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Abstract

In this thesis we will study a class of impartial games called octal games.
One can think informally of such games as a pile of tokens from which each
of 2 players alternatingly takes away some number of tokens with every move.
Some moves also allow the leftover tokens in the pile to be split up into 2 new
piles. The player who cannot take away any more tokens loses.

For any impartial game, in particular any octal game, we can attribute a
Grundy-value. These values tell us, roughly speaking, who is winning the
game. They are also much easier to compute than a ”brute-force” approach.
The Grundy-values of an octal game can be conveniently recorded by a nim-
sequence. It is conjectured that for all octal games, the corresponding nim-
sequence is ultimately periodic. For several octal games, this has already been
proven to be true. However, there still remains several octal games where it is
still unknown whether or not the nim-sequence will be ultimately periodic.
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1 INTRODUCTION

1 Introduction
In this section we will present an introduction to Combinatorial game theory and in
particular the theory for impartial games. Unlike many authors who introduce the
subject by the game of Nim, we will present it from a more abstract point of view.
The most important result of this section is the Sprague-Grundy function and how
it can be used to compute sums of games which is the foundation of the thesis.

1.1 Combinatorial games
While it is not hard to define combinatorial games formally [1], we will simply give
the informal description of how to think of them. Namely, a combinatorial game is
a game that satisfies the following conditions:

1. There are two players, who alternate moves.

2. There is no chance involved.

3. The game will eventually end, even if the players do not alternate.

4. Both players have perfect information. This means that the current position,
all of the reachable positions and all previous positions, are known to both
players at all times.

5. The player who cannot make a move loses.

The third condition is sometimes dropped to allow games where an infinite number
of moves is possible. These types of combinatorial games are called loopy games.
Combinatorial games that are not loopy are called loopfree games. Chess is in
theory an example of a loopfree game although in practice one of the two players
will often claim a draw by the so called 50-move rule.

The last condition is called the normal play convention. It may be exchanged
by the player who cannot make a move wins’, in which case it is called the misère
play convention. The condition can also be dropped altogether to allow games
with draws. Tic-Tac-Toe is an example of a game that can end in a draw.

In this thesis we will only study combinatorial games that are loopfree and satisfies
the normal play convention. This categorisation of combinatorial games disqualifies
quite a few common games. As noted above, neither Chess nor Tic-Tac-Toe qualifies.
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1.2 Impartial games 1 INTRODUCTION

For more on combinatorial games we refer to Winning Ways [1] and On numbers and
games [2].

1.2 Impartial games
We say that a combinatorial game is an impartial game if, at any given position,
the legal moves of both of the two players are the same. This suggests the following
formal definition.

Definition 1.1. (Axioms of impartial games)

i) An impartial game is a set of impartial games.

ii) There is no infinite chain of impartial games G1 3 G2 3 ... N

Intuitively speaking, the first axiom tells us that impartial games are completely
determined by its moves. It should be noted that this definition of impartial games
is not circular as ∅ vacuously satisfies the first axiom. The second axiom tells us
that the impartial game will eventually end, no matter what moves are made. The
second axiom is usually called the Descending Game Condition.

A combinatorial game that is not impartial is called a partisan game. One ex-
ample of such a game is Tic-Tac-Toe.
Remark 1.1. We will from now on only consider impartial games unless otherwise
stated. For convenience, we will thus simply say ‘game’, when we mean ‘impartial
game’.

Definition 1.2. Let G be a game.

i) The elements of G are called the options of G. An element of G is called an
option of G

ii) The positions of G are G and all positions of every option of G. An element
in the set of positions is called a position of G.

iii) A position which has no option is called terminal. N

A game is in other words also a position. A position can on the other hand be
thought of as a game where we start from the given position. We will, therefore, use
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1.2 Impartial games 1 INTRODUCTION

the words ‘game’ and ‘position’ interchangeably.

The axioms of impartial games does allow a game to be an infinite set, i.e. a game
where we at one point have an infinite amount of moves. Most games studied in Com-
binatorial Game Theory only has a finite number of moves in each given position,
justifying the following definition.

Definition 1.3. Let G be a game. We say that G is a short game if it only has a
finite number of positions. N

We start by presenting the classic theorem of Conway Induction[2]. This can be
seen as an analogue of normal induction but for impartial games. It is also a very
handy tool when working with impartial games, and is more practical to work with
than the Descending Game Condition. In fact, it turns out that Conway Induction
is equivalent to the Descending Game Condition, which we will also prove.

Theorem 1.1 (Conway Induction). Let P be a property that a game may have. If
any game G has P whenever all options of G has P , then all games have P .

Proof. By contradiction. Suppose that G1 is a game that does not have P . Then
there is an option of G2 ∈ G1 that does not have P since otherwise it would contradict
the hypothesis. But then, using an inductive argument, we can create an infinite
sequence of games

G1 3 G2 3 . . .

such that no games in this sequence has P . Note that none of these games can be
terminal because a terminal game must vacuously have P . �

Theorem 1.2. Conway Induction implies the Descending Game Condition.

Proof. By Conway Induction. Let P be the following property of a game G1: There
is no infinite chain of games

G1 3 G2 3 . . .

Indeed, suppose G is any game and all options of G has P , then so must G. Thus
every game has P . �

Note that unlike normal induction, Conway Induction does not need a base case
to work. This is because a terminal game vacuously satisfies any such property P
since it has no option. It is worth mentioning that Conway Induction can actually
be generalized to partisan games [2], with an analogue proof.
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1.2 Impartial games 1 INTRODUCTION

Since the Descending Game Condition and Conway Induction are equivalent, we
could pose the question: Why define impartial games using the Descending Game
Condition and not the Conway Induction? There are two main reasons for this. The
first one is due to convention, as e.g. Conway[2] defined games in this way. The
second one is due to the fact that the Descending Game condition is arguably a
more natural and intuitive property than Conway Induction.

The above theorems are in fact special cases of a more general theory about well-
funded posets. Consider the set {P} of positions of a game G together with the
partial order ≤, where P1 ≤ P2 if P1 is a position of P2. Then ({P} ,≤) is a poset.
Furtheremore, it is well-funded because of the Descending Game Condition. We will
not delve more into the theory of posets in this thesis but the poset structure of
impartial games can still be useful as an alternative characterization.

An important question about combinatorial games in general is which one of the
two players has a winning strategy. For impartial games, we can classify every posi-
tion in the following way.
Definition 1.4. Let G be a position of a game.

i) G is in N if there is an option of G which is in P .

ii) G is in P if every option of G is in N . N
We say that a game that lies in N is a next player game. This means that the

player to move (the next player) has a winning strategy. Likewise, we call a game
that lies in P a previous player game. This means that the player that has just made
a move (the previous player) has a winning strategy.
Example 1.1. Some simple examples of impartial games follows below.
i) The terminal game ∅ lies in P and not in N .

ii) The game {∅} lies in N .

iii) The game {{∅} , ∅} lies in N .
F

Before we proceed, we will show that P and N are disjoint, i.e. no player can be
both winning and losing at the same time. Furthermore, we want to prove that P and
N are enough to categorize all games. In other words, there is no third alternative
like draws.
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Theorem 1.3. Let G be a game, then G is in exactly one of P and N .
Proof. By Conway Induction. Let P be the property of a game G: The game G lies
in exactly one of P and N .

Let G be any game. If all options of G satisfies P , then we are in exactly one
out of the two below cases. We show that the inductive step holds in both cases.

Case 1: Suppose that all options of G is in N and no option of G is in P . Then,
by definition, G is in P and not in N .
Case 2: Suppose that there is an option of G that is not in N and there is an option
of G that is in P . Then, by definition, G is in N and not in P . �

Note that certain player having a winning strategy does not necessarily mean
that they will win no matter what move they make. Rather that there exist moves
that will make them win no matter what the other player does. In many examples of
combinatorial games, one player will have several options where only some of them
will surely result in a win.

1.3 The Sprague-Grundy function
In this section we will define the Sprague-Grundy function, which is a function defined
on short games. This function turns out to be a very powerful tool in classifying such
games. Before that, we need to define a new function called mex.
Definition 1.5. The minimal excluded number of a set S ⊂ N, denoted mex, is the
function

mex (S) = min {n ∈ N | n /∈ S} .

N
More informally, mex is the smallest natural number that is not in the given set.

Example 1.2. mex({0, 1, 2, 5, 6, 83}) = 3 and mex(∅)=0. F
Definition 1.6. Let G be short game. The Sprague-Grundy function g(G), is defined
recursively as

g(G) =




0 if G is terminal
mex {g(G′) | G′ ∈ G} otherwise

We say that the Grundy-value of G is g(G). The set E = {g(G′)|G′ ∈ G} is called
the excludants of G and e ∈ E is called an excludant of G. N
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1.4 Sum of games 1 INTRODUCTION

We need the hypothesis that G is short because mex(N) is not defined. It is
possible to generalize mex so that mex(N) = ∞, as can be seen in [3]. This is not
needed in this thesis so we settle with this simpler definition instead.

One important consequence of this definition is that no position can have the same
Grundy-value as any of its options. Another consequence is that every position with
a positive Grundy-value will have at least one option which is a has a Grundy-value
equal to 0 and every position that is not terminal with Grundy-value equal to 0 will
only have options with positive Grundy-value. These observations are the main tools
when working with the Sprague-Grundy function.

Theorem 1.4. Let G be a short game. Then G is in N if and only if g(G) > 0.

Proof. By Conway Induction. Let P be the following property of a game G: The
game G lies in N if and only if g(G) > 0.

Let G be any game. If all options of G satisfies P , then we are in exactly one
out of the two below cases. We show that the inductive step holds in both cases.

Case 1: Suppose that for all options G′ ∈ G, we have g(G′) > 0 and G′ is in
N . Then, by definition, g(G) = 0 and G lies in P .
Case 2: Suppose that that there is an option G′ ∈ G such that g(G′) = 0 and G′ is
in P . Then, by definition, g(G) > 0 and G is in N . �

1.4 Sum of games
Definition 1.7. Let G and H be games. The sum of the games, denoted G + H is
defined as

G + H = {G + H ′ | H ′ ∈ H} ∪ {G′ + H | G′ ∈ G} .

N

We may think about the sum of G and H as a new game in which each player
can either make a move in G or make a move in H. This game ends when there are
no moves left in neither G nor H.

It follows by the definition that the sum of two games is commutative and asso-
ciative. Therefore, it makes sense to talk about sums of more than two games. We
will use the notation
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1.4 Sum of games 1 INTRODUCTION

n∑

i=1
Gi = G1 + G2 + · · ·+ Gn.

Given some finite number of games G1, . . . , Gn, we want to determine the winner
of ∑n

i=1 Gi. The following example shows that the classes N and P and not strong
enough tools to solve this problem.

Example 1.3. Consider the following statements. We will not prove any of them as
they are trivial consequences of the next theorem.

i) If G lies in P and H lies in P then G + H lies in P .

ii) If G lies in P and H lies in N then G + H lies in N .

iii) If G lies in N and H lies in N then G + H lies in either P or N . For example,
consider the games

G = {∅} , H = {{∅} , ∅} .

Indeed, G and H lies in N but G + G lies in P whereas G + H lies in N .

F

We will now show that the Grundy-function is the tool we need in order to solve
the problem of classifying a sum of games into the classes P and N . However, before
we can state the next theorem, we need to define a new binary operator, namely the
nim-sum.

Definition 1.8. Let x, y ∈ N with binary representation x = (xn . . . x0)2 and y =
(yn . . . y0)2 for some n ∈ N. The nim-sum of x and y, denoted x⊕ y, is defined as

x⊕ y = (xn . . . x0)2 ⊕ (yn . . . y0)2 = (zn . . . z0)2 = z

where zi = xi + yi (mod 2). N

The nim-sum is also known as the bitwise XOR of the binary representation of
two numbers.

Example 1.4. 14⊕ 27 = (01110)2 ⊕ (11011)2 = (10101)2 = 21. F
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1.4 Sum of games 1 INTRODUCTION

The nim-sum is clearly both associative and commutative. It is also clear that
a⊕ 0 = a for all a ∈ N, so 0 is an identity element. Another interesting property
of the nim-sum is that for any a, b ∈ N, we have that a⊕ b = 0 if and only if a = b.
This shows that the nim-sum is a nilpotent operator and that every element is
its own inverse. Lastly, note that a ⊕ b ∈ N for any a, b ∈ N so the nim-sum is a
closed operation in N. This actually shows that that the pair (N,⊕) is a abelian
group. We will not delve deeper into the theory of groups here, but rather refer to
[8] for more information.

The last theorem of the section will truly display the power of the Grundy-function.
It opens the possibilities for breaking many types of games (including octal games,
which we will see later) by computational methods. In the proof of the theorem,
we will use the notation [n]k to denote the k:th bit of n in its binary representation
(the rightmost bit is the 0:th bit). As an example, we get [11]0 = [(1011)2]0 = 1 and
[46]4 = [(101110)2]4 = 0. We will use that one can write [a⊕ b]k = [a]k ⊕ [b]k for any
a, b ∈ N.

Theorem 1.5. Let G and H be short games. Then g(G + H) = g(G)⊕ g(H).

Proof. By Conway Induction. Let P be the following property for a game G + H:

g(G + H) = g(G)⊕ g(H).

Note that for all games G = G + ∅, therefore it actually makes sense to assume that
an arbitrary game is of the form G + H.

Suppose G + H is any game such that all options of G + H has P . Any option
of G + H is either on the form G′ + H with G′ ∈ G or on the form G + H ′ with
H ′ ∈ H. Hence, the excludants of G + H is given by the set

E = {g(G′ + H)|G′ ∈ G} ∪ {g(G + H ′)|H ′ ∈ H} =

= {g(G′)⊕ g(H)|G′ ∈ G} ∪ {g(G)⊕ g(H ′)|H ′ ∈ H} .

Our aim is to show that mex(E) = g(G)⊕ g(H) by showing that E does not contain
g(G)⊕ g(H) but contains every smaller, non-negative integer.

First, note that for any game on the form G′ + H ∈ G + H, we have

g(G′) 6= g(G) ⇐⇒ g(G′)⊕ g(H) 6= g(G)⊕ g(H).

11



2 TAKE-AND-BREAK GAMES

An analogue argument can be made about games on the form G + H ′. This shows
that E does not contain g(G)⊕ g(H).

Next, let n ∈ N be some number such that n < g(G + H). Thus we can define
k ∈ N such that k is the biggest number [g(G + H)]k = 1 and [n]k = 0. This
means that exactly one of [g(G)]k = 1 or [g(H)]k = 1 holds. WLOG, suppose that
[g(G)]k = 1 and [g(H)]k = 0. Then certainly [g(H) ⊕ n]k = 1 and furthermore, for
any k′ > k, we have

[g(G)⊕ g(H)]k′ =[n]k′ ⇐⇒

[g(G)⊕ g(H)]k′ ⊕ [g(H)]k′ =[n]k′ ⊕ [g(H)]k′ ⇐⇒

[g(G)⊕ g(H)⊕ g(H)]k′ = [g(G)⊕ 0]k′ =[g(G)]k′ = [n⊕ g(H)]k′ .

This shows that g(G) > n ⊕ g(H), so there is an option G∗ ∈ G such that g(G∗) =
n⊕ g(H). It follows that

g(G∗ + H) = g(G∗)⊕ g(H) = n⊕ g(H)⊕ g(H) = n⊕ 0 = n ∈ S.

Thus E contains every non-negative number smaller than g(G + H). This completes
the proof.

�

2 Take-and-Break games
We shall now study a type of impartial games called Take-and-Break games. The
structure of these games can intuitively be described as a pile of tokens. Two players
are alternating moves, and with each move one of them will take away a certain
amount of tokens from the pile. In most Take-and-break games the player will have
several choices of tokens to remove and sometimes the player will be able to split up
the pile into two piles. The first player who cannot make a move loses.

2.1 Code-digits
As a motivating example, we start of this section by studying the following classic[1]
game.

Example 2.1. Consider the game of 21 tokens and the legal moves are to take away
one, two or three tokens. This game is in N since the first player can take away one

12



2.1 Code-digits 2 TAKE-AND-BREAK GAMES

token the first move and then make sure that 4 tokens are removed every two moves.
F

Definition 2.1. Let Γ = d0d1d2 . . . be a word (infinite or finite) in the alphabet N.
The string Γ = d0· d1d2 . . . is called code-digits. If there are only a finite number of
non-zero characters in Γ and dk is the last non-zero character, then we simply write
Γ = d0· d1d2 . . . dk. N

We will now give an informal combinatorial definition of Take-and-Break games
and then a more formal, set theoretic one. We will say that an integer n = (nm . . . n1n0)2
contains a power of two 2k if nk = 1. For example, 9 = (1001)2 contains 8 but
22 = (10110)2 does not.

The rules of Take-and-Break games are characterized by some string Γ = d0· d1d2 . . .
of code-digits where d0 does not contain 1 or 2. The game itself can be thought of as
a pile of tokens where it is a legal move to remove i tokens and split up the remaining
tokens into k non-empty piles if di contains 2k. Play continues until there is no pile
with a legal move left.

Naturally, we want these games to obey the axioms of impartial games and as such,
we must prohibit "do-nothing"-moves. This is why we must define d0 to not contain
1 or 2.

Definition 2.2 (Take-and-Break games). Suppose that Γ = d0· d1d2 . . . are code-
digits such that d0 does not contain 1 or 2. A Take-and-Break game Gn under Γ is
set of sets that is defined recursively as

• The set G0 = ∅ ∈ Gn if dn contains 1.

• The set Gk ∈ Gn, for k > 0, if dn−k contains 2.

• The set Gk1 + Gk1 ∈ Gn, for k1, k2 > 0, if dn−(k1+k2) contains 4.

...

• In general, the set ∑j
i=1 Gki

∈ Gn, for ki > 0, if d
n−

∑j

i=1 ki
contains 2j.

If the word is of finite length, we say that Γ is an finite code-digit string. Other-
wise, it is an infinite code-digit string. N

13



2.1 Code-digits 2 TAKE-AND-BREAK GAMES

Under these conditions, it is clear that Take-and-Break games are short impartial
games so it makes sense to talk about the Grundy-value of some pile Gn under the
code digits of Γ.

We will often fix some Take-and-Break game Γ = d0· d1d2 . . . and simply talk about
Gn. In this case, it is tacitly understood that we refer to Gn under the code-digits
of Γ.

Example 2.2. We end the section with a few examples of different Take-and-Break
games.

i) The game 0· 333 is the game where all moves consist of removing either one, two
or three tokens, i.e. the game displayed in Example 2.1. Since we may never
split up a pile into two, this is an example of a so called subtraction game [1][5].
That is, a game where all the octal digits are either 0 or 3.

ii) The game 0· 176 is the game where the legal moves are the following

• If the pile consists of one token, take away that token.
• If the pile consists of two or more tokens, take away two tokens. If there

are two tokens or more tokens remaining after that, optionally one can split
up the pile into two non-empty piles.
• If the pile consists of four or more tokens, take away three tokens. If there

are two tokens or more tokens remaining after that, optionally one can split
up the pile into two non-empty piles.

iii) The game 0· 01 is a very boring game. The only legal move is to take away 2
tokens if there are two tokens left. Hence, the game is N if and only if there are
only two tokens.

iv) The game 0· 8 is the game where the legal moves are those where one token is
removed and the remaining tokens are split up into three non-empty piles.

v) The game 0· 333 . . . , more commonly knows as Nim, is one the first combinatorial
games to be studied. Each move, we may take away any number of tokens from
any pile.

F
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2.2 Nim-sequences 2 TAKE-AND-BREAK GAMES

2.2 Nim-sequences
A convenient way to encode information and study a Take-and-Break is to introduce
the nim-sequence of the game.

Definition 2.3. Suppose that Γ = d0· d1d2 . . . is a (finite or infinite) Take-and-break
game. We say that sequence

g(G0), g(G1), g(G2), · · ·
is the nim-sequence of Γ. N
Knowing all elements of the nim-sequence means that we have, for all intents and

purposes, ‘solved’ the game. This is because by Theorem 1.3 we know exactly what
positions are in P and what positions are in N .

For a general Take-and-Break game, computing the whole nim-sequnce is very hard.
However, for some easier games, it is possible to compute them using combinatorial
arguments. We show two examples of such games below.

Example 2.3. We compute the nim-sequence of the game 0· 333 that was discussed
in the previous examples. We claim that g(Gn) = n (mod 4). This is easily verified
for n = 0, 1, 2. For any game Gn, n ≥ 3, we can play to either Gn−1, Gn−2 or Gn−3.
By the inductive hypothesis, this means that

g(Gn) = mex {Gn−1, Gn−2, Gn−3} =





mex {3, 2, 1} = 0 if n = 0 (mod 4)
mex {3, 2, 0} = 1 if n = 1 (mod 4)
mex {3, 1, 0} = 2 if n = 2 (mod 4)
mex {2, 1, 0} = 3 if n = 3 (mod 4)

.

This proves our claim. Therefore, the nim-sequence of the game is

012301230123 . . .

F
Example 2.4. We compute the nim-sequence of the game Nim that was discussed
in Example 2.2. We claim that g(Gn) = n. This certainly holds for n = 0. On the
other hand, for Gn with n > 0, we can play to G0, G1, . . . , Gn−1. By the inductive
hypothesis, this means that

g(Gn) = mex {G0, G1, . . . , Gn−1} = mex {0, 1, . . . , n− 1} = n

15



2.3 Octal games 2 TAKE-AND-BREAK GAMES

This proves our claim. Therefore the nim-sequence of the game is

0123456789 . . .

F
For nim-sequences that are repeating i.e. periodic, we will sometimes use the

convenient notation

ṅ1n2 . . . ṅp = n1n2 . . . npn1, . . . npn1n2 . . .

So the nim-sequence in Example 2.3 could be written as 0̇123̇. We shall in later
sections give a more detailed analysis of such periodic sequences.

2.3 Octal games
Definition 2.4. Let Γ = d0· d1d2 . . . be some Take-and-Break game (finite or infi-
nite). If di < 8 for all i, we say that Γ is an octal game. A finite Take-and-Break
game that is an octal game, is called a finite octal game. An octal game that is not
a finite octal game is called infinite octal game. N

Informally we can think of octal games as the Take-and-Break games where no
moves split up any pile into more than two piles. We note that all games presented
in Example 2.2 were octal games except for 0· 8.

One could ask why we should study octal games rather than more general the-
ory about Take-and-Break games? This is simply because octal games behave much
”nicer” compared to general Take-and-Break games. One could just as well study
games where some legal moves consist of splitting up a pile into three piles, these
games are called hexadecimal games. Hexadecimals are in general much harder to
solve and can behave very ”wild” in comparison to octal games as can be seen in
[1][5]. For example, Theorem 2.3 in the next section does not hold if we change
”octal game” to ”hexidecimal game”.

To reduce the computational complexity, it is important to note that due to symme-
try, we have

S = {g(Ga)⊕ g(Gb) | a, b ∈ N, a + b = n}

= {g(Ga)⊕ g(Gb) | a, b ∈ N, a ≤ b, a + b = n} .

Therefore, we only need to compute half of the possible nim-sums in order to
establish mex(S). We show an application of this in the next example.
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Example 2.5. We will compute the Grundy-value of G10 in the octal game 0· 176
that was discussed in Example 2.2. Suppose that we know, from previous computa-
tions, that the first 10 numbers in the corresponding nim-sequence is

0, 1, 1, 0, 2, 2, 3, 4, 4, 1.

Since G10 has only a few possible moves (recall Example 2.2) we can determine
its Grundy value by some relatively simple computations. Here, we use the sum of
games properties that was discussed in section 1.4 to compute the Grundy-values.

g(G10) = mex








g(G8) = 4, g(G7 + G1) = 5,

g(G6 + G2) = 2, g(G5 + G3) = 2
g(G4 + G4) = 0, g(G7) = 4
g(G6 + G1) = 2, g(G5 + G2) = 3,

g(G4 + G3) = 2








= 1

Since 1 is indeed the smallest integer that does not lie in the above set. F

Even though the Sprague-Grundy function is a very powerful tool when analyzing
octal games, we can sometimes deduce some interesting results just by studying their
combinatorial structure. One example of this is shown below.

Theorem 2.1. Let Γ = d0.d1d2 . . . be an octal game. If there is i even and a j odd
such that di and dj contains 4, then there are only finitely many n such that Gn is
in P.

Proof. Its sufficient to show that there are no n ≥ max(i, j) + 2 such that Gn is in
P . To prove this, we divide into cases. If n is even, then a = (n− i)/2 is a positive
integer so Ga + Ga ∈ Gn. This option has Grundy-value

g(Ga + Ga) = g(Ga)⊕ g(Ga) = 0

so it is in P by Theorem 1.4. Hence Gn lies in N . If n is odd, then b = (n− j)/2 is
a positive integer so Gb + Gb ∈ Gn and a similar argument proves that Gn is in N .
This exhausts all cases so we are done. �

2.4 Periodicity of nim-sequences
Definition 2.5. A sequence a0, a1, a2 . . . is said to be
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i) Ultimately periodic with period p > 1 if there exists n′ ∈ N such that an = an+p

for all n ∈ N, n ≥ n′ and there is no smaller p such that this holds. If n′ = 0,
we say that the sequence is periodic.

ii) Arithmetic periodic with period p > 1 and saltus s > 0 if there exists n′ ∈ N
such that an + s = an+p for all n ∈ N, n ≥ n′.

The smallest possible such n′ is called the preperiod. N
In Example 3, we showed that the game 0· 33 had a periodic nim-sequence. Below,

we show a slightly less trivial example of a game whose nim-sequence is ultimately
periodic.
Example 2.6. Once again, consider the game 0· 176 that was discussed previous in
examples.

0 1 1 0 2 2 3 4
4 1 1 6 2 2 3 4
4 1 1 6 6 3 3 2
4 1 1 6 6 3 3 4
4 1 1 6 6 3 3 4
4 1 1 6 6 3 3 4
4 1 1 6 6 3 3 4
4 1 1 6 6 3 3 4
4 1 1 6 6 3 3 4 . . .

Note that, except for the values in bold, it appears that the above sequence is
ultimately periodic with preperiod 24 and period 8. F

Without any more theory, we cannot tell if this apparent ultimate periodicity
is persistent throughout all values. The following theorem is a key ingredient as
it shows that it we can confirm that a nim-sequence is ultimately periodic by just
computing a finite number of Grundy-values.
Theorem 2.2 (Guy-Smith Periodicity Theorem). Let Γ be a finite octal game Γ =
d0· d1d2 . . . dk (with dk non-zero), let n′ ∈ N and p ∈ N+. Suppose that for all n ∈ N
satisfying n′ + p ≤ n ≤ 2n′ + 2p + k, the following equality holds:

g(Gn) = g(Gn−p).
If there are no smaller n′, p with this property, then g(Gn) = g(Gn−p) for all n ≥
n′ + p, i.e. Gn is ultimately periodic with period p and preperiod n′.

18
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Proof. We will prove that the equality g(Gn) = g(Gn−p) holds for n = 2n′+2p+k+1.
We do this by showing that any excludant of Gn is an excludant of Gn−p and vice
versa. From this it follows that their Grundy-values must be the same.

First, suppose that we have an option on the form Ga + Gb ∈ Gn (if an option
is to one pile or to no pile at all, then we just let at least one of a, b = 0, so it makes
sense to assume that an option is on this form). This means that

n = 2n′ + 2p + k + 1 ≤ a + b + k ⇐⇒

2n′ + 2p + 1 ≤ a + b.

So at least one of a and b is at least as big as n′ + p + 1. WLOG, we may assume
that a has this property. Thus, we can safely assume that Ga−p + Gb ∈ Gn−p since
Ga−p must be non-empty pile. Note that a < n since if a = n, this would be a
”do-nothing”-move. Hence, we get that

g(Ga + Gb) = g(Ga)⊕ g(Gb) = g(Ga−p)⊕ g(Gb) = g(Ga−p + Gb).

So any excludant of Gn is an excludant of Gn−p.

Next, suppose that we have an option on the form Gc +Gd ∈ Gn−p. This means that

n− p = 2n′ + p + k + 1 ≤c + d + k ⇐⇒

2n′ + p + 1 ≤c + d.

So at least one of c and d is at least as big as n′+ 1. WLOG, assume that c has this
property. Hence, we get that

g(Gc + Gd) = g(Gc)⊕ g(Gd) = g(Gc+p)⊕ g(Gd) = g(Gc+p + Gd).

This shows that every excludant of Gn−p is an excludant of Gn. This shows that
g(Gn) = g(Gn−p), where n = 2n′+2p+k. Using induction and an analogue argument,
we can now prove that the equality holds for all n. This completes the proof. �
Example 2.7. In Example 2.6, we saw that nim-sequence of 0· 176 appeared to be
ultimately periodic with preperiod 24 and period 8. By Theorem 1, we need to only
to compute the first

2 · 24 + 2 · 8 + 3 = 67
Grundy-values to confirm that the nim-sequence is ultimately periodic. In the above
table, we computed 72, so we have indeed the confirmed that the nim-sequence is
ultimately periodic. F
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Example 2.8. We can now give an alternative proof that the nim-sequence of 0· 333
is periodic with period 4. Using Theorem 1, we need only to compute

0 · 2 + 4 · 2 + 3 = 11

Grundy-values to confirm the periodicity of the nim-sequence. F

Several questions arise when studying the nim-sequences of octal games in gen-
eral. Games with very similar rules can have vastly different nim-sequences.

The game 0· 07 has a nim-sequence with preperiod 53 and period 34 [5]. On the
other hand, the game 0· 007 has a nim-sequence which we do not yet know if it is
ultimately periodic or not. This is despite that Achim Flammenkamp has computed
the first 228 Grundy-values of the nim-sequence [6]. It is fascinating that such a
small change in the rules of octal games can cause such a big difference. With these
motivating examples, we now state the main conjecture of Octal games, originally
posed by Richard Guy.

Conjecture 2.1. The nim-sequence of every finite octal game is ultimately periodic.

One common, slightly vague, notion used among several authors is that of a non-
trivial finite octal game, i.e. a game with a preperiod that is not very short (say
less than 50). The finite octal games that have mostly been studied this far are those
with 3 or less code-digits. There are 79 such non-trivial octal games, 14 of these have
been solved this far.

It is worth mentioning that the above conjecture holds for the class of finite subtrac-
tion games (recall from Example 2.2). To be more precise, given some subtraction
game Γ = d0.d1d2 . . . dk with all di ∈ {0, 3}, the nim-sequence of Γ will be ultimately
periodic. Still, subtraction games are not completely understood yet despite their
simplicity. It is an open problem to, given the code-digits of an arbitrary finite sub-
traction game, determine the preperiod and period of the given subtraction. For
more information, see e.g. [1][5].

While proving that the nim-sequence of every finite octal game is ultimately pe-
riodic seems to be hard, it can be shown that the nim-sequences can not increase
very fast as shown by the below theorem.

Theorem 2.3. If Γ is a finite octal game, then nim-sequence of Γ is not arithmeti-
cally periodic.
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Proof. See [1]. �

It shall be noted that the condition that the octal game is finite is necessary for
the above theorem to hold. As was shown in Example 4, Nim is an infinite octal game
which is arithmetically periodic. On the other hand, the condition is not sufficient
as the infinite game Γ = 0· 111 . . . has the nim-sequence 0111 . . . . As was discussed
in the previous section, the above theorem does not hold if ”octal game” is changed
into ”hexadecimal game”. One counter-example is shown in [5]. There, Aaron Siegel
proves that 0· 8 is arithmetically periodic with nim-sequence

0000111222333444 . . .

2.5 Sparse spaces
When computing the nim-sequence of some finite octal game Γ, the naive method
to compute Gn is to determine the set

Ewww = {g(Ga)⊕ g(Gb) | Ga + Gb ∈ Gn}
Even for quite small values of n, this requires massive amounts of computations.

However, for some octal games, a much more convenient method exists.

Computations of the Grundy-values of 0· 77 reveals that the game is periodic with
period 12 and preperiod 71. The values in the period are 1, 2, 4, 7 and 8. The values
0, 3, 5 and 6 only appears a few times in the preperiod. The difference between these
two sets of numbers are that the first ones has an odd number of ones in their binary
representation (the odious numbers) and the other ones has an even number of
ones in their binary representation (the evil numbers).

We note that the set of numbers that have an even number of ones is a set closed
under the operation of the nim-sum. While we cannot make the exact same division
of every octal game it is often times still possible to make a distinction of some subset
of N that is closed under the nim-sum.

Definition 2.6. Let Γ be an octal game and S ⊆ N. We say that S is a sparse
space if the two below conditions are satisfied.

i) The following inequality hold

# {n ∈ N | g(Gn) ∈ S} <∞.
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ii) For all r1, r2 ∈ S and all c1, c2 ∈ N \ S = C, the following algebraic properties
holds:

r1 ⊕ r2 ∈ S c1 ⊕ r1 ∈ C

c1 ⊕ c2 ∈ S r2 ⊕ c2 ∈ C.

We say that C is the common coset of S. The elements in S are called rare and
elements in C are called common. N

An equivalent formulation to the first condition is that ‘g(Gn) ∈ S only for finitely
many n’ or ‘there are only finitely many elements in the nim-sequence of Gn that is
in S’.
Remark 2.1. It is easily seen that for every sparse space, 0 will always be a rare
value. Indeed, if a ∈ S then 0⊕ a ∈ S. Likewise if a ∈ C, then 0⊕ a ∈ C.

It might not be immediately apparent how sparse spaces ”look like”. It follows,
of course, from the definition that sparse spaces are proper subsets of N. Our aim is
to prove a classification theorem that yields a very useful alternative representation
of sparse spaces.

Recall that we discussed the group-structure of (N,⊕) in section 1.4. If S ⊂ N
is a sparse space, it is easily seen that S is a subgroup of (N,⊕). Indeed, it contains
the identity 0, it has inverses of every element and it is closed under ⊕. In fact, it is
an index-2 subgroup (see [8] for more details). This is because for any n ∈ N, we
have that either n⊕ S = S or n⊕ S = C.

We are now ready to state the structure theorem of sparse spaces. Denote the
set of two-powers

2N =
{

2i|i ∈ N
}

.

Theorem 2.4 (Aaron Siegel). There is a 1-to-1 correspondence between index-2
subgroups of (N,⊕) and proper subsets of 2N, given by the map S 7→ S ∩ 2N.
Proof. See [5]. �

Theorem 2.3 gives a convenient way to represent a sparse space by the set T of
powers of two of S. Another equivalent but more compact way is to represent the
sparse space by a binary string with a non-zero number of 0:s. For example, the sets
T1 = {8, 2, 1} and T2 = {32, 16, 8, 2} naturally correspond to the two binary strings
b1 = . . . 1110100 and b2 = . . . 111000101.
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Definition 2.7. Let x, y ∈ N with binary representation x = (xn . . . x1x0)2 and
y = (yn . . . y1y0)2. The bitwise AND of x and y, denoted x ∧ y, is defined as

x ∧ y = (xn . . . x1x0)2 ∧ (yn . . . y1y0)2 = (zn . . . z1z0)2 = z

where

zi =




1 if xi = yi = 1
0 otherwise.

N

Example 2.9. 27 ∧ 35 = (011011)2 ∧ (100011)2 = (000011)2 = 3 F

One useful application of Theorem 2.4 is that we get an alternative characteri-
zation of rare values in terms of bitwise AND. Given a number r = (rn . . . r0)2 ∈ N
and a sparse space S, we get the following equivalences:

r is rare ⇐⇒ #
{

2i|ri = 1, 2i /∈ S
}
even ⇐⇒

⇐⇒ # {i|ri ∧ bi} is even

where b = bn . . . b1b0 is the bit string corresponding to the set of powers of two T ⊂ S.
This means that the theorem also gives a way to determine a potential sparse space
for an octal game. Indeed, for some octal game Γ, take index-2 subgroup of (N,⊕)
such that g(Gi) ∈ S for as few i as possible.

Example 2.10. The set of evil numbers is a sparse space associated to the game
0· 77. The corresponding binary string is simply

. . . 111111

F

Example 2.11. We once again study the game 0· 176. If this game has a sparse
space, it must be one where the values can be divided into rare and common in the
following manner

rare common
0 1
2 3

4
6
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. . . 1111101
F

Since we already knew that the nim-sequences of 0· 77 and 0· 176 were ultimately
periodic, it was easy to confirm that they had a sparse space. For an octal game
in general, one would have to know every element of its nim-sequence in order to
confirm that it has a sparse space. However, often times an apparent sparse space
will appear long before the nim-sequence is actually periodic.

The game 0· 007 is a good example of this. Even though this game is not yet shown
to be periodic, one could presume that its sparse space is the one characterized by
the bit-string

. . . 11110111000

Computations by Flammenkamp[6] shows that while 228 Grundy-values have been
computed in 0· 007, only 22476 of those have been in this presumed sparse space. It
is therefore reasonable to believe that this regularity will continue.

A good reason to believe that an apparent sparse space will remain to be an ap-
parent sparse space is that for sufficiently large n, most options of Gn will be on
the form Ga + Gb, where both Ga and Gb have common Grundy-values. Thus, most
Grundy-values of these options will be

common value⊕ common value = rare value.

So mostly rare values will be excluded and therefore there is a high chance of the
next Grundy-value also being common.

The last theorem of this section might describes the above phenomena in a more
precise way. It tells us that games that appear to have a sparse space likely will be
ultimately periodic.

Theorem 2.5. Let Γ be a finite octal game. If Γ has a sparse space, then its nim-
sequence is ultimately periodic.

We start by proving the following Lemma.
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Lemma 2.1. Let Γ = d0.d1d2 . . . dk be a finite octal game. If Γ has a sparse space,
then its nim-sequence is bounded.

proof of Lemma 2.1. Since Γ has a sparse space, it only has a finite amount of rare
values in its nim-sequence. So denote

n0 = The last index such that g(Gn0) is rare
r0 = The # of rare values in the nim-sequence
a = The # of digits di that contains 2
b = The # of digits di that contains 4.

It is enough to show that g(Gn) is bounded for all n ≥ 2n0 + k + 1, so for the rest
of the proof, we assume that n satisfies this inequality. We will show that there is
a common value c0 so that g(Gn) ≤ c0. We know that the Grundy value of Gn is
common so it is determined only by the common excludants of Gn. Write any option
of Gn as Ga + Gb. Since a + b + k is at least as big as n, we can write

2n0 + k + 1 ≤ a + b + k ⇐⇒ 2n0 + 1 ≤ a + b

so at most one of a, b is at least as small as n0. Hence, at most one of a, b is rare.
Assume WLOG that a has this property. Using the algebraic properties of sparse
spaces we conclude that the set of common excludants can be written as

E = {g(Ga)⊕ g(Gb) common : Ga + Gb ∈ Gn}

= {g(Ga)⊕ g(Gb) : Ga + Gb ∈ Gn where g(Ga) rare, g(Gb) common} .

For each digit di containing 2, we allow at most 1 move to a position whose Grundy-
value is in E. Likewise, for each digit di containing 4, we allow at most r0 moves
to positions whose Grundy-values are in E. Hence, the options Ga + Gb ∈ Gn can
admit at most a + br0 different common values. We claim that

c0 = The (a + br0 + 1):th common value

is the bound. To see why, note that if one of the first a + br0 common values is not
excluded, then the Grundy-value of Gn is certainly smaller than c0. On the other
hand, if all first a + br0 common values are excluded then g(Gn) = c0. This proves
the claim, so we are done.

�
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proof of Theorem 2.4. By Lemma 2.1, there is an integer N so that N ≥ g(Gn) for
all n. There are only a finite number of n0 + k-tuples with non-negative integers
smaller than N so there exist m1, m2 ∈ N, m1 < m2 such that

g(Gm1+i) = g(Gm2+i) (∗)

for all i satisfying 0 ≤ i < n0 + k. There is an infinite amount of m1, m2 with this
property so we may further assume that n0 ≤ m1, m2. We claim that this implies
that (∗) holds for all i ≥ n0 + k. We prove this using an inductive argument. For
the base case, note that Gm1+n0+k and Gm2+n0+k must both have common Grundy-
values. Hence, it is enough to show that they have the same common excludants.

Using the algebraic properties of the sparse space, we deduce that any option Ga +
Gb ∈ Gm1+n0+k with common Grundy-value, exactly one of a, b needs to be rare.
WLOG assume that a is rare so a ≤ n0 and thus m1 ≤ b ≤ m1 + n0 + k. Rewriting
the previous inequality, we get that 0 ≤ b−m1 ≤ n0 + k. Using this, we can write

g(Ga)⊕ g(Gb) = g(Ga)⊕ g(Gm2+(b−m1))

which is an excludant of Gm2+n0+k. Similarly, we can show that every common
excludant of Gm2+n0+k is an excludant of Gm1+n0+k. This proves the base step.
The inductive step is done in an analogue fashion. Thus, the nim-sequence of Γ is
ultimately periodic with preperiod m1 and period m2 −m1. �

A more careful analysis of the proof of Lemma 2.1 and Theorem 2.4 gives an
upper bound to how long it takes before the nim-sequence of a given finite octal
game Γ with a sparse space. This bound is, however, rather enormous. Indeed, if
x, y, k, r0 and n0 are chosen the same way as in the proof of Lemma 2.4, we get that
the sum of the period and the preperiod is bounded by [6]

(x + r0y + 1)r0+k.

Example 2.12. Let Γ = 0.56. This octal game has a sparse space characterized by
the bit string . . . 11111011011. It has 46 rare value and its last rare value is at index
1795. Its actual preperiod is 326640 and its period 144. However, the upper bound
for the sum of its preperiod and period given by Theorem 2.4 is

(1 + 2 · 46 + 1)(1795+2) = 481797 ≈ 1.55 · 103021.

F
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The above example shows that upper bound is simply too rough to have any prac-
tical impact. At the moment, there is no known method for making any significant
improvement of the given upper bound. However, none of finite octal games with
a sparse space that has been shown to be ultimately periodic so far, seems to come
close to the upper bound (compare e.g. with the above example). It is therefore
possible that a more detailed analysis could improve the upper bound by a lot.

For general octal games, a higher pile of tokens means more possible moves. It
seems intuitive that more moves would ”increase the chance” for the first player to
have a winning strategy. The below corollary shows that this is the case for all octal
games with a sparse space.

Corollary 2.1. Let Γ be a finite octal game. If Γ has a sparse space, then there are
only a finite number of positions Gn such that Gn lies in P.

Proof. Let S be the given sparse space. We know that 0 was always a rare value. So
if there is a finite number of positions Gn such that g(Gn) ∈ S, in particular there
is only a finite number of positions Gn such that g(Gn) = 0 which is equivalent to
there being only a finite number of position Gn in P by Theorem 1.3. �

With this is mind, one could hope to solve the main conjecture by trying to
determine the sparse space of every octal game. Unfortunately, this is not enough as
it turns out that some octal games does not have a sparse space. An easy counter-
example is the game 0· 33 which had 0 in its period and thus cannot have a finite
number of rare values, no matter what space S we choose.

3 Algorithms and Applications
In this section we discuss applications of the theory of octal games. We show how it
can be used to determine ultimate periodicity of nim-sequences of finite octal games.
We discuss three different algorithms for computing Grundy-values of finite octal
games, namely:

i) The naive algorithm.

ii) The sparse space algorithm, abbreviated as the Sps-algorithm.

iii) The cheating sparse space algorithm, abbreviated as the CSpS-algorithm.
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We also display an algorithm that determines whether, given some Grundy values of
an octal game, we can deduce ultimate periodicity using the Guy-Smith Periodicity
Theorem.

Some of the algorithms are fairly self-explanitory and are presented without much
comment. Others are more complex and are explained more thoroughly. All algo-
rithms are given in general pseudocode, without a specific programming language in
mind.

3.1 Some basic Complexity theory
Complexity theory is the study of the asymptotic behavior of functions and algo-
rithms. Intuitively, we can think of it as a rough measure of how many steps a
particular algorithm needs to terminate relative to its input size. This makes it an
important concept when studying combinatorial game theory in general as any game
with only finitely many possible moves will have a brute force-solution. These algo-
rithms are, however, very slow and so we seek to find faster algorithms.

We introduce the part of the theory needed to discuss octal games. For a more
thorough explanation concerning Complexity theory we refer to [7].
Definition 3.1 (The Big-O notation).
Let f(n), g(n) be two non-negative functions. Suppose there is some integer n′ and
a positive constant c such that

f(n) ≤ cg(n), for all n′ ≤ n.

Then we say that f(n) is of order g(n). More compactly, we will write f(n) =
O(g(n)) to denote this.

N
Example 3.1. Let f(n) = n3 + 17n2 + 3n + 78. Then, for 1 ≤ n, we write

f(n) =n3 + 17n2 + 3n + 78 ≤
≤n3 + 17n3 + 3n3 + 78n3 = 99n3.

This shows that f(n) = O(n3) F
Typically, one rarely uses the methods in above example to show that some

function f(n) is of order g(n). Rather, one usually uses shortcuts or good enough
estimates. The following theorem displays two of the most important properties of
the Big-O notation.
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Theorem 3.1. Let f(n), g(n) be two non-negative real-valued functions such that
f(n) = O(f ′(n)) and g(n) = O(g′(n)). Let c be a positive constant. Then the
following properties of the Big-O notation hold:

i) Absorbing constants
O(cf(n)) = O(f(n)).

ii) Rule of sum
f(n) + g(n) = O(f ′(n) + g′(n)).

iii) Rule of product
f(n)g(n) = O(f ′(n)g(n)).

iv) Rule of transitivity. If f(n) = O(g(n)) and g(n) = O(h(n)) then.

f(n) = O(h(n)).

v) Taking away smaller terms. If there is some n′ such that f(n) ≤ g(n) for all
n′ ≤ n, then

O(f(n) + g(n)) = O(g(n)).

Note that the above theorem gives a much faster proof that the function in Ex-
ample 3.1, as we can simply use the absorptivity of constants and take away smaller
terms.

The big-O notation is a key ingredient when analyzing how fast an algorithm works.
Let T (n) be an upper bound of the time (i.e. the number of steps) it takes for an
algorithm to finish, given an input of size n. We say that the algorithm is a

• constant time algorithm if T (n) = O(1).

• linear time algorithm if T (n) = O(n).

• quadratic time algorithm if T (n) = O(n2).

3.2 The naive algorithm
We start by examining the ”naive” algorithm in order to compute Grundy values,
that is, an algorithm that does not use the theory of sparse spaces. For games with a
sparse space, this algorithm will be inferior to the SpS-algorithm in terms of compu-
tational complexity. However, as we discussed in the last section, some octal games
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lack a sparse space (e.g. 0· 33 and 0· 104) thus making the naive algorithm necessary
for a complete analysis of octal games.

The idea of the Naive algorithm is straightforward. We create a list of Grundy-values
L and let g(G0) = 0 be the first element of L. Then we compute g(Gn) recursively
using mex. We then let g(Gn) be the n:th element of L. It is less straightforward to
determine the time-complexity of the Naive algorithm, which is what we will do in
this section.

First, we present an algorithm to compute the mex of a list L of integers. The
idea of the algorithm is to create a help list H of the same length as L, where
H[i] = 1 if i is an element of L and H[i] = 0 otherwise

Procedure 1 Minimal excluded number
Input: A list L of non-negative integers.
Output: A non-negative integer.

1: function mex(T )
2: m← max (L)
3: l← length (L)
4: if l = 0 then
5: return 0
6: end if
7: H ← zeros(m + 1) . Creates a list of m + 1 zeros

8: for all i from 0 to l − 1 do
9: H[L[i]]← 1
10: end for

11: for all i from 0 to m do
12: if H[i] = 0 then
13: return i
14: end if
15: end for
16: return m + 1
17: end function

Lemma 3.1. Procedure 1 returns the mex of a list of non-negative integers. Fur-
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thermore, it terminates in linear time.

Proof. The correctness of the algorithm is trivial. To show that it is a linear time
algorithm, note that all steps are either takes constant time or linear time, thus in
total the algorithm must take linear time to terminate. �

Procedure 2 The naive algorithm
Input: An integer n ∈ N .
Output: A vector with the first n + 1 Grundy-values of the nim-sequence of the

octal game Γ.

1: function Naive(n)
2: GV-vec← [0]

3: if n = 0 then
4: return GV-vec
5: end if
6: for all i from 1 to n do

7: K ← [ ] . K is an empty list.
8: for all Ga + Gb ∈ Gn do
9: K ← K + [g(Ga)⊕ g(Gb)]
10: end for
11: L← mex(K)
12: end for
13: return GV-vec
14: end function

We need the following Lemma in order to give a rough bound of the number of
options in a finite octal game.

Lemma 3.2. Let Γ = d0· d1d2 . . . dk be some finite octal game, then the function

OpΓ(n) = # {Options of Gn} ≤ (k + 1)n

Proof. WLOG, we may assume that

Γ = 4· 77 . . . 7︸ ︷︷ ︸
k digits
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since no other octal games with the same number of digits will have more options.
Thus, if the statement holds for this choice of Γ, it will hold for any choice of Γ with
k + 1 digits. It is easily verifiable that the inequality holds for cases n = 0, 1, so
suppose 2 ≤ n.

For any j such that 0 ≤ j ≤ k, the number of ways to take away j tokens and
either leave only one pile or split the pile into two non-empty piles is (up to symme-
try)

#
{
G0 + Gn−j, G1 + Gn−j−1, . . . , Gb(n−j)/2c + Gn−j−b(n−j)/2c

}
=

=#
{

0, 1, 2, . . . , b(n− j)/2c − 1, b(n− j)/2c
}
≤

≤# {0, 1, 2, . . . , bn/2c − 1, bn/2c} ≤ n + 2
2 .

Summing over all possible values for j now yields

OpΓ(n) ≤
k∑

j=0

n + 2
2 = (k + 1)n + 2

2 ≤ (k + 1)n

Note that the last equality follows from the fact that 2 ≤ n, it thus follows that
OpΓ(n) ≤ (k + 1)n, which finishes the proof. �

Combining the two previous Lemmas, we can conclude the following.

Theorem 3.2. Suppose that Γ = d0· d1d2 . . . dk is some finite octal game. Then the
naive algorithm terminates in quadratic time.

Proof. Let T (n) be the running time of the algorithm, i.e. the number of steps it
takes to compute n + 1 Grundy-values. We will prove that T (n) = O(n2) by using
Theorem 3.1

In each step of the for-loop in steps 6− 12, we create a list K of the Grundy values
of the options. By Lemma 3.2, the number of options OpΓ(n) ≤ (k + 1)n = O(n).
Then we compute the mex of all the OpΓ(n) numbers of K, so it also takes O(n)
steps. By the rule of sum, each step of the algorithm takes O(n + n) = O(n) steps.
The algorithms runs through a for-loop with n steps, so the total running time is

T (n) = (n + 1)O(n) = O(n(n + 1)) = O(n2 + n) = O(n2).

�
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3.3 Algorithms using sparse spaces
For octal games with a presumed sparse space S, the SpS-algorithm can heavily
speed up the computations of Grundy-values. The idea is to compute Gn recursively
by first determining the set

S = {g(Ga + Gb) : Ga + Gb ∈ Gn, g(Ga) ∈ S} .

Most of the Grundy-values in the above set will be common values because Gb most
of the time will be a common value. Furthermore, no other options of Gn can have
Grundy-values that are common. Hence, a very good candidate for the smallest
excluded Grundy-value is c = min(C \S). To confirm that c is in fact g(Gn), we need
only to compute enough Grundy-values so that

{Computed Grundy-values} ⊇ {0, 1, . . . , c− 1} ∩ S.

We will refer to c as the candidate value and the rare values less than as c as
leftover rares. An option is said to cover the leftover rare if its Grundy-value
is equal to that rare value. In the event that some leftover rare r is not covered by
any option of Gn, we get g(Gn) = r. However, this happens very seldom.

We are ready to display the SpS-algorithm. For simplicity sake, we will assume
that for the given finite octal game Γ = d0· d1d2 . . . dk, the list L in the input is
sufficiently long. That is, it contains all values of the nim-sequence up to index
k + 1.
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Procedure 3 The SpS-algorithm
Input: A list L of sufficiently many Grundy-values of some nim-sequence, a sparse

space S ⊂ N, a non-negative integer n.
Output: A list L of n + 1 Grundy-values.

1: function CSpS(L,S, n)
2: l← length(L)

3: for all i from l to n do
4: H ← [ ] . H is an empty list.
5: for all Ga + Gb ∈ Gn such that g(Ga) ∈ S do
6: H ← H + [g(Ga)⊕ g(Gb)] . Appends an element to H.
7: end for

8: c← mec(H) . mec(H) is the smallest common not in H.
9: K ← {0, 1, . . . , c− 1} ∩ S . K is the set of leftover rares.

10: for all Ga + Gb ∈ Gn such that g(Ga), g(Gb) ∈ C do
11: K ← K \ {g(Ga)⊕ g(Gb)}
12: if K = ∅ then . All leftover rares have been covered.
13: L← L + [c]
14: break
15: end if
16: end for

17: if K 6= ∅ then
18: L← L + [mer(K)] . mer(K) is the smallest rare value not in K.
19: end if

20: end for

21: return L
22: end function

The sparse space algorithm relies on the fact that we usually will not need very
many computations cover all the leftover rares. One may wonder exactly how many
computations that is needed in order to establish to confirm that the candidate
value. Not much is known about this problem in general. The table below shows

34



3.3 Algorithms using sparse spaces 3 ALGORITHMS AND APPLICATIONS

some solved, nontrivial octal games and gives some insight about the upper bound
of computations needed to cover all the leftover rares.

Define the number in to be the smallest number such that

{g(Ga)⊕ g(Gb) : Ga + Gb ∈ Gn and a ≤ in} covers all leftover rares.

The depth of an octal game with a (presumed) sparse space is maxn {in}. The
average leftovers indicates how many interations (on avarage) in the for-loop in
steps 10-16 of the SpS-algorithm that are needed in order to cover all of the leftover
rares. Thus it is a relevant statistic when trying to quantify how much faster the
SpS-algorithm is than the Naive algorithm. It should be noted that the avarage
leftovers can differ somewhat depending on the implementation of the algorithms
used. For avarage leftovers, we used a new implementation of the algorithm.

Table 1: Solved, non-trivial octal games with a sparse space [6].
Game rare depth average leftovers
0· 45 11 37 15.8632 . . .
0· 156 15 243 27.1894
0· 055 6 20 13.1154 . . .
0· 644 31 604 80.9368 . . .
0· 356 7 19 20.6758 . . .
0· 56 46 7405 93.2393 . . .
0· 16 53 21577 129.2356 . . .
0· 376 510 505866 8137.3728 . . .
0· 454 17 4858 −
0· 054 38 16284 −
0· 354 132 705 −

We see that the number of avarage leftovers is typically very small. With this
in mind, we may heuristically argue that most/all games with a sparse space should
have, on average, a constant number of computation needed to cover all the leftover
rares. Furthermore, if the number of rare values dies off quickly, the number of com-
putations needed to determine the candidate value is bounded by a constant. Thus,
to compute n Grundy-values, we need n steps in a loop, where each step in the loop
takes O(1)-time. Thus, the SpS-algorithm should be an O(n)-algorithm, making it
a much more efficient algorithm than the naive algorithm.
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Unfortunately, there seem to exist some finite octal games that are too wild to be
analyzed using only computations. For example, Achim Flammenkamp computed
225 Grundy-values of the game 0· 163. It is believed that this game has a sparse
space characterized by the bit string . . . 111110111000. However, it has 2800497 rare
values, making about 8% of the Grundy-values rare. This is a very high ratio of rare
values to common values compared to the solved games. Take the game 0.354 for
instance, which has a preperiod of 10061916 but only 132 rare values. Hence, the
rare values are only about 0.00013% of the total number of the Grundy-values in the
preperiod. It seems that the number of rare values is a good indicator of how ”soon”
a nim-sequence is getting periodic thus making it unlikely that 0· 163 will be solved
anytime soon using these methods.

3.4 A cheating algorithm
We start this section by examining a statistic of octal games with sparse spaces,
namely the last index. This motivates the idea of the next algorithm.

Definition 3.2. Let Γ be some octal game. Suppose Γ has a sparse space S. The
last index of Γ is defined as

max {n ∈ N | g (Gn) ∈ S}.

N

Table 2: Solved, non-trivial octal games with a sparse space.
Game Preperiod Last index Last index/Preperiod
0· 45 498 198 0.3976 . . .
0· 156 3479 357 0.1026 . . .
0· 055 259 43 0.2704 . . .
0· 644 3256 511 0.1569 . . .
0· 356 7315 43 0.0059 . . .
0· 56 326640 1795 0.0055 . . .
0· 16 105351 13935 0.1323 . . .
0· 376 2268248 1140540 0.5028 . . .
0· 454 160949019 124 10−7 · 7.704 . . .
0· 054 193235616 796 10−6 · 4.119 . . .
0· 354 10061916 3227 10−4 · 3207 . . .
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The above table suggest that for most octal games with a sparse space, the rare
values die out long before the nim-sequence actually becomes periodic. Furthermore,
it seems that games with longer preperiod also have a lower ”Last index/Preperiod”-
ratio, with 0· 376 being the main exception.

If this suspected pattern continues, one could use previous computations of unsolved
octal games with apparent sparse spaces in order to conjecture a last index. For
example, Flammenkamp [6] has computed 237 Grundy-values of the nim-sequence of
4· 045. The game has an apparent sparse space with only 34 rare values, the last
one is at index 497. It is therefore likely that 497 is the very last rare value of the
nim-sequence.

The idea of the CSpS-algorithm is to use this observation in order to speed up
computations of Grundy-values g(Gn) when n is big enough. Indeed, if there is a n′

such that n ≥ n′, the Grundy-values of Gn are all common, then we need only to
compute the candidate value.

Procedure 4 The CSpS-algorithm
Input: A list L that contains all rare values of some nim-sequence, a sparse space
S ⊂ N, a non-negative integer n.

Output: A list L of n + 1 Grundy-values.

1: function CSpS(L,S, n)
2: l← length(L)

3: for all i from l to n do
4: H ← [ ] . H is an empty list.
5: for all Ga + Gb ∈ Gn such that g(Ga) ∈ S do
6: H ← H + [g(Ga)⊕ g(Gb)] . Appends an element to H.
7: end for
8: L← L + [mec(H)] . Appends an element to L.
9: end for

10: return L
11: end function

Theorem 3.3. The CSpS-algorithm terminates in linear time.

Proof. Let Γ be any octal game with sparse space S. Then number of rare values
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in its nim-sequence is bounded by c0. Hence, the number of options on the form
Ga + Gb is also bounded. Thus the for-loop in steps 5 − 7 takes O(1) steps. Using
Theorem 3.1, we get that the number of the steps in for-loop in steps 3− 9 is

T (n) = O((n− l)O(1)) = O(O(n− 1l)) = O(n− l) = O(n).

�

The obvious downside of the CSpS-algorithm is that assumes that L contains all
the rare values of the nim-sequence and will thus generate the wrong Grundy-values
if this is not the case. Still, one can heuristically argue that games such as 4· 045
probably has no rare values after index 497.

This also raises the question of how big gaps there can be between rare values. Un-
fortunately, not much is known about this in general. However, relatively big gaps
do occur in some nim-sequences. One example of such a game is the James Bond
Game 0· 007. This game is not yet solved but Achim Flammenkamp has computed
the first 228 Grundy-values of its nim-sequnce, which shows that the game likely has
a sparse space[6]. Aaron Siegel noted in [5] that the nim-sequence of 0· 007 has 1284
rare values in its nim-sequence. The 1271:st of these is at index 82860 whereas the
1272:nd is at index 47, 461, 861.

3.5 Determining periodicity
The Guy-Smith periodicity theorem tells us that it is possible to confirm ultimate
periodicity of a nim-sequence of some finite octal game with only a finite number of
known values. In this section, we ask if this can be achieved in a reasonable time.
To tackle this problem, our idea is to first determine the (potential) period of the
nim-sequence. After that, determining the preperiod will be simple.

To give some motivation as to why a good algorithm is needed, let us first study
a naive algorithm. Suppose L of Grundy-values of length l + 1. The naive algo-
rithm tests every possible period p′ and run as long as possible by comparing L[i]
and L[i− p′] for i = l, l − 1, . . . , p′.

If L[i] 6= L[i − p′], we instead define p′ ← p′ + 1 and try i = l, l − 1, . . . , p′ again.
In practice, such an algorithm works well on a sequence that is ”random enough”.
However, we will see that there are cases when the naive algorithm is ineffective.
Example 3.2. Consider an edge case sequence such as

3212121 . . . 2121213212121 . . . 212121
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where there is a very big number of 1:s and 2:s between the 3:s. If we would use
a naive algorithm then every odd p′ would fail on the first comparison. The first
attempt would be p′ = 2, the next p′ = 4, then p′ = 6 etc. etc. up to p′ = n/2. If
the list has length n, this algorithm would need roughly

# {possible p′} ·# {number of computations per p′} ≈ n

4 ·
n

4 = n2

16
steps to complete. This means that the algorithm would need quadratic time to
complete. F

There are, however, better algorithms to determine periodicity of a sequence. For
instance, the Z-algorithm.

Definition 3.3. Suppose that a0, a1, . . . , an is some finite sequence. Then we define
the function Z : N+ → N by

Z(i) = The biggest m ∈ N so that aj = aj+i for j = 0, 1, . . . , m.

Denote Zi = Z(i) and define the vector Z = (Z1, Z2, . . . , Zn). N

Example 3.3. Let L = 123412341211123. Then the corresponding Z-vector is

Z = (0, 0, 0, 6, 0, 0, 0, 2, 0, 0, 1, 1, 3, 0, 0).

F

Indeed, the number Zi tells us how much the start of the sequence "resembles"
the sequence starting at index i. We can use this when working proving ultimate
periodicity of nim-sequences. Suppose that a0, a1, . . . , an are the first n + 1 elements
of a sequence, denote the Z-vector of the reversed sequence an, . . . , a1, a0 by
Ẑ = (Ẑ1, Ẑ2, . . . , Ẑn).

Example 3.4. Let L = 2123121212 be a sequence. Then the corresponding Ẑ-vector
is

Ẑ = (0, 4, 0, 2, 0, 0, 3, 0, 1).
F

Now, suppose that some finite sequence L of length n + 1 is a subsequence of a
ultimately periodic sequence with period p and preperiod n′. Let Ẑ = (Ẑ1.Ẑ2, . . . , Ẑn)
be the corresponding Ẑ-vector. Then if p, n′ ≤ n, we have that

Ẑp > 0 and n′ = n− Ẑp − p + 1.
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Furthermore, in order to confirm the ultimate periodicity, we need the given p, n to
satisfy the Guy-Smith periodicity theorem. Hence, we need only to go through the
vector and see if some choice of Zp > 0 yields a p and n′ satisfying the inequality
n ≥ 2n′+2p+k where k is the last non-zero digit of the finite octal Γ = d0.d1d2 . . . dk

with the given nim-sequence. There are at most n possible values for p so given such
a list L of n + 1 elements and the vector Ẑ, we need only O(n) steps to determine p
and n′. So to prove that we can determine p and n in linear time, it is sufficient to
show that we can determine the Z-vector linear time.

A naive approach yields that it is possible to determine the Z-vector in O(n2) steps.
We can do better than this, however, as is shown by the algorithm below.
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Procedure 5 Computes the Z-vector of some finite subsequence
Input: A list L.
Output: A vector Z of non-negative integers.

1: function Z-algorithm(L)
2: l = length(L)
3: Z ← [−1] . The first element of Z is irrelevant
4: L← 0
5: R← 0

6: for all i from 1 to l do
7: if i > R then
8: L← i
9: R← i

10: while R < l and L[R-L] == L[R] do
11: R← R + 1 . R increases until there is a mismatch.
12: end while

13: Z ← Z + [R− L]
14: R← R− 1
15: else
16: k ← R− L
17: if Z[k] < R− i + 1 then
18: Z ← Z + [Z[k]]
19: else
20: L← i

21: while R < l and L[R-L] == L[R] do
22: R← R + 1 . R increases until there is a mismatch.
23: end while

24: Z ← Z + [Z[R− L]]
25: R← R− 1
26: end if
27: end if
28: end for

29: end function
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Theorem 3.4. The Z-algorithm terminates in linear time.
Proof. It is sufficient to prove that the for-loop in steps 6 − 26 takes linear time as
everything else runs in constant time.

Let l be the length of the list L. Note that the only steps in the for-loop that
are not constant time operations are the two while-loops where we compare indexes.
So the time spent in the for-loop but outside the while-loops is O(l). It remains to
show that the algorithm spends only O(l)-time inside the while-loops.

Now, whenever inside one of the while loops, there can be at most l matches, since
for each i, R will never decrease. On the other hand, we can only mismatch once for
each i so there can be at most l mismatches. So in total we have

T (l) = O(l) +O(l) +O(l) = 3O(l) = O(3l) = O(l).
�

4 Results
Using the methods described in the previous section, we were able to confirm many of
the computational results of Achim Flammenkamp using the Cheating Sparse Space
algorithm. One example of such an implementation in C++ can be found at:

https://gist.github.com/JoakimUhlin/cb340d2dba0a2a9412f11a322de46138

Table 3: Non-trivial octal games with a sparse space that we managed to solve.
Game Preperiod Period Bitstring
0· 45 498 20 . . . 111111111
0· 156 3479 349 . . . 111111011
0· 055 259 148 . . . 111111111
0· 644 442 3256 . . . 111111110
0· 356 7315 142 . . . 111111011
0· 56 326640 144 . . . 111011011
0· 16 105351 149459 . . . 111111110
0· 376 2268248 4 . . . 111111110
0· 454 160949019 4 . . . 111110111
0· 54 193235616 796 . . . 111111011
0· 354 10061916 3227 . . . 110111111
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Unfortunately, we were only able to compute around 109 values of the nim-
sequences of each respective game due to computational constraints. Observing the
computational data provided by Flammenkamp [6] suggest that some of octal games
in the table below could have a relatively small preperiod and preperiod.

Table 4: Octal games that might have a relatively short preperiod and period
Game Current index Presumed bitstring Current rares Current last index Current max
0.167 237 . . . 11111101 60 1303 64
0.174 239 . . . 11111011 57 674 84
0.245 235 . . . 11111010 151 1325 142
4.045 237 . . . 11011111 34 497 93
4.367 236 . . . 11111110 142 3508 101

Current index is the number of Grundy-values computed by Flammenkamp.
Presumed bitstring is the bitstring that characterizes the presumed sparse space.
Current rares is the number of rare values in the nim-sequence with index equal to
or less than current index. Current last index is the n ≤ current index for which
g(Gn) is a presumed rare value, with regards to the presumed bit string. Current
max is the maximal g(Gn) for n ≤ current last index.
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