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Abstract

This is a brief introduction to algebraic number theory directed towards
class field theory. The first part covers basic definitions and invariants, such
as integral closures, norms, traces and discriminants. The second part deals
with the Hilbert ramification theory with a proof of quadratic reciprocity
given as an application. The final part covers the basic theorems of class
field theory, and applies them to prove the Kronecker-Weber theorem.
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Introduction

The conception of this text stems from trying to understand a single the-
orem, one which might be encountered in a course on Galois theory. That
theorem can be stated as:

Theorem 0.0.1 (Kronecker-Weber). A finite algebraic extension of the ra-
tionals is Galois and has an abelian Galois group if and only if it is contained
in a cyclotomic extension.

There are a few accessible proofs which would have made a good topic.
However, there is one in particular, included at the end of Chapter 3, that
consists of just a few lines. Considering how the theorem itself is rather
far-reaching, the brevity of that proof can be surprising at a first glance.

Given the elegance of that version, one might next turn to the machinery
that provides such a simple solution. The proof relies on what is known as
class field theory. This theory goes beyond facilitating such a proof to give
a powerful description of abelian extensions of the rationals.

With that in mind, the end goal of this text is to state the main theorems
of class field theory, and use them to derive the Kronecker-Weber theorem.
While proofs of these theorems are beyond the scope of this project, merely
being able to state them requires the development of interesting topics.

Thus, this text will consider finite algebraic extensions of the rationals,
known as number fields. One point of view of the number fields is Galois
theory. The other is number theory, and the first chapter will try to give a
short brief on the main concepts of that topic. In Chapter 2 this becomes
apparent with the theory of ramifications of prime ideals, where the main
tool of use are the residue rings formed from quotients by prime ideals. It is
at once a stepping stone to the definitions needed for the following chapter,
and a useful theory in itself. As an example, and application, a proof of
Quadratic Reciprocity is given.
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Using constructions from the ramification theory and extending them, Chap-
ter 3 will cover the very basics of class field theory. The focus is on three
theorems with demonstrations of their application. There are a few different
formulations of this topic, and the one given here is chosen for its relative
simplicity over generality.

The text will assume a familiarity with Galois theory and the theory of finite
algebraic extensions of fields, as well as some familiarity with the theory of
commutative rings and modules. Fixing notation throughout, L and K
will denote number fields if nothing else is stated, L/K a finite extension L
over K, and [L : K] the degree of the extension. Using the primitive element
theorem, an extension of K will also be denoted K(α) for a primitive element
α of the extension.
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Chapter 1

Rings of Integers

1.1 Rings of Integers

The main object to be treated in this text is that of rings of integers of
number fields. Intuitively, one might see this as the analogue of the role
that the integers play in the field of the rationals. On the other hand, since
number fields are algebraic extensions of the rationals, one might want a
similar property for the rings of integers. The concept that turns out to be
needed is that of the integral closure.

Definition 1.1.1. Let R be a ring and O a subring of R. If an element α ∈ R
is the root of a monic polynomial p(x) in O[x], it is called integral over O.
The relation p(x) = 0 is called an equation of integral dependence for
α over O.

Lemma 1.1.2. Let R be a ring with a subring O. Then the following are
equivalent:

a) For any element x ∈ O there is an equation of integral dependence of x
over O.

b) The ring O[x] is a finitely generated O-module.

c) There exist a subring S of R containing O and x that is a finitely gen-
erated O-module.

Proof. See [6, Ch 2.1 Thm 1].

Corollary 1.1.2.1. The elements S which are integral over O in R form a
subring of R.
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Proof. Let x and y be integral over O. By lemma [1.1.2] O[x] and O[y]
are finitely generated O-modules. Therefore O[x, y] is as well. It holds that
x + y, x − y and xy are in O[x, y] and so are integral over O. Thus S is a
ring.

The ring S will be denoted the integral closure of O in R. A ring will be
called integrally closed if it is an integral domain and is its own integral
closure in its field of fractions. Note that Z is integrally closed. Integral
closures admit a transitive relation in that if A,B and C are rings such that
A ⊆ B ⊆ C where B is integral over A, and C is integral over B, then C is
integral over A [4, Ch 1.2, Prop 3].

When the ring R is a number field, the following convention will be used:

Definition 1.1.3. Let K be a number field. The integral closure of Z in K
is called the ring of integers or number ring of K, denoted OK .

The number rings are free Z-modules. As an example of a class of rings of
integers, consider those of the quadratic fields. Recall that a quadratic field
K is one which is an extension of degree two over the rationals. Using the
primitive element theorem[3, Ch V, Thm 4.6], let v be a primitive element.
The minimal polynomial for v is of then of the form x2 + bx + c = 0 so
that K = Q(

√
b2 − 4c). Now b2 − 4c is a rational, say m

m = mn
n2 . However

Q(
√
mn/n2) = Q(

√
mn). Thus any quadratic field can be written as Q(

√
d),

and one may assume d to be square-free.

Theorem 1.1.4. Let Q(
√
d) be a quadratic extension, with d ∈ Z square-

free.

i) If d ≡ 2 or 3 mod 4, then OQ(
√
d) consists of all elements of the form

a+ b
√
d with a, b ∈ Z. As a Z-module, there is a basis (1,

√
d).

ii) if d ≡ 1 mod 4, then OQ(
√
d) consists of all elements a+b

√
d

2 with a, b ∈ Z
of the same parity. In this case the Z-module basis is of the form

(1, 1+
√
d

2 ).

Proof. Recall that Q(
√
d) consists of all the elements of the form a + b

√
d

with a, b in Q. Fix an x = a+b
√
d. Then y = a−b

√
d is in Q(

√
d). Moreover

x + y = 2a and xy = a2 − b2d are in Q. Now assume x is integral over Z.
Since y is the Galois conjugate of x, it must satisfy the same equation of
integral dependence. This implies that y, 2a and a2 − b2d are all integral
over Z by 1.1.2.1. Now since 2a and a2 − b2d are in Q and Z is integrally
closed, they must both be integers.
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Now, if a2− b2d is an integer then so is (2a)2− (2b)2d. Moreover since 2a is
an integer, (2a)2 and (2a)2 − (2b)2d− (2a)2 = (2b)2d are as well.

If 2b is not an integer it is of the form p
q . Since d is square-free, d

q2
would

not be an integer. However (2b)2d was shown to be an integer, so 2b must
be as well.

Following this calculation, substitute u/2 = a, v/2 = b and get:

u2 − v2d ∈ 4Z

If v is odd, then v2 ≡ 1 mod 4. Since d is square-free, 4 does not divide
d. The only squares mod 4 are 0 and 1, and combining with the previous
statements, this implies that u2 ≡ 1 mod 4, and d ≡ 1 mod 4. This is case
ii) and note that holds if and only if d ≡ 1 mod 4. For the cases of d ≡ 2 of
3 mod 4, then v is even, u is even and a, b in Z. This will be the i).

For the part about bases, the case when OQ(
√
d) = Z + Z

√
d is obvious. For

other case let d ≡ 1 mod 4. First, following the above reasoning, 1 and 1+
√
d

2

belong to the ring of integers. Second, let u+v
√
d

2 be an element of OQ(
√
d).

Assuming u, v to be odd, subtract 1+
√
d

2 to make them even. Then;

u+ v
√
d

2
= (

u

2
− v

2
) + v

1 +
√
d

2

which is a linear combination of 1 and 1+
√
d

2 .

One of the more salient points of this example is even though the ring of
integers are finitely generated Z-modules and as such have a basis, it is not
a priori obvious of what form they take. Taking a note from field extensions,
it would be an easy mistake to assume that OQ(α) = Z[α] in general. In the

case of the quadratics, the field is Q(
√
d) whereas the number ring is either

Z[
√
d] or Z[1+

√
d

2 ].
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1.2 Some Ring Theory

Having defined the rings of integers of number fields, the first question one
might ask is what properties they share. They are in general not principal
ideal domains nor unique factorisation domains. For these rings it turns
out that unique factorisation implies principal ideal domains. Turning to
positives they are Noetherian, and in particular Dedekind domains, a trait
that will be put to heavy use.

Definition 1.2.1. Let R be an integral domain. Then R is called a Dedekind
domain if it is Noetherian and integrally closed, and if every non-zero prime
ideal is maximal.

Every principal ideal domain is Dedekind, and so in particular Z. Together
with the following theorem, this implies that the rings of integers of number
fields are all Dedekind domains:

Theorem 1.2.2. Let R be a Dedekind domain, K its field of fractions, L
a finite extension of K and S the integral closure of R in L. Then S is a
Dedekind domain. If K is of characteristic 0 then S is a finitely generated
R-module.

Proof. See [6, Ch 3.4 Thm 1]

The fact that prime ideals are maximal yields one of the main tools to use in
the study of these rings. That is, if p is a prime ideal of the Dedekind ring O,
then O/p is a field. The other major result on Dedekind domains concerns
factorisation of ideals. In order to state it in a way that will be useful also
for the extension of the theory in Chapter 3, a few more definitions are
required. The first new object is that of fractional ideals.

Definition 1.2.3. Let R be an integral domain, and K its field of fractions.
A fractional ideal of R is an R-submodule I of K such that there exist an
element d ∈ R \ (0) such that dI ⊂ R. Let a principal fractional ideal be
one of the form xR with x ∈ K×.

An intuitive way to think of a fractional ideal is as an ideal with denomina-
tors. Multiplying with d can be thought of as clearing out the denominator
so that I turns into an ideal. Note particularly that ordinary ideals of R
also are fractional ideals, with d = 1. Define the product IJ of two frac-
tional ideals I and J as the set of finite sums

∑
xiyi with x ∈ I, y ∈ J . As

with ideals, I ∩ J, I + J , and IJ are again fractional ideals. In the general
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case of integral domains, the set of fractional ideals form a monoid under
multiplication [6, Ch 3.3, after Lemma 3]. In the case of Dedekind domains,
the structure is even stronger.

Theorem 1.2.4. Let R be a Dedekind domain and P the set of non-zero
prime ideals of R. Then

i) Every non-zero fractional ideal b of R may be uniquely expressed in the
form

b =
∏

p∈P
pnp(b)

where, for any p ∈ P, np(b) ∈ Z, and, for almost all p ∈ P , np(b) = 0.

ii) The monoid of non-zero fractional ideals of R is a group.

Proof. see [6, Ch 3.4 Thm 3]

Note that in particular this applies to ordinary ideals, so that for any ideal
in a Dedekind domain, there is a unique representation as a product of
prime ideals. As motivated by part ii), with a slight abuse of language it
is justified to say that a fractional ideal divides another ideal of it appears
in the factorization of the latter. In fact, in this case, containment implies
division [5, Ch 3 Thm 15 Corr 3].

Now consider the set of principal fractional ideals.

Definition 1.2.5. Let R be a Dedekind ring, with field of fractions K.
Denote by IK the set of fractional ideals and PK the set of principal fractional
ideals. Then PK is a subgroup of IK . The quotient IK/PK = C(K) is called
the Class Group of K.

For R to be a principal ideal domain is equivalent to R having a trivial class
group. Computing the class group is in general a hard problem, however
of note is a general result establishing it as finite [6, Ch 4.3 Thm 2]. The
introduction of the class group here is motivated by its role as a prototype
of objects developed in Chapter 3.
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1.3 Traces, Norms and Discriminants

There are a few tools that should be constructed in order to use for proofs
in the following chapter. They are a set of useful invariants of elements and
ideals in the rings. Recall the definition of trace and determinant from
linear algebra. Also recall that trace and determinant are independent of a
particular choice of basis.

Let L is an algebraic extension of a number field K, then OL is a finitely
generated OK-module. Then for x ∈ OL, denote by mx multiplication by x.
Then mx is an endomorphism and fixing a basis mx can be represented by
a matrix.

Definition 1.3.1. With notation as above, define the trace of x, TrLK(x),
as the trace of mx and the norm of x, NL

K(x) as the determinant of mx.

When the extension in question is clear from the context, one may drop the
indices and simply write Tr(x) and N(x). While this definition might seem
cumbersome at a first glance, there is the following theorem to help:

Theorem 1.3.2. Keeping the notation from the definition, let [L : K] = n
and x1, x2, ..., xn be the roots of the minimal polynomial µ(x) for x over
OK in the splitting field for µ, each one repeated [L : K(x)] times. Then
TrLK(x) =

∑n
i=1 xi and NL

K(x) =
∏n
i=1 xi

Proof. See [6, Ch 2.6 Prop 1]

Equivalently, these identites can be reformulated in Galois conjugates of x.
Let the splitting field for the minimal polynomial of x over K be F . If σi(x)
are the conjugates of x, and [F : K] = d then TrLK(x) = n

d

∑d
i=1 σi(x) and

NL
K(x) = (

∏d
i=1 σi(x))

n
d [5, Ch 1 Thm 4’]. As a short remark at this point,

note that in the proof of theorem 1.1.4, the terms σ(x) + x and σ(x)x were
the trace and determinant for x respectively.

Some familiarity with linear algebra gives the relations Tr(ax + by) =
aTr(x) + bTr(y), N(xy) = N(x)N(y) and N(ax) = adN(x) [6, Ch 2.6,
after Def 1].

Theorem 1.3.3. If x ∈ OL, then TrLK(x) ∈ OK and NL
K(x) ∈ OK .

Proof. Since OK is integrally closed in K, it suffices to show that the norm
and trace are in K and that they are integral over OK . Since the conjugates
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of x satisfy the minimal polynomial, they also satisfy any equation of integral
dependence of x. Thus the trace and norm are sums and products of integral
elements, and are therefore integral.

There is also an extension of the concept of norms to ideals.

Definition 1.3.4. Let a be an ideal of OK. Then the norm of a is NK
Q (a) =

Card(O/a).

Theorem 1.3.5. When a = (a) is a principal ideal, NK
Q ((a)) = NK

Q (a)

Proof. [6, Ch 3.5 Prop 1]

The final piece to be defined is the discriminant.

Definition 1.3.6. Let L and K be as above. Given an n-tuple (x1, ..., xn)
in Ln, define the discriminant of (x1, ..., xn) as

D(x1, ..., xn) = det(TrLK(xixj))

Furthermore, the discriminant of an extension L/K is defined to be the
principal ideal generated by the discriminant of any basis of L/K. It is
denoted by DL/K .

That the second part of this definition is well defined follows from the fact
that the discriminant of two bases differ by a unit, since the bases are con-
jugated by an invertible matrix [6, Ch 2.7 after Prop 1]. In the number field
case, the discriminant of two such bases as extensions of Q are equal, and
the discriminant is uniquely determined. It is the denoted the absolute
discriminant of the number field.

Again, as with both the trace and norm, it is possible to simplify this defi-
nition to an easier form.

Theorem 1.3.7. Let L/K be an extension of number fields, and [L : K] =
n. Let σi the the n distinct K-isomorphisms of L into C. Then, if (x1, ..., xn)
is a base of L/K;

D(x1, ..., xn) = det(σi(xj))
2 6= 0

Proof. see [6, Ch 2.7 Prop 3]
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1.4 A Few Examples

The main point of these tools is to leverage them for proofs in Chapter 2,
but they do have a few direct applications to showcase some of the structure
of the number rings.

As a first, consider the following consequence of theorem 1.3.2, a character-
ization of units of OK . Since the norm is multiplicative, and using the norm
over Q, it is easy to see that the norm of a unit has to be ±1. Conversely,
suppose that an element x has norm ±1. Then x−1 has to be an algebraic
integer, since the other factors of the norm is a product of algebraic inte-
gers as argued in the proof of theorem 1.3.3. Generalizing this result for a
quadratic field K = Q(

√
d), x being a unit of OK is equivalent to solving

x2 − dy2 = ±1 in Z. The case with = +1 is a classic equation known as the
Pell-Fermat equation.

Taking the field K = Q(i) = Q(
√
−1), theorem 1.1.4 gives OK as Z + iZ,

the Gaussian integers. Take the norm of an arbitrary element N(a + ib) =
(a + ib)(a − ib) = a2 + b2. Thus, the only units are those that satisfies
a2 + b2 = ±1. Thus, the units are {1,−1, i,−i}. As a note on units, there
exist an explicit description of the group of units of a ring of integers due to
Dirichlet, known as the Unit theorem.

As another example, recall that it was mentioned earlier how in general
the number rings are not unique factorization domains. Using norms, it is
now possible to explicitly demonstrate this behaviour. Consider the field
K = Q(

√
−5). Again using theorem 1.1.4, the ring of integers is OK =

Z +
√
−5Z and (1 +

√
−5)(1−

√
−5) = 6 = 2× 3. Now say that 1 +

√
(−5)

had a non-unit divisor y = a+ b
√
−5. Then the norm over the rationals of

y, NK
Q (y) = a2 + 5b2, would have to divide NK

Q (1 +
√

(−5)) = 6. It is easy

to see that neither a2 + 5b2 = 2 nor a2 + 5b2 = 3 has any solutions in Z, and
so 6 has two distinct factorizations in irreducible elements. Thus Q(

√
−5)

fails to be a UFD.

The final example of this part will be on discriminants. Consider the ab-
solute discriminant of the quadratic field Q(

√
19). Let σ be the non-trivial

automorphism. Since 19 ≡ 3 mod 4, a Z-basis is (1,
√

19) and one obtains
D = det(σi(xj)) = (σ(

√
19) −

√
19)2 = (−2

√
19)2 = 76. The exact same

argument works for any d ≡ 2 or 3 mod 4, so that the absolute discriminant
of any such quadratic field is 4d. When d ≡ 1 mod 4, the Z-basis is instead

(1, 1+
√
d

2 ) and the absolute discriminant becomes D = (1−
√
d

2 − 1+
√
d

2 )2 = d.
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Chapter 2

Ramification Theory

2.1 Prime ideals in field extensions

This chapter will be concerned with the behaviour of prime ideals in alge-
braic extensions of number fields. Therefore it is convenient to let ’prime’
denote a prime ideal in the ring of integers. The theme for this chapter
is derived from one of the defining traits of Dedekind rings, that of prime
factorization of ideals. Consider the following situation: Let L/K be an
extension of number fields, and let p be a prime ideal of OK . Then p can
extended to be an ideal of OL by taking pOL. How does the ideal pOL factor
in OL? Is it still a prime, or does it factor as a product of primes?

As an example, consider Q(i)/Q with rings of integers Z(i) and Z. There is
a particularly good example in the ideal (2). Since prime ideals are maximal
in a Dedekind domain, for (2) to remain prime in Z(i) requires Z(i)/(2) to
be a field. However, there are obvious zero divisors in the quotient ring as
2 factors as (1− i)(1 + i). For another example, take the field K = Q(

√
35)

and the ideal (11). By 1.1.4 the ring of integers OK = Z(
√

35), and the
question now is whether Z(

√
35)/(11) is a field. One may note that x2 − 35

is the minimal polynomial for
√

35 over Q. Thus Z(
√

35)/(11) ∼= (Z[x]/(x2−
35))/(11) ∼= Z[x]/(x2 − 35, 11) ∼= Z[x]/(11))/(x2 − 35) ∼= F11[x]/(x2 − 35).
This is a field since x2 − 35 ≡ x2 − 2 is irreducible over F11 implying that
(11) is a prime ideal in Q(

√
35).

One could continue in this manner, but it quickly grows impractical, es-
pecially so since most number fields are not principal ideal domains, and
factorisation might get tricky. The rest of this section will give a few tools
to manage the situation.
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Theorem 2.1.1. Let p a prime of OK . Then the ideals Pi of OL such that
Pi∩OK = p are precisely those that appear in the factorization pOL =

∏
peii .

Proof. P∩OK = p⇔ pOL ⊂ P by maximality of p. Also, pOL =
∏

Pei
i ⇒

pOL ⊂ Pi for all i.

There is some nomenclature associated to this definition. With definitions
as above Pi is said to lie above p. If there is only one prime lying above p
and ei = 1, then it is said to be inert. If there are more, p splits. If any of
the exponents ei are greater than 1, p is said to ramify in the extension. In
all of these cases, with some abuse of language, the behaviour may be said
to take place in either OL, L or L/K equivalently, as is convenient for the
situation.

Consider again the previous example of the prime (2) and the extension
Q(i)/Q. As argued (2) will split as a product of prime ideals in Z(i). Fur-
thermore 2 = (1 − i)(1 + i) which gives (1 − i)(1 + i) = −i(1 + i)2. Thus
as ideals there is the factorisation (2) = (1 + i)2 and (2) ramifies in this
extension.

One of the standard tools to study ramification is the residue fields associ-
ated to the primes. As a consequence of theorem 2.1.1, one can see that
OK/p ⊂ OL/P. Furthermore, since OL is a finitely generated OK-module,
we can take OL/P to be a finite-dimensional vector space over OK/p, i.e. a
finite extension. The dimension of this vector space is the residual degree
of P, denoted f .

Theorem 2.1.2. Let [L : K] = n and p be a prime ideal of OK with

pOL =

q∏

i=1

Pei
i

Then
q∑

i=1

eifi = [OL/pOL : OK/p] = n

Proof. See [6, Ch 5.2 Thm 1]

The fact that the extension is finite gives a useful description of the residue
fields. Since Z/(p) ∼= Fp, all of the residue fields O/p for number fields are
isomorphic to finite fields Fq, and the Galois groups of their extensions are
cyclic.
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The residue rings will be of great use later in this chapter. To get a sense
of the structure, there is the following theorem:

Theorem 2.1.3. With L/K finite and p a prime ideal of K, there is the
following isomorphism of residue rings.

OL/pOL ∼=
q∏

i=1

OL/Pei
i

Proof. The only maximal ideal containing Pei
i is Pi. This implies that

∀i 6= j, Pei
i +P

ej
j = OL. The result then follows from the Chinese Remainder

Theorem. See [3, Ch 2.2 Corr 2.2].

Another very important tool is the discriminant from Chapter 2. Consider
the following, which is a slight extension of the previous definition to one of
extensions:

Definition 2.1.4. Let L/K be a finite extension. The discriminant ideal
DL/K of OL over OK is the ideal generated by the discriminants of those
bases of L/K that are contained in OL.

Note that DL/K is an integral ideal of OK . Motivation: If (x1, ..., xn) is a
basis contained in OL, then TrL/K(xixj) ∈ OK ⇒ D(x1, ...xn) ∈ OK .

The usefulness of the discriminant comes from the following theorem:

Theorem 2.1.5. Let L/K be a finite extension of number fields. A prime
ideal p of OK ramifies in OL if and only if it contains DL/K . Furthermore,
only finitely many prime ideals of OK ramify in OL.

Proof. [6, Ch 5.3 Thm 1]

Recall the example of absolute discriminants of quadratic fields at the end of
Chapter 1. If d ≡ 2 or 3 mod 4 then DQ(

√
d)/Q = (4d) and else DQ(

√
d)/Q =

(d). From 2.1.4 it is clear that any ramified prime p of Z must divide 4d in
the first case and d in the second.

As a nice example, all the tools are in place to study primes in quadratic
extensions of the rationals.

Theorem 2.1.6. Let d ∈ Z be square-free, and let L = Q(
√
d). Then

15



a) If p is an odd prime such that d is a quadratic residue mod p or p = 2
and d ≡ 1 mod 8, then p splits.

b) If p is an odd prime and d is not a quadratic residue or p = 2 and d ≡ 5
mod 8, then p remains prime.

c) If p is an odd prime dividing d or p = 2 and d ≡ 2 or 3 mod 4, then p
ramifies.

Proof. Let p be odd. Then OK = Z +
√
dZ or OK = Z + (1 +

√
dZ)/2 de-

pending on d. However, the situation simplifies when passing to the residue
ring. Consider the latter case, and take an element a + b(1 +

√
d)/2, with

b odd. We see that modulo p this is congruent to a + (p + d)(1 +
√
d)/2 ∈

Z +
√
dZ. Thus, in either case, OL/pOL ∼= (Z +

√
dZ)/(p). Recall that

Z +
√
dZ ∼= Z[x]/(x2 − d). This implies that

OL/pOL ∼= (Z +
√
dZ)/(p) ∼= (Z[x]/(x2 − d))/(p) ∼= Z[x]/(p, x2 − d)

continuing yields:

Z[x]/(p, x2 − d) ∼= (Z[x]/(p))/(x2 − d) ∼= Fp[x]/(x2 − d)

The problem is then one of characterizing Fp/(x2 − d). By theorem 2.1.3
we can say that p splits if this is the product of two fields, that is if (x2− d)
splits in Fp. This is equivalent to stating that d is a non-zero square in
Fp, i.e. a quadratic residue. If (x2 − d) on the other hand is irreducible,
then f1 = 2 and (p) would remain prime. The last case is when d is zero
in Fp, then the polynomial is a square (i.e. not separable) and e1 = 2, so p
ramifies.

Now let p = 2. If d ≡ 2 or 3 mod 4, then OK = Z + Z
√
d. As above,

OL/2OL ∼= F2/(x
2 − d). Now the reduction of (x2 − d) in F2 is x2 or

x2 + 1 = (x + 1)2, in either case we will have nilpotent elements in the
residue ring. Thus, as above, in this case p ramifies. Not let d ≡ 1 mod 4.
Then OL = Z + (1 +

√
dZ)/2. The minimal polynomial for (1 +

√
d)/2 is

x2 − x− (d− 1/)4, thus OL/2OL ∼= F2/(x
2 − x− (d− 1)/4). If d ≡ 1 mod

8 then (d− 1)/4 ≡ 0 mod 2. This means x2 − x− (d− 1)/4 ≡ x(x− 1) and
as above, splitting of the polynomial implies splitting of the prime. If d ≡ 5
mod 8 on the other hand, (d − 1)/4 ≡ 1 mod 2 and x2 − x − (d − 1)/4 is
irreducible, so p remains prime.
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2.2 Interaction with Galois Theory

In the theory of field extensions, there is the particularly nice case of those
that are Galois. This carries over to the theory of ramification in a beautiful
way. A natural first question to ask would be how the elements of the Galois
group of such an extension act on the ring of integers. Let L/K be Galois,
and let x ∈ OL. Let p(x) be the equation of integral dependence for x over
OK . For any σ ∈ Gal(L/K), the coefficients of p(x) are fixed under the
action of σ, so σp(x) is again an equation of integral dependence of some
conjugate of x. Thus the ring of integers is stable under the action of the
Galois group. Furthermore, if Pi is a prime ideal of OL lying above a prime
p of OK , then σ(Pi) ∩OK = p since OK is fixed. There is an even stronger
version of this relation:

Theorem 2.2.1. Let L/K be Galois, p a prime ideal of OK and let pOL =∏g
k=1P

ek
k . Then, for all i, j there exist σ ∈ Gal(L/K) such that σ(Pi) = Pj.

Furthermore, all the Pi have the same ramification indices e and residual
degrees f . Thus

pOL = (

g∏

i=1

Pi)
e and n = efg

Proof. Recall theorem 2.1.2 stating that
∑g

i=1 eifi = n. Since σ is a field
automorphism, it will preserve f and g. Thus, the only outstanding part to
prove is the fact that the Galois group permutes the primes transitively.

Choose a Pi and assume for a contradiction that there is some Pj for which
there is no σ ∈ Gal(L/K) such that σ(Pi) = Pj . The Chinese Remainder
theorem then gives a solution in to the system

{
x ≡ 0 mod Pj

x ≡ 1 mod σ(Pi) for all σ ∈ Gal(L/K)

Let α be such a solution. Take the norm of alpha, N(α) =
∏
σ∈Gal(L/K) σ(α).

Since α appears as a factor, N(α) ∈ Pj ∩OK = p. On the other hand, since
α /∈ σ(Pi)⇒ σ−1α /∈ Pi. This implies that N(α) /∈ Pi, but N(α) ∈ p ⊂ Pi.
Contradiction.

Primes Pi,Pj are called conjugate if Pi = σ(Pj) for some σ in Gal(L/K).
Now, as previously seen, one of the more powerful tools in characterizing
ramification are the residue fields. There is a nice way of restricting the
Galois group of the field extension to that of the residue fields. First, a few
definitions:
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Definition 2.2.2. Let L/K be Galois with Galois group G. Let p be a prime
ideal of OK and P an ideal lying above it. Then the decomposition group
(of P) is the subgroup DP = {σ ∈ G|σ(P) = P}. The inertia group is the
subgroup IP = {σ ∈ G|σ(x)− x ∈ P for all x ∈ OL}.

The subscripted primes might be suppressed if the prime in question is clear.
The main point of these groups comes from the following: Let σ ∈ DP. Then
σ restricts to an automorphism of OL and since σ leaves P stable, it induces
an automorphism σ of OL/P. Since σ ∈ Gal(L/K), it also fixes OK/p. This
implies that σ ∈ Gal((OL/P)/(OK/p)). The mapping σ → σ is clearly a
group homomorphism with kernel IP. In fact, this is an isomorphism from
D/I onto the Galois group of the residue field extension as given by this
theorem:

Theorem 2.2.3. Let L,K,P and p be as above. Then OL/P is a Galois
extension of degree f over OK/p, and the homomorphism

D → Gal((OL/P)/(OK/p))

sending σ 7→ σ is surjective.

Proof. Consider first LD, the fixed field of D. Let OD = OL ∩ LD and let
pD be a prime ideal of OD such that pD = P ∩ OK . Now note that by
theorem 2.2.1, there is one prime lying above pD since P is stable under
the action of D. Factor pDOK as Pe′ and let f ′ be the residual degree of
(OL/P)/(OD/pD). Then, by theorem 2.1.2 e′f ′ = [L : LD] and via Galois
theory [L : LD] = Card(D). Furthermore, Card(D) = ef since if [L : K] =
n, then the cardinality is n divided by the number of conjugates of P. Thus
ef = e′f ′. Conclude that e = e′, f = f ′ and thus that OK/p ∼= OD/pD (1).

Now let α be a primitive element of OL/P over OK/p and let α be a repre-
sentative of it in OL. Let µα(x) be the minimal polynomial for α over LD.
Then µα(x) ∈ OK [x] since α is integral and the roots are all of the form
σ(α) for some σ ∈ D. Now let µα(x) be the reduction modulo p. By (1), it
is in OK/p[x], and the roots are all of those of the form σ(α). Consequently,
OL/P is the splitting field of µα(x) and is Galois over OK/p. Furthermore,
since we can write any conjugate of α as σ(α) fot some σ ∈ D, the ho-
momorphism is surjective. By the first isomorphism theorem for groups,
D/I ∼= Gal((OL/P)/(OK/p)) and f = [OL/P : OK/p] = |D/I| and since
Card(D) = ef , Card(I) = e.

Note that since the residue rings are finite, D/I is cyclic of order f . Also
note that for p to be unramified in an extension the inertia group for any
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prime lying above it must be trivial. By theorem 2.2.1 and the argument in
the proof above, for p to split into [L : K] distict factors, the decomposition
group must be trivial. In terms of intermediate fields Fi with K ⊂ Fi ⊂ L,
LD can be characterized as the smallest such field for which P is the only
prime lying above P ∩ OFi . Similarily LI is the largest Fi for which P is
totally ramified over P ∩ OFi , i.e. e = [L : Fi] [5, Ch 4 Thm 29].

There is one more case that simplifies the structure of these extensions, and
that is the case when the Galois group is abelian.

Theorem 2.2.4. Let L/K be Galois. Let P be a prime ideal of OL and
σ(P) a conjugate for some σ ∈ Gal(L/K). Then the decomposition and
inertia groups are conjugate;

Dσ(P) = σDPσ
−1

Iσ(P) = σIPσ
−1

Proof. See [6, Ch 6.2, remark following Prop 2]

The final component to be defined before moving on to a few applications
is the Artin symbol. Suppose there is a Galois extension L/K of number
fields, with a prime P lying above the prime p. Then as noted OL/P is
Galois of degree f over OK/p. Suppose further that p is unramified so that
DP
∼= Gal(OL/P/OK/p). The latter is the Galois group of an extension of

a finite field. Recall from Galois theory that this implies the existence of a
canonical generator Frob : x 7→ xq with q = Card(OK/p) [3, Ch 5.5 Thm
5.4]. Thus, we have a generator σ of DP such that σ(x) ≡ xq mod P, called
the Frobenius automorphism of P. Furthermore, for conjugates Pi and Pj ,
their Frobenius automorphisms are conjugate elements by theorem 2.2.4.
Thus, in an abelian extension the Frobenius element only depends on the
underlying prime p of OK .

Definition 2.2.5. Let L/K be Galois. Then the Artin symbol ( P
L/K )

for a prime P lying above an unramified prime p denotes the Frobenius
automorphism associated to P.

If L/K is abelian then the Artin map sends any unramified prime p of OK
to the associated Frobenius element ( p

L/K ) in Gal(L/K).

Theorem 2.2.6. Let L/K be Galois with an intermediate field F . Let P
be a prime of OL and f the residual degree of P ∩M over K. Then:

i) ( P
L/M ) = ( P

L/K )f
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ii) if F is Galois over K then ( P
L/K )|M = (P∩MM/K ).

Proof. See [6, Ch 6.3 Prop 1]

2.3 Applications

2.3.1 Ramification in cyclotomic fields

As a nice example of ramification in extensions, there is the case of the
cyclotomic ones. First, a description of the corresponding number ring.

Lemma 2.3.1. Let p be prime, ζ = ζp and K = Q(ζ). Then OK = Z(ζp)
for which a base as a Z-module is (1, ζ, ..., ζp−2).

Proof. See [5, Ch2 Thm 10]

Theorem 2.3.2. Let ζn be a primitive n:th root of unity. Then any prime
p of Z ramifying in Q(ζn) divides n.

Proof. Starting first with the case where n = p is a prime number. Recall
that the minimal polynomial is p(x) = xp−1 + xp−2 + ... + x + 1 so that
(x−1)p(x) = xp−1 [2, Ch 13.6]. There is an easier form of the discriminant
in this case, using the Vandermonde matrix. See [Ch 2.7, the example] to

obtain D(1, ζ, ..., ζp−2) = (−1)
1
2
(p−1)(p−2)N(p′(ζ)).

Taking derivatives of (x − 1)p(x) = xp − 1 and evaluating at ζ gives (ζ −
1)(p′(ζ)) = pζp−1. Now note that ζ−1 = ζn−1 ∈ OK and so N(ζ) = ±1.
Furthermore, clearly N(p) = pn−1 and by substituting x−1 into the minimal
polynomial and taking coefficients one obtains N(ζ − 1) = ±p. Putting all
of this together yields:

D(1, ζ, ..., ζp−2) = ±pp−2

Using theorem 2.1.5, p is the only prime of Z that ramifies in Q(ζp).

Now consider the case where n is not prime. In this case, the minimal
polynomial p(x) divides xn − 1, so say that xn − 1 = p(x)g(x) for some
g(x) ∈ Q[x] and that deg(p(x)) = d. Taking derivatives and evaluating at ζ
now gives nζn−1 = p′(ζ)g(ζ). Taking norms gives

N(g(ζ))N(p′(ζ)) = ±nd
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and so N(p′(ζ)) divides nd. As argued in the first subcase, D(1, ζ, ..., ζd−1) =
±N(p′(ζ)). Note now that in the first case D(1, ζ, ..., ζd−1) was the discrim-
inant of the basis for the number ring, which was what solved the problem.
In this case, it is a basis of the field extension, but not nessecarily of the
the number ring as a Z-module. However, as in the discussion after def-
inition 1.3.6 since ζ is a unit, the absolute discriminant must divide this
discriminant, and so must divide nd. The theorem follows from 2.1.5.

2.3.2 Quadratic Reciprocity

A further example of an application is a nice proof of Quadratic Reciprocity.
It is notable in that the case of p = 2 falls out without barely any extra work.
Also note how the Artin symbol is used to express the quadratic Legendre
symbol, which while in this text is defined first here, is usually introduced
at a much earlier stage.

Definition 2.3.3. Define the Legendre symbol (pq ) as:

{
+1 if p is a quadratic residue mod q

−1 else

Lemma 2.3.4 (Euler’s Criterion). Let p be an odd prime and a ∈ Z− pZ.
Then:

(
a

p
) ≡ a(p−1)/2 mod p

Proof. See [6, Ch 5.5 Prop 1]

Theorem 2.3.5 (Quadratic Reciprocity). Let p, q be distict odd primes.
Then it holds that:

(
p

q
) = (−1)(p−1)(q−1)/4(

q

p
)

If p = 2 then

(
2

q
) = (−1)(q

2−1)/8

Proof. The strategy is to show that the Artin symbol subsumes the Legen-
dre, and then show that both sides express the Artin for a suitable extension
of the rationals.

Begin by letting q be an odd prime, and K = Q(ζq). Recall from the
Galois theory that G := Gal(K/Q) ∼= F×q and that this group has a unique
subgroup H of index 2 corresponding the the subgroup of squares. Since F×q
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cyclic this subgroup is normal and so via the Galois correspondence there is
a unique quadratic subfield F of K. No prime p 6= q ramifies in F since they
do not ramify in K by theorem 2.3.2. Thus q is the only ramified prime,
and must be the discriminant of F . If q ≡ 1 mod 4, then DQ(

√
q) = q so

F = Q(
√
q). If q ≡ 3 mod 4 then DQ(

√
d) = 4d, but 2 will not ramify so

the field must be F = Q(
√−q). To avoid splitting the proof into cases, set

q∗ = (−1)(q−1)/2q so that F = Q(
√
q∗) covers them both.

Now let p 6= q be a prime. Consider ( p
K/Q). By theorem 2.2.6 its restriction

to F is ( p
F/Q). Since F is a quadratic field, Gal(F/Q) = G/H ∼= Z/2Z. The

latter can be taken to be {+1,−1} as a set. The squares in F×q map to the
identity +1, and the non squares to −1 under the projection onto G/H so
that ( p

F/Q) = (pq ).

For the other identification, consider the decomposition of p in F . Recall
theorem 2.1.6 on the ramification of primes in quadratic extensions, i.e. if
q∗ is a quadratic residue mod p then p splits, and if q∗ is not, p remains
prime. Now ( p

F/Q) is the identity if p splits since the decomposition group

is trivial, and the non-identity element otherwise, so ( p
F/Q) = ( q

∗
p ).

Put together

(
p

q
) = (

q∗

p
) = (

−1

p
)(q−1)/2(

q

p
)

and Euler’s Criterion finishes the proof for odd p.

For the case p = 2, again use the result on the splitting of primes in quadratic
extensions. Following that, 2 splits if q∗ ≡ 1 mod 8 and remains prime if
q∗ ≡ 5 mod 8. Now note that (−1)((q

∗)2−1)/2 = 1 if q∗ ≡ 1 mod 8 and −1
if q∗ ≡ 5 mod 8. Furthermore (−1)((q

∗)2−1)/2 = (−1)(q
2−1)/2. Using the

characterisation of ( 2
F/Q) in splitting or not gives:

(
2

q
) = (

2

F/Q
) = (−1)(q

2−1)/2

As a remark note how the quadratic subfield was identified using discrim-
inants. The observation being that the same primes ramified in the two
extensions. This is closely related to the machinery in Chapter 3. One may
compare the method used here to one stating that the conductor of the two
extensions are equal.
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Chapter 3

Class Field Theory

With the definitions from Chapter 2 in place, it will now be possible to state
the main theorems of Class Field Theory.

3.1 Generalized Class Groups

In order to define the main theorems in this chapter, a generalization of the
notion of the class group of a number field is needed. The first concept that
is required is that of a modulus. This in turn demands an extension of the
concept of primes of a number field. In addition to the prime ideals p of
OK , there is the following:

Definition 3.1.1. An infinite prime of a number field K is an embedding
σ into an archimedean completion of K. If σ : K → R, it is called a real
prime. If σ : K → C is one of a pair of distinct conjugate embeddings, it is
called a complex prime.

The notion of ramification of a prime in an extension L/K can be extended
to the infinite primes. An infinite prime of K ramifies in L if it is real
but has an extension to L which is complex. As an example, Q has one
real prime. It is unramified in a real quadratic extension, but ramifies in an
imaginary.

Definition 3.1.2. Let K be a number field. A modulus in K is a formal
product

m =
∏

p

pnp

over all primes of K such that:
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1) np ≥ 0 and at most finitely many are nonzero.

2) np = 0 for all complex infinite primes.

3) np ≤ 1 for all real infinite primes.

It is thus possible and often convenient to factor a modulus m into its finite
and infinite parts. Write m = m0m∞ where m∞ are the real infinite primes.
m0 is clearly an ideal in OK .

Recall that the definition of a class group used the fractional ideals of OK .
Given a modulus m in a number field K define IK(m) to be the group of all
fractional ideals of OK relatively prime to m.

The next construction is to extend the Artin map given in Chapter 2 to
fractional ideals. Given an abelian extension of number fields L/K, a
modulus m in K and the map p → ( p

L/K ), extend the map to a homo-

morphism: ω : IK(m) → Gal(L/K) by multiplicativity. That is; given
a ∈ IK(m), a =

∏
pnii , define ( a

L/K ) =
∏

( pi
L/K )ni .

Definition 3.1.3. The homomorphism ω : IK(m) → Gal(L/K) is called
the Artin map or reciprocity law map.

The notation for the Artin map will be augmented with subscripts when
either the extension or the modulus is not obvious from the context. To
further the generalization of the class group, consider the subgroup of IK(m)
generated by principal ideals (α) ⊂ OK such that α ≡ 1 modulo m0 and
σ(α) > 0 for all σ|m∞. This subgroup will be denoted PK,1(m).

Definition 3.1.4. Let PK,1(m) be as above. A subgroup H of IK(m) is
called a congruence subgroup if it satisfies PK,1(m) ⊆ H ⊂ IK(m). Fur-
thermore, the quotient IK(m)/H is called a generalized ideal class group
for the modulus.

Comparing this with the definition of the class group in chapter 1, the class
group is a generalized ideal class group with the modulus 1.
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3.2 Three theorems of Class Field Theory

The definitions in the previous section will now lend themselves to a very
nice theorem due to Artin, one which the rest of this chapter will focus
around.

Theorem 3.2.1 (The Artin Reciprocity Theorem). Let L be an abelian
extension of a number field K, and let m be a modulus divisible by all the
primes that ramify the extension. Then:

i) The Artin map is surjective

ii) If the exponents of the finite primes of the modulus are sufficiently large,
then the kernel of the Artin map is a congruence subgroup. This gives
the isomorphism

IK(m)/ker(ω) ' Gal(L/K)

Part ii) of the theorem realizes the Galois group of the extension as a gen-
eralized ideal class group for the modulus. It relies on a a rather vague
statement of ’sufficiently large’. There is however another theorem that
gives an admissive modulus, as well as constraints on any other:

Theorem 3.2.2 (The Conductor Theorem). Let L be an Abelian extension
of a number field K. Then there exist a modulus f such that:

i) f is divisible by all the primes of K that ramify in L.

ii) Given a modulus m divisible by all the primes of K that ramify in L, it
holds that ker(ω) is a congruence subgroup if and only if f divides m

The modulus f is called the conductor of L/K.

The final component is a rather nice theorem that will allow constructions of
extensions with given Galois groups and ramification. This theorem relates
congruence subgroups with extensions:

Theorem 3.2.3 (The Existence Theorem). Given a number field K with a
modulus m and a congruence subgroup H for m, there exist a unique Abelian
extension L such that all primes that ramify in L divides m and such that
ker(ω) = H.

25



These three theorems together gives a very strong description of Abelian ex-
tensions of a number field in terms of congruence subgroups of the fractional
ideals. The reciprocity theorem states that for sufficiently nice moduli, the
Artin map is surjective and the kernel is a congruence subgroup. In effect,
the Galois group of the extension is found as a quotient in the group of frac-
tional ideals relatively prime to the modulus. The conductor theorem gives
an explicit modulus for a given Abelian extension, and gives a criterion to
any other modulus. Finally, the existence theorem gives us a way of finding
abelian extensions with particular congruence subgroups and ramification.

The final result to be given in this section is a corollary to the Existence
Theorem:

Corollary 3.2.3.1. Let K be a number field with two abelian extensions
L and M . Then L is a subextension of M if and only if there exist some
modulus m such that

PK,1(m) ⊂ ker(ωM/K) ⊂ ker(ωL/K)
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3.3 Applications: Quadratic Reciprocity revisited
and Kronecker-Weber

With these results in place, it is time to turn to some applications. The
examples in this section rely on those of the previous, and are chosen such
that proofs can be given to demonstrate some of the workings of the theory.
The proofs are taken from [1, Chapter 8].

The name ”reciprocity” for theorem 3.2.1 is connected to the power of the
theorem to derive reciprocity theorems in the vein of quadratic reciprocity
and its higher order variants. One way see the connection is via the Weak
Reciprocity theorem, which will be stated here and used to reformulate
the provious proof of quadratic reciprocity. The first point of order is to
introduce the n:th power Legendre Symbol.

Definition 3.3.1. Let K be a number field containing ζn. Let p be a prime
ideal of OK , and let α, n ∈ OK be relatively prime to p. Then define the
n:th power Legendre Symbol (αp )n to be the unique n:th root of unity
satisfying

α(N(p)−1)/n ≡ (
α

p
)n mod p

The uniqueness and existence of which follows from Fermat’s little theorem
[1, Ch 8, after Thm 8.10]. The next step is to extend this multiplicatively,
similarly to what was done with the Artin map. Let a be an ideal of OK ,
a =

∏
pi. Then

(
α

a
)n =

∏
(
α

pi
)n

The upshot of this is that if we have a modulus m such that every prime
containing nα divides m, then this defines a homomorphism IK(m) → µn
for µn as the group of n:th roots of unity.

Recall from Galois theory that there is a natural injection

ϕ : Gal(K( n
√
α)/K) ↪→ µn

by associating σ ∈ Gal(K( n
√
α)/K) with the ζ for which σ( n

√
α) = ζ n

√
α [1,

Ch 8, before Thm 8.11].
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Theorem 3.3.2 (Weak Reciprocity). Let K be a number field containing ζn
and let L = K( n

√
α) for α ∈ OK . Assume that ker(ωL/K,m) is a congruence

subgroup for a modulus m divisible by all primes containing nα. Then the
following commutes:

IK(m) Gal(L/K)

µn

ω

(α· )n
ϕ

Thus if the image of ϕ is G, there is a surjective homomorphism (α· )n :
IK(m)/PK,1 → G.

Proof. To prove that the diagram commutes, it suffices to show that

(
p

L/K
)( n
√
α) = (

α

p
)n

n
√
α.

Recall how this was already done in the case of the quadratic Legendre in the
earlier proof of quadratic reciprocity. The result follows from the definition
of the Legendre, noting that the Artin symbol can be rewritten in terms of

norms as ( p
L/K )(α) ≡ αN(p) so ( p

L/K )( n
√
α) ≡ αN(p)

n .

The second part follows from commutativity of the diagram together with
the Artin Reciprocity theorem.

This theorem, while interesting in its own right, can be leveraged into
rephrasing the proof of quadratic reciprocity. First there is need of a lemma,
which is an example of the Artin Reciprocity:

Lemma 3.3.3. Let Q(ζm) be a cyclotomic extension of Q. Then

ker(ωQ(ζm)/Q,m) = PQ,1 for the modulus m = mm∞.

Proof. As noted in 2.3.2, for a prime in Q(ζm) to ramify, they must divide
m. Thus, consider the modulus m = mm∞. Take a

bZ ∈ IQ(m) such that
a and b are relatively prime to m. Identifying Gal(Q(ζm)/Q) = (Z/mZ)×

note that ω(abZ) = [a][b]−1 ∈ (Z/mZ)× by the definition of the Artin map.
The kernel consists those fractional ideals a

bZ for which [a][b]−1 ≡ 1. That
is, the kernel is precisely PQ,1(m).
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This lemma will be useful for both following theorems. First a restated proof
of theorem 2.3.5 which uses the Artin Reciprocity to derive the Quadratic
Reciprocity:

Proof. The strategy is as in the proof of chapter 2 to show that (p
∗
q ) = ( qp).

The idea is to show that both symbols define surjective homomorphisms
from the same group to a certain cyclic, and therefore must be equal.

By lemma 3.3.3, Gal(Q(ζp),Q) is a congruence subgroup for the modulus
k = pm∞. This implies that for any subfield K with Q ⊆ K ⊆ Q(ζp) there is
Gal(K/Q) as a congruence subgroup. As noted in the previous proof, Q(ζp)
contains a unique quadratic subfield K = Q(

√
p∗).

Thus ker(ωK/Q,k) is a congruence subgroup for k. By the theorem 3.3.2 we
get a a sujective homomorphism onto the group of second roots of unity:

(
p∗

· ) : IQ(k)/PQ,1(k)→ {±1}

According to lemma 3.3.2 and theorem 3.2.1 there is the isomorphism
(Z/pZ)× = Gal(Q(ζp)/Q) ∼= IQ(k)/PQ,1(k). Composing these two gives a
surjective homomorphism from Z/pZ× onto {±1}. However, the Legendre
( ·p) is also a surjective homomorphism between the same two groups, and

by cyclicity of (Z/pZ)×, they must be equal.

The final theorem to be presented is Kronecker-Weber. Using all the ma-
chinery presented in this chapter, the proof given here is remarkably brief:

Theorem 3.3.4 (Kronecker-Weber). Let K be an abelian extension of Q.
Then there exist a cyclotomic extension Q(ζm) such that K ⊂ Q(ζm).

Proof. By theorem 3.2.1 and 3.2.2 there is some modulus m such that
PK,1 ⊂ ker(ωK/Q,m). Take m to bemm∞. Lemma 3.3.3 yields ker(ωQ(ζm)/Q,m) =
PQ,1. Thus

PQ,1 = ker(ωQ(ζm)/Q,m) ⊂ ker(ωK/Q)

Now according to corollary 3.2.3.1: L ⊂ Q(ζm).
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