row in Table 1. The third column gives
the theoretical expected number of distinct elements j in S, which is

#V (G`A)

(
1−

(
#V (G`A)− 1

#V (G`A)

)(`A+1)`
eA−1

A

)
(25)

by linearity of expectation. We do the corresponding simulations for Bob and his isogeny
φB : E0 → EB as well, the results are given in Figures 4 and 5, and in Bob’s row in Table
1. The corresponding simulation results for p = 29365 − 1 and p = 210367 − 1 are given
on the pages following the next.

Remark 11. The simulations for S incorrectly use #V (G`A) = dp/12e + ε when the
correct number of vertices is #V (G`A) = bp/12c + ε by Theorem 7.1.3. As the difference
would not be noticeable in the simulation results we have not corrected this.

As mentioned above our walks are too short to guarantee mixing under Theorem
7.1.4. This is obvious since the number of walks (≈ √p) is strictly less than the number
of vertices (#V (G`A) ≈ p/12). However, it surprised this author that we see so strong
simulation results even for small examples of p. The number of collisions are (on average)
as few as if we were to choose the vertices j(EA) uniformly at random (with repetition)
from V (G`A). In some sense this is the best possible mixing one could possibly hope for
given the length of the walks. We ask whether the fact that the walks are non-backtracking
in combination with theoretical results for such walks in expander graphs (for example
[ABLS07]) could possibly be used to explain the strong simulation results that we see?
Although every simulation result this author has seen indicates that the distribution of
j(EA) is very similar to that of a randomly chosen element of the set S in Estimate 7.3.1,
we note that strictly speaking our simulations discussed here only compare the number
of distinct elements. We leave a more thorough study of the two distributions to future
work.

7.3 Estimating the distribution of j(EA) 41

Table 1: Results for p = 2835 − 1

Distinct j(EA) mean Distinct j in S mean Distinct j in S theoretical expectation
Alice 370.69 369.92 370.16
Bob 313.70 313.88 314.12

Figure 2: Number of distinct j-invariants
j(EA) for Alice (p = 2835 − 1).

Figure 3: number of distinct elements j
in S for Alice (p = 2835 − 1).

Figure 4: number of distinct j-invariants
j(EB) for Bob (p = 2835 − 1).

Figure 5: number of distinct elements j
in S for Bob (p = 2835 − 1).

7.3 Estimating the distribution of j(EA) 42

Table 2: Results for p = 29365− 1

Distinct j(EA) mean Distinct j in S mean Distinct j in S theoretical expectation
Alice 766.12 766.22 766.11
Bob 968.58 968.91 968.97

Figure 6: number of distinct j-invariants
j(EA) for Alice (p = 29365− 1).

Figure 7: number of distinct elements j
in S for Alice (p = 29365− 1).

Figure 8: number of distinct j-invariants
j(EB) for Bob (p = 29365− 1).

Figure 9: number of distinct elements j
in S for Bob (p = 29365− 1).

7.3 Estimating the distribution of j(EA) 43

Table 3: Results for p = 210367− 1

Distinct j(EA) mean Distinct j in S mean Distinct j in S theoretical expectation
Alice 1533.44 1533.24 1533.30
Bob 970.88 970.90 970.92

Figure 10: number of distinct j-
invariants j(EA) for Alice (p = 210367−
1).

Figure 11: number of distinct elements
j in S for Alice (p = 210367− 1).

Figure 12: number of distinct j-
invariants j(EB) for Bob (p = 210367 −
1).

Figure 13: number of distinct elements
j in S for Bob (p = 210367− 1).

7.4 Estimating the distribution of j(EAB) 44

7.4 Estimating the distribution of j(EAB)

In the SIDH protocol we first walk eA non-backtracking steps in G`A (the walk given by
φA) to arrive at [EA]. Then we walk eB non-backtracking steps in G`B (the walk given
by φ′B) from [EA] to [EAB]. We know that we arrive at the same vertex (j-invariant)
if we instead follow the walks given by φB and φ′A. Much like the question about the
distribution of j(EA) that we studied in Section 7.3, to this author’s knowledge there are
no theoretical results on the distribution of j(EAB) when assuming that Alice and Bob
generate their secret keys honestly. It should be ”good” in some sense, since G`A and G`B
are strong expander graphs, but how good? By the construction of SIDH, the possible
j-invariants [EA] are all connected by a non-backtracking walk of length eA to [E0] in G`A .
Thus, they are close to each other in G`A . But how close are they to each other in G`B? To
this author’s knowledge there is no known useful relation between G`A and G`B that we can
use to answer this question. Let us explore the reasonable heuristic assumption that they
are as far apart from each other in G`B as the same number of randomly picked vertices in
G`B are expected to be. Based on this and our simulation results in the previous section
we make the following heuristic estimation.

Estimation 7.4.1. Suppose that Alice and Bob generate their secret keys honestly in the
SIDH key exchange. We estimate that j(EAB) is distributed as when we pick a random
j′ from the multiset S that we construct in the following way.

1. Pick `eA−1A (`A + 1) vertices of G`A uniformly at random with repetition.

2. For each distinct element j picked in the previous step, let z be the number of times
it was picked and do:

(a) Pick `eB−1B (`B + 1) vertices of G`B uniformly at random with repetition. Each
time a vertex j′ is picked, put z copies of it in S.

To provide an indication that our estimation works well we run simulations for three
small values of p. The Sage code is available for download5. We start from a fixed vertex
[E] of G`A . We then walk enough random steps to ensure mixing under Theorem 7.1.4
and obtain a vertex [E0]. By iterating over all possible secret keys for Alice and Bob we
record how often each supersingular j-invariant (with respect to p) occurs as the shared
key j(EAB). Using Theorem 7.1.3 we also know how many supersingular j-invariants it is
that do not occur as j(EAB). In Figures 14, 16 and 18 we show the fraction of j-invariants
that occur x times each, where x is the value of the horizontal axis. In Figures 15, 17
and 19 we show the fraction of j-invariants that occur x times, where x is the value of
the horizontal axis, in the set S when it is constructed as described above. Note that in
Figures 16, 15, 18 and 19, some j-invariants appear x = 0 times.

The simulation results show that, even for small examples of p, the distribution of
j(EAB) and that of a randomly chosen element of the set S appears to be very similar.
The results indicate that the distribution of j(EAB) is essentially the best we could have
hoped for.

5https://github.com/eriktho/thesis-sage-code

7.4 Estimating the distribution of j(EAB) 45

Figure 14: results for j(EAB) for
p = 2835 − 1.

Figure 15: results for the set S for
p = 2835 − 1.

Figure 16: results for j(EAB) for
p = 29365− 1.

Figure 17: results for the set S for
p = 29365− 1.

Figure 18: results for j(EAB) for
p = 210367− 1.

Figure 19: results for the set S for
p = 210367− 1.

7.5 SIDH computational problems 46

7.5 SIDH computational problems

As in SIDH, let p = `eAA `
eB
B f − 1 be a prime, E0 a supersingular elliptic curve defined over

Fp2 such that
E0(Fp2) ∼= Z`eAA `

eB
B f ⊕ Z`eAA `

eB
B f

and PA, QA, PB, QB points such that

〈PA, QA〉 = E0(Fp2)[`eAA] = E0[`
eA
A]

〈PB, QB〉 = E0(Fp2)[`eBB] = E0[`
eB
B]

The following is [DFJP14, Problem 5.2].

Problem 7.5.1 (Computational supersingular isogeny (CSSI) problem). Let φ be an
`eAA -degree isogeny from E0 to another supersingular elliptic curve EA defined over Fp2
with kerφ = 〈mAPA + nAQA〉, where mA, nA ∈R Z`eAA are not both divisible by `A. Given

E1, φ(PB) and φ(QB), find a generator of 〈mAPA + nAQA〉.
Remark 12. There are several ways to retrieve the (normalised) secret key skA =
(mA, nA) from a generator of 〈mAPA + nAQA〉.
• One way is to use the generator to compute φ(PA) and φ(QA). As discussed in

Section 6.3, we may assume that either (mA, nA) = (1, α) for some α ∈ Z`eAA , or

(mA, nA) = (β, 1) for some β ∈ `AZ`eA−1

A
. Suppose without loss of generality that

we are in the former case, then

φ(PA) = −αφ(QA) (26)

Since QA has smooth order `eAA , φ(QA) also has smooth order. So (26) is a DLP
instance that is easily solved with the Pohlig-Hellman algorithm of Section 3.2.1.
Hence we can retrieve (1, α).

• Another way to find (mA, nA) is to note that a generator of 〈mAPA + nAQA〉 is
an element k(mAPA + nAQA) with k ∈ Z∗

`
eA
A

, where PA and QA are known. Then,

assuming (mA, nA) = (1, α),

e`eAA
(QA, k(PA + αQA) = e`eAA

(QA, PA)k

e`eAA
(PA, k(PA + αQA) = e`eAA

(PA, QA)kα

Since e`eAA
(QA, PA) and e`eAA

(PA, QA) are known, these are DLP instances in the

group µ`eAA
. Here e denotes the Weil pairing of Section 2. As discussed on [Was08,

p. 86], the group µ`eAA
has smooth order `eAA , so these DLP instances are easily

solved. This means that we can retrieve (1, α) from the generator k(PA + αQA).

The following is [DFJP14, Problem 5.1].

Problem 7.5.2 (Decisional Supersingular Isogeny (DSSI) problem). Given two super-
singular elliptic curves E0 and E1 defined over Fp2 . Decide whether there is an `eAA -degree
isogeny φ : E0 → E1.

Note that the DSSI problem says nothing about the isogeny φ having a cyclic kernel.
But we note that our reduction in the next section would still work if the DSSI problem
was only concerned with isogenies φ with cyclic kernel. This would only help the reduction.
The DSSI problem is discussed in [San15, Section 4.2.5] and [DFJP14, p. 17].

In Section 9.8.2 we state another computational problem related to SIDH that is a
direct analogue of the decisional Diffie-Hellman problem.

7.6 A simple heuristic reduction from the CSSI problem to the DSSI problem 47

7.6 A simple heuristic reduction from the CSSI problem to the
DSSI problem

Suppose that we have an algorithm A that solves the DSSI problem with probability 1,
then we can use it to heuristically solve the CSSI problem. We assume that A outputs
1 when an isogeny of correct degree exists and 0 otherwise. Let E0, PA and QA be as in
Section 7.5. Let E ′A, φ′(PB) and φ′(QB) be the curve and the points we are given in the
CSSI problem. So our job is to find a generator of kerφ′ = 〈mAPA + nAQA〉.

We will use A to find an isogeny φ such that kerφ = kerφ′. Then it is easy to find a
generator of kerφ. For an isogeny ψ, let domain(ψ) and codomain(ψ) be the domain and
codomain of ψ, respectively. Just like in Section 6.4 we will compute φ as a composition
φ = φeA−1 ◦ ... ◦ φ0, where each φi is an `A-isogeny and domain(φ0) = E0. The codomain
of φeA−1 will be isomorphic to E ′A. Figure 20 shows the idea behind the reduction.

Figure 20: Edges of G`A showing the idea behind the reduction. In this small example
`A = 2 and eA = 4. The CSSI instance isogeny φ′ = φ′3 ◦ ... ◦ φ′0 gives a non-backtracking
walk in G`A from [E0] to [E ′A] = [E4]. Our reduction finds an isogeny φ = φ3 ◦ ... ◦ φ0 that
gives the same walk from [E0] to [E4]. The reduction relies on the heuristic assumption
that there will be no `eAA -isogeny giving a walk from [E ′i] (or [E ′′i]) to [EeA+i] for any
1 ≤ i ≤ eA. At the same time there is clearly an `eAA -isogeny giving a walk from [Ei] to
[EeA+i] for any 1 ≤ i ≤ eA. Since we can ask A whether such an `eAA -isogeny exists, we
can use A to find φ0, φ1, ..., φ4, starting with φ0.

[E0]

[E1]

[E ′1]

[E ′′1]

[E2]

[E ′2]

[E3]

[E ′3]

[E4]

[E ′4]

[E5]

[E6]

[E7]

[E8]

φ0

φ′0

φ1

φ′1

φ2

φ′2

φ3

φ′3

φ4

φ5

φ6

φ7

7.6 A simple heuristic reduction from the CSSI problem to the DSSI problem 48

7.6.1 Description of the reduction

1. Pick one of the `A+1 many `A-order subgroups Hk ⊆ E ′A[`A] at random. Use Vélu’s
formulae to compute a separable isogeny φeA that has kernel equal to the picked
subgroup. Let

EeA+1 = codomain(φeA)

In the example of Figure 20, E ′A would be E4 and EeA+1 would be E5.

2. For each of the `A+1 many `A-order subgroups Gk ⊆ E0[`A], let ψk be the separable
isogeny with kerψk = Gk that Vélu’s formulae give. We will assume that there is
exactly one k0 such that

A(codomain(ψk0), EeA+1) = 1 (27)

We will discuss this assumption afterwards. In the example of Figure 20, codomain(ψk0)
would be E1. The idea here is that ψk0 is the first edge in the walk given by φ′ in
G`A . Let

φ0 = ψk0 , E1 = codomain(φ0)

3. For 1 ≤ i ≤ eA − 1:

(a) Pick one of the `A many `A-order subgroups

Hk ⊆ EeA+i[`A] \ ker φ̂eA+i−1 (28)

at random. We need to exclude ker φ̂eA+i−1 for assumption (29) to hold. Use
Vélu’s formulae to compute a separable isogeny φeA+i that has kernel equal to
the picked subgroup Hk. Let

EeA+i+1 = codomain(φeA+i)

(b) For each of the `A many `A-order subgroups Gk ⊆ Ei[`A] \ ker φ̂i−1, let ψk be
the separable isogeny with kerψk = Gk that Vélu’s formulae give. We will
assume that there is exactly one k0 such that

A(codomain(ψk0), EeA+i+1) = 1 (29)

Let
φi = ψk0 , Ei+1 = codomain(φi)

4. Let φ = φeA−1 ◦ ... ◦ φ0.

5. As discussed in Remark 12, it is easy to retrieve (mA, nA) from φ(PA) and φ(QA),
assuming kerφ = kerφ′. Then mAPA + nAQA is a solution to the given CSSI
instance.

7.6 A simple heuristic reduction from the CSSI problem to the DSSI problem 49

7.6.2 Analysis of the reduction

The following analysis is built on a heuristic assumption. The reader could therefore
choose to skip it and instead take our simulation results in the next section as heuristic
evidence that the reduction works.

Suppose we have written φ′ as a composition of `A-isogenies

φ′ = φ′eA−1 ◦ ... ◦ φ′0

One problem that could occur in step 1 is if kerφeA = ker φ̂′eA−1. It is clear from Figure
20 that we will then have

A(codomain(ψk), EeA+1) = 1

for more than one k in step 2. This happens with probability 1
`A+1

and if it happens
we can just run the algorithm again. We therefore now assume that we have chosen

φeA 6= ker φ̂′eA−1 in step 1.
We have made the assumption that there is only one k0 such that

A(codomain(ψk0), EeA+i+1) = 1

in steps 2 and 3a. In step 2, for the example in Figure 20 this means that there is no
`eAA -isogeny from E ′1 to EeA+1 (or from E ′′1 to EeA+1). As discussed in Section 7.6.3, the
probability that a pair E ′i+1 and EeA+i+1 is connected by an `eAA -isogeny is negligible in
log p6 . This is the heuristic assumption mentioned in the beginning of this section. By
the union bound, the probability that there is an `eAA -isogeny between any of the O

(
log p

)

many E ′i+1 (or E ′′i+1) and EeA+i+1 tested in (27) and (29) is still negligible in log p. Hence
we can assume that there is exactly one k0 such that

A(codomain(ψk0), EeA+i+1) = 1

in steps 2 and 3a. That also means that there is only one non-backtracking eA-walk from
[E0] to [E ′A] in G`A , so necessarily

kerφ = kerφ′

since they both give such a walk.

7.6.3 On the probability that there is an `eAA -isogeny from E ′i+1 to EeA+i+1

We now explain why, heuristically, the probability that there is an `eAA -isogeny from E ′i+1

to EeA+i+1 in the previous section is negligible in log p.
We start with the following observation. Suppose ψ is an `eAA -isogeny with domain E.

By [Sut15, Corollary 6.9], ψ splits as

ψ = ψeA−1 ◦ ... ◦ ψ0 (30)

where each ψi is an `A-isogeny. If there is an 1 ≤ i ≤ eA − 1 such that

ker ψ̂i−1 = kerψi,

6Recall that a function f(x) : R≥0 → R≥0 is negligible if for any positive constant c there is an
x0 ∈ R≥0 such that f(x) < 1

xc for all x > x0. We sometimes simplify notation and say that a function
is negligible in x if it is a negligible function of x. We call a function that is not negligible (in x)
non-negligible (in x).

7.6 A simple heuristic reduction from the CSSI problem to the DSSI problem 50

then ψi = θ ◦ ψ̂i−1 for some isomorphism θ by Theorem 5.1.9. Thus,

ψ = ψeA−1 ◦ ... ◦ ψi ◦ ψi−1 ◦ ψi−2 ◦ ... ◦ ψ0 =

ψeA−1 ◦ ... ◦ θ ◦ ψ̂i−1 ◦ ψi−1 ◦ ψi−2 ◦ ... ◦ ψ0 =

ψeA−1 ◦ ... ◦ θ ◦ ψi−2 ◦ ... ◦ ψ0 ◦ [`A] =

ψeA−1 ◦ ... ◦ ψ′i−2 ◦ ... ◦ ψ0 ◦ [`A] =

where ψ′i−2 = θ ◦ ψi−2. Continuing in this manner we can write ψ as a composition

ψ = γeA−1−2k ◦ ... ◦ γ0 ◦ [`kA]

for some integer 0 ≤ k ≤ beA/2c and `A-isogenies γi such that there is no 1 ≤ i ≤
eA − 1− 2k with

ker γ̂i−1 = ker γi

Note that in the notation of Section 7.2 this means that ψ gives a non-backtracking walk of
length eA − 2k in G`A from [E0] to [codomain(γeA−1−2k)]. Thus, if there is an `eAA -isogeny
from E0 to another supersingular curve EA, then there is a non-backtracking walk of
length eA− 2k, for some non-negative integer k, in G`A from [E0] to [EA]. It is easy to see
that the converse holds as well.

When eA is odd there are

beA/2c∑

k=0

(`A + 1)`2kA =
(`A + 1)(`

2(beA/2c+1)
A − 1)

`2A − 1

many non-backtracking walks of length j from [E0] in G`A , for odd 1 ≤ j ≤ eA. Thus, for
a randomly chosen vertex v of G`A we can upper bound the probability that there is such
a non-backtracking walk from [E0] to v in G`A by

(`A + 1)(`
2(beA/2c+1)
A − 1)

(`2A − 1)#V (G`A)
(31)

Since #V (G`A) ≈ p/12 ≈ `eAA `
eB
B f/12 by Theorem 7.1.3, this probability is negligible

in log p. Similarly, one sees that the corresponding upper bound is negligible in log p
when eA is even. Our assumption is that (31) also works to heuristically approximate
the probability that the curves E ′i and EeA+i+1 in our reduction are connected by an `eAA -
isogeny. This is in line with our related simulation results in Section 7.3 and is similar
to the assumption in [GPST16, p. 12 footnote 1]. We do not include simulation results
that justify this assumption since the simulation results of the next section show that the
whole reduction works.

7.6.4 Simulation results providing heuristic proof that the reduction works

We implement our reduction and run simulations for small examples. The Sage code is
available for download7. We do the following for fixed values of p = `eAA `

eB
B f − 1. Pick a

fixed supersingular curve E such that

E(Fp2) ∼= Z`eAA `
eB
B f ⊕ Z`eAA `

eB
B f

7https://github.com/eriktho/thesis-sage-code

7.7 A hash function on G2 51

1. Walk enough steps in G`B from E to ensure mixing under Theorem 7.1.4. Let E0 be
the supersingular elliptic curve we end up at. Let A be an algorithm that solves the
DSSI problem by brute force.

2. Generate an instance of the CSSI problem for E0 and attempt to solve it using A as
described in our reduction.

We repeat steps 1-2 100 times and count the total number of failures. As p grows we
expect that all the failures we see are due to accidentally choosing

kerφeA = ker φ̂′eA−1

in step 1 of the reduction, as discussed in Section 7.6.2. This happens with probability
1

`A+1
. So we expect the number of failures to behave like a random variable with dis-

tribution Bin(100, 1
`A+1

) as p grows. This agrees well with our results in the top three
rows of Table 4. The bottom three rows are the corresponding results when we work with
`B-isogenies in G`B instead. Then we expect that the number of failures behave like a
random variable with distribution Bin(100, 1

`B+1
) as p grows. Note that we could achieve

a failure percentage that tends to 0 as p grows by choosing another kernel for φeA , instead
of outputting fail, when we accidentally choose

kerφeA = ker φ̂′eA−1

We have omitted this improvement for a simpler reduction.

Table 4: Simulation results for three different choices of p = `eAA `
eB
B f − 1.

Number of failures
G`A , p = 2835 − 1, `A = 2 61
G`A , p = 29365− 1, `A = 2 35
G`A , p = 210367− 1, `A = 2 27
G`B , p = 2835 − 1, `B = 3 59
G`B , p = 29365− 1, `B = 3 33
G`B , p = 210367− 1, `B = 3 23

7.6.5 Relaxing our assumption on the DSSI-algorithm A

It is not strictly necessary that A always answers correctly. What is needed for our
algorithm to work with non-negligible probability in log p is that A answers all of our
O
(
log p

)
queries correctly with non-negligible probability in log p.

7.7 A hash function on G2

In the article [CLG09] the idea of of using non-backtracking walks on G2 as a hash function
was introduced. This hash function is sometimes referred to as the Pizer hash function in
honour of Arnold K. Pizer who studied the expansion properties of supersingular isogeny
graphs [CLG09, Section 1]. The idea is to fix a prime p (in general not of the same form
as in SIDH) and a supersingular curve

E : y2 = f(x)

7.8 Algorithms for solving isogeny problems 52

defined over Fp2 . We then look at the supersingular isogeny graph G2 and take [E] as a
starting vertex in G2. The input to the hash function is a bit string x as usual and we let
the bits of x determine a non-backtracking walk in G2 starting at [E] as follows:

1. Start by walking one step along some predetermined edge ([E], [E0]).

2. For each bit xi in the input x = x0...xn:

(a) Order the outgoing edges at [Ei] by some canonical ordering O and discard the
edge that is the dual of the previous edge. Among the two remaining edges
(recall that each vertex in G2 has three outgoing edges by Definition 7.1.1)
choose the edge ([Ei], [Ei+1]) that corresponds to the value of xi under O.

3. Let the j-invariant of the vertex [En+1] be the output of the hash function.

To find the outgoing edges at [Ei] at step 2(a) above, the method of [CLG09, Section 5]
factors the cubic f(x) defining the curve Ei : y2 = f(x). This requires roughly 2 log p
field multiplications and is also the dominating operation. Thus, the total cost is roughly
2 log p field multiplications per bit of input [CLG09, Section 5]. According to [Pet09], a
C-implementation of the hash function for a fixed p with bit size 256 can process 13kb
of input data per second. This is a low throughput compared to other constructions
considered by Petit in [Pet09, Section 7.3]. [Pet09, Section 7.4] concludes that the hash
function will most likely only ever be of theoretical interest.

The problem of finding a collision for the Pizer hash function is analysed in, for
example, [Pet09, Problem 7.1].

Problem 7.7.1. Given two supersingular curves E0 and En+1, find two distinct isogenies
φ : E0 → En+1 and φ′ : E0 → En+1 with cyclic kernels of degree 2e and 2e

′
for positive

integers e and e′.

7.8 Algorithms for solving isogeny problems

In this section we survey some algorithms for solving the problem of finding isogenies
between given supersingular elliptic curves.

In the context of SIDH, [GPST16, Algorithm 2] gives a (classical) algorithm that re-
covers Alice’s secret isogeny φA (from her public key) in time polynomial in log p [GPST16,
Theorem 4.2]. The problem is that the algorithm requires explicit descriptions of End(E0)
and End(EA), where E0 and EA are the curves from the SIDH protocol. Computing the
endomorphism ring of a supersingular elliptic curve is an exponentially hard problem. As
explained in [GPST16, p. 3]: building on work by Kohel [Koh96], Galbraith [Gal99] gives
an algorithm with complexity Õ(p1/2).

Delfs and Galbraith [DG16] give an algorithm to compute an isogeny between two
supersingular curves E and E ′ in time O

(
p1/4

)
. The catch is that both curves must be

defined over Fp. In general, the supersingular curves we work with are defined over Fp2
and only at most Õ(

√
p)8 of them are defined over Fp [DG16, p. 2]. In the case we want

to compute an isogeny between E and E ′ when the curves are not both defined over Fp,
[DG16] suggest first walking randomly to find curves Ẽ and Ẽ ′, defined over Fp, that are
connected through isogenies to E and E ′, respectively. Then we use the Fp-algorithm to

8Recall that a function f(n) is Õ(g(n)) if it is O(g(n) logk(g(n))) for some positive constant k.

7.8 Algorithms for solving isogeny problems 53

find an isogeny between Ẽ and Ẽ ′. In the more general case of the curves being defined
over Fp2 , the running time of the algorithm is O

(
p1/2

)
. The problem with both cases is

that the final isogeny we get is not necessarily of degree `e for some prime ` and integer
e. Instead the factorisation of the degree may contain powers of several distinct prime
factors. There are no known efficient methods for transforming such isogenies into ones of
degree `e. Regardless, we already have a classical attack against SIDH that runs in time
O
(
p1/4

)
, see Section 8.1.

[BJS14] uses methods from [DG16] and [CJS14] to give a quantum algorithm for
constructing isogenies between supersingular curves defined over Fp2 . They do it in a way
that is similar to how [DG16] classically constructed isogenies in the general case when the
two supersingular curves were defined over Fp2 . Let E and E ′ be the two curves defined
over Fp2 that we wish to find an isogeny between. Like [DG16], [BJS14] first use random

walks to find Ẽ and Ẽ ′, defined over Fp, that are connected through isogenies to E and
E ′, respectively. But now on a quantum computer, [BJS14] can do this in time Õ(p1/4)
with Grover’s algorithm, instead of Õ(p1/2) as in [DG16]. The logarithmic terms that
are hidden by the ∼ are from isogeny computations. Then [BJS14] use observations from
[DG16] to apply the quantum algorithm from [CJS14] to compute an isogeny between Ẽ
and Ẽ ′ in subexponential time. The fact that both Ẽ and Ẽ ′ are defined over Fp is crucial
here. Their full algorithm solves the general problem of finding an isogeny between E
and E ′ in time Õ(p1/4). As discussed in [BJS14, Section 6] and [San15, p. 55], this attack
is not relevant to SIDH as it produces an isogeny of arbitrary degree. Also, the current
best quantum attack against SIDH runs in time Õ(p1/6), see Section 8.1. Still, [BJS14,
Section 6] advises implementers of SIDH to choose a starting curve E0 that is not defined
over Fp. [CLN16, Remark 2] discuss why they have chosen a starting curve E0 defined
over Fp anyway.

Informally speaking, it appears to be hard for a general isogeny algorithm to do a
better job attacking SIDH than the claw algorithm. The reason is that the complexity
of the general algorithms we surveyed above runs in exponential time in the bit size of p.
Meanwhile, the complexity of the claw algorithm depends mainly on `eAA which has half
the bit size compared to that of p. This shows that the claw algorithm has a significant
head start compared to other, more general, algorithms when attacking SIDH.

8.1 The claw-problem 54

8 Attacks on SIDH

The best known classical and quantum attacks against SIDH are algorithms for solving
the claw problem, see [DFJP14, Section 5.1] and [CLN16, SIDH history and security].
We discuss the claw problem in Section 8.1. In Section 8.2 we discuss an attack that Bob
can carry out against Alice when she is using a static key. Passive attacks are discussed
in Section 8.3. These are the attacks that anyone with access to the public information
of the key exchange can carry out. Note that the claw attack is a passive attack.

8.1 The claw-problem

In the claw problem we are given black box-access to two functions f : A → C and
g : B → C with #A = N ≤ M = #B. We are then asked to find a claw, that is, a pair
(a, b) such that f(a) = g(b), or determine that no such pair exists.

Breaking SIDH can be approached as a claw problem in a natural way. An adversary
takes EA from Alice’s public key pkA = (EA, φA(PB), φB(QB)) and looks at all the non-
backtracking walks of length eA

2
going out from [E0] and [EA] in G`A . Note that the

attacker could just as well choose to attack Bob’s public key. This is the reason we choose
`eAA ≈ `eBB in the SIDH protocol. By our heuristic estimation in Section 7.3, the walk
given by φA is the only non-backtracking eA-walk from [E0] to [EA] in G`A with very high
probability. This walk gives a claw (a, b), where f(a) is taken to be the vertex our walk a
from [E0] ends at and g(b) is taken to be the vertex our walk b from [EA] ends at. Then

N = M ≈ `
eA/2
A ≈ p1/4

in the claw problem above. Note that we can change the cardinalities N and M . We
could, for instance, choose to look at walks of length eA

3
from [E0] and walks of length 2eA

3

from [EA]. Regardless of how we choose N and M , the size of NM is constantly ≈ `eAA .
As described in [DFJP14, Section 5.1], the natural classical approach to solving a claw

problem is to build a hash table of (f(x), x) for all x ∈ A and then look through all y ∈ B
checking for a match in the table. This gives a O

(
N
)

space and O
(
N +M

)
time classical

algorithm. When stating the classical security of SIDH it is often assumed that N = M
and the security is stated as logM ≈ 1

4
log p bits9. Note that this is somewhat of an

underestimate as the attack involves building a hash table with p1/4 entries, something
which is not necessary when for example finding a 1

4
log p bit symmetric encryption key

by brute force.
Assuming N = M , a naive parallelisation of the classical algorithm is to divide both

A and B in K many disjoint and equally sized parts (A1, ..., AK) and (B1, ..., BK), respec-
tively. We can then run all pairs (Ai, Bj), with i ≤ j, in parallel as separate claw problem
instances. However, this is not an efficient parallelisation as it requires

(
K
2

)
computers

and only gives a factor K speed-up in time. A more efficient parallelisation would be
to let K computers build and query the hash table in parallel. This approach has time
complexity O

(
N+M
K

)
.

With a quantum computer, one can do better. The query complexity of a quantum
claw algorithm is the total number of queries it makes to f and g together. By Tani
[Tan09] the problem can be solved in O

(
(NM)1/3

)
queries when M < N2, and O

(
M1/2

)

9As defined in [CCJ+16, p. 6]: ”an algorithm is said to have n bits of [classical] security if the difficulty
of attacking it with a classical computer is comparable to the time and resources required to brute-force
search for a n-bit cryptographic key”.

8.3 The torsion points in SIDH 55

queries when M ≥ N2. These quantum query complexities are optimal when f and g are
regarded as black boxes [Tan09, p. 2]. Thus, the quantum complexity when attacking

SIDH is O
(
`
eA/3
A

)
= O

(
p1/6

)
queries. For the rest of this thesis we let λ be the SIDH

quantum security in bits10. That is,

λ =
1

6
log p

Note that by the discussion above the classical security in bits is 1.5λ. The naive paralleli-
sation described above applies to the quantum setting as well. It is even less efficient here
as parallelising over

(
K
2

)
quantum computers when N = M gives a O

(
(N2/K2)1/3

)
query

complexity per computer, which is only a factor K2/3 improvement. This author has not
been able to find a more efficient parallelisation in relevant literature [Tan09][Zha05][BHT98]
[BDH+01][MSS07]. We will discuss this further in Section 9.12.

Remark 13. In the claw problem it is assumed that the domains of f and g are fixed. As
noted above, when attacking SIDH we can dynamically change these at any time. There
does not appear to be any way to use this to do better than the general claw problem
complexities.

8.2 An attack on static keys

[GPST16] gives a powerful attack on SIDH when Alice is using a static secret key. The
attack is based on Bob’s ability to send a corrupt public key pkB to Alice. In an initial
key exchange Bob generates a public key in the standard honest way. He then sends a
corrupt (but related) public key to Alice in a second key exchange. This enables Bob to
extract one bit of information from Alice’s secret key by checking whether Alice arrives at
the same shared key in both key exchanges. Note that it is a very reasonable assumption
that Bob can check this since he and Alice will likely use the shared key as for example
a symmetric encryption key for future communication. It turns out that this attack can
be generalised and done in a systematic way to very efficiently retrieve Alice’s secret key
bit by bit. When for instance `A = 2, Bob only needs to engage in about eA many key
exchanges with Alice. We refer to [GPST16, Secion 3] for more details. We stress that
standard SIDH key exchange with a static key is completely broken because of this attack.
We discuss possible counter-measures in Sections 9.8.1 and 9.8.4.

8.3 The torsion points in SIDH

As discussed in [DFJP14, p. 18] the torsion points φA(PB) and φA(QB) in Alice’s public
key do not seem to give any information about the kernel 〈mAPA + nAQA〉 of φA. There
does not seem to be any efficient way to use them to say something about for instance
φA(PA) and φA(QA). However, in [Pet17] Petit studies (passive) attacks using the torsion
points in settings related to that in SIDH. The author describes heuristic polynomial time
algorithms for finding the kernel of an N1-degree isogeny φ : E0 → E1 when the image of φ
on the N2-torsion subgroup of E0 is revealed, if also: The N2-torsion subgroup, which has

10Here we simply follow the rest of the literature on SIDH and let the quantum security in bits of SIDH
be the logarithm of the number of queries in the quantum claw attack. See for example [CCJ+16, Section
4] and Section 4.A.5 in http://csrc.nist.gov/groups/ST/post-quantum-crypto/evaluation-criteria.html for
a discussion about quantum security strength in bits.

8.3 The torsion points in SIDH 56

trivial intersection with the N1-torsion subgroup, has significantly larger order than N1.
In SIDH we have N1 = `eAA ≈ `eBB = N2. Note that the attacks have other requirements as
well, we refer to [Pet17] for details. None of his attacks are currently applicable to SIDH,
but as they are helped by when the starting curve E0 has certain properties (see [Pet17,
p. 12]), the author suggests avoiding such starting curves as a precaution. The starting
curve of [CLN16] falls into this category of curves [Pet17, p. 2]. See [Pet17, Section 5] for
a discussion about choosing a starting curve E0.

In the previous section we mentioned an adaptive attack that uses the torsion points
in Bob’s public key in a crucial way. [Pet17] is an interesting paper as it describes the
first passive attacks that use the torsion points in a setting similar to that in SIDH. It is
very interesting for future work to study if any of the attacks can possibly be carried over
to the setting of SIDH. Along with the short walks in the isogeny graphs, discussed in
Section 7.3, the torsion points are what makes the isogeny problems that SIDH give rise
to special compared to the more general isogeny problems that we discussed in Section
7.8.

9.2 Implementations in hardware 57

9 SIDH implementation status

In this section we give an overview of the current implementation status of SIDH. There
is a lot of research currently being done on SIDH. Most of the results that we will discuss
are from 2016 and 2017.

9.1 Optimising performance

Several authors have implemented SIDH [DFJP14] [AFJ14] [KAJMK16a] [CLN16]. In
their original paper, [DFJP14] discuss several components of an efficient SIDH implemen-
tation:

i) In Section 6.4 we mentioned that they discuss a ”balance” between scalar `-multiplications
and `-degree isogeny evaluations in implementing `e-degree isogeny computations
[DFJP14, Section 4.2.2]. The balance depends on the cost ratio between the two
operations. As noted in [AFJ14, p. 6], an optimal strategy with regards to this ratio
can be computed once and for all for a specific platform and then reused for all key
exchanges. Thus, for example on a limited device, computing the optimal strategy
is not a problem and the computation does not have to be performed on the device.
The actual computation of the optimal strategy can be done efficiently with dynamic
programming [CLN16, Strategies for isogeny computation and evaluation].

ii) [DFJP14, Algorithm 1] computes a generator R of the kernel of Alice and Bob’s secret
isogenies efficiently.

iii) [DFJP14] suggests working on Montgomery curves when performing isogeny compu-
tations and evaluations. See [CLN16, Section 3] for more details.

Other authors discuss optimising finite field arithmetic for SIDH [CLN16, Section 5]
[KAJMK16b] [BF16]. The article [CLN16], by Costello, Longa and Naehrig, improves
the performance of SIDH significantly. Their implementation is 2.9 times faster than the
previously fastest implementation ([AFJ14]). The perhaps most important improvement
is working not only with projective coordinates, but working with the Montgomery curve
coefficients projectively (see [CLN16, Section 3] for details). This allows them to reduce
the number of field inversions that each party needs to perform to three. Their imple-
mentation is also constant-time and therefore protected against timing attacks [Koc95].
The implementation is tailor-made for a prime p offering (about) 128 bits of quantum
security.

9.2 Implementations in hardware

The first hardware implementation of SIDH was [KAKJ16]. A faster implementation
is given in [KAMK16]. It implements the projective isogeny formulas of [CLN16] on
Field programmable gate array (FPGA) hardware. Like the one in [CLN16], the im-
plementation of [KAMK16] runs in constant time. At 128 bits of quantum security the
implementation of [CLN16] runs Alice’s computations in 28.8 ms (i7 3.4 GHz), the cor-
responding computations in [KAMK16] take 20.1 ms (Virtex-7 FPGA) [KAMK16, Table
6]. The corresponding timings for Bob’s computations are 34.1 ms (i7 3.4 GHz) and 22.4
ms (Virtex-7 FPGA), respectively.

9.4 Key compression 58

9.3 Perfect forward secrecy

Ephemeral SIDH offers perfect forward secrecy. Generating new secret keys for Alice and
Bob just amounts to generating new pairs (mA, nA) and (mB, nB), respectively. Here we
assume that we let the curve E0 and the points PA, QA, PB and QB of the SIDH protocol
stay the same when we generate fresh pairs of secret keys. This is how it is done in state-
of-the-art implementations such as [CLN16]. This is similar to how the elliptic curve and
generator point remains fixed in standard implementations of ephemeral ECDH.

9.4 Key compression

Recall from Section 8 that log p = 6λ, where p is the prime of SIDH key exchange and λ
is the quantum security in bits.

Alice’s public key in SIDH is

(EA, φA(PB), φA(QB)) (32)

Note that what we will discuss here holds equally well for Bob’s key. The curve EA is
given by a short Weierstrass equation

y2 = x3 + Ax+B, A,B ∈ Fp2 (33)

As usual, the point φA(PB) = (x, y) ∈ EA(Fp2) can be transmitted as its x-coordinate
along with one bit signalling which square root of x3 + Ax + B that is equal to y. The
same holds for φA(QB). In a naive implementation, (32) is therefore an element of

F2
p2 × (Fp2 × Z2)× (Fp2 × Z2)

which has size 8 log p = 48λ. However, the state-of-the-art implementation [CLN16] does
not send

(A,B, φA(PB), φA(QB)),

where A and B are from (33). Instead

(xφA(PB), xφA(QB), xφA(PB)−φA(QB)) ∈ F3
p2 (34)

are sent. These are the x-coordinates of three points on a Montgomery curve [CLN16,
Remark 4]. The curve can be recovered from the three points. This means that an
(uncompressed) SIDH key only has size 6 log p = 6 · 6λ = 36λ bits.

In [AJK+16] it is described how the key size can be reduced further. First, instead of
sending EA, Alice sends j(EA) ∈ Fp2 . From j(EA), Bob constructs a curve E ′A

∼= EA in
a deterministic canonical way. We refer to [AJK+16, Section 3.1, Solutions 1] for details.
Obviously, Alice also needs to update the points φA(PB) and φA(QB), so that they are on
E ′A and not EA. To do this Alice computes an isomorphism θ defined over Fp2 from EA
to E ′A, see [AJK+16, Section 3.1, Solutions 2].

Second, Alice does not send θ(φA(PB)) and θ(φA(PB)). Instead she notes that

θ(φA(PB)), θ(φA(QB)) ∈ E ′A[`eBB]

Then she, in a deterministic canonical way, finds R1 and R2 such that

〈R1, R2〉 = E ′A[`eBB]

9.6 Patents 59

Using the Weil pairing it is easy to find α1, β1, α2, β2 ∈ Z`eAA such that

α1R1 + β1R2 = θ(φA(PB)), α2R1 + β2R2 = θ(φA(QB))

Hence Alice can send α1, β1, α2 and β2 to Bob instead of θ(φA(PB)) and θ(φA(QB)). Bob
finds the same R1 and R2 on his end and uses α1, β1, α2 and β2 to get θ(φA(PB)) and
θ(φA(QB)).

Since j(EA) ∈ Fp2 and log(`eAA) ≈ 1
2

log p, Alice’s public key is

2 log p+ 4 · 1

2
log p = 4 log p

under this compression. The compression only operates on data from Alice’s original
public key and hence it does not effect the security of the key exchange. For the same
reason an implementation of the compression does not need to run in constant time
[CJL+16b, p. 4].

The authors of [CJL+16b] optimise the performance of the key compression described
above significantly. The authors also introduce another tweak to the compressed key size.
One can show that θ(φA(PB)) = α1R1 + β1R2 has order `eBB . Thus, α1 or β1 is invertible
modulo `eBB . If α1 is invertible, then Alice sends a bit flag set to 1 and

α−11 β1, α
−1
1 α2, α

−1
1 β2

Otherwise, β1 is invertible and she sends a bit flag set to 0 and

β−11 α1, β
−1
1 α2, β

−1
1 β2

Depending on the bit flag, Bob computes

α−11 θ(φA(PB) = R1 + α−11 β1R2, α−11 θ(φA(QB) = α−11 α2R1 + α−11 β2R2

or
β−11 θ(φA(PB) = β−11 α1R1 +R2, β−11 θ(φA(QB) = β−11 α2R1 + β−11 β2R2

Regardless,
〈mBα

−1
1 θ(φA(QB) + nBα

−1
1 θ(φA(QB)〉 =

〈mBθ(φA(QB) + nBθ(φA(QB))〉 =

〈mBβ
−1
1 θ(φA(QB) + nBβ

−1
1 θ(φA(QB)〉

where (mB, nB) is Bob’s secret key. Hence the change does not effect the kernel of Bob’s
isogeny φ′B. This brings the compressed key size down to 7

2
log p = 21λ bits.

9.5 Protocol support

There is a patch for using the ephemeral SIDH implementation from [CLN16] in OpenSSL
1.0.2g11.

9.6 Patents

To this author’s knowledge, SIDH is not patented. This is also stated on Wikipedia12.

11https://www.microsoft.com/en-us/download/details.aspx?id=54053
12https://en.wikipedia.org/wiki/Supersingular isogeny key exchange#Introduction, access date 2017-

05-12.

9.8 Using a static key in SIDH 60

9.7 Hybrid schemes

No post-quantum alternative is as well understood and reviewed by the research commu-
nity as our current RSA and DLP-based cryptosystems. Some researchers have discussed
the possibility of combining a thoroughly reviewed cryptosystem such as Elliptic curve
Diffie-Hellman (ECDH) with a PQ-cryptosystem until we feel sufficiently confident in the
security of one of the PQ-cryptosystems. The authors of [CLN16] have implemented a
hybrid cryptosystem combining ECDH with SIDH. They discuss their results in [CLN16,
Section 8].

9.8 Using a static key in SIDH

As mentioned in Section 8.2, static key SIDH is currently broken due to the attack given in
[GPST16]. In Section 9.8.1 we discuss a counter-measure that was suggested in [KLM+15].
In Section 9.8.4 we propose a slightly different counter-measure in the form of an IND-
CCA2 secure KEM built on SIDH. Sections 9.8.2 and 9.8.3 contains some preliminary
results needed for our KEM in Section 9.8.4. In Section 9.8.5 we briefly discuss two recent
papers on fault attacks against SIDH. For the rest of this section we assume that Alice is
using a static key.

9.8.1 A suggested counter-measure to the static key attack

In this section we follow [GPST16, Section 2.5] and [KLM+15, p. 14]. This counter-
measure was proposed in [KLM+15]. As noted in [GPST16, Section 2.5] there is no
formal security proof for it (such as IND-CCA2 security). We stress that Bob must use
an ephemeral secret key skB that he reveals to Alice as part of the key exchange. This
is the idea of the counter-measure, that Alice verifies that Bob’s public key is honestly
generated from skB. Thereby stopping Bob from fooling Alice into processing corrupt
public keys pkB as in [GPST16, Section 3].

At some earlier point in time, Alice has chosen a secret key skA = (mA, nA) and
published her public key pkA = (EA, φA(PB), φA(QB)). The suggested updated static
SIDH key exchange is the following. We let PRF be a suitable pseudorandom function
and KDF be a suitable key derivation function.

1. Bob generates a random bitstring rB.

2. Bob derives
skB = (mB, nB) = PRF(rB)

3. Bob computes j(EAB) from skB and pkA. He also computes pkB = (EB, φB(PA), φB(QA))
from skB. He then computes a shared key SK and a verification key VK

SK||V K = KDF(j(EAB))

He uses symmetric encryption to encrypt rB ⊕ SK

cB = EncV K(rB ⊕ SK) (35)

and sends (pkB, cB) to Alice.

9.8 Using a static key in SIDH 61

4. Alice computes j(E ′BA) from skA and pkB. She then computes

SK ′||V K ′ = KDF(j(E ′BA))

r′B = SK ′ ⊕DecV K′(cB)

sk′B = PRF(r′B)

To verify that Bob is honest she now computes pk′B from sk′B. Alice terminates the
protocol in an accepting state with shared key SK ′ = SK if and only if

pk′B = pkB

As explained earlier, the idea is that Bob can not tamper with his public key, all he can
do is to choose the seed rB for the PRF.

With Grover’s algorithm in mind we suggest using a seed rB of bit size 2λ. Note that
the bit size |rB| is not discussed in [GPST16] or [KLM+15]. There are normally ≈ 23λ

possible secret keys (mB, nB) for Bob. But since rB is inputted to a PRF, using a seed
rB of bit size 2λ does not appear to effect the security.

We see that the only extra information that needs to be sent from Bob to Alice,
compared to a naive implementation of static key SIDH, is cB which Bob sends together
with his public key pkB. The ciphertext cB is a symmetric encryption of rB⊕V K and we
approximate its length with that of rB. If we consider cB part of Bob’s public key, then
his public key size is now

21λ+ 2λ = 23λ

with key compression and (36 + 2)λ without compression.
For each key exchange, Alice needs to perform roughly twice the work compared to

a naive implementation of static key SIDH. She needs to compute φ′A : EB → EBA as
usual, and then also φB : E0 → EB when verifying Bob’s public key. Bob’s workload is
roughly the same. The only extra work for both parties are KDF-computations, PRF-
computations and symmetric encryptions. These are very fast operations compared to
the isogeny computations in SIDH. But we also note that when using key compression
Alice receives pkB compressed. She may therefore need to do some extra work compared
to when validating an uncompressed pkB. It is an interesting idea for future work to
investigate exactly what (if any) extra work she needs to do.

9.8.2 IND-CCA2 secure public key encryption from SIDH

As before we assume that Alice is using a static key. Let

H = {Hw : Fp2 → {0, 1}k | w ∈ W} (36)

be a family of cryptographic hash functions indexed a finite set W (for Theorem 9.8.2
we also assume that the hash functions are entropy-smoothing, see [Sto10, Definition 3]).
Alice picks w ∈R W and lets w be a part of her public key. From now on we assume that
such a w has been fixed and write H instead of Hw.

We choose k = 4λ in (36) in the following discussion. As usual, the security parameter
is λ = 1

6
log p where p is one of the public parameters of SIDH. Other choices of k are

also possible, we refer the reader to [FO00] for more details. Suppose that Bob wants to
encrypt a message x ∈ {0, 1}k using Alice’s public key pkA. A SIDH public key encryption

9.8 Using a static key in SIDH 62

scheme Π = (E ,D) that accomplishes this is given in [JDF11, Section 3.2]. See Appendix
A for the definition of a public key encryption scheme. The public parameters of Π are
the same as those in SIDH (with the addition of H) and Alice’s key generation works just
as in SIDH (with the addition of choosing w). Let QB be the set of possible normalised
secret keys for Bob in SIDH. For each message x ∈ {0, 1}k that Bob wants to encrypt he
picks r ∈R QB and does:

c = (c1, c2) = EpkA(x, r) = (pkB, H(j(EAB))⊕ x) (37)

Here pkB = (EB, φB(PA), φB(QA)) is the public key that is associated to the secret key
skB = (mB, nB) = r in SIDH. Alice can decrypt c using

x = DskA(c) = H(j(EBA))⊕ c2 = H(j(EBA))⊕ (H(j(EAB))⊕ x)

The attack against static key SIDH shows that this scheme is not secure in the sense of
IND-CCA. We refer to Appendix A for definitions of the standard notions of security in
the sense of IND-CPA, IND-CCA and IND-CCA2.

The counter-measure of Section 9.8.1 can be applied to Π as well. However, as noted in
[GPST16, Section 2.5] there is no formal security proof for the counter measure. We note
that we have the following IND-CCA2 secure public key encryption scheme Π̄ = (Ē , D̄)
from the transformation in [FO00]. Let

G1 : {0, 1}k → QB

be a random oracle (see Appendix A). The message space of Π̄ will be {0, 1}k−k0 , where
we let k0 = 2λ. To encrypt a message x ∈ {0, 1}k−k0 , Bob picks s ∈R {0, 1}k0 and encrypts
using

c = (c1, c2) = ĒpkA(x, s) = EpkA(x||s,G1(x||s)) = (pkB, H(j(EAB))⊕ x||s)

Here pkB is the public key that is associated to the secret key skB = (mB, nB) = G(x||s)
in SIDH. Let ⊥ denote decryption failure. For a ciphertext c, let ∗ be the condition that

i) x||s = DskA(c) exists (i.e., DskA(c) 6= ⊥), and

ii) EpkA(x||s,G1(x||s)) = c.

Then

D̄skA(c) =

{
x, if ∗ is satisfied

⊥, otherwise

Since the isogeny computations in SIDH are expensive we stress that in D̄, when Alice is
verifying that ii) holds, she does not need to compute j(EAB) from pkA and skB like Bob
did when he encrypted. She first verifies that skB = (mB, nB) = G1(x||s) gives the public
key pkB = c1. We then know that pkB and skA give rise to j(EBA) = j(EAB). Since Alice
has already computed j(EBA) in i) she therefore just checks that

H(j(EBA))⊕ x||s = c2

Remark 14. Note that the proposal for a static key exchange in [KLM+15] is based
on another transformation by Fujisaki-Okamoto [FO99], according to [KLM+15, p. 12].
[KLM+15] does not discuss a secure public key encryption scheme. It is noted in [GPST16,
Section 2.5] that the proposal of [KLM+15] can be applied to Π as well.

9.8 Using a static key in SIDH 63

The following is [DFJP14, Problem 5.4]. We assume that public parameters p, E0,
(PA, QA) and (PB, QB) such as those in SIDH have been chosen.

Problem 9.8.1 (Supersingular Decision Diffie-Hellman (SSDDH) problem). Given a
tuple chosen with probability 1/2 from one of the following distributions:

1. (pkA, pkB, EAB), where pkA and pkB are public keys that the randomly chosen nor-
malised keys skA = (mA, nA) and skB = (mB, nB) give rise to, and

EAB ∼= E0/〈mAPA + nAQA,mBPB + nBQB〉

2. (pk′A, pk
′
B, EAB), where pk′A and pk′B are public keys that the randomly chosen nor-

malised keys sk′A = (m′A, n
′
A) and sk′B = (m′B, n

′
B) give rise to,

determine from which distribution the tuple is chosen.

The SSDDH assumption [DFJP14, Section 5] says that for any probabilistic poly-
nomial time (in log p) algorithm, the probability of correctly solving the SSDDH problem
is at most

1

2
+ µ

for a negligible (in log p) function µ.

Theorem 9.8.2. If the SSDDH assumption holds, then Π = (E ,D) is secure in the sense
of IND-CPA.

Proof. See [DFJP14, Theorem 6.2].

Let x and c be any elements of the message spaceM and ciphertext space C of Π. We
define

γ(x, c) = Prr∈RQB [EpkA(x, r) = c]

Following [FO00, Definition 3.9] we say that Π is γ-uniform if

max
x∈P,c∈C

γ(x, c) ≤ γ

For some cryptosystems γ-uniformity with γ a negligible function of the security parameter
is a trivial mathematical fact, one such example is the ElGamal encryption scheme [FO00,
Section 3]. To this author’s knowledge, this is not the case for our scheme Π.

Assumption 9.8.3. The public key encryption scheme Π = (E ,D) is γ-uniform, where
γ is a negligible function of log p.

Heuristically, Assumption 9.8.3 is very plausible. Suppose that r 6= r′ are such that
r, r′ ∈ QB and

EpkA(x, r) = c = EpkA(x, r′)

Not only must r and r′ give rise to the same curve EB in pkB = c1, they must also map PA
and QA to the same points in EB. Note that this means that the isogenies φB : E0 → EB
and φ′B : E0 → E ′B that r and r′ give rise to respectively are identical on all of E0[`

eA
A].

Also note that we only need Π to be secure in the sense of IND-CPA so we can assume
that Bob does not compute his isogeny φB : E0 → EB in some malicious way. In fact, our
discussion above about r and r′ immediately yields a proof that the SSDDH assumption
implies that Assumption 9.8.3 holds.

9.8 Using a static key in SIDH 64

Lemma 9.8.4. If the SSDDH assumption holds, then Assumption 9.8.3 holds.

Proof. Suppose that Assumption 9.8.3 does not hold. Then, in particular, a fraction µ of
the r ∈ QB give rise to the same public key pkB with µ a non-negligible function of log p.
Then Bob picks a secret key skB = r in this fraction with probability µ. At the same
time an adversary can also pick a secret key r′ in this fraction with probability µ. If both
Bob and the adversary pick secret keys from this fraction, then the adversary can play
the role of Bob in the key exchange and compute a curve that is isomorphic to EAB. It
follows that the adversary can distinguish between the two tuples in the SSDDH problem
with probability 1

2
+ µ′, where µ′ is a non-negligible function of log p. Hence the SSDDH

assumption does not hold.

Theorem 9.8.5. If the SSDDH assumption holds, then the public key encryption scheme
Π̄ = (Ē , D̄) is secure in the sense of IND-CCA2 in the random oracle model.

Proof. Note that k0 is polynomial in k. If the SSDDH assumption holds, then Π is γ-
uniform with γ a negligible function of log p = 6λ = 6

4
k by Lemma 9.8.4. Thus, Π is also

γ′-uniform with γ′ a negligible function of k. The theorem now follows from Theorem
9.8.2 by the discussion in [FO00, Section 5] preceding Theorem 5.4.

Remark 15. [FO00, Theorem 5.4] also derive the concrete security bounds of their trans-
formation. We leave a more detailed study of the concrete security bounds of our scheme
Π̄ to future work.

9.8.3 SIDH as a KEM

A Key Encapsulation Mechanism (KEM) (see Appendix A) is a set of algorithms
that allows Bob to send an ephemeral key K to Alice. When Alice is using a static key
only one message in total needs to be transmitted between the two parties: the message
from Bob to Alice containing an encapsulation of K that has been created using Alice’s
public key. SIDH can be seen as a KEM in the following way.

• pp← Setup(1λ). We generate the public parameters of the SIDH key exchange with
log p = 6λ.

• (skA, pkA)← Gen(pp). Alice computes a public key pkA from her secret key skA.

• (K, c)← Encaps(pkA). Bob computes K = j(EAB) from pkA and lets c = pkB.

• K ← Decaps(skA, c). Alice computes K = j(EBA) from c.

This scheme is not IND-CCA secure due to the static key attack discussed in Section 8.2.
Our goal in the next section is to describe how to build an IND-CCA2 secure KEM from
SIDH. See Appendix A for the standard definition of an IND-CCA2 secure KEM.

9.8.4 An IND-CCA2 secure KEM from SIDH

As noted by [Pei14, Section 5] we could build an IND-CCA2 secure KEM by letting
the encapsulation of the KEM encrypt an ephemeral key K ∈R {0, 1}2λ using our IND-
CCA2 secure encryption scheme Π̄ from Section 9.8.2. This is not satisfactory since the
encapsulation created by Bob already contains an ephemeral key j(EAB). Our goal now
is therefore to save those 2λ bits and still have an IND-CCA2 secure KEM. By doing so

9.8 Using a static key in SIDH 65

we answer an open question from [KLM+15, p. 18] in the context of SIDH. We prove
that: yes, the security proof for the Fujisaki-Okamoto transform can be carried over to
the KEM. But we use the transform from [FO00] instead of the one from [FO99] and our
KEM is different from the one proposed in [KLM+15]. We also note that [DF17, p. 37]
mentions, without giving any details, that it is possible to obtain an IND-CCA2 secure
KEM from SIDH through a generic transformation. Security in the sense of IND-CCA2
is considered by NIST to be a relevant security notion for a (non-ephemeral) KEM13.

We start by changing the parameters k and k0 of Section 9.8.2 to 2λ and 2λ − 1,
respectively. This means that Ē in Π̄ = (Ē , D̄) now only encrypts a single bit. The
arguments used in proving Theorem 9.8.5 still hold, so this variant of the public key
encryption scheme is secure (in the security parameter λ) in the sense of IND-CCA2
under the SSDDH assumption.

Let
G2 : F3

p2 × Fp2 → {0, 1}2λ

be a random oracle. Our KEM is defined by

• pp ← Setup(1λ). The public parameters of the KEM are the same as the public
parameters of Π̄.

• (skA, pkA)← Gen(pp). Alice computes a public key pkA from her secret key skA.

• (K, c)← Encaps(pkA). Bob computes

K = G2(pkB, j(EAB)) (38)

c = (c1, c2) = ĒpkA(x, s) = EpkA(x||s,G1(x||s)) = (pkB, H(j(EAB))⊕ x||s) (39)

with x||s ∈R {0, 1}2λ.

• K ← Decaps(skA, c). Alice terminates the KEM protocol with shared key

K = G2(pkB, j(EBA))

if and only if D̄skA(c) 6= ⊥. We write ⊥ ← Decaps(skA, c) when D̄skA(c) = ⊥. We
say an encapsulation c is valid if ⊥ 6← Decaps(skA, c)

Lemma 9.8.6. Suppose that an algorithm A breaks the KEM in the sense of IND-CCA2.
Let

c∗ = (c∗1, c
∗
2) = (pkB, H(j(EAB))⊕ x||s) (40)

be the challenge encapsulation in the IND-CCA2 game. Then A does at least one of the
following with probability µ where µ is a non-negligible function of λ.

1. The algorithm A queries G2 on (pkB, j(EAB)).

2. The algorithm A queries the decapsulation oracle (that A has access to in the IND-
CCA2 game) on a valid encapsulation c = (c1, c2) such that c1 = c∗1.

Proof. The challenge key K∗ in the IND-CCA2 game is either chosen randomly in {0, 1}2λ
or it is equal to G2(pkB, j(EAB)). In both cases it is a random string that is chosen
independently of pkB and j(EAB)). There are therefore only two ways in which A can
learn anything about whether K∗ is the key associated to c∗ or not:

13Section 4.A.2 of http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-
proposals-final-dec-2016.pdf, access date 31-07-2017.

9.8 Using a static key in SIDH 66

1. The algorithm A queries G2 on (pkB, j(EAB)).

2. The algorithm A queries the decapsulation oracle (that A has access to in the IND-
CCA2 game) on a valid encapsulation c = (c1, c2) such that c1 = c∗1. Note that
j(EAB) is completely determined by c∗1 = pkB in a valid encapsulation since skA is
fixed, and (pkB, skA) completely determines j(EBA) = j(EAB).

Let ”A queries” be the event that 1 or 2 happens. Let ”A wins” be the event that A wins
in the IND-CCA2 game for a KEM. Then

Pr[A wins |¬A queries] ≤ 1

2

Thus,
1

2
+ µ′ =: Pr[A wins] =

Pr[A wins |¬A queries]Pr[¬A queries]+

Pr[A wins |A queries]Pr[A queries] ≤
1

2
· Pr[¬A queries] + 1 · Pr[A queries] ≤

1

2
+ ·Pr[A queries]⇒

µ′ ≤ Pr[A queries] =: µ

By assumption µ′ is a non-negligible function of λ and therefore µ is a non-negligible
function of λ.

Theorem 9.8.7. Suppose that the SSDDH assumption holds. Then the KEM is secure
in the sense of IND-CCA2 in the random oracle model.

Proof. We will sketch the proof that is standard. Given an algorithm A that breaks the
KEM in the sense of IND-CCA2, we will describe an algorithm A′ that breaks Π̄ in the
sense of IND-CCA2.

The algorithm A has oracle access to a decapsulation oracle and the random oracle
G2 in the IND-CCA2 game (in the context of a KEM scheme). The algorithm A′ has
access to a decryption oracle for Π̄ in the IND-CCA2 game (in the context of a public
key encrytion scheme). We need to argue that A′ can simulate the decapsulation oracle
and G2 in a way that is indistinguishable from the real thing to A. The following two
lemmas show that this is possible. In particular, we need to be careful that the following
situation is handled correctly.

• The algorithm A queries G2 on a pair (a1, a2) ∈ F3
p2 × Fp2 and receives an answer

K.

• At some other point in time (not necessarily afterwards) A queries the decapsulation
oracle on a valid encapsulation

c = (pkB, H(j(EAB))⊕ x||s),

such that (a1, a2) = (pkB, j(EAB)), and receives an answer K ′.

9.8 Using a static key in SIDH 67

We need to make sure that K = K ′. To this end we keep a list L of valid encapsulations
c that A has queried its decapsulation oracle on, but for which we do not know the value
of j(EAB). The algorithm A′ will query its decryption oracle on each such c and we
also save the message bit x that is returned and associates it to c. We also associate a
randomly chosen key K to each such c. As discussed in Lemma 9.8.6, j(EAB) is completely
determined by c1 in a valid encapsulation

c = (c1, c2) = (pkB, H(j(EAB))⊕ x||s),

we therefore only save one c in L for each distinct c1.
For simplicity, we call the random oracle that A′ simulates G2 as well. We say

G2(a1, a2) is defined or undefined depending on if A′ has chosen an output or not for
input (a1, a2).

Lemma 9.8.8. The algorithm A can not distinguish the real decapsulation oracle from
the one that A′ simulates.

Proof. Suppose that A queries the decapsulation oracle on an encapsulation c.

1. If the decryption oracle returns ⊥ on input c, then A′ returns ⊥.

2. Otherwise, the decryption oracle returns an x such that

c = (c1, c2) = ĒpkA(x, s) = EpkA(x||s,G1(x||s)) = (pkB, H(j(EAB))⊕ x||s)

for some s ∈ {0, 1}2λ−1.

3. The algorithm A′ checks if G2 is defined for any (a1, a2) such that

(a) a1 = c1, and

(b) H(a2)⊕ c2 =: x′||s′ is such that EpkA(x′||s′, G1(x
′||s′)) = c, and

(c) a2 = j(EAB) where j(EAB) is the j-invariant associated to pkA and skB =
G1(x

′||s′) = G1(x||s).

If A′ finds such a pair (a1, a2), then it returns

K = G2(a1, a2)

4. Otherwise, if there is a c′ = (c′1, c
′
2) in L such that c1 = c′1, then A′ returns the K

associated to c′.

5. Otherwise, A′ adds c to L, associates the message bit x and a string K ∈R {0, 1}2λ
to c, and returns K.

Using also how random oracle queries are handled in the proof of Lemma 9.8.9 one
can verify that this is the behaviour A expects.

Lemma 9.8.9. The algorithm A can not distinguish the real random oracle G2 from the
G2 that A′ simulates.

Proof. Suppose that A queries G2 on a pair (a1, a2).

1. If G2(a1, a2) is defined, then A′ returns G2(a1, a2).

9.8 Using a static key in SIDH 68

2. Otherwise, for each c in L, A′ checks if

(a) c1 = a1, and

(b) H(a2)⊕ c2 =: x||s is such that EpkA(x||s,G1(x||s)) = c, and

(c) a2 = j(EAB) where j(EAB) is the j-invariant associated to pkA and skB =
G1(x||s).

If A′ finds such a c, then it defines

G2(a1, a2) = K

where K is the key that is associated to c. The algorithm A′ then deletes c from L
and returns G2(a1, a2) = K.

3. Otherwise, A′ defines
G2(a1, a2) ∈R {0, 1}2λ

and returns G2(a1, a2).

Using also how decapsulation queries are handled in the proof of Lemma 9.8.8 one can
verify that this is the behaviour A expects.

If A signals that it wishes to receive its challenge (K∗, c∗), then A′ signals that it wishes
to receive its challenge c∗ by outputting (x0, x1) = (0, 1). By definition of the IND-CCA2
game (in the context of a public key encryption scheme), A′ then receives

c∗ = (c∗1, c
∗
2) = (pkB, H(j(EAB))⊕ xb||s) (41)

where b is randomly chosen in secret. The algorithm A′ wins the IND-CCA2 game if it
outputs b (which in this case is the same as outputting xb).

1. For every pair (a1, a2) such that G2(a1, a2) is defined, A′ checks if

H(a2)⊕ c∗2 =: x′b||s′ (42)

is such that
ĒpkA(x′b, s

′) = EpkA(x′b||s′, G1(x
′
b||s′)) = c∗ (43)

If (43) holds, then A′ wins by outputting x′b = xb.

2. If A′ can not find a pair (a1, a2) such that (43) holds, then A′ checks if there is a
c = (c1, c2) in L such that c1 = c∗1.

(a) If there is such a c, then we let x be the message bit that is associated to c.
We know that j(EAB) in (41) is completely determined by c∗1 = c1. Let (y)i be
the ith leftmost bit of a bitstring y. But then

(c2)1 ⊕ x

is the first bit of H(j(EAB)). Hence

xb = (c∗2)1 ⊕ ((c2)1 ⊕ x)

So A′ wins by outputting xb.

9.8 Using a static key in SIDH 69

(b) If there is no such c, then A′ picks K∗ ∈R {0, 1}2λ and sends the challenge pair
(K∗, c∗) to A.

The algorithm A′ now continues to simulate A. By definition of the IND-CCA2 game,
A will not query the decapsulation oracle on c∗. Any queries to the decapsulation oracle
or to the random oracle G2 that A makes are handled as before the challenge was given
to A. The only modifications are the following.

1. If A queries the random oracle G2 on a pair (a1, a2), then the first thing A′ does is
to check whether (a1, a2) lets it decrypt c∗ as in (42) and (43). If this is the case
then A′ decrypts the ciphertext c∗ and outputs b. Otherwise, A′ proceeds to handle
the query as in Lemma 9.8.9.

2. If A queries the decapsulation oracle on a ciphertext c = (c1, c2), then the first thing
A′ does is to check if c1 = c∗1 and if its decryption oracle decrypts c successfully. If
this is the case, then A′ decrypts xb as in 2(a) above and wins the IND-CCA2 game
by outputting it. Otherwise, A′ proceeds to handle the query as in Lemma 9.8.8.

If A queries G2 on a pair (a1, a2) that lets A′ decrypt c∗ or queries the decapsulation
oracle on a ciphertext c that lets A′ decrypt xb, then A′ always outputs the correct value
b from (41). Otherwise, A′ guesses the value of b and is correct with probability 1

2
. By

Lemma 9.8.6, A′ wins in the IND-CCA2 game with probability

1

2
· (1− µ) + 1 · µ =

1 + µ

2

where µ is a non-negligible function of λ. By Theorem 9.8.2, this means that the SSDDH
assumption does not hold.

This author believes that the arguments and constructions we have studied in these
last sections may possibly be generalised and applied to other DH-like key exchanges,
besides SIDH, to construct IND-CCA2 secure KEMs.

Remark 16. Note that the proof of Lemma 9.8.8 shows why it was necessary define the
key in the KEM as K = G2(pkB, j(EAB) and not simply K = G2(j(EAB)). If we defined
the key as K = G2(j(EAB)), then A could possibly query the decapsulation oracle on two
encapsulations

c = (pkB, H(j(EAB))⊕ x||s)
c = (pk′B, H(j(EAB)′)⊕ x′||s′)

such that pkB 6= pk′B and j(EAB) = j(EAB)′. Then it would not necessarily be possible
for A′ to tell that A expects the same decapsulated key K in return for both queries. The
underlying problem is that, in SIDH, distinct public keys pkB for Bob can give rise to the
same j-invariant j(EAB) (even if Alice’s secret key is fixed).

Remark 17. The Fujisaki-Okamoto transform in [FO99] starts from a public key encryp-
tion scheme that is one-way secure (as opposed to secure in the sense of IND-CPA as in
[FO00]). It is an interesting idea for future work to derive a one-way secure encryption
system from SIDH under a weaker assumption than the SSDDH assumption and then
study if our KEM construction can be easily adapted to the secure public key encryption
constructed in [FO99] instead.

9.9 SIDH benchmarks 70

9.8.5 Fault attacks

Ti [Ti17] describes a fault attack against supersingular isogeny cryptosystems. We assume
that an attacker has the capability to introduce errors in Alice’s public key computation
and makes Alice publish

(EA, φA(X), φA(QB) (44)

for a random point X, instead of the correct triple

(EA, φA(PB), φA(QB))

[Ti17] argues that this allows the attacker to retrieve Alice’s private key with high prob-
ability. As discussed in [Ti17, Section 4.1] this attack is more suited for some of the
supersingular isogeny signature schemes that have been proposed, rather than for SIDH.
In SIDH, when Alice uses a static key she only computes her public key once for the dura-
tion of her private key. When both Alice and Bob use ephemeral keys in SIDH, they will
not reach the same shared key j(EAB) if an attacker causes Alice to publish an incorrect
public key (44).

Gélin and Wesolowski [GW17] describe a fault attack in the following situation. We
assume that Alice is using a static secret key (mA, nA) = (1, α) in SIDH. We also assume
that Bob has the capability to introduce loop-abort faults in Alice’s iterative computation
of the isogeny φ′A : EB → EBA. This means that Bob can choose a k and make Alice
compute an `kA-isogeny with kernel

〈`eA−kA (φB(PA) + αφB(QA))〉

instead of the `eAA -degree isogeny φ′A with kernel

〈φB(PA) + αφB(QA)〉

that Alice normally computes. By choosing different values of k over a series of key
exchanges with Alice, Bob can retrieve Alice’s static key (1, α) [GW17, Section 4.2]. In
situations where this kind of attack is relevant the authors suggest that Alice uses counters
as a cheap countermeasure to make sure that her iterative isogeny computation runs the
expected number of iterations [GW17, Section 5].

9.9 SIDH benchmarks

By public key computation we mean that a party computes its public key pk from its
secret key sk. By shared key computation we mean that a party computes j(EAB) from
the other party’s pk. In Tables 5, 6, 7 and 8 we give benchmarks and estimates of
several variants of SIDH. The benchmarked implementations in Tables 5 and 6 are those
of [CLN16] and [CJL+16b] in the SIDH library v2.014. These implementations are for
ephemeral SIDH only. We use these benchmarks of ephemeral implementations to give
estimates of running times for static variants of SIDH in Tables 7 and 8. The platform
in all four tables is i7-4700MQ 2.4 GHz with turbo boost disabled running ubuntu 16.04
LTS. Clock cycle (cc) measurements are rounded off to the nearest million. The runtime
estimates in milliseconds (ms) are obtained by dividing the clock cycle measurements by
the frequency of the platform and rounding off to the nearest millisecond.

14https://www.microsoft.com/en-us/research/project/sidh-library/
15This estimation is based on, among other things, an assumption about the time complexity of Fp2 -

arithmetic, see Section 9.10.5 for details.

9.9 SIDH benchmarks 71

Table 5: Ephemeral SIDH (without key compression). On a faster desktop PC
running at 3.4-4 GHz the total running time for Alice is closer to 25-30 ms.
†) The clock cycle measurement for λ = 85 is not a benchmark, but a very rough estimate
that has been obtained by dividing the clock cycle measurements for λ = 128 by 2.9. In
Section 9.10.5 we will estimate15 that going from λ = 128 to λ = 85 speeds up computation
times in a state-of-the-art implementation of SIDH by roughly a factor 2.9.

Quantum security λ (bits) 85 128
Classical security (bits) 128 192
Key size = 36λ/8 (bytes) 383 576
Alice public key computation (cc | ms) - - 46M 19
Bob public key computation (cc | ms) - - 52M 22
Alice shared key computation (cc | ms) - - 44M 18
Bob shared key computation (cc | ms) - - 50M 21
Alice total (cc | ms) - - 90M 38
Bob total (cc | ms) - - 102M 43
Both parties total (cc | ms) ≈66M† ≈28 192M 56

Table 6: Compressed ephemeral SIDH.
†) The clock cycle measurement for λ = 85 is not a benchmark, but a very rough estimate
that is obtained by multiplying † in Table 5 by 2.4. [CJL+16b, p. 19] estimates that key
compression introduce a factor 2.4-slowdown of SIDH.

Quantum security λ (bits) 85 128
Classical security (bits) 128 192
Key size = 21λ/8 (bytes) 224 336
Alice public and shared key computation (cc | ms) - - 78M 33
Alice key compression (cc | ms) - - 107M 46
Alice decompression of Bob’s key (cc | ms) - - 42M 18
Bob public and shared key computation (cc | ms) - - 91M 38
Bob key compression (cc | ms) - - 111M 46
Bob decompression of Alice’s key (cc | ms) - - 33M 14
Alice total (cc | ms) - - 231M 96
Bob total (cc | ms) - - 240M 100
Both parties total (cc | ms) ≈158M† ≈66 471M 196

9.9 SIDH benchmarks 72

In Tables 7 and 8 we give estimates of running times for static variants of SIDH using
the benchmarks for the ephemeral variants of SIDH in Tables 5 and 6. As Alice’s rounds
in SIDH are faster than Bob’s in Table 5 we assume that Bob is using the static
key in Tables 7 and 8. We stress that there is no existing implementation of
static key SIDH. We also asumme that the counter-measure of Section 9.8.1 is used (the
estimates would be the same if the IND-CCA2 secure KEM of Section 9.8.4 was used). As
discussed in Section 9.8.1, ignoring symmetric encryptions/decryptions and key deriva-
tion functions (which are fast compared to the operations of SIDH), Alice and Bob’s work
in static key SIDH is roughly equal to their work in ephemeral SIDH. For each key ex-
change execution: instead of computing his own public key (which is static and already
computed), Bob must recompute Alice’s public key to assert that it is honestly generated
(step 4 in Section 9.8.1). Alice’s public key is larger because of the ciphertext cA from
(35) in Section 9.8.1. We assume that a seed rA of size 2λ is used in step 1 of Section 9.8.1.

Table 7: Estimates for static key SIDH (without key compression). We approxi-
mate the work in uncompressed static key SIDH with the measurements from Table 5 for
uncompressed ephemeral SIDH.
†) Is a very rough estimate that is obtained by just taking the estimate † from Table 5.

Quantum security λ (bits) 85 128
Classical security (bits) 128 192
Bob (static) key size = 36λ/8 (bytes) 383 576
Alice (ephemeral) key size = (36λ+ 2λ)/8 (bytes) 404 608
Alice public key computation (cc | ms) - - 46M 19
Alice shared key computation (cc | ms) - - 44M 18
Bob shared key computation (cc | ms) - - 50M 21
Bob recomputing Alice’s public key (cc | ms) - - 46M 19
Alice total (cc | ms) - - 90M 38
Bob total (cc | ms) - - 96M 40
Both parties total (cc | ms) ≈66M† ≈28 186M 78

9.9 SIDH benchmarks 73

Table 8: Estimates for compressed static key SIDH. We assume that Bob’s static
key is either not compressed or has already been decompressed before the execution of
the static key exchange.
†) Is a very rough estimate obtained by taking the estimate † in Table 6 times (1− 0.09).
We do this because Alice’s decompression of Bob’s public key make up 9% of both parties
total computation cost in Table 6.
††) Since Bob’s static public key is not compressed, this is Alice public and shared key
computation from Table 5. Alice’s shared key computation differs slightly depending on
if Bob’s public key is compressed or not in the SIDH library v.2.0.
†††) Note that Bob received Alice’s public key compressed. When validating Alice’s public
key, he must therefore do some extra work compared to when recomputing Alice’s public
key in Table 7. We assume here that he must perform the entire compression of Alice’s
public key. The work accounted for here is Bob’s shared key computation (Table 6),
Alice’s public key computation (Table 5) and Alice’s public key compression (Table 6).

Quantum security λ (bits) 85 128
Classical security (bits) 128 192
Bob (uncompressed static) key size = 36λ/8 (bytes) 383 576
Alice compressed (ephemeral) key size = (21λ+ 2λ)/8 (bytes) 244 368
Alice public and shared key computation†† (cc | ms) - - 90M 38
Alice key compression (cc | ms) - - 107M 46

Bob shared key computation and recomputation of pk†††A (cc | ms) - - 192M 80
Bob decompression of Alice’s key (cc | ms) - - 33M 14
Alice total (cc | ms) - - 197M 82
Bob total (cc | ms) - - 225M 94
Both parties total (cc | ms) ≈144M† ≈60 422M 176

9.9 SIDH benchmarks 74

9.9.1 Memory usage

We employ the same method of measuring memory usage as that in [Kin17, Section 4.3];
the Valgrind tool Massif with the argument ”--stacks=yes”. This gives us a peak memory
usage when measuring both heap and stack size. Measuring the ephemeral uncompressed
SIDH implementation of [CLN16] gives a maximum memory usage of 15,904 bytes (11,800
bytes being stack memory) for any party, while measuring the compressed implementation
of [CJL+16b] gives a maximum memory usage of 27,808 bytes (22,424 bytes being stack
memory) for any party16.

By Kindberg’s comparison in [Kin17, Table 5.4] the memory usage of SIDH is low
compared to many other PQ-cryptosystems17.

9.9.2 Several PQ-cryptosystems benchmarked as KEM schemes

In Section 9.8.3 we discussed how SIDH can be used as a KEM. Any public key encryption
system can be used in a KEM in a natural way: Bob uses Alice’s public key to encrypt
a randomly generated ephemeral key K. So in the KEM framework we can compare
post-quantum public key encryption systems to post-quantum key exchange systems. We
did this using the Open Quantum Safe project [SM16]. The results are shown in Table 9.
Unfortunately, to this author’s knowledge, this comparison is rough in the sense that the
different KEM implementations are not benchmarked at the exact same claimed quantum
security level. The implementation using SIDH is that of [CLN16], which has a claimed
quantum security level of (about) 128 bits and uses ephemeral keys. Note that the [CLN16]
implementation uses uncompressed public keys. Some other examples of varying security
levels include the following. The implementation using R-LWE BCNS15 appears to have
a claimed quantum security level of 78 bits18. The implementation using LWE Frodo
appears to have a claimed quantum security level of 130 bits19.

Table 9: Comparison of several different PQ-cryptosystems within the KEM framework.
The platform is i7-4700MQ 2.4GHz with turbo boost disabled running ubuntu 16.04 LTS.

A Gen cc µs B Encaps cc µs A Decaps cc µs A → B B → A
R-LWE BCNS15 3.5M 1473 5.6M 2334 0.6M 240 4096 4224
R-LWE NewHope 0.2M 100 0.4M 154 0.1M 27 1824 2048
R-LWE MSR LN16 0.2M 84 0.3M 143 0.1M 26 1824 2048
LWE Frodo 12.3M 5144 14.1M 5871 0.4M 151 11280 11288
SIDH CLN16 52.8M 22053 118.9M 49657 50.0M 20876 576 576
Code McBits 822.6M 343537 0.2M 71 0.5M 199 311736 141
NTRU EES743EP1 5.1M 2144 0.5M 227 0.4M 162 1027 1022

We see in Table 9 that McBits can be an interesting alternative to SIDH when Alice
is using a static key. The drawback of McBits is Alice’s very large public key that must
be distributed to Bob.

16We measure the implementations in the SIDH library v2.0 compiled with ”make ARCH=x64” and
debug information. The platform is i7-4700MQ 2.4 GHz running ubuntu 16.04 LTS.

17SIDH is represented in the table by the implementations of [CLN16] and [CJL+16b]
18https://github.com/open-quantum-safe/liboqs/blob/master/docs/Algorithm%20data%20sheets/kex -

rlwe bcns15.md, access date 2017-06-13.
19https://github.com/open-quantum-safe/liboqs/blob/master/docs/Algorithm%20data%20sheets/kex -

lwe frodo.md, access date 2017-06-13.

9.10 Estimations of work, memory usage and key sizes as functions of λ 75

9.10 Estimations of work, memory usage and key sizes as func-
tions of λ

Our end goal in this section is to estimate the computational work, memory usage and
key sizes in SIDH as functions of λ, the security parameter of SIDH. Unfortunately, our
analysis can not be self-contained due to space constraints. We will make references to
algorithms and analyses in [CLN16], [CJL+16b], [CH17] and [DFJP14]. To this author’s
knowledge, no total estimates, such as the ones we will do in the coming sections, currently
exist the literature. However, as noted in Section 1.1, the work we do here is straightfor-
ward thanks to earlier analyses in the papers mentioned above. Our estimations are done
by studying the state-of-the-art implementations of [CLN16] (uncompressed ephemeral
SIDH) and (compressed ephemeral SIDH) [CJL+16b]. These are included in the SIDH
library v2.020 and any reference hereafter to the SIDH library means specifically v2.0.
Sometimes we will need to refer to code in the SIDH library. As is standard when esti-
mating the time complexity of functions in finite fields, we will give our estimates in the
number of finite field arithmetic operations. In general we ignore any constant number of
arithmetic operations, i.e., when the number of times the operation is performed does not
depend on λ. The exceptions are the inversions done in [CLN16]. These are implemented
in constant-time and are fairly expensive. Note that we ignore any constant number of
inversions in the compression and decompression of public keys in [CJL+16b]. As dis-
cussed in [CJL+16b, p. 4], since compression and decompression is done on public data,
the inversions there can be implemented in faster non-constant-time ways. Since [CLN16]
uses a prime p = `eAA `

eB
B f − 1 such that `A = 2, `B = 3 and f = 1, our estimates here

also assume that `A = 2, `B = 3 and f = 1. By the discussion in Section 8.1 we have the
relations

eA ≈ 3λ, eB ≈ eA/ log 3 ≈ 1.89λ

To verify that our estimations are close to the true costs we do the following. We bench-
mark the Fp2 arithmetic operations M (multiplication), S (squaring), addition (a) and
inversion (I) in the SIDH library.

M = 2027, S = 1458, a = 103, I = 612086 (45)

These costs, which are in clock cycles (cc), are for the optimised implementation in the
SIDH library21 for the prime p = 23723239 − 1. By running kex tests.c we can also bench-
mark the ephemeral uncompressed and compressed SIDH implementations of [CLN16]
and [CJL+16b] for the same prime p. The output gives us detailed benchmarks of the
same computations that we are estimating. This gives us a way to check how close our
estimations are to the true costs for this specific prime p. Whenever we compare our esti-
mates to benchmarks in the coming sections we use the arithmetic costs in (45) to convert
our estimations to clock cycles, and then we compare against the output of kex tests.c.

9.10.1 Estimating the computational work in uncompressed SIDH

The operation costs in [CLN16, Table 1] and [CH17, Table 3] provide a basis for estimat-
ing the computational work in ephemeral uncompressed SIDH. As explained in [CH17,

20https://www.microsoft.com/en-us/research/project/sidh-library/
21The library is compiled with ”make ARCH=x64”. The platform is i7-4700MQ 2.4 GHz with turbo

boost disabled running ubuntu 16.04 LTS.

9.10 Estimations of work, memory usage and key sizes as functions of λ 76

Appendix A], [CH17, Table 3] provide optimisations of some of the operations in [CLN16,
Table 1] that can be plugged into the implementation of [CLN16].

We want to estimate the cost of the four main computations in uncompressed ephemeral
SIDH: Alice’s public key generation ([CLN16, Algorithm 3]), Alice’s shared key compu-
tation ([CLN16, Algorithm 7]), Bob’s public key generation ([CLN16, Algorithm 5]) and
Bob’s shared key computation ([CLN16, Algorithm 9]). Given the operation costs in
[CLN16, Table 1] and [CH17, Table 3] this is fairly straightforward except for that any
competitive implementation of SIDH must currently use a platform specific strategy (see
i) in Section 9.1) for computing isogenies that is computed through dynamic program-
ming. The strategy depends on the operation cost ratio between computing a scalar
`-multiplication (on an elliptic curve) and evaluating an `-degree isogeny. Fortunately, it
turns out that using a balanced strategy, where we assume that computing an `-degree
multiplication is exactly as expensive as computing an `-degree isogeny, gives a very good
estimation in practice. For the cost ratio discussed in [DFJP14, p. 12] the optimal strat-
egy is only 2.1% cheaper than the balanced strategy. We refer the reader to [DFJP14,
Table 2] for other such comparisons. There is a detailed theoretical study of the difference
between balanced and optimal strategies in [DFJP14, Section 4.2.2] and the authors note
on p. 16 that the theoretical predictions are line with the the measurements of [DFJP14,
Table 2].

[CLN16] works with 4-multiplications and 4-degree isogenies instead of 2-multiplications
and 2-degree isogenies for Alice’s computations. We let xA be the number of 4-multiplications
in the balanced strategy in Alice’s computations. Note that the number of 4-isogenies
in the strategy is also xA. Similarly, we let xB be the number of 3-multiplications (and
3-isogenies) in the balanced strategy in Bob’s computations. As noted on [DFJP14, p.
9], we have that

xA =
1

2

eA
2

log(
eA
2

) ≈ 0.75λ log(1.5λ), xB ≈
1

2

eA
log 3

log(
eA

log 3
) ≈ 0.95λ log(1.89λ)

Our estimates in Tables 10, 11, 12 and 13 are straightforward using the balanced
strategy estimation. Line numbers refer to the respective computation’s pseudocode in
[CLN16]. The main reason our estimations are lower than the benchmarked costs is that
we use the optimised operation costs from [CH17, Table 3].

9.10 Estimations of work, memory usage and key sizes as functions of λ 77

Table 10: Alice public key generation pkGenA ([CLN16, Algorithm 3]). pkGenA sums
to 45M cc using the arithmetic benchmarks in (45). Benchmarking Alice’s public key
generation in the implementation of [CLN16] gives 46M cc.

Line(s) M S a I Source
5 5eA 4eA 9eA - [CLN16, Table 1]
16 8xA 4xA 8xA - [CLN16, Table 1]
19 - 2eA 2eA - [CH17, Table 3]
21 6xA 2xA 6xA - [CH17, Table 3]
23-25 9eA 3eA 9eA - [CH17, Table 3]
33 - - - 1 [CLN16, Table 1]
pkGenA (total) (42 + 10.5 log(1.5λ))λ (27 + 4.5 log(1.5λ))λ (60 + 10.5 log(1.5λ))λ 1

Table 11: Alice shared key computation SKGenA ([CLN16, Algorithm 7]). SKGenA sums
to 41M cc using the arithmetic benchmarks in (45). Benchmarking Alice’s public key
generation in the implementation of [CLN16] gives 44M cc.

Line(s) M S a I Source
1 - - - 1 [CLN16, Table 1]
2 9eA 6eA 14eA - [CLN16, Table 1]
9 8xA 4xA 8xA - [CLN16, Table 1]
12 - 2eA 2eA - [CH17, Table 3]
14 6xA 2xA 6xA - [CH17, Table 3]
20 - - - 1 [CLN16, Table 1]
SKGenA (total) (27 + 10.5 log(1.5λ))λ (24 + 4.5 log(1.5λ))λ (48 + 10.5 log(1.5λ))λ 2

Table 12: Bob public key computation pkGenB ([CLN16, Algorithm 5]). pkGenB sums
to 48M cc using the arithmetic benchmarks in (45). Benchmarking Alice’s public key
generation in the implementation of [CLN16] gives 52M cc.

Line(s) M S a I Source
5 5eB 4eB 9eB - [CLN16, Table 1]
12 8xB 4xB 8xB - [CLN16, Table 1]
15 2eB 3eB 14eB - [CH17, Table 3]
17 4xB 2xB 4xB - [CH17, Table 3]
19-21 12eB 6eB 12eB - [CH17, Table 3]
29 - - - 1 [CLN16, Table 1]
pkGenB (total) (35.9 + 11.4 log(1.89λ))λ (24.6 + 5.7 log(1.89λ))λ (66.2 + 11.4 log(1.89λ))λ 1

Table 13: Bob shared key computation SKGenB ([CLN16, Algorithm 9]). SKGenB sums
to 44M cc using the arithmetic benchmarks in (45). Benchmarking Bob’s shared key
computation in the implementation of [CLN16] gives 50M cc.

Line(s) M S a I Source
1 - - - 1 [CLN16, Table 1]
2 9eB 6eB 14eB - [CLN16, Table 1]
8 8xB 4xB 8xB - [CLN16, Table 1]
11 2eB 3eB 14eB - [CH17, Table 3]
13 4xB 2xB 4xB - [CH17, Table 3]
19 - - - 1 [CLN16, Table 1]
SKGenB (total) (20.8 + 11.4 log(1.89λ))λ (17 + 5.7 log(1.89λ))λ (52.9 + 11.4 log(1.89λ))λ 2

9.10 Estimations of work, memory usage and key sizes as functions of λ 78

9.10.2 Estimating the memory usage in uncompressed SIDH

We start with estimating the size of the list pts used in Alice’s public key generation
([CLN16, Algorithm 3]) and Alice’s shared key computation ([CLN16, Algorithm 7]).
Using the balanced strategy estimation it is easy to see that the length the list will never
be larger than its length after the first iteration, which is log eA

2
. We note that the actual

maximum number of elements in pts is 8 in the SIDH library22 (where eA = 372), which
is in line with our estimation. Each element in pts consists of two Fp2 elements. Hence
we estimate the bit size of pts by

2 log
(eA

2

)
12λ ≈ 2 log(eA)12λ ≈ 2 log(3λ)12λ

Besides the list pts, we need at any stage of Alice’s computations a constant number of
Fp2-variables for temporary variables, the public parameters of SIDH, public keys, shared
keys, etc. Since the implementation of [CLN16], where p is 768 bits, used ≈ 16000 bytes
of memory in Section 9.9.1, we know that this constant number of variables is always less
than

16000 · 8
768 · 2 ≈ 84

We note that this is an overestimate, but it is sufficient for our purposes here. We therefore
estimate that Alice’s memory usage is less than

(84 + 2 log(3λ))12λ

bits. The corresponding analysis for Bob gives that his estimated memory usage is also
less than

(84 + 2 log(3λ))12λ

9.10.3 Estimating the computational work in compression and decompres-
sion of public keys

Alice’s compression of her public key pkA consists of three main parts:

1. Find a 3eB -torsion basis {R1, R2} for EA[3eB] ([CJL+16b, Section 3]).

2. Express φA(PB) and φA(QB) in the basis {R1, R2}:

(a) Use the Tate-pairing [Was08, Section 3.4] to find DLP-instances related to
the coefficients used for expressing φA(PB) and φA(QB) in the basis {R1, R2}
([CJL+16b, Section 4]).

(b) Use the Pohlig-Hellman algorithm to solve the DLP-instances from (a) ([CJL+16b,
Section 5]).

Bob’s compression consists of the corresponding three main parts.
As explained in [CJL+16b], the torsion basis generation in step 1 above is probabilistic.

We start with analysing Bob’s 2eA-torsion basis generation, which is done in the function
ec isogeny.generate 2 torsion basis.c in the SIDH library. As discussed in [CJL+16b, Re-
mark 3] and [CLN16, Section 9], when we try to find the second 2eA-torsion basis element
R2 we require that

x(3eB−1R1) 6= x(3eB−1R2) (46)

22MAX INT POINTS ALICE in SIDH internal.h

9.10 Estimations of work, memory usage and key sizes as functions of λ 79

Since there are three non-trivial elements in E(Fp2)[2] that together have three distinct x-
coordinates, we would expect that (46) holds with probability 2

3
. This probability appears

to be in line with what we observe if we let the seed of the random generator23 in the
SIDH library vary24. We therefore estimate that the loop (which tries a candidate R2 in
each iteration) in generate 2 torsion basis executes 1.5 times in expectation. We present
our estimations of the computational work in generate 2 torsion basis in Table 14.

Table 14: generate 2 torsion basis

Function (line) M S a I
xTPLe (688) 8eB 4eB 8eB -
xDBLe (689) 4eA 2eA 4eA -
xTPLe (700) 1, 5 · 8eB 1, 5 · 4eB 1, 5 · 8eB -
xDBLe (701) 1, 5 · 4eA 1, 5 · 2eA 1, 5 · 4eA -
Total 10eA + 20eB 5eA + 10eB 10eA + 20eB -

We now analyse Alice’s 3eB -torsion basis generation, which is done in the function
ec isogeny.generate 3 torsion basis.c in the SIDH library.

1. As discussed in [CJL+16b, Section 3.3], the function get 3 torsion elt may or may
not find the first 3eB -torsion basis element by chance. We estimate the probability
that get 3 torsion elt does not find the first 3eB -torsion basis element with 1

9
≈ 0.1.

This is justified in the following way. Let {R, S} be a basis for EA(Fp2), i.e., 〈R, S〉 =
EA(Fp2)25. Then picking a random point on EA(Fp2) is the same thing as picking
random integer coefficients α and β and letting the random point be αR+βS. The
function get 3 torsion elt does not find the first torsion basis point R1 if the random
point it finds is in [3](E(Fp2)) (the image of the multiplication by 3-map restricted
to E(F2

p)). The probability that the random element is in [3](E(Fp2)) is the same
as the probability that both α and β are divisible by 3, which is 1

32
= 1

9
. Thus,

with probability 0.1 we must still find the first 3eB -torsion basis element in the first
iteration of the loop in generate 3 torsion basis. This estimation appears to be in
line with what we observe if we let the seed of the random generator in the SIDH
library vary.

2. As discussed in [CJL+16b, Remark 3] and [CLN16, Section 9], when we try to find
the second 3eB -torsion basis element R2 we require that

x(3eB−1R1) 6= x(3eB−1R2) (47)

Since there are eight non-trivial elements in EA(Fp2)[3] that together have four dis-
tinct x-coordinates, we would expect that (47) holds with probability 3

4
. However, if

we let the seed of the random generator in the SIDH library vary, then the probabil-
ity appears to be significantly higher than 3

4
. It is not clear to this author why this

is the case. In our estimates in Table 14 we simply assume that (47) always holds.
We also note that the points R1 and R2 are generated differently when searching
for a 3eB -torsion basis compared to when searching for a 2eA-torsion basis.

We present our estimations of the computational work in generate 3 torsion basis in Table
15.

23The C-library function rand() is used by default in the SIDH library for testing purposes.
24We use srand(time(NULL)).
25Such points exist since EA(Fp2) ∼= Zp+1 ⊕ Zp+1.

9.10 Estimations of work, memory usage and key sizes as functions of λ 80

Table 15: generate 3 torsion basis

Function (line) M S a I
get 3 torsion elt (891) 4eA + 8eB 2eA + 4eB 4eA + 8eB -
xDBLe (952) 1.1 · 4eA 1.1 · 2eA 1.1 · 4eA -
xTPLe (967) 1.1 · 8eB 1.1 · 4eB 1.1 · 8eB -
Total 8.4eA + 16.8eB 4.2eA + 8.4eB 8.4eA + 16.8eB -

As explained in [CJL+16b, Section 4], Alice uses the Tate pairing as the first step in
computing the coefficients of φA(PB) and φA(QB) in the 3eB -torsion basis which she found
above. This is done in the function ec isogeny.Tate pairings 3 torsion.c which contains eB
iterations of a loop with each iteration containing two calls to tpl and parabola and five
calls to cube and absorb parab. By [CJL+16b, Tripling-and-parabola operations], tpl -
and parabola costs 19M + 6S + 21a (we count subtractions as additions) and cube and -
absorb parab costs 10M + 2S + 4a. The total estimated cost for Tate pairings 3 torsion
is therefore

eB(2(19M + 6S + 21a) + 5(10M + 2S + 4a)) = 86eBM + 22eBS + 62eBa

The corresponding analysis for Bob’s Tate-pairing computations in ec isogeny.Tate pair-
ings 2 torsion.c gives the total estimated cost

eA(2(9M + 5S + 8a) + 5(5M + 2S + 3a)) = 43eAM + 20eAS + 31eAa

[CJL+16b, Remark 2] notes that this part is the main bottleneck of the entire compression
algorithm for their parameters.

The second step in computing coefficients in the torsion basis is to use the Pohlig-
Hellman algorithm to solve the DLP instances in µ`e that arise from the Tate-pairing
computations [CJL+16b, Section 5]. We let L denote the cost of an exponentiation with
` in µ`e , i.e., a squaring in the case µ2eA and a cubing in the case µ3eB . [CJL+16b] use
a ”windowed” variant of the Pohlig-Hellman algorithm, we refer to [CJL+16b, Section
5.4] for details. By the analysis of the windowed Pohlig-Hellman algorithm in [CJL+16b,
Section 5.4] we know that the estimated cost when using n windows is

FA,n ≈
1

2
e(n+ 1)

(
e

1
n+1 − 1

)
L +

n+ 1

2
e log(`)M + (n+ 1)e log(`)S

In Alice’s case, where we are solving DLP instances in µ3eB , we get (using that log 3 ≈ 1.54
and L = 0.67M + 0.5S [CJL+16b, Sections 5.1 and 5.6])

FA,n ≈
1

2
eB(n+ 1)

(
e

1
n+1

B − 1

)
(0.67M + 0.5S) +

n+ 1

2
eB1.54M + (n+ 1)eB1.54S ≈

1

2
(1.89λ)(n+1)

(
(1.89λ)

1
n+1 − 1

)
(0.67M+0.5S)+

n+ 1

2
(1.89λ)1.54M+(n+1)(1.89λ)1.54S

We let nA,0 be the non-negative integer n that minimises FA,n for given parameters λ,
M and S. For the parameters in [CJL+16b], this value is approximately 3 [CJL+16b,
Section 5.5-5.6]. Similarly, we let nB,0 be the non-negative integer n that minimises the
corresponding expression for Bob (who is solving DLP instances in µ2eA)

FB,n ≈
1

2
(3λ)(n+ 1)

(
(3λ)

1
n+1 − 1

)
S +

n+ 1

2
(3λ)M + (n+ 1)(3λ)S

9.10 Estimations of work, memory usage and key sizes as functions of λ 81

Alice and Bob each solve four DLP instances.
It follows from the discussion above that the estimated total cost of Alice’s public key

compression ComprA is

(8.4eA+16.8eB)M+(4.2eA+8.4eB)S+(8.4eA+16.8eB)a+86eBM+22eBS+62eBa+4FA,nA,0 ≈

(220M + 70S + 174a)λ+ 4FA,nA,0

The estimate ComprA gives 99M cc for the parameters in [CJL+16b] where we used
nA,0 = 3 as in [CJL+16b, Section 5.6]. Benchmarking the same computation in the
SIDH library gives 107M cc. The main costs in the compression that are ignored in our
estimate are the functions (get X on curve, sqrt Fp2 frac, is cube Fp2, etc) in the torsion
basis generation that consist of operations in Fp. The number of times these functions
are executed in the torsion basis generation are random variables that have some small
and constant expected value. In the SIDH library these functions costed roughly 6M cc
in one compression this author observed. The total estimated cost of Bob’s compression
ComprB is

(10eA+20eB)M+(5eA+10eB)S+(10eA+20eB)a+43eAM+20eAS+31eAa+4FB,nB,0 ≈

(197M + 94S + 161a)λ+ 4FB,nB,0

The estimate ComprB gives 101M cc for the parameters in [CJL+16b] where we used
nB,0 = 3 as in [CJL+16b, Section 5.5]. Benchmarking the same computation in the SIDH
library gives 110M cc.

Alice’s decompression of Bob’s public key starts with the same 2eA-torsion basis gen-
eration as Bob performed in his compression above. In Table 14 we estimated this work
with

(10eA + 20eB)M + (5eA + 10eB)S + (10eA + 20eB)a (48)

After that Alice performs a ladder function in mont twodim scalarmult to compute a
generator of the kernel of the isogeny in her shared key computation. Work similar to
this is done in the shared key computation in uncompressed ephemeral SIDH. [CJL+16b]
instead counts this as part of the decompression in compressed ephemeral SIDH. As a
result the shared key computation is faster in compressed ephemeral SIDH than it is in the
uncompressed variant. To make our presentation in Section 9.10.5 simpler, we estimate
Alice’s work DecomprA when decompressing Bob’s key with only that in (48) and we let
the estimate of the work in Alice’s shared key computation be the same in compressed
ephemeral SIDH and uncompressed ephemeral SIDH. Hence

DecomprA ≈ (67.8M + 33.9S + 67.8a)λ

For the parameters of [CJL+16b] our estimate gives DecomprA + SKGenA = 65M cc.
Benchmarking the decompression and shared key computation in the implementation of
[CJL+16b] gives 73.9M cc. We make the corresponding choices in the estimation of the
work in Bob’s decompression of Alice’s key and get the estimate

DecomprB = (8.4eA + 16.8eB)M + (4.2eA + 8.4eB)S + (8.4eA + 16.8eB)a ≈

(57M + 28.5S + 57a)λ

For the parameters of [CJL+16b] our estimate gives DecomprB + SKGenB = 62M cc.
Benchmarking the decompression and shared key computation in the implementation of
[CJL+16b] gives 72M cc.

9.10 Estimations of work, memory usage and key sizes as functions of λ 82

9.10.4 Estimating the memory usage in compression and decompression of
public keys

We start with estimating the size of the lookup tables that Alice needs for solving the
DLP instances in µ3eB . These contain precomputations of the gi used for each window in
[CJL+16b, Section 5.3]. Using (7) in [CJL+16b], the lookup table for window wj has size

wj−1
wj

= e
1

nA,0+1

B

for 1 ≤ j ≤ nA,0 where w0 = eB. Besides these lookup tables we need a constant
number of Fp2-variables at any point of Alice’s computations. Since the implementation
of [CJL+16b], where p is 768 bits, used ≈ 27000 bytes of memory in Section 9.9.1, we
know that this constant number of variables is always less than

27000 · 8
768 · 2 ≈ 140

We note that this is an overestimate, but it is sufficient for our purposes here. The total
estimated memory usage of Alice is therefore less than

(140 + nA,0e
1

nA,0+1

B)12λ ≈ (140 + nA,0(1.89λ)
1

nA,0+1)12λ

bits, where nA,0 will be some small non-negative integer. The corresponding analysis for
Bob gives that his estimated memory usage is less than

(140 + nB,0(3λ)
1

nB,0+1)12λ

9.10.5 Overview of estimates

In this section we use the estimations from the last sections to give estimates of compu-
tational work, memory usage and key size in several variants of SIDH as a function of
the quantum security in bits λ. For the static key variants we assume that one of the
proposals from Section 9.8.1 or Section 9.8.4 is used. We present our results in Table 16.

9.11 Random bit usage 83

Table 16: Overview of estimates for different variants of SIDH. The cost of the operations
in the column Computational work are given in Table 17.

Computational work Memory usage Key size
Ephemeral Alice pkGenA+SKGenA (84 + 2 log(3λ))12λ 36λ

Bob pkGenB+SKGenB (84 + 2 log(3λ))12λ 36λ
Static Alice pkGenA+SKGenA (84 + 2 log(3λ))12λ (36+2)λ

Bob SKGenB+pkGenA (84 + 2 log(3λ))12λ 36λ

Compressed ephemeral Alice pkGenA+ComprA+DecomprB+SKGenA (140 + nA,0(1.89λ)
1

nA,0+1 + 2 log(3λ))12λ 21λ

Bob pkGenB+ComprB+DecomprB+SKGenB (140 + nB,0(3λ)
1

nB,0+1 + 2 log(3λ))12λ 21λ

Compressed static Alice pkGenA+ComprA+SKGenA (140 + nA,0(1.89λ)
1

nA,0+1 + 2 log(3λ))12λ (21+2)λ

Bob DecomprB+SKGenB+pkGenA+ComprA (140 + nA,0(1.89λ)
1

nA,0+1 + 2 log(3λ))12λ 36λ

Table 17: Cost of operations.

pkGenA ((42 + 10.5 log(1.5λ))M + (27 + 4.5 log(1.5λ))S + (60 + 10.5 log(1.5λ))a)λ
SKGenA ((27 + 10.5 log(1.5λ))M + (24 + 4.5 log(1.5λ))S + (48 + 10.5 log(1.5λ))a)λ
pkGenB ((35.9 + 11.4 log(1.89λ))M + (24.6 + 5.7 log(1.89λ))S + (66.2 + 11.4 log(1.89λ))a)λ
SKGenB ((20.8 + 11.4 log(1.89λ))M + (17 + 5.7 log(1.89λ))S + (52.9 + 11.4 log(1.89λ))a)λ

FA,n
1
2
(1.89λ)(n+ 1)((1.89λ)

1
n+1 − 1)(0.67M + 0.5S) + n+1

2
(1.89λ)1.54M + (n+ 1)(1.89λ)1.54S

FB,n
1
2
(3λ)(n+ 1)((3λ)

1
n+1 − 1)S + n+1

2
(3λ)M + (n+ 1)(3λ)S

ComprA (220M + 70S + 174a)λ+ 4FA,nA,0
ComprB (197M + 94S + 161a)λ+ 4FB,nB,0
DecomprA (67.8M + 33.9S + 67.8a)λ
DecomprB (57M + 28.5S + 57a)λ

Under the assumption that the Fp2-arithmetic operations M and S run in time Θ(λ1.6)26,
the time complexity of all SIDH variants grows roughly proportional to λ2.6. Here we ig-

nore the factors log λ and (n + 1)λ
1

n+1 (keeping in mind that n ∈ {nA,0, nB,0} grows as
λ grows). By similar reasoning, the memory grows roughly proportional to λ. We note
that under the assumption that the computational work grows proportional to λ2.6, then
going, for example, from λ = 128 to λ = 85 speeds up the computations with roughly a
factor 2.9.

9.11 Random bit usage

The number of random bits used in any variant SIDH (compressed, ephemeral, static, etc)
is at most the number of bits needed to randomly pick a normalised secret key in Section
6.3. As explained in that section there are (`A + 1)`eA−1A ≈ 23λ normalised secret keys for
Alice and (`B + 1)`eB−1B ≈ 23λ normalised secret keys for Bob. Thus, each party needs
approximately 3λ random bits in ephemeral SIDH. By inspecting the implementation in
the SIDH library v2.0, we see that the compression implemented in [CJL+16b] requires
no extra random bits. In static key SIDH Bob will only need as many random bits as the
bit length of his seed x||s in Section 9.8.4 (that seed has the same bit length as the seed
rB of Section 9.8.1). In Section 9.8.4 we suggested using a seed of bit length 2λ with the
asymptotical query complexity of Grover’s algorithm in mind. As discussed in the next
section, the bit length of the seed could possibly be lowered to 1.5λ.

26Here we assume that numbers are kept in Montgomery representation and that Karatsuba’s method
is used for multiplication. Note that which multiplication method that should be used depends on λ.

9.12 How small can we make λ in practice? 84

We note that the random bit usage in SIDH is low compared to many other PQ-
cryptosystems by [Kin17, Table 5.8]. Note that [Kin17, Table 5.8] lists the total random
bit usage by both parties together.

9.12 How small can we make λ in practice?

Our main interest in SIDH is in its small public key sizes. Since these grow linearly in λ
in all SIDH variants we have studied it is interesting to discuss how small we can make
λ in practice to get the smallest possible SIDH keys. When discussing the claw attack
from Section 8.1, we as usual assume that it is Alice’s public key that is being attacked.
Everything we say holds equally well for Bob’s public key as well. From our discussion in
Section 8.1 we know the classical claw algorithm must either build a hash table of size at
least √

(`A + 1)`eA−1A ≈ 21.5λ

or query a hash table at least

√
(`A + 1)`eA−1A

2
≈ 21.5λ

times in expectation. Thus, without loss of generality we can assume that the concrete
classical claw attack time complexity is greater than 21.5λ. We also saw that it is reasonable
to assume that the classical claw attack is efficiently parallelisable. Setting λ = 85 then
gives 128 bits of classical security which is secure even against an efficiently parallelisable
attack. According to [CLN16, SIDH history and security] the classical complexity O

(
21.5λ

)

is optimal for solving a black box claw problem of this size. Assuming there is a single
claw (which is the situation we will be in in SIDH with very high probability), one way
to understand that this complexity is indeed optimal is to note that the function with
the largest domain in our claw problem has domain of size at least 21.5λ. We then need
at least 21.5λ−1 queries in expectation to find the claw. This is similar to the situation for
classical algorithms for solving the problem solved by Grover’s algorithm in Section 4.2.
We note however that this analysis is based on black box functions, future cryptanalysis
of SIDH or insights about the isogenies used in SIDH may change the classical security. A
related remark is the following. In Section 8.1 we saw that queries to the function f (g) of
the claw problem corresponded to computing end-nodes of non-backtracking eA/2-walks
in G`A from [E0] ([EA]). We note that a classical claw attack does not require an attacker
to compute a complete eA/2-walk in G`A for each query. One efficient way appears to
be to explore the end-nodes of all non-backtracking eA/2-walks from [E0] (or [EA]) in a
depth-first-search manner. For example, suppose that `A = 2. Then 3(2eA/2 − 1) edges
needs to be computed to explore all 3 · 2eA/2−1 end-nodes. This gives an average cost of
computing two edges in G`A per end-node (query).

As defined in [CCJ+16, p. 6]: ”an algorithm is said to have 128 bits of security if the
difficulty of attacking it with a classical computer is comparable to the time and resources
required to brute-force search for a 128-bit cryptographic key”. We note that when using
λ = 85 we have more than 128 bits of classical security since the attack involves building a
very large hash table which is not necessary in an ordinary brute-force search of a 128-bit
cryptographic key. However, since the attacker can choose the size of the hash table and
since keys of size 112 bits (which is the standard size below 128) will likely be phased out
around 2031 in NIST recommendations [CCJ+16, p. 6] this author believes that λ = 85 is

9.12 How small can we make λ in practice? 85

perhaps the most interesting security level below the standard λ = 128 that is considered
in many implementations of SIDH. If one estimates the largest size of a hash table that an
attacker could possibly build, then it is possible that security levels below λ = 85 could
be interesting as well. Assuming the largest hash table an attacker can build has size 280

bits (assuming that each entry only takes one bit of storage)27, then we have about 128
bits of classical security at λ = 7028. Going from λ = 85 to λ = 70 would reduce key
sizes with 18%. Of course, before making λ smaller, learning more about the concrete
complexity of the quantum claw attack is crucial.

With respect to quantum attacks and the quantum claw attack in particular, we
would like to know more. It is an interesting idea for future work to try to determine
the concrete time complexity of the (best) quantum claw algorithm at, say, λ = 85 bits.
Ideally, we would like to have estimates of the number of gates in a concrete quantum
circuit for solving the problem as well as the depth of such a circuit. Another approach
could be to determine the constant in the asymptotic lower bounds for the quantum query
complexity of the claw problem. However, that does not necessarily say anything about
quantum circuit depth or whether any of the queries can be run in parallel. Can anything
be said in particular in the special case of the claw problem that we are interested in?
That is, when we know that there is a unique claw and we just want to find it. Regardless,
any approach most likely include estimating the size and depth of quantum circuits for
computing walks in supersingular isogeny graphs. It would also be very interesting to
know if the quantum claw attack can be efficiently parallelised. The naive parallelisation
that we discussed in Section 8.1 is highly inefficient.

We finally note that the bit size of the seeds used in the static key SIDH key exchanges
of Sections 9.8.1 and 9.8.4 could maybe be lowered from 2λ to 1.5λ if the concrete com-
plexity (and not only the asymptotic complexity) of Grover’s attack against the seed
can be estimated. This is not a significant optimisation since 0.5λ is less than 3% of
Bobs (21 + 2)λ bit public key in compressed static key SIDH (and less than 2% of Bobs
(36 + 2)λ bit public key in uncompressed static key SIDH). Going lower than 1.5λ would
effect the classical security since the classical attacker could then choose to attack Bob’s
seed instead of trying to solve the claw problem that Bob’s public key gives rise to.

27This is roughly one million times the estimated data content of the deep web
(https://www.wolframalpha.com/input/?i=2%5E80+bits+in+exabytes, access date 25-07-2017).

28Since 3λ− 80 = 210− 80 ≈ 128.

86

10 Conclusions

In our simulations in Section 7.3 we saw that the number of distinct j(EA) that Alice can
get to by following non-backtracking walks given by isogenies φA : E0 → EA is very close
to the number of distinct elements we expect to get when choosing (`A + 1)`eA−1A vertices
uniformly at random (with repetition) from the vertex set V (G`A). A similar statement
was true for Bob. Since (`A + 1)`eA−1A is much smaller than #V (G`A) ≈ `2eAA /12 we could
never expect uniform mixing as in Theorem 7.1.4. However our simulation results show
that, even for very small examples of p, the distribution of j(EA) appears to be essentially
the best possible. In Section 7.4 we saw that the distribution of j(EAB) also appears to be
essentially the best possible, even for small examples of p. The shared key j(EAB) appears
to follow the same distribution as a randomly chosen element from the set S in Estimation
7.4.1. We are not the first to make the simple observation that the isogenies of SIDH are
non-backtracking. But we ask if it could possibly be used in combination with results for
non-backtracking random walks in expander graphs such as those in [ABLS07] to explain
the strong results we see in our simulations? The fact that the isogenies in SIDH are
non-backtracking inspired us to describe a heuristic reduction from the CSSI-problem to
the DSSI-problem in Section 7.6. We gave convincing simulation results as evidence that
the reduction works. It is interesting to note that the isogeny graphs G`A and G`B behave
”sufficiently random” for the reduction to work, see Section 7.6.3. This adds further to
our confidence in assumptions such as the one made in [GPST16, p. 12 footnote 1].

Impressive work in speeding up SIDH has been done in for example [CLN16]. How-
ever, there is still a gap to many PQ-cryptosystems as we observed in our comparison
in Section 9.9.2. SIDH is still roughly somewhere between 10-500 times slower than
many competing PQ-cryptosystems. A single server-thread can perform roughly 30-40
ephemeral key exchanges at 128-bits of security per second. It is up to the server admin-
istrator if the savings in bandwidth that SIDH offer are worth it. Given the structure of
SIDH computations seen in Section 9.10: a large number of small degree (elliptic curve)
scalar multiplications and isogeny evaluations that each contain some constant number of
field arithmetic operations; it is plausible that these benchmarks will remain fairly stable
unless significant theoretical breakthroughs in isogeny computations are made. Of course
any such breakthrough could also possibly challenge our belief in the security of SIDH.
This author believes that future speedups in SIDH computation times will be modest.
Another way to say this is: the server administrator who would not be interested in SIDH
even if computation times could be speed up by, say, a factor 10 will likely never be
interested in SIDH.

In Sections 9.9.1 and 9.11 we saw that memory usage and random bit usage is modest
in all the variants of SIDH. This makes SIDH a good candidate for devices where such
resources are limited. However, since SIDH is relatively slow on a desktop PC it will also
be fairly slow on any such limited device. Thus, the critical question will likely be how
often the limited device needs to engage in a key exchange with the server.

Due to its slow computations, SIDH will likely remain a special-purpose cryptosystem.
Key compression for SIDH is therefore very interesting since it was the small keys of the
original system that made it interesting to begin with. For the same reason static key
SIDH is also very interesting since it roughly cuts communication between the parties in
the key exchange in half. [KLM+15] gave a proposal for a static key variant of SIDH and
in Section 9.8.4 we gave a similar proposal that comes with a formal IND-CCA2 security
proof in the random oracle model. While both proposals increase Alice’s computation

87

time (since she needs to recompute Bob’s public key), seeing how SIDH will likely be a
special-purpose system the big drawback of both proposals might be the 2λ bit encrypted
seed sent alongside Bob’s public key to Alice. On the other hand, the size of the encrypted
seed is only 5.6% of the 36λ bit public key sent by Bob to Alice in uncompressed SIDH
and only 9.5% of the 21λ bit public key by him in compressed SIDH. Maybe this will be
an acceptable price to pay for IND-CCA2 security.

For the setting where we really want to keep bandwidth to a minimum it is a tempting
option to lower the quantum security λ from 128 bits to, say, 85 bits. Suppose that we
use compressed static key SIDH at this security level. [CJL+16b, p. 19] estimate that
compression gives a 2.4 factor slowdown of SIDH, at the same time we estimated29 in
Section 9.10.5 that going from λ = 128 to λ = 85 speeds up SIDH with roughly a factor
2.9. Assuming that we also use one of the proposals for static key SIDH that we studied
in Sections 9.8.1 and 9.8.4, this would mean that our compressed static key SIDH with
λ = 85 runs at roughly the same speed as uncompressed ephemeral SIDH with λ = 128.
As we saw in Section 5, each party’s computations in uncompressed ephemeral SIDH
with λ = 128 currently take roughly 25-30 ms on a modern desktop PC. Ignoring the
communication cost when Alice publishes her static key, the only communication needed
for one key exchange would be the (21+2)λ

8
≈ 244 bytes large key encapsulation sent from

Bob to Alice. With our current knowledge in SIDH cryptanalysis, λ = 85 means that we
have 128 bits of classical security. As is well known this is completely secure in the classical
setting even though the best known classical attack appears to be efficiently parallelisable.
However, with regards to quantum attackers at security levels below λ = 128 we would
like to know more. Ideally we would like something similar to the analysis for AES done
in [GLRS16]: if we set λ = 85, then what is the concrete number of quantum operations
necessary to attack us by solving the claw problem on a quantum computer? We would
also like to know the depth of such a circuit. SIDH might gain from its slow computations
when the black box-functions in the claw problem are replaced with quantum circuits for
computing walks in the isogeny graphs G`A and G`B . It would also be very interesting to
know if the quantum attack can be efficiently parallelised. The naive method of running
the quantum attack in parallel is highly inefficient as we saw in Section 8.1.

It appears that the most important future work is still building confidence in the secu-
rity of SIDH. SIDH is still often considered to be a young cryptosystem in the literature
[BL17, p. 5][CCJ+16, p. 4]. However, we saw in Sections 7.7 and 7.8 that the problem of
computing isogenies between supersingular elliptic curves is older than SIDH. Regardless,
the isogenies in SIDH are special cases, as mentioned in for example [DFJP14, Section
5.1] and [GPST16, Section 6], since they give relatively short walks in the isogeny graphs
G`A and G`B . There is also the open question of how the torsion points φA(PB), φA(QB),
φB(PA) and φB(QA) effect the hardness of finding the parties secret isogenies. The recent
contribution of [Pet17] that we mentioned in Section 8.3 is very interesting, it is the first
passive attack that utilises the torsion points to attack certain ”unbalanced” variants of
SIDH. Whether these attacks can ever be generalised and applied to SIDH remains to be
seen. One can safely say that more cryptanalysis is needed before considering using SIDH
in a production environment. However, with regards to performance, SIDH is already
today a good alternative for a special purpose low-bandwith PQ-KEM.

29This estimation was based on, among other things, an assumption about the time complexity of
Fp2 -arithmetic, see Section 9.10.5 for details.

10.1 Future work 88

10.1 Future work

Besides building confidence in the security of SIDH the most important ideas for future
work that we have highlighted in this thesis are the following.

• Estimating the computational work in the quantum claw attack against
SIDH. As discussed in the beginning of Section 10 it may be interesting to know
how small we can make the quantum bit security λ. Hence we would like to have
concrete estimates of the computational work in the quantum claw attack, and
not just asymptotic query bounds. Two possible approaches to start with were
mentioned in Section 9.12. Both approaches likely involve estimating the size of a
quantum circuit for computing walks in G`A and G`B . As explained in the beginning
of Section 10, making λ as small as possible may be very interesting as the public
key sizes grow linearly with λ in all variants of SIDH. A related question is whether
the quantum claw attack can be efficiently parallelised.

• Implementing compressed static key SIDH. As explained in the beginning
of Section 10, compressed static key SIDH is very interesting due to the minimal
amount of data that needs to be sent between the parties of the key exchange. In
Section 9.8.4 we proposed a KEM scheme built on SIDH that is secure in the sense
of IND-CCA2 in the random oracle model. Given the complexity of an efficient
compressed SIDH implementation such a compressed static key SIDH implementa-
tion should perhaps be built on top of an existing implementation of compressed
ephemeral SIDH. Questions to answer include the following.

– Which shortcuts can Alice take when compressing Bob’s public key (as part
of her validation of his public key)? One shortcut appears to be that she has
already found the torsion basis. She did that when she decompressed Bob’s
public key.

– It appears that an efficient SIDH implementation needs to target a specific
prime (and therefore also a specific security level). Another question is there-
fore which security level(s) to target.

– To this author’s knowledge, the question posed on [KLM+15, p. 18] is still
open: is there some better solution to the key validation problem than Alice
recomputing Bob’s public key? After the powerful attack in [GPST16], any
such proposal may need to come with some sort of security proof.

Several authors [BJS14, Section 6][Pet17, Section 5] discuss avoiding certain starting
curves E0 in SIDH. We note that in static key SIDH, Alice could generate a random
curve E0 using Theorem 7.1.4 and then make the curve E0 (and the torsion points
PA, QA, PB and QB on it) part of her public key pkB. The secret random walk
that generated E0 would be discarded after E0 has been generated. Note that this
approach increases the size of Alice’s static public key.

89

References

[ABB+] Daniel Augot, Lejla Batina, Daniel J Bernstein, Joppe Bos, Johannes Buch-
mann, Wouter Castryck, Orr Dunkelman, Tim Güneysu, Shay Gueron,
Andreas Hülsing, et al. Initial recommendations of long-term secure post-
quantum systems (2015). URL: https://pqcrypto. eu. org/docs/initial-
recommendations. pdf. Citations in this document, 16.

[ABLS07] Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin. Non-
backtracking random walks mix faster. Communications in Contemporary
Mathematics, 9(04):585–603, 2007.

[AFJ14] Reza Azarderakhsh, Dieter Fishbein, and David Jao. Efficient implemen-
tations of a quantum-resistant key-exchange protocol on embedded sys-
tems. Technical report, Technical report, 2014, URL: http://cacr. uwater-
loo. ca/techreports/2014/cacr2014-20. pdf, 2014.

[AJK+16] Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christo-
pher Leonardi. Key compression for isogeny-based cryptosystems. In
Proceedings of the 3rd ACM International Workshop on ASIA Public-Key
Cryptography, pages 1–10. ACM, 2016.

[BB06] John A Beachy and William D Blair. Abstract algebra. Waveland Press,
2006.

[BBD09] Daniel J Bernstein, Johannes Buchmann, and Erik Dahmen. Post-quantum
cryptography. Springer Science & Business Media, 2009.

[BDH+01] Harry Buhrman, Christoph Durr, Mark Heiligman, Peter Hoyer, Frédéric
Magniez, Miklos Santha, and Ronald De Wolf. Quantum algorithms for
element distinctness. In Computational Complexity, 16th Annual IEEE
Conference on, 2001., pages 131–137. IEEE, 2001.

[BDH11] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. Xmss-a prac-
tical forward secure signature scheme based on minimal security assump-
tions. In International Workshop on Post-Quantum Cryptography, pages
117–129. Springer, 2011.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Re-
lations among notions of security for public-key encryption schemes. In
Advances in Cryptology—CRYPTO’98, pages 26–45. Springer, 1998.

[Bea02] Stephane Beauregard. Circuit for shor’s algorithm using 2n+ 3 qubits.
arXiv preprint quant-ph/0205095, 2002.

[BF16] Joppe W. Bos and Simon Friedberger. Fast arithmetic modulo 2xpy ± 1.
Cryptology ePrint Archive, Report 2016/986, 2016. http://eprint.iacr.
org/2016/986.

[BGJGP05] Matthew H Baker, Enrique González-Jiménez, Josep González, and Bjorn
Poonen. Finiteness results for modular curves of genus at least 2. American
Journal of Mathematics, 127(6):1325–1387, 2005.

90

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of
hash and claw-free functions. LATIN’98: Theoretical Informatics, pages
163–169, 1998.

[BJS14] Jean-François Biasse, David Jao, and Anirudh Sankar. A quantum algo-
rithm for computing isogenies between supersingular elliptic curves. In
International Conference in Cryptology in India, pages 428–442. Springer,
2014.

[BL17] Daniel J. Bernstein and Tanja Lange. Post-quantum cryptography—
dealing with the fallout of physics success. Cryptology ePrint Archive,
Report 2017/314, 2017. http://eprint.iacr.org/2017/314.

[BLP08] Daniel J Bernstein, Tanja Lange, and Christiane Peters. Attacking and
defending the mceliece cryptosystem. In International Workshop on Post-
Quantum Cryptography, pages 31–46. Springer, 2008.

[Brö09] Reinier Bröker. Constructing supersingular elliptic curves. J. Comb. Num-
ber Theory, 1(3):269–273, 2009.

[BSS99] Ian F Blake, Gadiel Seroussi, and Nigel Smart. Elliptic curves in cryptog-
raphy, volume 265. Cambridge university press, 1999.

[CCJ+16] Lily Chen, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene
Peralta, Ray Perlner, and Daniel Smith-Tone. Report on post-quantum
cryptography. US Department of Commerce, National Institute of Stan-
dards and Technology, 2016.

[CH17] Craig Costello and Huseyin Hisil. A simple and compact algorithm for
sidh with arbitrary degree isogenies. Cryptology ePrint Archive, Report
2017/504, 2017. http://eprint.iacr.org/2017/504.

[CJL+16a] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray
Perlner, and Daniel Smith-Tone. Report on post-quantum cryptography.
National Institute of Standards and Technology Internal Report, 8105, 2016.

[CJL+16b] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes,
and David Urbanik. Efficient compression of sidh public keys. Cryptology
ePrint Archive, Report 2016/963, 2016. http://eprint.iacr.org/2016/
963.

[CJS14] Andrew Childs, David Jao, and Vladimir Soukharev. Constructing elliptic
curve isogenies in quantum subexponential time. Journal of Mathematical
Cryptology, 8(1):1–29, 2014.

[CLG09] Denis X Charles, Kristin E Lauter, and Eyal Z Goren. Cryptographic hash
functions from expander graphs. Journal of CRYPTOLOGY, 22(1):93–113,
2009.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms
for supersingular isogeny diffie-hellman. In Annual Cryptology Conference,
pages 572–601. Springer, 2016.

91

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-
key encryption schemes secure against adaptive chosen ciphertext attack.
SIAM Journal on Computing, 33(1):167–226, 2003.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal gaussians. In Advances in Cryptology–
CRYPTO 2013, pages 40–56. Springer, 2013.

[DF17] Luca De Feo. Mathematics of isogeny based cryptography. 2017.

[DFJP14] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies. Journal of Math-
ematical Cryptology, 8(3):209–247, 2014.

[DG16] Christina Delfs and Steven D Galbraith. Computing isogenies between
supersingular elliptic curves over {\ mathbb {F}} p. Designs, Codes and
Cryptography, 78(2):425–440, 2016.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography.
IEEE transactions on Information Theory, 22(6):644–654, 1976.

[DPV06] Sanjoy Dasgupta, Christos H Papadimitriou, and Umesh Vazirani. Algo-
rithms. McGraw-Hill, Inc., 2006.

[DS05] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial
signature scheme. In International Conference on Applied Cryptography
and Network Security, pages 164–175. Springer, 2005.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Crypto, volume 99, pages 537–554.
Springer, 1999.

[FO00] Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of
public-key encryption at minimum cost. IEICE transactions on fundamen-
tals of electronics, communications and computer sciences, 83(1):24–32,
2000.

[Gal99] Steven D Galbraith. Constructing isogenies between elliptic curves over
finite fields. LMS Journal of Computation and Mathematics, 2:118–138,
1999.

[Gal12] Steven D Galbraith. Mathematics of public key cryptography. Cambridge
University Press, 2012.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryp-
tosystems from lattice reduction problems. In Advances in Cryptology-
CRYPTO’97: 17th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 1997. Proceedings, page 112. Springer,
1997.

[GLRS16] Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Stein-
wandt. Applying grover’s algorithm to aes: quantum resource estimates.
In International Workshop on Post-Quantum Cryptography, pages 29–43.
Springer, 2016.

92

[GPST16] Steven D Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti.
On the security of supersingular isogeny cryptosystems. In Advances in
Cryptology–ASIACRYPT 2016: 22nd International Conference on the The-
ory and Application of Cryptology and Information Security, Hanoi, Viet-
nam, December 4-8, 2016, Proceedings, Part I 22, pages 63–91. Springer,
2016.

[Gro96] Lov K Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219. ACM, 1996.

[GV17] Steven D. Galbraith and Frederik Vercauteren. Computational problems in
supersingular elliptic curve isogenies. Cryptology ePrint Archive, Report
2017/774, 2017. http://eprint.iacr.org/2017/774.

[GW17] Alexandre Gélin and Benjamin Wesolowski. Loop-abort faults on supersin-
gular isogeny cryptosystems. Cryptology ePrint Archive, Report 2017/374,
2017. http://eprint.iacr.org/2017/374.

[HHGP+] J Hoffstein, N Howgrave-Graham, J Pipher, JH Silverman, and W Whyte
NTRUSign. Digital signatures using the ntru lattice. Preliminary draft, 2.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph Silverman. Ntru: A ring-based
public key cryptosystem. Algorithmic number theory, pages 267–288, 1998.

[HPSS08] Jeffrey Hoffstein, Jill Pipher, Joseph H Silverman, and Joseph H Silverman.
An introduction to mathematical cryptography, volume 1. Springer, 2008.

[JDF11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. In International Workshop on
Post-Quantum Cryptography, pages 19–34. Springer, 2011.

[KAJMK16a] Brian Koziel, Reza Azarderakhsh, David Jao, and Mehran Mozaffari-
Kermani. On fast calculation of addition chains for isogeny-based cryp-
tography. Proc. eprint 2016, 1045:1–20, 2016.

[KAJMK16b] Brian Koziel, Reza Azarderakhsh, David Jao, and Mehran Mozaffari-
Kermani. On fast calculation of addition chains for isogeny-based cryp-
tography. Proc. eprint 2016, 1045:1–20, 2016.

[KAKJ16] Brian Koziel, Reza Azarderakhsh, Mehran Mozaffari Kermani, and David
Jao. Post-quantum cryptography on fpga based on isogenies on elliptic
curves. IEEE Transactions on Circuits and Systems I: Regular Papers,
2016.

[KAMK16] Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari-Kermani. Fast
hardware architectures for supersingular isogeny diffie-hellman key ex-
change on fpga. In Progress in Cryptology–INDOCRYPT 2016: 17th In-
ternational Conference on Cryptology in India, Kolkata, India, December
11-14, 2016, Proceedings 17, pages 191–206. Springer, 2016.

[Kin17] Marcus Kindberg. A usability study of post-quantum algorithms. 2017.

93

[KLM+15] Daniel Kirkwood, Bradley C Lackey, John McVey, Mark Motley, Jerome A
Solinas, and David Tuller. Failure is not an option: Standardization issues
for post-quantum key agreement. In Talk at NIST workshop on Cyberse-
curity in a Post-Quantum World: http://www. nist. gov/itl/csd/ct/post-
quantum-crypto-workshop-2015. cfm, 2015.

[Koc95] Paul C Kocher. Cryptanalysis of diffie-hellman, rsa, dss, and other systems
using timing attacks, 1995.

[Koh96] David Kohel. Endomorphism rings of elliptic curves over finite fields. PhD
thesis, University of California at Berkeley, 1996.

[McE78] Robert J McEliece. A public-key cryptosystem based on algebraic. Coding
Thv, 4244:114–116, 1978.

[Mes86] Jean-Francois Mestre. La méthode des graphes. exemples et applications.
In Proceedings of the international conference on class numbers and funda-
mental units of algebraic number fields (Katata), pages 217–242, 1986.

[MSS07] Frédéric Magniez, Miklos Santha, and Mario Szegedy. Quantum algorithms
for the triangle problem. SIAM Journal on Computing, 37(2):413–424,
2007.

[NR06] Phong Q Nguyen and Oded Regev. Learning a parallelepiped: Cryptanal-
ysis of ggh and ntru signatures. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 271–288.
Springer, 2006.

[NX09] Harald Niederreiter and Chaoping Xing. Algebraic geometry in coding the-
ory and cryptography. Princeton University Press, 2009.

[Pat96] Jacques Patarin. Hidden fields equations (hfe) and isomorphisms of poly-
nomials (ip): Two new families of asymmetric algorithms. In International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 33–48. Springer, 1996.

[Pei14] Chris Peikert. Lattice cryptography for the internet. In International Work-
shop on Post-Quantum Cryptography, pages 197–219. Springer, 2014.

[Pet09] Christophe Petit. Cryptographic hash functions from expander graphs, phd
thesis. 2009.

[Pet17] Christophe Petit. Faster algorithms for isogeny problems using torsion
point images. Cryptology ePrint Archive, Report 2017/571, 2017. http:

//eprint.iacr.org/2017/571.

[PZ03] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algo-
rithm for elliptic curves. arXiv preprint quant-ph/0301141, 2003.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM), 56(6):34, 2009.

94

[San15] Anirudh Sankar. Classical and quantum algorithms for isogeny-based cryp-
tography. 2015.

[Sil09] Joseph H Silverman. The arithmetic of elliptic curves, volume 106. Springer
Science & Business Media, 2009.

[SM16] Douglas Stebila and Michele Mosca. Post-quantum key exchange for
the internet and the open quantum safe project. Technical report,
Cryptology ePrint Archive, Report 2016/1017, 2016. http://eprint. iacr.
org/2016/1017, 2016.

[Sto10] Anton Stolbunov. Constructing public-key cryptographic schemes based
on class group action on a set of isogenous elliptic curves. Adv. in Math.
of Comm., 4(2):215–235, 2010.

[Sut15] Andrew Sutherland. 18.783 Elliptic Curves (Spring 2015) Lecture Notes.
Massachusetts Institute of Technology: MIT OpenCourseWare, 2015.

[Tan09] Seiichiro Tani. Claw finding algorithms using quantum walk. Theoretical
Computer Science, 410(50):5285–5297, 2009.

[Tat66] John Tate. Endomorphisms of abelian varieties over finite fields. Inven-
tiones mathematicae, 2(2):134–144, 1966.

[Ti17] Yan Bo Ti. Fault attack on supersingular isogeny cryptosystems. Cryptol-
ogy ePrint Archive, Report 2017/379, 2017. http://eprint.iacr.org/

2017/379.

[Vaz05] UV Vazirani. lecture notes on qubits, quantum mechanics, and computers
for chem/cs/phys191. University of California, Berkeley, 2005.

[Vél71] Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér.
AB, 273:A238–A241, 1971.

[Was08] Lawrence C Washington. Elliptic curves: number theory and cryptography.
CRC press, 2008.

[Zal99] Christof Zalka. Grover’s quantum searching algorithm is optimal. Physical
Review A, 60(4):2746, 1999.

[Zha05] Shengyu Zhang. Promised and distributed quantum search. In Interna-
tional Computing and Combinatorics Conference, pages 430–439. Springer,
2005.

A Notions of formal security 95

Appendix

A Notions of formal security

In this section we review the notions of security in the sense of IND-CPA, IND-CCA1 and
IND-CCA2 for a public key encryption scheme and for a key encapsulation mechanism
(KEM). First we recall the definition of a random oracle.

Definition A.1. Let A and B be finite subsets of {0, 1}∗. A random oracle H : A→ B
is a function such that for each a ∈ A, H(a) ∈R B. Note that H is a function in the sense
that H(a) for an input a is fixed, it is chosen when H is instantiated.

Let Π = (K, E ,D) be a public key encryption scheme:

• The probabilistic algorithm K(1λ) generates public parameters pp of the scheme, a
public key pkA for Alice and a secret key skA for Alice, in polynomial time in the
security parameter λ.

• The (possibly probabilistic) algorithm EpkA encrypts an element in the message space
of the scheme and outputs an element c in the ciphertext space of the scheme.

• The deterministic algorithm DskA decrypts an element in the ciphertext space and
outputs the decrypted message.

Sometimes whenK is clear from the context we simplify the notation and write Π = (E ,D).
In the random oracle model, each party that is using Π is assumed to have access to the
same random oracle H (hence the algorithms in Π may use H). The following definition of
the IND-CPA game, IND-CCA1 game and IND-CCA2 game for a public key encryption
scheme is from [BDPR98, Definition 2.1].

Definition A.2. The IND-ATK game, with ATK ∈ {CPA, CCA1, CCA2}, for Π =
(K, E ,D) is the following. Let A = (A1, A2) be a pair of probabilistic polynomial time
algorithms. Let ε be the oracle that returns the empty string on any query. Let O1 and
O2 be oracles such that

1. If ATK = CPA, then O1 = O2 = ε.

2. If ATK = CCA1, then O1 = DskA and O2 = ε.

3. If ATK = CCA2, then O1 = O2 = DskA .

In the random oracle model, A is also given oracle access to H. Let

1. (pp, pkA, pkB)← K(1λ).

2. (x0, x1, s) ← A1(O1, pp, pkA). The variable s is a state variable that A1 can use to
transfer its state to A2.

3. c← EpkA(xb) with b ∈R {0, 1}.

Note that A may not query O2 on c and that we require |x0| = |x1|. The algorithm-pair
A wins in the IND-ATK game if

b← A2(O2, cb, s)

A Notions of formal security 96

Because of the state variable s we sometimes for simplicity refer to A = (A1, A2) as
just a single algorithm A.

Definition A.3. A public key encryption scheme Π is secure in the sense of IND-
ATK if for every polynomial time (in λ) algorithm A there is a negligible (in λ) function
µ such that

Pr[A wins in the IND-ATK game] ≤ 1

2
+ µ

For any public key encryption scheme to be even IND-CPA secure, the encryption
function EpkA must be probabilistic.

Following [Pei14, p. 4], a Key encapsulation mechanism (KEM) is defined by
four algorithms.

1. The probabilistic algorithm Setup(1λ) generates public parameters of the mechanism
in polynomial time in the security parameter λ.

2. The probabilistic algorithm Gen(pp) generates a public key pkA and a secret key
skA for Alice.

3. The probabilistic algorithm Encaps(pp, pkA) generates an ephemeral key K. It then
outputs K and the encapsulation c of K.

4. The deterministic algorithm Decaps(skA, c) decapsulates c and outputs K.

In the random oracle model, each party that is using the KEM is assumed to have
access to the same random oracle H (hence the algorithms in the KEM may use H). We
may choose to let (pkA, skA) be static, like in a public key encryption scheme. Following
[CS03, Section 7.1.2], the IND-CPA game, IND-CCA1 game and IND-CCA2 game in the
context of a KEM can be defined in the following way.

Definition A.4. The IND-ATK game, with ATK ∈ {CPA, CCA1, CCA2}, for a given
KEM is the following. Let A = (A1, A2) be a pair of probabilistic polynomial time
algorithms. Let ε be the oracle that returns the empty string on any query. Let O1 and
O2 be oracles such that

1. If ATK = CPA, then O1 = O2 = ε.

2. If ATK = CCA1, then O1 = Decaps(skA, ·) and O2 = ε.

3. If ATK = CCA2, then O1 = O2 = Decaps(skA, ·).

In the random oracle model, A is also given oracle access to H. Let

1. pp← Setup(1λ).

2. (pkA, skA)← Gen(pp).

3. s← A1(O1, pp, pkA).

4. (c,K)← Encaps(pp, pkA).

5. b ∈R {0, 1}.

6. K ′ = K if b = 0. If b = 1, then let K ′ ∈R {0, 1}|K|.

A Notions of formal security 97

Note that A may not query O2 on c. The algorithm-pair A wins in the IND-ATK game
if

b← A2(O2, c,K
′, s)

Because of the state variable s we sometimes for simplicity refer to A = (A1, A2) as
just a single algorithm A.

Definition A.5. A KEM is secure in the sense of IND-ATK if for every polynomial
time (in λ) algorithm A there is a negligible (in λ) function µ such that

Pr[A wins in the IND-ATK game] ≤ 1

2
+ µ

