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1. Introduction 
Image resolution is a concept that most people are familiar with. A common 
interpretation of the term is how much detail that can be distinguished in an image, 
the higher detail the higher resolution. Even though high resolution images is 
something that we prefer to look at when looking at images of family or friends it’s 
not always that a high resolution images can be registered. When an image is sampled 
below the resolution that is needed there are ways to increase the resolution. One way 
to increase the resolution in images is to rely on image super resolution (SR) 
techniques. SR is a theoretical framework used to obtain a high resolution (HR) image 
either from a single image or a sequence of low resolution images. HR images are 
needed in many applications and are mainly used either for improving the information 
in an image for human interpretation or for automatic machine perception [1]. There 
are several areas where image SR is of interest, these areas involve everything on the 
atomic to cosmic scale such as medical imaging, surveillance video, document 
processing and remote sensing to name a few. A well-known application familiar from 
TV is synthetic zooming for forensic purposes where a scene, for example a face is 
magnified in order to identify a criminal. Another example is tomographic images in 
medical applications where HR images can aid a doctor in the process of setting a 
correct diagnosis. A topic related to SR is single image restoration and it is from this 
field SR has evolved and several different approaches for solving the problem have 
been described in the literature. These approaches can be divided into two groups, 
mathematical and statistical and both spatial and frequency based solutions to the 
problem has been suggested. Early work on SR focused on solutions in the frequency 
domain but these techniques have shown to be difficult to apply in real world 
applications. Nowadays most work addresses the problem in the spatial domain the 
reason is its flexibility to handle a large variety of image degradations. Degradations 
refers to the various effects that degrades the resolution, these effects are always 
present when images are registered and can be divided into three groups, translation, 
blur and aliasing. For example, there is a loss of detail due to limited shutter speed, 
insufficient sensor density, noise within the senor etc. Even though most people are 
familiar with the term resolution the term has different meaning in different contexts. 
In a SR context the term resolution refers to spatial resolution, the pixel spacing in an 
image and is usually measured in pixels per inch. The main restriction on the spatial 
resolution in an imaging system is the image sensor.  Image sensors in digital cameras 
and smart phones are either a charged coupled device (CCD) or a complementary 
metal-oxide-semiconductor (CMOS) active-pixel sensor. A high number of sensor 
elements per unit area on the image sensor results in images with high spatial 
resolution. And imaging systems with a small number of sensor elements will capture 
images with low resolution with blocky effects due to aliasing from low sampling 
frequency. One straight forward solution to increase image resolution is to increase 
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the number of sensor elements per unit area and thus decreasing the size of each sensor 
element. But as the size of image sensor elements decreases the number of photons 
reaching each element will be low and as a result image quality will decrease due to 
enhancement of what is known as shot noise [2]. Other solutions connected to 
improved hardware have also been suggested but there is a high cost associated with 
high precision optics and sensors. Another more cost effective solution is to rely on SR 
techniques. In multiframe SR a sequence of low resolution images are registered onto 
a high resolution grid which is then used to estimate the final HR image. 
Mathematically the problem is formulated on the basis of the image observation model 
g=Hf+e, where g,H, f and e denote the observed image distribution, the degradation 
process, the actual image and the noise process respectively. Stated this way the 
recovery problem is an ill-posed inverse problem and there may not exist a unique 
solution and even if there is one, it may not depend continuously on data. The latter 
property of ill-posedness results in extreme sensitivity to observation noise. 
Regularization of an ill-posed problem refers to finding an acceptable estimate of an 
ideal solution that depends continuously on data. Two aspects of regularization are (i) 
quantatively defining what an acceptable estimate is, and (ii) making use of a priori 
information on the components in the observation model [3]. The problem SR 
techniques tries to solve is to increase the spatial resolution given the limitations of a 
given imaging system. One method that makes use of a priori information is the 
method of projections onto convex sets (POCS). In 1967 Bregman published an article 
describing an iterative method for finding a vector located in an intersection of convex 
sets [4]. The method has since then been used in image recovery by several authors, 
among them Youla and Webb [5]. Conceptually the method can be described as 
follows, all known properties of an image X restricts X to lie in a well-defined convex 
set. If m properties of X can be defined, then X can be restricted to the intersection  

                                                                     ∁0= ⋂ ∁im
i=1  

of closed convex sets. With only the projection operators Pi on each closed convex ∁i at 
hand, an estimate of X is found by a recursive scheme. The main synthesis of POCS is 
the realization of each C and P. Optimization, Fourier transforms, convex analysis, 
manifolds, non-expansive operators, fixed points etc. are all mathematical concepts 
connected to the POCS algorithm. SR with POCS is not a new area of research, the first 
application of POCS in image super resolution was published in the early 1980:s. Even 
so, looking at the mathematical concepts of POCS and the many different possible 
applications of SR results in an interesting opportunity to increase the author’s 
mathematical skills in an area where there is clear connection between mathematical 
theory and application.  
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2. The image super resolution problem 
A digital image is created by registering a continuous 2D signal of light intensities 
reflected from a natural scene. When any scene is captured with an imaging device 
there will be a difference between the original scene and the registered image. The 
difference between the two stems from several different sources related to the imaging 
device. Figure 1 illustrates the relationship between the scene that is to be captured 
and the image that is registered by the imaging device.  

The input to the imaging system is a continuous scene that is approximated by band 
limited signals. These signals are altered by atmospheric noise before they reach the 
imaging device. Sampling the original signal at or beyond the Nyquist rate, a concept 
described in section 3, generates the HR image that corresponds to the original scene. 
In a super resolution setting there is usually some motion between the original scene 
and the imaging device, it is this movement that creates the sub pixel movements in 
the registered image sequence that makes SR possible. When the image signals move 
through the imaging device they get degraded by different blur effects. The blurred 
image is then down sampled at the imaging sensor when the signals are registered by 
the image sensor elements. The down sampled images are then again distorted by 
senor noise and color filtering noise [1]. At the end the final version of the registered 
scene is a blurred, aliased and noisy version of the original scene.  

 

 
Figure 1: The various degradation effects present when registering an image 

One solution to the problem of registering a HR image is to go for a very high 
resolution camera. In some situations this is not a viable option and SR techniques can 
be used in order to mitigate the degrading effects mentioned above. The problem one 
seeks to solve with multi frame SR techniques is to generate a HR image from a 
sequence of images representing the same scene. 

3. Modeling image degradations 
Several different effects contribute to the difference between the image registered by 
the imaging device and the actual scene. Blur is one of the more prominent effects and 
there is a lot of research available describing techniques for improving images that are 
degraded by blur. Overall, blur can be categorized into motion blur and out of focus 
blur. Out of focus blur can be considered as a spatial average of clear images by 
sampling the aperture. Motion blur can on the other hand be described as a temporal 
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average of clear images taken at different time instants by uniformly sampling the 
shutter period.  

Images with motion blur can be created by registering images with a long exposure 
time. Exposure time is the time that the shutter is open and the sensor accumulates 
light from the objects in the scene. In the process of registering an image the diaphragm 
and the aperture statically limits the sensors exposure to light and the shutter limits 
the exposure to a finite range of time.  During the time that the shutter is open several 
views of the moving object is registered since the sensor integrates all light hitting its 
surface. Motion blur is the result of interaction between light, diaphragm, aperture, 
sensor and the moving object. The effect is recognized by streaks in the image in the 
direction of motion.  Movement of objects in the recorded scene and movement of the 
shutter are the two main reasons why motion blur appear in a scene. Motion blur due 
to movement of objects in the scene appear either due to motion of the imaging device 
relative to a static scene, movement of objects relative a static imaging device or due 
motion of both the imaging device and the scene.  

Motion blur can be synthesized in images to make the images look more realistic, this 
can be accomplished in several different ways. Creating synthezised motion blur has 
been an active area of research since the late 1980s [8]. Linear space invariant motion 
blur can be synthesized with convolution of the registered image with a point spread 
function imitating motion of the imaging device relative a static scene. Out of focus 
blur can also be synthesized by convolution of the registered image with a point spread 
function imitating the specific out of focus blur effect.  

Aliasing is an effect that occur when a continuous signal is under sampled, that is 
when the signal is discretely sampled at a rate that is insufficient to capture the changes 
in the signal. Under sampling results in images with artifacts that follow from high 
frequency components being folded into low frequency components. Consequently, 
image detail is lost since the high frequency components are not registered. More 
formally aliasing refers to the effect of sampling a bandlimited signal below the 
Nyquist rate. A function 𝑓 ∈ 𝐿1(ℝ) is said to be bandlimited if there exists 𝐵 ∈ ℝ such 
that 𝑠𝑢𝑝(𝑓) ⊆ [−𝐵, 𝐵], here 𝐵 is called a band limit for 𝑓  and Ω ≔ 2B, is the 
corresponding frequency band and 𝑓 is the fourier transform of 𝑓. The Nyquist 
frequency of 𝑓 is the minimal value of 𝐵 such that 𝑠𝑢𝑝(𝑓) ⊆ [−𝐵, 𝐵]  and the 
corresponding frequency band is the Nyquist rate. In order to avoid aliasing the 
Shannon sampling theorem states that the signal needs to be sampled at twice the 
Nyquist frequency, when this criterion is met one can duplicate the original signal. 
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Theorem 3.1 

If 𝑓 ∈ 𝐿1(ℝ) and 𝑓, the Fourier transform of 𝑓, is supported on the interval [−𝐵, 𝐵], then  

𝑓(𝑥) =∑𝑓 (
𝑛
2𝐵
) 𝑠𝑖𝑛𝑐 (2𝐵 (𝑥 −

𝑛
2𝐵
))

𝑛∈ℤ

 

Where equality holds in the 𝐿2 sense, that is, the series on the RHS of the equation 
converges to 𝑓 in 𝐿2 [11]. 

The word aliasing comes out of the fact that when a continuous signal is sampled 
below the Nyquist frequency the resulting discrete signal is just degraded copy of the 
original signal. Aliasing is an effect present in all applications where continuous 
signals are discretely sampled. To demonstrate the effect one can create a discrete 
sinusoid with normalized frequency according to 

𝑥[𝑛] = 𝑥(𝑛𝑇𝑠) = 𝐴𝑐𝑜𝑠(𝜔𝑛𝑇𝑠 + 𝜃) = 𝐴𝑐𝑜𝑠(𝜔̂𝑛 + 𝜃) 

In  𝜔̂ represents the discrete time frequency which is also known as the principal alias, 
𝜔̂ = 𝜔𝑇𝑠 = 𝜔/𝑓 , 𝑇  represents the time between samples and 𝑓  is the sampling rate. 
The continuous signal can be reconstructed if the principal alias of the discrete signal 
is scaled to the frequency of the continuous signal. As an example let the original 100 
Hz signal that one want to reconstruct be on the following form 𝑥(𝑡) =
cos (2𝜋(100)𝑡 + 𝜋

3
), the corresponding Nyquist rate for this signal is then equal to 200 

Hz. If one samples the signal at 0.4 times the Nyquist rate, 𝜔̂ = 2.5 and using this as the 
principal alias one will reconstruct a 20 Hz signal.  The effect of aliasing in images is 
illustrated below, figure 2 shows a line of pixels in an image where there are two pixels 
in a cycle which is also the Nyquist frequency in this case. The bottom line in figure 2 
illustrates the result when the image is sampled twice during each cycle, the result is 
a perfect replication of the original image. 

 

 
Figure 2: Effect of sampling the ideal signal at the Nyquist frequency 
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If the sampling rate is lowered to one sample in three pixels we get an indication of 
the result of down sampling a signal, this is illustrated in figure 3.  

 

 
Figure 3: Effect of sampling the ideal signal below the Nyquist frequency 

 

Looking at figure 3 we see that a new pattern emerges that is not present in the original 
image.  

Super resolution has evolved from single restoration theory. As the name suggest 
single image restoration aims at improving an image from only one single image. This 
approach cannot be used to increase the image resolution by restoring the high 
frequency components that are hidden in the sampled signal. Super resolution theory 
on the other hand aims at restoring the high frequency components by using 
information contained in a sequence of images of the same scene and where the images 
differ by subpixel displacements.  

 

3.1. Formal problem definition 

The super resolution problem can be described as follows. Let f(𝑥1, 𝑥2, 𝑡), 𝑥1, 𝑥2, 𝑡 ∈ ℝ 
denote the time-varying scene in the image plane coordinate system. Given a sequence 
of 𝐾 low-resolution sampled images y[𝑚1,𝑚2, 𝑘] with 𝑚1 ∈ {1,2,… ,𝑀1,𝑘},𝑚2 ∈
{1,2,… ,𝑀2,𝑘} and 𝑘 ∈ {1,2,… , 𝐾} acquired by imaging of the scene f(𝑥1, 𝑥2, 𝑡) at times 𝑡1 <
𝑡2 < ⋯ < 𝑇 , here 𝑚1,𝑚2 represents the vertical and horizontal pixels and 𝑘 the number 
of acquired low-resolution images. The objective is to form 𝑆 estimates g[𝑛1, 𝑛2, 𝑠], 1 ≤
𝑠 ≤ 𝑆 of f(𝑥1, 𝑥2, 𝑡) on the discrete, super resolution sampling grid indexed by [𝑛1, 𝑛2] 
with 𝑛1 ∈ {1,2,… ,𝑁1,𝑠}, 𝑛2 ∈ {1,2,… ,𝑁2,𝑠}  at time instants 𝑡1 ≤ 𝜏1 < 𝜏2 < ⋯ < 𝜏𝑆 ≤ 𝑇. The 
individual estimates are the result of arbitrary geometric warping, linear space 
invariant blurring and uniform decimation on the ideal image f(𝑥1, 𝑥2, 𝑡).  Furthermore 
each of the measured images is contaminated by additive Gaussian noise uncorrelated 
between estimates. The observed images 𝑔𝑘 are related to f through the imaging model  

𝑔𝑘 = 𝐷𝑘𝐶𝑘𝐹𝑘𝑓 + 𝜀𝑘   𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑁   
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Where 𝐹𝑘 is a [𝑁2 × 𝑁2] matrix representing the geometric warp on f, 𝐶𝑘 is the linear 
space variant blur matrix of size [𝑁2 × 𝑁2] and 𝐷𝑘 is a [𝑀2 × 𝑁2] matrix representing 
the decimation of 𝑓𝑘. 

Super-resolution refers to the reconstruction of images g[𝑛1, 𝑛2, 𝑠] that are visually 
superior to the original low resolution observations.   

3.2. The Fredholm integral equation 

The imaging model presented above is the matrix analogue to the Fredholm integral 
eqations of the first kind. The following section describes the theory behind the 
problem to find a stable solution to the equation and is based on [15]. Fredholm 
integral equations appear in many applications, among them image processing, the 
Fredholm integral equation of the first kind has the following form. 

𝑔(𝑥) = ∫ ℎ(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠                               𝑐 ≤ 𝑥 ≤ 𝑑
𝑏

𝑎
 

In the above equation 𝑔(𝑥) represents the observed image, ℎ(𝑥, 𝑠) represents the point 
spread function and 𝑢(𝑠) is the unknown function. The image recovery model 
presented above is an ill-posed inverse problem, there may not exist a unique solution 
and if a solution exists it may not depend continuously on the data. This last feature 
comes from the fact that small changes in g can result in very large changes in the 
solution. This property is not a result of using a particularly poor solution method but 
is inherent in the problem itself this can be understood by examining the underlying 
theory in more detail. In the following ℋ represents a Hilbert space, a normed linear 
vector space that is complete with respect to the defined norm. 

Theorem 3.2. Let K be a linear operator from ℋ1 to ℋ2. Then 𝐾 is bounded if and only 
if it is continuous 

If 𝐾 is a bounded linear operator from ℋ1 to ℋ2, its adjoint 𝐾∗ is the bounded linear 
operator from ℋ2 to ℋ1satisfying 

(𝐾𝑢, 𝑣) = (𝑢, 𝐾∗𝑣) 

For all 𝑢 ∈ ℋ1 and 𝑣 ∈ ℋ2. If 𝐾∗ = 𝐾, 𝐾 is said to be self adjoint. 

If 𝐾𝑢 = 𝜆𝑢 for some nonzero 𝑢 ∈ ℋ and some number 𝜆, 𝜆 is said to be an eigenvalue 
of 𝐾 and 𝑢 is the associated eigenvector. If 𝐾 is self adjoint, the eigenvectors 
associated with the distinct eigenvalues are orthogonal. The domain 𝐷(𝐾) of 𝐾 is that 
subset of ℋ1over which 𝐾 is defined. The range 𝑅(𝐾) of 𝐾 is defined by 
  

𝑅(𝐾) = {𝑔: 𝑔 = 𝐾𝑢 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑢 ∈ 𝐷(𝐾)} 
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And the null space 𝑁(𝐾) of 𝐾 is defined by  
 

𝑁(𝐾) = {𝑢: 𝐾𝑢 = 0 } 
 
A linear operator 𝐾 mapping ℋ1 to ℋ2 is called compact if 𝐾(𝐵)̅̅ ̅̅ ̅̅ ̅ is compact for every 
bounded subset 𝐵 of ℋ1.  
 
Theorem 3.3. Let 𝐾 be a compact self-adjoint operator from the Hilbert space ℋ into 
itself. Then for each nonzero eigenvalue 𝜆 of 𝐾 the set 𝑁(𝐾 − 𝜆𝐼) is finite-dimensional. 
The eigenvalues 𝜆1, 𝜆2, … form a sequence that converges to zero unless their number 
is finite. 
 
Theorem 3.4. Let 𝐾 be a compact self adjoint linear operator with eigenvalues 
𝜆1, 𝜆2, … repeated according to the dimension of the associated space 𝑁(𝐾 − 𝜆𝐼). Let 
𝑢1, 𝑢2, … be the corresponding orthonormal eigenvectors. Then for any 𝑢 ∈ ℋ 
 

𝐾𝑢 = ∑  𝜆𝑛(𝑢, 𝑢𝑛)𝑢𝑛

∞

𝑛=1

 

 
If 𝐾 has only a finite number of eigenvalues, the sum above will be finite and 𝐾 is 
said to have finite rank and 𝑅(𝐾) is a finite dimensional set. 
 
Now let 𝐾 be a compact linear operator from ℋ1 to ℋ2, then 𝐾∗𝐾 is a compact self 
adjoint linear operator mapping ℋ1 to itself. The eigenvalues of 𝐾∗𝐾 are all 
nonnegative and listed in a decreasing sequence they are 𝜆1 ≥  𝜆2 ≥ ⋯ ≥ 0. Let 𝑣1, 𝑣2 
be a corresponding sequence of orthonormal eigenvectors of 𝐾∗𝐾 and set  
 

𝜇𝑛 = 1/√𝜆𝑛 
 
and  
 

𝑢𝑛 = 𝜇𝑛𝐾𝑣𝑛 
 
Then {𝑢𝑛} is orthonormal sequence in ℋ2 satisfying 
 

𝜇𝑛𝐾∗𝑢𝑛 = 𝑣𝑛 
 
Theorem 3.5. {𝑢𝑛} is an orthonormal basis for 𝑅(𝐾)̅̅ ̅̅ ̅̅ ̅ = [𝑁(𝐾∗)]⊥ and {𝑣𝑛} is an 
orthonormal basis for 𝑅(𝐾∗)̅̅ ̅̅ ̅̅ ̅̅ = [𝑁(𝐾)]⊥. The sequence of triples {𝑢𝑛, 𝑣𝑛; 𝜇𝑛} is called a 
singular system for 𝐾. It follows from 𝜇𝑛 = 1/√𝜆𝑛 that the singular values 𝜇𝑛 become 
arbitrarily large as n increases unless 𝐾 is finite dimensional.  
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Theorem 3.5. Let 𝐾 be a compact linear operator mapping ℋ1 to ℋ2 , and let 
{𝑢𝑛, 𝑣𝑛; 𝜇𝑛} be a singular system for 𝐾. The equation 𝐾𝑢 = 𝑔 has a solution if and only 
if the following conditions hold 
 

i. 𝑔 ∈ [𝑁(𝐾∗)]⊥. 
ii. ∑  μ𝑛2|(𝑔, 𝑢𝑛)|2 <∞

𝑛=1 ∞ 
 
When these conditions are met, the solution is given by  
 

𝑢 = ∑𝜇𝑛(𝑔, 𝑢𝑛)
∞

𝑛=1

𝑣𝑛 

 
The above theorem indicates the effect of small changes in observed data on the 
solutions to the Fredholm equation. The sequence of inner products (𝑔, 𝑢𝑛) must 
decrease rapidly enough to counter the increase in the singular values 𝜇𝑛, if the 
above equation is used to solve the Fredholm equation the singular values will 
increase as n increases and small perturbations in the higher modes will result is 
large changes in the solution. 
 
A consequence of the inherent difficulties to obtain a stable solution to the above 
problem has been different techniques for overriding the increasing effect of the 
singular values as n gets large. These techniques are referred to as regularization in 
the literature and one well known regularization technique is Tikhonov 
regularization. One way of using Tikhonov regularization is in combination with 
total least squares, another regularization technique is POCS.  
 
 
3.3. Some mathematical concepts used in image processing 

Convolution is an operation that can be used in image processing in order to 
synthesize degradation of the original scene with different blur effects. The original 
scene is convolved with a point spread function to create the observed image. When 
the convolution of the observed image and the point spread function is assumed to be 
circular, the derivation of some projection operators is simplified.  

The circular convolution between a given signal f(𝑛) and point spread function h(𝑛) is 
defined as 

 𝑔(𝑛) = f(𝑛)⊛ ℎ(𝑛) = ∑ 𝑓(𝑚)ℎ(𝑛 −𝑚)𝑁−1
𝑚=0  



11 
 

The convolution between a given signal and a point spread function can also be 
described with a Toeplitz matrix. A Toeplitz matrix is an 𝑛 × 𝑛 matrix 𝑇𝑛 =
[𝑡𝑘,𝑗; 𝑘, 𝑗 = 0,1, … , 𝑛 − 1] where 𝑡𝑘,𝑗 = 𝑡𝑘−𝑗  and is constructed as follows 

𝑇𝑛 =

[
 
 
 
 
𝑡0 𝑡−1 𝑡−2 … 𝑡−(𝑛−1)
𝑡1 𝑡0 𝑡−1
𝑡2.
𝑡𝑛−1

𝑡1 𝑡0

… 𝑡0 ]
 
 
 
 

 

When every row of the matrix is a right cyclic shift of the row above it 𝑡𝑘 = 𝑡𝑘−𝑛 for 𝑘 =
1,2,… , 𝑛 − 1  the matrix is said to be circulant and is on the following form 

 

𝐶𝑛 =

[
 
 
 
 

𝑡0 𝑡−1 𝑡−2 … 𝑡−(𝑛−1)
𝑡−(𝑛−1) 𝑡0 𝑡−1
𝑡−(𝑛−2).
𝑡−1

𝑡−(𝑛−2)

𝑡−2

𝑡0

… 𝑡0 ]
 
 
 
 

 

 

Circulant matrices appear in applications involving the discrete Fourier transform. 
Fourier transforms is another concept that has several applications in image 
processing. Fourier transforms can be used to define convex sets based on the spectral 
properties of the target image that can be used in the POCS algorithm. Another use of 
Fourier transforms in image processing is to translate the convolution of two signals 
to multiplication of Fourier coefficents. Since multiplication of the Fourier coefficients 
is equal to circular convolution, the Fourier transform is an effective way to convolve 
an image with a point spread function. The close connection between circular 
convolution and multiplication of Fourier coefficients can be seen below. 

First let the discrete Fourier transform of f(𝑛) be defined as 

𝐹(𝑘) = ∑ 𝑓(𝑛)𝑒−𝑗
2𝜋
𝑁 𝑘𝑛

𝑁−1

𝑛=0

 

And the inverse transform be defined as 

𝑓(𝑛) =
1
𝑁
∑ 𝐹(𝑘) 𝑒𝑗

2𝜋
𝑁 𝑘𝑛

𝑁−1

𝑘=0

 

Then 
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𝑔(𝑛) =
1
𝑁
∑ 𝐹(𝑘) 𝐻(𝑘)𝑒𝑗

2𝜋
𝑁 𝑘𝑛

𝑁−1

𝑘=0

 

 

𝑔(𝑛) =
1
𝑁
∑ ∑ 𝑓(𝑚)𝑒−𝑗

2𝜋
𝑁 𝑘𝑚

𝑁−1

𝑚=0

 𝐻(𝑘)𝑒𝑗
2𝜋
𝑁 𝑘𝑛

𝑁−1

𝑘=0

 

 

= ∑ 𝑓(𝑚)(
1
𝑁
∑  𝐻(𝑘)𝑒𝑗

2𝜋
𝑁 𝑘(𝑛−𝑚)

𝑁−1

𝑘=0

)
𝑁−1

𝑚=0

 

 

And since (1
𝑁
∑  𝐻(𝑘)𝑒𝑗

2𝜋
𝑁 𝑘(𝑛−𝑚) 𝑁−1

𝑘=0 ) = ℎ(𝑛 −𝑚)  it is found that 

𝑔(𝑛) = ∑ 𝑓(𝑚)ℎ(𝑛 −𝑚)
𝑁−1

𝑚=0

 

 

It was mentioned above that the derivation of projection operators can be simplified 
when the convolution is circular, this follows from a result connected to Plancharels 
theorem. With the aid from Plancharels theorem one can find the norm of a signal from 
its Fourier coefficents. Let the signal f(𝑛) be described by a vector with elements U𝑛 
then 

‖𝑈‖2 = 〈𝑈, 𝑈〉 = 〈(
1
𝑁
∑ 𝑈𝑛̂𝑒𝑗2𝜋𝑛𝑘/𝑁
𝑁−1

𝑛=0

) , (
1
𝑁
∑ 𝑈𝑛̂𝑒𝑗2𝜋𝑚𝑘/𝑁
𝑁−1

𝑚=0

)〉 

 

=
1
𝑁2

∑ ∑〈𝑈𝑛̂𝑒𝑛〉
𝑁−1

𝑚=0

𝑁−1

𝑛=0

〈𝑈𝑚̂𝑒𝑚〉 =
1
𝑁2

∑ ∑ 𝑈𝑛̂𝑈𝑚̂〈𝑒𝑛, 𝑒𝑚〉
𝑁−1

𝑚=0

𝑁−1

𝑛=0

 

 

=
1
𝑁2

∑ 𝑈𝑛̂𝑈𝑛̂𝑁 =
𝑁−1

𝑛=0

1
𝑁
∑|𝑈𝑛̂|

2
𝑁−1

𝑛=0

 

In the second to last line 𝑒𝑛 has been used to represent the vector 𝑒𝑗2𝜋𝑛𝑘/𝑁 and since 
〈𝑒𝑛, 𝑒𝑚〉 = 0 and 〈𝑒𝑛, 𝑒𝑛〉 = 1, the result follows. 

  
4. Review of earlier work on super resolution and the development of POCS 
Super resolution stems from single image restoration theory and there is a clear 
connection between two problems. The earliest work on super resolution can be traced 
back to the 1980:s when Tsay and Huang worked on improving the resolution of 
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Landsat images. Landsat records images of the same areas of the earth during orbits 
and thus produces a sequence of similar but not identical images. The acquired images 
are treated as aliased images, of a static scene undergoing translational motion. As 
mentioned above recorded images are degraded versions of the scene they represent, 
the degradation is due to aliasing, motion, blur and noise. Tsay and Huang propose a 
frequency based solution to the problem based on the shift and aliasing properties of 
the continuous Fourier transform. The shift and aliasing properties are used to 
formulate a system of equations that relate the discrete fourier transform coefficents of 
the observed images to samples of the continuous fourier transform of the original 
unknown scene which is recovered using the inverse discrete fourier transform. In 
order to solve the system of equations, data on the translational motion is needed. With 
this information the method is a computationally efficient to use. However there are 
several drawbacks with the proposed method, for example there is no room for 
modeling a point spread blur function and the effect of noise is not considered. Tekalp, 
Ozkan and Sezan [6] identified these problems and proposed an alternative that gives 
the possibility to model a space invariant point spread function with noise. Similar to 
Tsay and Huang a frequency based approach is used and the final super resolution 
image is obtained by solving a system of equations similar to Tsay and Huang. Several 
other authors have contributed with work on super resolution in the frequency 
domain, even though there are advantages there are also disadvantages that the 
frequency based methods have a difficulty to handle. A fundamental problem with 
the frequency based methods is the assumption of global motion, this assumption is 
difficult to motivate in most real world applications. Yet another disadvantage is that 
there is no possibility to consider a priori information in order to regularize the 
solution [15]. A regularization approach is usually an attractive alternative due to the 
ill posed nature of the super resolution problem.  

Several authors have contributed with suggestions on how to solve the SR problem 
with POCS. An early example is an article from Oskoui and Stark [7] who worked on 
restoring images in computerized tomography. In their work they show that there is a 
connection between POCS and algebraic reconstruction technique (ART). They discuss 
differences and similarities between the two methods and one of the results is that 
ART can be viewed as a primitive version of POCS and that images restored with ART 
can be improved with the use of a priori constraints. However in a situation where a 
relatively complete data set is available, the use of a priori constraints will have little 
influence ART reconstruction. The strength of POCS arises when the available data set 
is not complete, exploiting known constraints results in a solution that is superior to 
plain ART reconstruction. Similar to the development of the frequency based SR 
methods there a number of super resolution problems where variations of POCS have 
been suggested with the aim to handle more complicated degradations. In [8] Oskoui 
and Stark continue their work on improving image resolution in CT. One difference is 
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that reconstruction in their previous contribution is based on a set of line integrals 
while the work in the new article aims at reconstruction with the aid of a set of area 
integrals.  

Image blur can be categorized into two groups, linear space invariant (LSI) and linear 
space variant (LSV). Most work encountered in the literature treats the LSI case, 
nevertheless in real world applications, the degradations are often space varying. Two 
examples of LSV blur is when an image contains an accelerating object or when an 
image contains out of focus blur, which can be the case when a scene has depth. Even 
though most SR work treats the LSI case there are examples where the LSV case has 
been studied. Several approaches have been considered, a few examples are sectional 
methods, Kalman filtering and POCS. An example where space varying blur is treated 
with POCS can be found in [9]. The constraint set considered is similar to what was 
used in [8], a bounding residual constraint. In order to treat LSV blur the PSF needs to 
be estimated in a first step. With the estimated PSF the constraint sets can be defined. 
In [9] Tekalp and Sezan compares the LSV POCS approach with an alternative method, 
ROMKF and discusses two factors that have an impact on the final solution, the a priori 
bound on the residual and the number of iterations. In conclusion the space varying 
POCS approach is shown to be computationally efficient and is also robust to errors in 
the point spread estimation. 

5. Projections onto convex sets 
Noise and blur are the main sources of image degradation. In the early days of super 
resolution these effects were modeled as if they were global. In many real world 
applications this assumption does not hold. Motion for example is an effect that is 
usually local within an image, one example is a moving car. Set theoretic methods 
where POCS is one example are well suited for degradations that are local. When there 
is information available on or a possibility to estimate degradations POCS incorporates 
the information by formulating constraint sets accordingly. Constraint sets are defined 
as convex sets in ℋN1×N2, these sets represents all possible reconstructions of the 
original scene. A number of different constraint sets can be formulated, examples are 
positivity, bounded energy, smoothness etc.  The solution to the super resolution 
problem with POCS is any image in the intersection of the defined constraint sets. A 
solution to the super resolution problem with POCS is found by projecting an initial 
estimate of the solution on the constraint sets in a sequential manner until a point in 
the intersection is found. Given k convex constraint sets in ℋN1×N2 such that the 
intersection of the sets is non-empty, POCS projects a point onto each constraint set, 
repeating until a point is reached which is in the intersection of the k sets. It can be 
shown that provided the constraint sets are convex that this iteration converges. The 
following sections are based on [12] and [13]. 
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5.1. Convex sets and projections 
 
Defintion 5.1. A subset C of ℝn is called convex if  

αx + (1 − α)y ∈ C ∀ x, y ∈ C, ∀ α ∈ [0,1]    

According to the definition a set is convex if the line segment connecting two elements 
of the set is contained within the set.  

Definition 5.2. The epigraph of a function f: X → [−∞,∞] where X ⊂ ℝn is the subset of 
ℝn+1 given by 

epi(𝑓) = {(𝑥, 𝑤)| 𝑥 ∈ 𝑋,𝑤 ∈ ℝ, f(𝑥) ≤ 𝑤 } 

Theorem 5.1. Let X ⊂ ℝn and let f: X → ℝ, then the epigraph of f is a convex set if f is 
convex. 

Proof. Since f  is assumed to be convex one can choose (𝑥1, 𝑦1) ∈ epi(𝑓) and (𝑥2, 𝑦2) ∈
epi(𝑓) and 0 < λ < 1 it follows then 

λ𝑦1 + (1 − λ)𝑦2 ≥ λf(𝑥1) + (1 − λ)f(𝑥2) ≥ 𝑓(λ𝑥1 + λ𝑥2) 

therefore λ(𝑥1, 𝑦1) + (1 − λ)(𝑥2, 𝑦2) ∈ epi(𝑓). 

Example 5.1. A disc with radius r is convex. Let the disc, D, be centered at the origin 
D = {x| ‖x‖2 ≤ r2} and let 0 ≤ λ ≤ 1. Let u and v belong to the disk. And let = λu + (1 − λ)v 
. Then 

‖z‖ = ‖λu + (1 − λ)v‖ ≤ λ‖u‖ + (1 − λ)‖v‖ ≤ λr + (1 − λ)r = r  

And z is contained within the disk. 

The illustration below gives an example of a convex and nonconvex set. 

 
Figure 4: Illustration of convex and nonconvex set. 

 

Proposition 5.1. The intersection ⋂ Ci𝑖∈𝐼  of any collection {Ci|i ∈ I}of convex sets is 
convex. 

As a consequence, the intersection of two disks is a convex set. If D1 and D2 are two 
disks with intersection D1 ∩ D2 and u, v ∈ D1 ∩ D2. Then, z ∈  D1 and z ∈  D2 where z =
λu + (1 − λ)v. 
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Definition 5.2. Given an arbitrary set C in ℝn. The convex hull of C, denoted conv(C), is 
the collection of all convex combinations of C. This means that conv(C) =
 {y = ∑ λiyik

i=1 |yi ∈ C, ∑ λi = 1,k
i=1  λi ≥ 0 }  

 

Definition 5.3. A set C ⊆ ℋ is closed if and only if every convergent sequence in ℋ is 
completely contained in C has its limit in C. 

A set that is both convex and closed is called a closed convex set. 

One property of closed and convex sets, that is central to the POCS method, is that of 
a closest point. Given a point x ∉ C there is a unique point y̅ ∈ C with minimum distance 
from x and a hyperplane that separates x and C such that 

inf
y∈C
‖x − y‖ = ‖x − y̅‖ 

Theorem 5.1. Let C be a closed convex set in ℝn and x ∉ C. Then there exists a unique 
point y̅ ∈ C with minimum distance from x. Furthermore, y is the minimizing point if 
and only if 〈x − y̅〉t〈y − y̅〉 ≤ 0 for all y ∈ C.  

Theorem 5.1 leads to the concept of a projection operator. For any x ∈ ℋ the projection 
PCx of x onto C  is the element in C  with closest distance to y.  

‖x − PCx‖ = miny∈C
‖x − y‖      

The projection operator projecting onto a closed convex set in a Hilbert space maps a 
point outside the set onto the closest, unique, point in the set.  

Corollary 5.1.  If some z ∈ C has the property  

〈x − z〉t〈y − z〉 ≤ 0      

for all  y ∈ C, then z = PCx. 

The fact that 〈x − PCx 〉t〈y − PCx 〉 ≤ 0 means that the vector x − PCx is supporting C at PCx, 
this is illustrated in figure 5. In figure 5 one can see that the angle between x − PCx and 
y − PCx for any point in C is greater or equal to 900. C can be seen to lie in the halfspace 
αt〈y − PCx 〉 ≤ 0 relative to the hyperplane αt〈y − PCx 〉 = 0 passing through PCx and 
having normal α = x − PCx. 
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Figure 5: Support of the convex set C. 

 

Theorem 5.2. Let C be any closed convex set. Then for any pair of elements x and y in 
ℋ,  

‖PCx − PCy‖2 ≤ 〈x − y 〉t〈PCx − PCy 〉     

 

Corollary 5.2. Projection operators onto closed convex sets are nonexpansive and 
therefore continuous. 

Proof. By applying Schwarz to the above expression , yields for any x  and y in ℋ 

‖PCx − PCy‖2 ≤ 〈x − y 〉t〈PCx − PCy 〉 ≤ ‖PCx − PCy‖‖x − y ‖ 

Under the projection PC, the distance between the two images never exceeds the 
distance between the two original points. If the distance ‖x − y ‖ is small ‖PCx − PCy‖ 
is small and PC is continuous. 

Definition 5.4. A mapping 𝑇: C → ℋ is said to be a contraction if there exists a positive 
constant , 0 < θ < 1, such that  

‖Tx − Ty‖ ≤  θ‖x − y ‖      

for all x, y ∈ C  

A point x ∈ ℋ is said to be a fixed point of a mapping 𝑇 if Tx1 = x1 

Any contraction has at most one fix point. If Tx1 = x1 and Tx2 = x2 then 

‖x1 − x2‖ = ‖Tx1 − Tx2‖ ≤ θ‖x1 − x2 ‖ 

Therefore ‖x1 − x2 ‖ = 0 and x1 = x2 

Theorem 5.4. If C is a nonempty closed subset of ℋ, any contraction mapping 𝑇 of C 
into itself possesses a unique fix point x∞. Starting from any element x0 of C, Tnx0 → x∞ 
as n → ∞ 

Since contraction is difficult to achieve in many applications the method of POCS relies 
on the following weaker concept.  

Definition 5.5. A mapping 𝑇: C → ℋ is said to be nonexpansive if  

‖Tx − Ty‖ <  ‖x − y ‖       

For all x, y ∈ C  

Properties of nonexpansive- and asymptotic regular operators plays a key role in the 
convergency theory of POCS, these properties are presented below.  

Theorem 5.5. Let 𝑇: C → C be a nonexpansive map whose domain C is a nonempty 
closed bounded convex set. Then T has at least one fixed point. 
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Proof. Let y0be any preselected member of C and let the set C0 = {x|x = y − y0, y ∈ C} The 
translate C0 is also a closed bounded set which also contains the zero vector ϕ. Every 
x ∈ C0 possesses a unique decomposition x = y − y0, y ∈ C. Let F: C0 → C0 be defined by 

Fx = Ty − y0      

this map F is nonexpansive since x1 = y1 − y0 and x2 = y2 − y0imply that  

‖Fx1 − Fx2‖ = ‖Tx1 − Tx2‖ ≤ ‖y1 − y2 ‖ = ‖(y1 − y0) − (y2 − y0)‖ = ‖x1 − x2‖ 

For any fixed k, 0 < k < 1, the map G = kF is a contraction of C0 into itself. For any x ∈
C0, kFx = k(Fx) + (1 − k)ϕ ∈ C0 and for all x1, x2 ∈ C0 

‖Gx1 − Gx2‖ = k‖Fx1 − Fx2‖ ≤ k‖x1 − x2‖ according to theorem 5.4 there exists a unique 
xk ∈ C0 for every k, 0 < k < 1 such that  

xk = kFxk       

the next step is to show that if xk → g as k → 1 from below, then by the continuity of F 
and g ∈ C0 it follows that g = Fg. This is accomplished if it can be proved that 

lim
𝑘→1,0<k<1 

xk = g      

where g is the unique fixed point of F in C0 of minimum norm. Assume that 0 < k < l ≤

1, xk = kFxk, xl = lFxl and let h = xl − xk. Then, since ‖Fxl − Fxk‖ ≤ k‖xl − xk‖ it follows that 

〈𝑙−1(xk + ℎ) − 𝑘−1xk, 𝑙−1(xk + ℎ) − 𝑘−1xk 〉 ≤ ‖h‖2   

and also 

(𝑙−1 − 𝑘−1)2‖xk‖2 + (𝑙−2 − 1)‖h‖2 ≤ 2𝑙(𝑘−1 − 𝑙−1)𝑅𝑒〈xk, ℎ〉   

and it follows that  

𝑅𝑒〈xk, ℎ〉 ≥ 0      

which combined with the identity 

‖xl‖2 = ‖xk + ℎ‖2 = ‖xk‖2 + ‖xl‖2 + 2𝑅𝑒〈xk, ℎ〉    

gives the following inequality 

‖xl‖2 ≥ ‖xk‖2 + ‖xl − xk‖2     

for any choice of sequence 0 < 𝑘1 < 𝑘2 < ⋯ such that 𝑘𝑖 → 1, the sequence {‖xk𝑖‖} is 
monotone and nondecreasing and bounded. It therefore converges, and  

‖xl − xk‖2 ≤ ‖xl‖2 − ‖xk‖2 → 0 

As 𝑙, 𝑘 → ∞. By the completeness of ℋ, xk𝑖 → 𝑔 ∈ 𝐶0 since 𝐶0 is closed. 

To finish up, let 𝑒 be any fixed point of 𝐹 in 𝐶0. Then 𝑒 = 1 ∙ 𝐹𝑒 and it possible to apply 
‖xl‖2 ≥ ‖xk‖2 + ‖xl − xk‖2 with xl = 𝑒, 𝑙 = 1, xk = xk𝑖 ,  and k = 𝑘𝑖 for any i= 1 → ∞. As 𝑖 →
∞, xk𝑖 → 𝑔, and 

‖e‖2 ≥ ‖g‖2 + ‖e − g‖2 ≥ ‖g‖2 
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Therefore, ‖g‖ = 𝑖𝑛𝑓‖𝑒‖, as 𝑒 ranges over the fixed points of 𝐹 in 𝐶0 

Theorem 5.5 rests on the assumptions of boundedness and convexity. This assumption 
can usually not met in applications because numerical bounds are not always 
available. But if the existence of a fixed point is known in advance, the boundedness 
requirement can be dropped. In order to reach a first theorem on convergence of 
successive projections to a fixed point three lemmas are needed.  

Lemma 5.1. The set of fixed points ℑ of a nonexpansive mapping 𝑇 with closed convex 
domain 𝐶 and range ℋ is a closed convex set. 

Proof. Let xi = 𝑇xi, 𝑖 = 1 → ∞,  and suppose that xi → 𝑥. Since {xi} ⊂ 𝐶 which is closed, 𝑥 ∈
𝐶 and 𝑇𝑥 is well defined, invoking nonexapansivity, 

‖𝑇𝑥 − 𝑥‖ = ‖𝑇𝑥 − 𝑇𝑥𝑖 + 𝑥 − 𝑥𝑖‖ ≤ 2‖𝑥 − 𝑥𝑖‖ → 0 

Therefore ℑ is closed. To establish convexity the following identity is used. 

‖𝑥 − 𝑦‖2-‖𝑇𝑥 − 𝑇𝑦‖2 = 4𝑅𝑒〈𝑃𝑥 − 𝑃𝑦, (1 − 𝑃)𝑥 − (1 − 𝑃)𝑦〉 

Where 𝑃 = (1 + 𝑇)/2 

Since 𝑇 is nonexpansive  

𝑅𝑒〈𝑃𝑥 − 𝑃𝑦, (1 − 𝑃)𝑥 − (1 − 𝑃)𝑦〉 ≥ 0 

For every 𝑥, 𝑦 ∈ 𝐶. Since 𝑃 and 𝑇 have the same fixed point it suffices to show that the 
set of fixed points of 𝑃 is convex. Let 𝑦 be any fixed point of 𝑃 then the above equation 
reduces to 𝑅𝑒〈𝑃𝑥 − 𝑦, 𝑥 − 𝑃𝑥〉 ≥ 0 

For all 𝑥 ∈ 𝐶. Conversely, if some 𝑦 ∈ 𝐶 satisfies 𝑅𝑒〈𝑃𝑥 − 𝑦, 𝑥 − 𝑃𝑥〉 ≥ 0 for every 𝑥 ∈ 𝐶 it 
satisfies it for 𝑥 = 𝑦, which indicates that ‖𝑦 − 𝑃𝑦‖ ≤ 0 or 𝑦 = 𝑃𝑦. The set of fixed 
points of 𝑇 is therefore the set of all 𝑦 ∈ 𝐶 that satisfies 𝑅𝑒〈𝑃𝑥 − 𝑦, 𝑥 − 𝑃𝑥〉 ≥ 0 for all 
𝑥 ∈ 𝐶, and this set is convex. 

Definition 5.6. A map 𝑇: 𝐶 →  ℋ  is said to be demiclosed if it from  

{x𝑛} ⊂ 𝐶,    {x𝑛} ⇀ x0,    x0 ∈ 𝐶,    𝑇x𝑛 → y0 

in the above definition the symbols  ⇀,→ represents weak and strong convergence respectively 

and it follows that  𝑇x0 = y0 

Definition 5.7. A map 𝑇: 𝐶 → 𝐶 is said to be asymptotically regular if for every 𝑥 ∈
𝐶, 𝑇𝑛𝑥 − 𝑇𝑛+1𝑥 → ϕ  

Lemma 5.2. In a Hilbert space ℋ let the sequence {x𝑛} converge weakly to 𝑥0. Then, for 
any x ≠ 𝑥0, 

lim
𝑛→∞

𝑖𝑛𝑓 ‖x𝑛 − 𝑥‖ > lim
𝑛→∞

𝑖𝑛𝑓‖x𝑛 − 𝑥0‖ 

Lemma 5.3. Let 𝑇 be any nonexpansive map with closed convex domain 𝐶 ⊂ ℋ then 
1 − 𝑇 is demiclosed 
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Proof. Let {x𝑛} ⊂ 𝐶 converge weakly to x0 and let {x𝑛 − 𝑇x𝑛} converge strongly to y0. 
Then, since 𝑇 is nonexpansive 

lim
𝑛→∞

𝑖𝑛𝑓 ‖x𝑛 − 𝑥0‖ ≥ lim
𝑛→∞

𝑖𝑛𝑓‖𝑇x𝑛 − 𝑇𝑥0‖

= lim
𝑛→∞

𝑖𝑛𝑓‖𝑇x𝑛 − x𝑛 + x𝑛 − 𝑇𝑥0‖ = lim
𝑛→∞

𝑖𝑛𝑓 ‖x𝑛 − 𝑦0 − 𝑇𝑥0‖ ≥ lim
𝑛→∞

𝑖𝑛𝑓 ‖x𝑛 − 𝑥0‖ 

by lemma 5.2. And by again by lemma 5.2 x0 = 𝑦0 − 𝑇𝑥0 or (1 − 𝑇)𝑥0 = 𝑦0 so 1 − 𝑇 is 
demiclosed. 

Theorem 5.6. Let 𝑇: 𝐶 → 𝐶 be an asymptotically regular nonexpansive map with closed 
convex domain 𝐶 ⊂ ℋ whose set of fixed points ℑ ⊂ 𝐶  is nonempty. Then, for any 𝑥 ∈
𝐶, the sequence {𝑇𝑛𝑥} is weakly convergent to an element of ℑ 

Proof. See appendix A 

Corollary. The sequence {𝑇𝑛𝑥} converges strongly to 𝑦0 iff at least one of its 
subsequences converges strongly. 

Definition 5.8. Given a mapping T: C → C the corresponding relaxed operator is 
defined as the convex combination 

Tα = α1 + (1 − α)T 

Where I denotes the identity operator and α is an arbitrary nonnegative real number.  

Definition 5.9. A mapping C → C is said to be a reasonable wanderer if for every x ∈ C  

∑‖Tnx − Tn+1x‖2 < ∞
∞

n=0

 

Theorem 5.7. Let 𝑇: 𝐶 → 𝐶 be a nonexpansive mapping with closed convex domain 𝐶 
whose set of fixed points is nonempty. Then for any fixed 𝛼, 0 < 𝛼 < 1 , 𝑇𝛼: 𝐶 → 𝐶 is 
reasonable wanderer and the sequence {𝑇𝛼𝑛𝑥} converges weakly to a fixed point of 𝑇 for 
every 𝑥 ∈ 𝐶. 

In the above theorem the assumption of asymptotic regularity of the mapping, which 
was a part of theorem 5.6, is dropped. And it is shown that weak convergence can be 
reached if the mapping is a reasonable wanderer. An example of a nonexpansive 
operator that is not asymptotically regular can be constructed as 𝑇𝑥 = −𝑥. 𝑇 is 
nonexpansive and maps 𝐶 into 𝐶 and the only fix point of 𝑇 is 𝑥 = 0. But 𝑇 is not 
asymptotically regular since 𝑇𝑛𝑥 − 𝑇𝑛+1𝑥 = 2(−1)𝑛𝑥 ↛ 0 as 𝑛 → ∞. Even so the convex 
combination  
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Tα = αI + (1 − α)T 

Is a reasonable wanderer for all 𝛼 in the interval  0 < 𝛼 < 1. 

5.2. Finding a common point in the intersection of convex sets by iteration 
In the image recovery problem to be solved, every known property of the original 
image x restricts x to lie in a closed convex subset of ℋ. Restrictions regarding the 
properties of x, e.g. the deviation of x from a reference image etc, can be used to 
construct a subset of ℋ , therefore if m restrictions can be defined x will be contained 
in the intersection of these sets,  

𝑥 ∈ 𝐶0 =⋂𝐶𝑖

𝑚

𝑖=1

 

Since each Ci is closed and convex C0 is closed and convex. If the operator projecting 
the observed image on C0 is known the problem is solved, P0x ∈ C0. However, since C0 
is based on the intersection of m closed convex subsets, the structure of C0 can be 
considerably more complex then each Ci. As a consequence a realization of P0 may not 
be possible. Since projection operators on convex sets are nonexpansive and therefore 
possess at least one fix point, each  Pi has at least one fix point. The fix points of Pi is 
also a fix point of P0 and also a fix point of the composition 

T = PmPm−1 …P1 

And more generally  

T = TmTm−1 …T1 

Where Ti = 1 + λi(Pi − 1). The key question of POCS is if the converse also holds, are the 
fix points of T contained in C0 and if so, does the sequence {Tnx}  converge weakly or 
strongly, and what are the effect of the initialization point. The first theorem below 
addresses the question of weak convergence.  

Theorem 5.8. Let 𝐶0 be nonempty. Then, for every 𝑥 ∈ ℋ and every choice of constants 
𝜆1, 𝜆2,… , 𝜆𝑚 in the interval 0 < 𝜆 < 2, the sequence {Tnx}  converges weakly to a point of 
𝐶0. 

Proof. For 0 < 𝜆𝑖 < 2 T is nonexpansive, the assertion is true for 0 ≤ 𝜆𝑖 ≤ 1 since  

‖𝑇𝑖𝑥 − 𝑇𝑖𝑦‖ = ‖(1 + 𝜆(𝑃𝑖 − 1))𝑥 − (1 + 𝜆(𝑃𝑖 − 1))𝑦‖ 

= ‖(1 − 𝜆)(𝑥 − 𝑦) + 𝜆𝑃𝑖(𝑥 − 𝑦)‖ 
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≤ (1 − 𝜆)‖(𝑥 − 𝑦)‖ + 𝜆‖(𝑥 − 𝑦)‖ 

And for 1 < 𝜆𝑖 

‖𝑇𝑖𝑥 − 𝑇𝑖𝑦‖2 = ‖(1 − 𝜆𝑖)(𝑥 − 𝑦) + 𝜆𝑖𝑃𝑖(𝑥 − 𝑦)‖2 

= (1 − 𝜆𝑖)2‖(𝑥 − 𝑦)‖2 + 2𝜆𝑖(1 − 𝜆)𝑅𝑒〈𝑥 − 𝑦, 𝑃𝑖𝑥 − 𝑃𝑖𝑦〉 + 𝜆𝑖2‖𝑃𝑖𝑥 − 𝑃𝑖𝑦‖2 

≤ (1 − 𝜆𝑖)2‖(𝑥 − 𝑦)‖2 + (𝜆𝑖2 + 2𝜆𝑖(1 − 𝜆𝑖)) ‖𝑃𝑖𝑥 − 𝑃𝑖𝑦‖2 

since ‖𝑃𝑖𝑥 − 𝑃𝑖𝑦‖2 ≤ 𝑅𝑒〈𝑥 − 𝑦, 𝑃𝑖𝑥 − 𝑃𝑖𝑦〉 

= (1 − 𝜆𝑖)2‖(𝑥 − 𝑦)‖2 + 𝜆𝑖(2 − 𝜆𝑖)‖𝑃𝑖𝑥 − 𝑃𝑖𝑦‖2 

≤ (𝜆𝑖(2 − 𝜆𝑖) + (1 − 𝜆𝑖)2)‖(𝑥 − 𝑦)‖2 = ‖(𝑥 − 𝑦)‖2 

And 𝑇 is nonexpansive.  

For the sequence {Tnx} to converge to a fix point, the next step is to show that 𝑇 is a 
reasonable wanderer for 0 < 𝜆 < 2  and convex sets 𝑖 = 1, . . , 𝑚.  

For 𝑚 = 1  𝑇 = 𝑇1, 𝐶0 = 𝐶1, and 

‖𝑥 − 𝑇𝑥‖2 = 𝜆2‖𝑃1𝑥 − 𝑥‖2 

And also  

‖𝑇𝑥 − 𝑦‖2 = ‖𝑥 − 𝑦 + 𝜆1(𝑃1𝑥 − 𝑥)‖2 

= ‖(𝑥 − 𝑦)‖2 + 2𝜆1𝑅𝑒〈𝑥 − 𝑦, 𝑃1𝑥 − 𝑥〉 + 𝜆12‖(𝑥 − 𝑃1)‖2 

= ‖(𝑥 − 𝑦)‖2 + 𝜆1(2 − 𝜆1)‖(𝑥 − 𝑃1𝑥)‖2 + 2𝜆1𝑅𝑒〈𝑥 − 𝑃1𝑥, 𝑦 − 𝑃1𝑥〉 

≤ ‖(𝑥 − 𝑦)‖2 − 𝜆1(2 − 𝜆1)‖(𝑥 − 𝑃1𝑥)‖2 

Follows since the last term in the second to last expression above is nonpositive. By 
combination of ‖𝑥 − 𝑇𝑥‖2 = 𝜆2‖𝑃1𝑥 − 𝑥‖2 and ‖(𝑥 − 𝑦)‖2 − 𝜆1(2 − 𝜆1)‖(𝑥 − 𝑃1𝑥)‖2 the 
expression below follows 

‖𝑥 − 𝑇𝑥‖2 ≤
𝜆1

2 − 𝜆1
(‖𝑥 − 𝑦‖2 − ‖𝑇𝑥 − 𝑦‖2) 

For 𝑚 ≥ 1 induction over 𝑚 gives the inequality 

‖𝑥 − 𝑇𝑥‖2 ≤ 𝑏𝑚 ∙ 2𝑚−1(‖𝑥 − 𝑦‖2 − ‖𝑇𝑥 − 𝑦‖2) 
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Let 𝑇 = 𝑇𝑚𝐾, where 𝐾 = 𝑇𝑚−1𝑇𝑚−2 …𝑇1 

Then for 𝑚 ≥ 2 

‖𝑥 − 𝑇𝑥‖2 ≤ 2(‖𝑥 − 𝐾𝑥‖2 + 2𝑚−2‖𝐾𝑥 − 𝑇𝑚𝐾𝑥‖2) 

And by the induction hypothesis 𝑏𝑚 ≥ 𝜆𝑚/(2 − 𝜆𝑚) and 𝑏𝑚 ≥ 𝑠𝑢𝑝1=𝑖≤𝑚−1(𝜆𝑖/(2 − 𝜆𝑖) ) 

‖𝑥 − 𝑇𝑛𝑥‖2 ≤ 𝑏𝑚2(2𝑚−2‖𝑥 − 𝑦‖2 − 2𝑚−2‖𝐾𝑥 − 𝑦‖2 + 2𝑚−2‖𝐾𝑥 − 𝑦‖2 − 2𝑚−2‖𝑇𝑥 − 𝑦‖2) 

= 𝑏𝑚2𝑚−1(‖𝑥 − 𝑦‖2 − ‖𝑇𝑥 − 𝑦‖2) 

And the inequality holds 

The fact that 𝑇 is a reasonable wanderer follows from  

∑‖𝑇𝑛𝑥 + 𝑇𝑛+1𝑥‖
∞

𝑛=0

 

≤ 𝑏𝑚 ∙ 2𝑚−1(‖𝑥 − 𝑦‖2 − ‖𝑇𝑥 − 𝑦‖2) + 𝑏𝑚 ∙ 2𝑚−1(‖𝑇𝑥 − 𝑦‖2 − ‖𝑇2𝑥 − 𝑦‖2) 

+⋯ ≤ 𝑏𝑚 ∙ 2𝑚−1‖𝑥 − 𝑦‖2 < ∞ 

And it follows that 𝑇 is also asymptotically regular and the sequence {Tnx} converges 
weakly to a fixed point of 𝑇. For the theorem to hold true it also needs to be shown that 
the fixed points of 𝑇 are points in the intersection of the 𝐶𝑖′𝑠. If 𝑥 is a point in 𝐶0, then 
since 𝑥 ∈ 𝐶𝑖, 𝑖 = 1 → 𝑚, 𝑥 = 𝑇𝑥. On the other hand if 𝑥 = 𝑇𝑥 and 𝑦 ∈ 𝐶0, 

‖𝑥 − 𝑦‖ = ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑇1𝑥 − 𝑇1𝑦‖ ≤ ‖𝑇1𝑥 − 𝑦‖ ≤ ‖𝑥 − 𝑦‖ 

Which is only possible if 𝑥 = 𝑇1𝑥 so that 𝑥 = 𝑇𝑚 …𝑇2𝑥, a repetition of the argument leads 
to 𝑥 ∈ 𝐶𝑖, 𝑖 = 1 → 𝑚 therefore 𝑥 ∈ 𝐶0 

And 𝑥 = 𝑇𝑚 …𝑇3𝑥, therefore 𝑥 ∈ 𝐶𝑖 for all 𝑖 and it follows that 𝑥 ∈ 𝐶0, which completes 
the proof. 

6. Finding projection operators 
The iterative procedure described above relies on projection operators that 
consecutively project an initial point onto a number of convex sets. In a SR context, the 
convex sets are based on a priori information of the specific situation. Theorem 5.1 
gives the foundation for how projection operators onto the respective sets are derived, 
the theorem describes projection operators to be the result of solving a constrained 
minimization problem. In order to find an analytical expression for the projection one 
can often rely on Karush-Kuhn-Tucker (KKT) conditions and in some cases also derive 
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the projection by logical reasoning. A number useful convex sets to use when 
implementing POCS can be found in [3] and a selection of sets are given below.  

Variance of the residual 
Looking at the linear model one notice that the information needed to restore the 
original signal is information on the point spread function and the statistical properties 
of the noise process. A constraint based on the variance of the residual can be 
constructed if one assumes the residual to be approximately equal to the variance of 
the noise. This constraint is formulated as follows 

𝐶𝑣 = {𝑓| ‖𝑔 − 𝐻𝑓‖2 ≤ 𝜖} 

The POCS method states that the constraints are to be closed and convex. The set 𝐶𝑣 is 
convex since if 𝑓1 and 𝑓2 are two points in 𝐶𝑣 then 𝑓3 = 𝛼𝑓1 + (1 − 𝛼)𝑓2 is also contained 
in 𝐶𝑣, since 

‖𝑔 − 𝐻𝑓3‖ = ‖𝑔 −𝐻(𝛼𝑓1 + (1 − 𝛼)𝑓2)‖ 

‖𝑔 − 𝐻𝑓3‖ = ‖𝛼(𝑔 − 𝐻𝑓1) − (1 − 𝛼)(𝑔 − 𝐻𝑓2)‖ 

‖𝑔 − 𝐻𝑓3‖ ≤ ‖𝛼(𝑔 − 𝐻𝑓1)‖ + ‖(1 − 𝛼)(𝑔 − 𝐻𝑓2)‖ 

‖𝑔 − 𝐻𝑓3‖ ≤ √𝜖 

The projection on 𝐶𝑣 is found by  

𝑚𝑖𝑛‖𝑓 − 𝑓𝑝‖
2 

𝑠. 𝑡 ‖𝑔 − 𝐻𝑓𝑝‖
2
= 𝜖 

In this case the projection operator on 𝐶𝑣 will be found with KKT.  

𝐿(𝑓𝑝, 𝜆) = 𝑓𝑝𝑇𝑓𝑝 − 𝑓𝑝𝑇𝑓 + 𝑓𝑇𝑓 + 𝜆(𝑔𝑇𝑔 − 2𝑔𝑇𝐻𝑓𝑝 + 𝑓𝑝𝑇𝐻𝑇𝐻𝑓𝑝 − 𝜖) 

𝐿𝑓𝑝(𝑓𝑝, 𝜆) = 0 

𝑓𝑝 − 𝑓 −  𝜆𝑔𝑇𝐻 + 𝜆𝐻𝑇𝐻𝑓𝑝 + 𝜆𝐻𝑇𝐻𝑓 − 𝜆𝐻𝑇𝐻𝑓 = 0 

(𝐻𝑇𝐻 +
1
𝜆
)𝑓𝑝 = (𝐻𝑇𝐻 +

1
𝜆
)𝑓 + 𝐻𝑇(𝑔 − 𝐻𝑓) 

𝑓𝑝 = 𝑓 + (𝐻𝑇𝐻 +
1
𝜆
𝐼)
−1
𝐻𝑇(𝑔 − 𝐻𝑓) 



25 
 

The multiplier 𝜆 can be found by substitution into the equation  

(𝑔 − 𝐻𝑓𝑝)
𝑡(𝑔 − 𝐻𝑓𝑝) = 𝜖 

Substituting the above expression and setting 𝑌 = (𝐻𝑡𝐻 + 1
𝜆
𝐼)
−1

 gives 

𝑓𝑝 = 𝑓 + 𝑌𝐻𝑇(𝑔 − 𝐻𝑓) 

and 

(𝑔 − 𝐻𝑓𝑝)
𝑡(𝑔 − 𝐻𝑓𝑝) = (𝑔 − 𝐻𝑓)𝑡 (𝐼 − 𝐻𝑌 𝐻𝑡 − 𝐻𝑌 𝐻𝑡 + 𝐻(𝑌 )

𝑡
𝐻𝑡𝐻𝑌 𝐻𝑡) (𝑔 − 𝐻𝑓)

= (𝑔 − 𝐻𝑓)𝑡 (𝐼 − 𝐻𝑌 𝐻𝑡 − 𝐻𝑌𝐻𝑡 (𝐻𝑡𝐻 +
1
𝜆
𝐼) 𝑌 + 𝐻(𝑌)𝑡𝐻𝑡𝐻𝑌 𝐻𝑡) (𝑔 − 𝐻𝑓)

= (𝑔 − 𝐻𝑓)𝑡 (𝐼 − 𝐻𝑌𝐻𝑡 −
1
𝜆
𝐼𝐻𝑌2𝐻𝑡 − 𝐻(𝑌)𝑡𝐻𝑡𝐻𝑌𝐻𝑡 + 𝐻(𝑌)𝑡𝐻𝑡𝐻𝑌𝐻𝑡) (𝑔 − 𝐻𝑓)

= (𝑔 − 𝐻𝑓)𝑡 (𝐼 − 𝐻𝑌𝐻𝑡 −
1
𝜆
𝐼𝐻𝑌2𝐻𝑡) (𝑔 − 𝐻𝑓) 

The projection on 𝐶𝑣 now relies on finding 𝜆. In the case where the image has been 
degraded by LSI blur the matrix 𝐻 is circulant and 𝜆 can be found by utilizing 
Plancharels formula 

‖𝑔 − 𝐻𝑓‖2 = 〈𝑔 − 𝐻𝑓, 𝑔 − 𝐻𝑓〉 = 〈(
1
𝑁
∑(𝑔 − 𝐻𝑓̂ )𝑒𝑗2𝜋𝑛𝑘/𝑁
𝑁−1

𝑛=0

) , (
1
𝑁
∑(𝑔 − 𝐻𝑓̂ )𝑒𝑗2𝜋𝑚𝑘/𝑁
𝑁−1

𝑛=0

)〉 

=
1
𝑁2

∑ ∑〈(𝑔 − 𝐻𝑓̂ )𝑒𝑛〉
𝑁−1

𝑚=0

𝑁−1

𝑛=0

〈(𝑔 − 𝐻𝑓̂ )𝑒𝑚〉 =
1
𝑁2

∑ ∑(𝑔 − 𝐻𝑓̂ )𝑛(𝑔 − 𝐻𝑓
̂ )𝑚〈𝑒𝑛〉

𝑁−1

𝑚=0

𝑁−1

𝑛=0

〈𝑒𝑚〉 

=
1
𝑁2

∑(𝑔 − 𝐻𝑓̂ )𝑛(𝑔 − 𝐻𝑓
̂ )𝑛𝑁 =

𝑁−1

𝑛=0

1
𝑁
∑‖𝑔 − 𝐻𝑓̂ ‖

2
𝑁−1

𝑛=0

 

1
𝑁
∑‖𝑔 − 𝐻𝑓̂ ‖

2
𝑁−1

𝑛=0

=
1
𝑁
∑(𝑔(𝑘) − 𝐻(𝑘)𝑓(𝑘)) (𝐼 − 𝐻(𝑘)𝐻(𝑘) (𝐻(𝑘)𝐻(𝑘) +

1
𝜆
)

𝑁−1

𝑛=0

−
1
𝜆
𝐻(𝑘)𝐻(𝑘) (𝐻(𝑘)𝐻(𝑘) +

1
𝜆
)
2

) (𝑔(𝑘) − 𝐻(𝑘)𝑓(𝑘)) 

=
1
𝑁
∑|𝑔(𝑘) − 𝐻(𝑘)𝑓(𝑘)|2

1
(𝜆|𝐻(𝑘)|2 + 1)2

𝑁−1

𝑛=0

 

𝜆 can now be found by minimizing the above expression. 
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𝜕
𝜕𝜆
‖𝑔 − 𝐻𝑓‖2 =

1
𝑁
∑ −
𝑁−1

𝑛=0

|𝑔(𝑘) − 𝐻(𝑘)𝑓(𝑘)|2|𝐻(𝑘)|2

(|𝐻(𝑘)|2 + 1𝜆)
3  

Outlier of the residual 
The set associated with extreme values of the residual is based on the probability 
distribution of the noise. A common case is to assume that the noise process is 
Gaussian. With the assumption of Gaussian noise one can find confidence limits from 
tables. The convex set is given by  

𝐶𝑂 = {𝑓| |𝑔𝑖 − [𝐻𝑓]𝑖| ≤ 𝜖𝑂} 

Convexity of 𝐶𝑂 can be shown by taking two points 𝑓1 and 𝑓2 in 𝐶𝑂 by letting 𝑓3 = 𝛼𝑓1 +
(1 − 𝛼)𝑓2, it follows that 𝑓3 ∈ 𝐶𝑂  

|𝑔 − [𝐻𝑓3]𝑖| = |𝑔 − [𝐻(𝛼𝑓1 + (1 − 𝛼)𝑓2)]𝑖| 

|𝑔 − [𝐻𝑓3]𝑖| = |𝛼(𝑔 − [𝐻𝑓1]𝑖) − (1 − 𝛼)(𝑔 − [𝐻𝑓2]𝑖)| 

|𝑔 − [𝐻𝑓3]𝑖| ≤ 𝛼‖(𝑔 − [𝐻𝑓1]𝑖)‖ + (1 − 𝛼)‖(𝑔 − [𝐻𝑓2]𝑖)‖ ≤ 𝜖𝑂 

The projection on 𝐶𝑂 is found from the solution of 

𝑚𝑖𝑛‖𝑓𝑝 − 𝑓‖
2 

𝑠. 𝑡 |𝑔𝑖 − [𝐻𝑓𝑝]𝑖| ≤ 𝜖𝑂 

The solution can be found by using the KKT conditions, for 𝑔𝑖 − [𝐻𝑓𝑝]𝑖 > 0 

𝐿(𝑓𝑝, 𝜆) = 𝑓𝑝𝑇𝑓𝑝 − 𝑓𝑝𝑇𝑓 + 𝑓𝑇𝑓 + 𝜆 (𝑔𝑖 − [𝐻𝑓𝑝]𝑖) 

𝐿𝑓𝑝(𝑓𝑝, 𝜆) = 2𝑓𝑝 − 2𝑓 − 𝜆ℎ𝑖 

𝐿𝑓𝑝(𝑓𝑝, 𝜆) = 0 

𝑓𝑝 =
2𝑓 − 𝜆ℎ𝑖

2
 

And the associated projection is given by 

𝑓𝑝 =

{
 

 𝑓 + (
𝑔𝑖 − ℎ𝑖𝑓 − 𝜖𝑂

‖ℎ𝑖‖2
)ℎ𝑖           𝑔𝑖 − ℎ𝑖𝑓 >  𝜖𝑂  

𝑓 + (
𝑔𝑖 − ℎ𝑖𝑓 + 𝜖𝑂

‖ℎ𝑖‖2
)ℎ𝑖             𝑔𝑖 − ℎ𝑖𝑓 <  −𝜖𝑂
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Mean of the residual 
This set is based on the assumption that the noise is zero mean, the convex set is defines 
as 

𝐶𝑚 = {𝑓| |∑𝑔𝑖 − [𝐻𝑓]𝑖

𝑁

𝑖=1

| ≤ 𝜖𝑚} 

The bound 𝜖𝑚 represents confidence limits on the sample mean. 

The projection on 𝐶𝑚 is given by 

𝑓𝑝 =

{
 
 

 
 𝑓 + (

∑𝑟𝑖 − 𝜖𝑚
‖ℎ𝑐‖2

)ℎ𝑐            ∑𝑟𝑖 > 𝜖𝑚  

𝑓 + (
∑𝑟𝑖 + 𝜖𝑚
‖ℎ𝑐‖2

)ℎ𝑐               ∑𝑟𝑖 < − 𝜖𝑚
 

 
7. Image enhancement 
Image super resolution is closely connected to single image restoration theory. Image 
super resolution can be seen as a second generation image restoration problem and the 
main principles of single image restoration are valid in a super resolution setting. Thus 
the various known results to restore one image by POCS can be generalized to the new 
problem of restoring one single image from a sequence of degraded versions.  The 
main difference between single image restoration and image super resolution is that 
image super resolution aims at improving the sharpness in an image by recovering 
high frequency components that are lost due to under sampling the image signal.  The 
sections below illustrate the use of POCS in both single image restoration and in super 
resolution through an experiment. 
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7.1. Single image restoration by POCS 
In the following experiment a monochrome [100 × 100] pixel image of a flower is 
used. The degraded and noisy images are obtained by blurring the original image with 
a linear PSF and also adding Gaussian white noise at 20 and 10 dB blurred signal to 
noise ratio respectively.  
 

 
       
                    (a)                                                                (b)                                                                  (c) 
 
 figure 6: (a) original image, (b) 10 db blur, (c) 20 db blur.       
        
One aim of this first experiment is to illustrate the mechanics of POCS in a setting 
where only one image is used in the restoration procedure before proceeding to solve 
the image super resolution problem. Another aim is to investigate the effect of noise 
on a solution that can be deemed to be feasible. A feasible solution in this case refers 
to a solution that satisfies all defined constraints. Since the constraints are 
implemented as convex sets the solution is found in the intersection of these sets. In 
this experiment two sets are used, one set representing the variance of the noise and 
one set representing outlier of the noise. Noise is only one of the factors that influence 
the solution, the PSF and the initial estimate of 𝑓, used to start the iteration process, 
are also important factors to consider. When examining how the POCS improves the 
observed image, MSE between the observed image and the final estimate is used.  
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The ideal image, the observed image and the final estimate for the 10 db case are shown 
below. 
 

                                     
                (a)                                                                       (b)                                                                 (c) 
 
figure 7: (a) original image, (b) observed image , (c) final projection.       
 
A visual inspection of the above images results in the conclusion that the improvement 
of the iteration procedure gives very small improvements. The visual improvements 
are slightly more defined edge along the plants center part.  
 
The same images for the increased level of noise is found below. 
       

                                                   
                        (a)                                                        (b)                                                       (c) 
 
figure 8: original image, (b) observed image , (c) final projection.       
 
Visual inspection of the above images results in the same conclusion as the previous 
case where a lower level of noise was used, there is a slight improvement between the 
observed and final estimate. The largest impact on the difference between the observed 
and final estimate stems from the initial estimate that is used to start the iterative 
procedure.  
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In order to give a more precise description of the difference between the ideal image 
and the result of the POCS procedure the MSE for the different images the given in the 
table below.  
 

Noise level/Iteration step Observed image  Final iteration 
20 db image 0,0066 0,0048 
10 db image 0,0038 0,0027 

 
The table above confirms the conclusion drawn from visual inspection, the 
improvements in MSE for the respective iterations is small. This result is in line with 
what can be expected from the POCS algorithm. Each projection onto the respective 
sets used in the restoration procedure results in a new estimate that in some sense is 
the closest point to the previous estimate. As a result the deviation from the initial 
estimate can be small, this result becomes obvious when studying the updating 
procedure that follows with the different convex sets. In order for the POCS procedure 
to produce a reasonable estimate of the ideal image much effort is needed to create a 
high quality starting point for the iterative procedure. If a smooth final estimate is 
desired a smooth initial estimate is required. In the above example the initial estimate 
was created by applying a Gaussian filter to the observed image. From the above 
analysis one can draw the conclusion that the solution set increases with the size of 
noise, that is, as the variance increases, so does the size of the set where a solution is 
found. As the noise increases, the quality of the restored signal decreases and since the 
number of feasible solutions gets larger, it is harder to find final version with high 
quality. 
 
 
7.2. Image super resolution by POCS 
Image super resolution with POCS is based on the same theory as the single image 
experiment above. The main difference in the restoration procedure between the two 
situations is the available information. In the case of super resolution a sequence of 
degraded versions of the ideal signal is used in the POCS procedure. The restoration 
procedure is based on the following model that was introduced in section 3.1. 

𝑔𝑘 = 𝐷𝑘𝐶𝑘𝐹𝑘𝑓𝑘 + 𝜀𝑘   𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑁     

In equation above 𝐹𝑘 is a [𝐿2 × 𝐿2] matrix representing the geometric warp on f, 𝐶𝑘 is a 
linear space variant blur matrix of size [𝐿2 × 𝐿2] and 𝐷𝑘 is a [𝑀𝑘2 × 𝐿2] matrix representing 
the decimation on 𝑓𝑘. The following experiment consists of super resolution 
reconstruction with two different sets of observations. The first set consists of four 
images of size [50 × 50] and the second set consist of 16 images of the same size. The 
two different sets will be used to investigate how a larger number of images will affect 
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the final estimate of the ideal signal. All degraded images were created by randomly 
displacing pixels uniformly over an interval of 0 to five pixels. Each of the displaced 
versions of the ideal image were the degraded by linear motion blur with two different 
levels of Gaussian noise and also decimated by a factor of 0.5.  
 
The ideal image and the degraded versions for the 16 image case is shown below. 
 

 

figure 9: Original and the simulated observed versions.       
 
The aim of the super resolution procedure is to use the subpixel differences in the 
down sampled images together with a priori information on the solution to create an 
estimate of the ideal image. The same convex sets that were used in previous section 
will be used in the POCS procedure for each of the down sampled versions. Each 
individual image for both cases where treated with POCS and the pixels for each 
indivudual image were superimposed on a grid representing the pixel density of the 
ideal signal, in this case a  [100 × 100] grid.  
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An illustration of the procedure is shown below. 
 

                          
 figure 10: Technique for merging the observed low resolution images on a high resolution grid       
        
In the illustration above three images are merged into a final SR image. The creation of 
the final estimate of the ideal image in this experiment is created in a similar way. In the 
first case four restored images are merged into the final estimate and in the second case 
16 images are used. The result of the procedure is shown below. 
 
 

 
               (a)                                       (b)                                        (c)                                       (d) 
 
figure 11: (a) Four image reconstruction with 0.005 noise level, (b) four image reconstruction with 0.05 
noise level, (c) sixteen image reconstruction with 0.005 noise level, (d) sixteen image reconstruction with 0.05 
noise level 
 
Visual inspection of the final estimates shows that a larger number of images used in 
the restoration decreases the impact of noise.  
 
A more detailed description of the difference between the ideal image and the 
respective SR images can be found by calculating the MSE for the different cases, MSE 
for the different cases is given in the table below.  
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Noise level/Images used in restoration 4 images 16 images 
0.05 noise level 0.001 0.0005 
0.005 noise level 0.001 0.0004 

 
The above table confirms the result of the visual inspection. A larger number of images 
improves the final estimate. As in the case of single image restoration the initial 
estimate and the level of noise are the main drivers of the final result. The effect of 
noise decreases when a larger number of images are available. When analyzing the 
above result a natural question is if it is possible to improve the procedure above by 
taking the number of images available and the noise level into account. A Tikhonov 
approach to restoration procedure makes this possible. 
 
 
8. Discussion and results 

The POCS approach to super resolution is one of several methods available to 
increase the resolution in images. Increasing the resolution by restoring high 
frequency components in the original signal that are lost during sampling is the 
primary goal of super resolution. Most work on POCS can be traced back to articles 
written during the 80’s and 90’s. Even though super resolution is an interesting area 
it seems as there are other approaches that can be more successful in real world 
applications. The results in this paper gives insight to some of the difficulties with 
the POCS approach. One of the most obvious results is the dependency between the 
final result and the initial estimate. By analyzing the iterative updating procedure 
used when applying POCS this becomes both clear and it´s also intuitive. Each 
projection onto the respective sets used in the restoration procedure results in a new 
estimate that in some sense is the closest point to the previous estimate. As a result 
the deviation from the initial estimate can be small, this result is in line with the 
simulation made in this paper. Another feature of the solution is that it´s not unique. 
The final estimate depends on the initial estimate but also on the order of the 
projections, by interchanging the projection order a different final estimate will be 
found. There is one exception to this rule and this is the case where all sets used by 
defining the solution set are linear varieties [13]. When all sets are linear varieties the 
final estimate is the orthogonal projection of the final estimate onto the intersection of 
all defined sets. There are options available to overcome the weakness of a 
nonunique final estimate. One alternative is described in [14] where the authors 
extend the POCS method by implementing hybrid between maximum likelihood and 
POCS it is also shown that this approach results in a unique solution to the problem. 
A problem related to the problem of nonuniqueness is the size of the solution set. A 
larger set of feasible solutions results in greater variation. The size of the solution set 
depends on how the convex sets are defined and in the experiment in this paper the 
solution set depends on the size of the noise. Another related problem is if there is an 
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intersection between the defined sets. From the presented experiment it becomes 
clear that knowledge about the PSF is needed when applying POCS. In a real world 
situation the PSF is unknown and needs to be estimated. There are several 
techniques for estimating PSF:s described in the literature and knowledge about the 
PSF is an important condition when implementing the procedure. The complexity of 
super resolution problem increases with the complexity of the PSF. More complex 
PSF examples arise in situation where blur varies within the registered image. This 
type of blur is referred to as space varying blur and there are examples where space 
varying blur has been modeled with POCS [9]. When space varying blur is modeled 
one needs to specify the convex sets in accordance with the blur region. Since POCS 
can model convex sets on a pixel level the POCS technique is well suited to model 
this type of blur. Another feature of super resolution image reconstruction is 
registration of the observed images onto a grid representing the target resolution. 
This is usually done by choosing one of the observed images as a starting point and 
finding common point to use as reference when merging new images onto the super 
resolution grid. In the above experiment the first image was chosen arbitrary and the 
following images were registered without no specific order. This solution is 
somewhat simplified compared to what would have to be done in a real world 
situation. Most work in this paper has been devoted to writing Matlab code to 
implement the presented theory. The results shown are a minor part of the tests that 
has been made with trying to find workable procedure to implement POCS. The first 
attempts to implement the procedure were based on a [500x500] image. This size is in 
no aspect very large, even so, implementing the convex set defined by the variance of 
the noise showed to be impossible with the computer power available. To mitigate 
the problem one attempt was to divide the [500x500] image in parts of [50x50] and 
treat the parts independently and as a last step merge the different parts together. 
This approach resulted in a final estimate where blocks where optimized 
independent and edges became visible between the different parts in the final result. 
This problem points out another problem with the procedure, it´s very compute 
intense. Overall the mathematics behind the POCS procedure is interesting and the 
purpose of the technique has nice connection to the well-known problem of 
increasing resolution in images.  Even though the theory is interesting and there are 
many applications the results presented here indicate that there are a lot of steps to 
work through and consider in order for the procedure to be result in a reasonable 
final estimate of the ideal image. 
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Appendix A 

Proof of theorem 5.6. For every 𝑦 ∈ ℑ, the sequence {𝑑𝑛} = {‖𝑇𝑛𝑥 − 𝑦‖} is 
nonincreasing since 

𝑑𝑛+1 = ‖𝑇𝑛+1𝑥 − 𝑦‖ = ‖𝑇(𝑇𝑛) − 𝑇𝑦‖ ≤ ‖𝑇𝑛𝑥 − 𝑦‖ = 𝑑𝑛 

Therefore the nonnegative limit  

𝑑(𝑦) = lim
𝑛→∞

‖𝑇𝑛𝑥 − 𝑦‖ 

Exsists for every 𝑦 ∈ ℑ. According to lemma 5.1, ℑ is a closed convex subset of 𝐶 and 
it follows that for any fixed 𝛿 ≥ 0, the set  

ℑ𝛿 = {𝑦 ∈ ℑ: 𝑑(𝑦) ≤ 𝛿} 

Is a closed and bounded convex subset of ℑ which is nonempty for 𝛿 large enough. 
Convexity and closure follows from 𝑑(𝑦) = lim

𝑛→∞
‖𝑇𝑛𝑥 − 𝑦‖  

and boundedness is implied by 

‖𝑦‖ = ‖𝑦 − 𝑇𝑛𝑥 + 𝑇𝑛𝑥‖ ≤ ‖𝑇𝑛𝑥 − 𝑦‖ + ‖𝑇𝑛𝑥‖ 

and 

‖𝑇𝑛𝑥‖ = ‖𝑇𝑛𝑥 − 𝑦0 + 𝑦0‖ ≤ ‖𝑇𝑛𝑥 − 𝑦0‖ + ‖𝑦0‖ 

Bounded closed convex sets are weakly compact, therefore the intersection of these 
sets is a closed bounded set ℑ𝛿0. The set ℑ𝛿0 can contain only one element, let 𝑦0 
represent this element. If we suppose that ℑ𝛿0 also contains 𝑦1 ≠ 𝑦0the identity 

‖𝑇𝑛𝑥 −
𝑦0 + 𝑦1
2 ‖ =

1
2
(‖𝑇𝑛𝑥 − 𝑦0‖2 + ‖𝑇𝑛𝑥 − 𝑦1‖2) − ‖

𝑦0 + 𝑦1
2 ‖

2
 

Gives 𝑑[(𝑦0 + 𝑦1)/2], which contradicts the meaning of 𝛿0. To prove that 𝑇𝑛𝑥 
converges to 𝑦0 it needs to be shown that that all possible weak limits of its various 
subsequences is equal to 𝑦0. Let 𝑇𝑛′𝑥 ⇀ 𝑦1 ≠ 𝑦0. From the asymptotic regularity of 𝑇 

𝑇𝑛′𝑥 − 𝑇𝑛′+1𝑥 = (1 − 𝑇)𝑇𝑛′𝑥 → ϕ 

By demiclosedness of (1 − 𝑇), (1 − 𝑇)𝑦1 = ϕ, which gives that 𝑦1 is a fixed point of 𝑇, 
by lemma 2.2  

𝛿0 = 𝑙𝑖𝑚‖𝑇𝑛𝑥 − 𝑦0‖ > 𝑙𝑖𝑚‖𝑇𝑛′𝑥 − 𝑦1‖ = 𝑑(𝑦1) 

A result that is incompatible with the meaning of 𝛿0. 
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Appendix B 

Processing steps 
 
%Create down sampled images with noise  
 
[A B]=Down('Uppsats100x100.jpg',0.05); 
 
[C D]=Down('Uppsats100x100.jpg',0.01); 
 
%Calculate MSE between the images created in the previous stage 
%and the ideal image 
 
MSE1=MSE('Uppsats100x100.jpg', 'fDownBrus0.05.jpg'); 
MSE1=MSE('Uppsats100x100.jpg', 'fDownBrus0.01.jpg'); 
 
MSE1=MSE('Uppsats100x100.jpg', 'fInitial0.05.jpg'); 
MSE1=MSE('Uppsats100x100.jpg', 'fInitial0.01.jpg'); 
 
%Create a first estimate of the ideal image with the first POCS iteration 
 
x=POCS1('fDownBrus0.05.jpg','fInitial0.05.jpg',0.05,1); 
x=POCS1('fDownBrus0.01.jpg','fInitial0.01.jpg',0.01,1); 
 
% Calculate MSE between the previous estimate and the ideal image 
MSE1=MSE('Uppsats100x100.jpg', 'fDownBrusPocs10.05.jpg'); 
MSE1=MSE('Uppsats100x100.jpg', 'fDownBrusPocs10.01.jpg'); 
 
%Calculate lambda  
x=POCS2Lambda() 
 
%Create a second estimate of the ideal image  
x=POCS2('fInitial0.01.jpg','fDownBrusPocs10.01.jpg',0.01,0.2); 
x=POCS2('fInitial0.05.jpg','fDownBrusPocs10.05.jpg',0.05,0.2); 
 
% Calculate MSE between the previous estimate and the ideal image 
MSE1=MSE('Uppsats100x100.jpg', 'fDownBrusPocs20.010.2.jpg'); 
MSE1=MSE('Uppsats100x100.jpg', 'fDownBrusPocs20.050.2.jpg'); 
 
%Create SR images with POCS  
%Create images with subpixel differences 
x=SRbilder('Uppsats100x100.jpg',4) 
 
%Create resized images 
f=imread('SRdelBild1.jpg'); 
f = imresize(f,0.5); 
imwrite(f,'SRdelBild1x0.5.jpg'); 
 
f=imread('SRdelBild2.jpg'); 
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f = imresize(f,0.5); 
imwrite(f,'SRdelBild2x0.5.jpg'); 
 
f=imread('SRdelBild3.jpg'); 
f = imresize(f,0.5); 
imwrite(f,'SRdelBild3x0.5.jpg'); 
 
f=imread('SRdelBild4.jpg'); 
f = imresize(f,0.5); 
imwrite(f,'SRdelBild4x0.5.jpg'); 
 
f=imread('Uppsats100x100.jpg'); 
f = imresize(f,0.5); 
imwrite(f,'SRinitialx0.5.jpg'); 
 
%Add motionblur and noise 
[A B]=DownSR('SRdelBild1.jpg',0.005); 
[A B]=DownSR('SRdelBild2.jpg',0.005); 
[A B]=DownSR('SRdelBild3.jpg',0.005); 
[A B]=DownSR('SRdelBild4.jpg',0.005); 
 
%Run the POCS procedure 
x=POCS1SR('fDownSRBrus10.005.jpg','SRinitialx0.5.jpg',0.005,1); 
x=POCS1SR('fDownSRBrus20.005.jpg','SRinitialx0.5.jpg',0.005,1); 
x=POCS1SR('fDownSRBrus30.005.jpg','SRinitialx0.5.jpg',0.005,1); 
x=POCS1SR('fDownSRBrus40.005.jpg','SRinitialx0.5.jpg',0.005,1); 
 
%Merge images for the lowest noise level to create a SR image 
x=concatSR1(); 
imwrite(x,'SRUppsats100x100x4x0.005.jpg'); 
 
%Repeat the procedure with 16 images 
x=SRbilder('Uppsats100x100.jpg',16); 
 
%Downsample images  
x=nerSamplaSRdel(16); 
 
%Add motionblur and noise 
[A B]=DownSR1(0.005) 
 
%Run the POCS procedure 
x=POCS1SR1('SRinitialx0.5.jpg',0.005,1); 
 
%Merge the images to create an esimate of the ideal image 
x=concatSR2(0.005); 
a=imresize(x,0.5,'bilinear'); 
imwrite(a,'SRUppsats100x100x16x0.005.jpg'); 
 
%Repeat the procedure with increased level of noise 
[A B]=DownSR1(0.05); 
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%Run the POCS procedure 
x=POCS1SR1('SRinitialx0.5.jpg',0.05,1); 
 
%Merge images to create an estimate of the ideal image 
x=concatSR2(0.05); 
a=imresize(x,0.5,'bilinear'); 
imwrite(a,'SRUppsats100x100x16x0.05.jpg'); 
 
%Använd de fyra första bilderna av brusnivån 0.05 för att skapa en SR bild 
x=concatSR1(); 
imwrite(x,'SRUppsats100x100x4x0.05.jpg'); 
 
%Calculate MSE 
MSE1=MSE('Uppsats100x100.jpg', 'SRUppsats100x100x4x0.005.jpg'); 
MSE1=MSE('Uppsats100x100.jpg', 'SRUppsats100x100x4x0.05.jpg');  
MSE1=MSE('Uppsats100x100.jpg', 'SRUppsats100x100x16x0.005.jpg'); 
MSE1=MSE('Uppsats100x100.jpg', 'SRUppsats100x100x16x0.05.jpg'); 

Down.m 

%Create downsampled images with motionblur and noise 
function [A B]=Down(n,brus) 
forg=imread(n); 
forg=im2double(forg); 
forg=reshape(forg.',[],1); 
H=fspecial('motion',10,180); 
H=[H, zeros(1,9989)]; 
c = [H(1) fliplr(H(end-length(H)+2:end))]; 
r=H; 
conv=toeplitz(c,r); 
fdown=conv*forg; 
fdown=vec2mat(fdown,100); 
imwrite(fdown,'fDownx100x100.jpg'); 
fDownBrus=conv*forg+normrnd(0,brus,10000,1); 
for i=1:1:10000 
    rect=rand; 
    if rect<0.02 
        fDownBrus(i)=fDownBrus(i)+0.1; 
    end; 
end; 
         
fDownBrus=vec2mat(fDownBrus,100); 
brusString=num2str(brus);  
bildNamn=strcat('fDownBrus',brusString); 
bildNamn=strcat(bildNamn,'.jpg'); 
imwrite(fDownBrus,bildNamn);  
fInitial = imgaussfilt(fDownBrus); 
brusString=num2str(brus);  
bildNamn=strcat('fInitial',brusString); 
bildNamn=strcat(bildNamn,'.jpg'); 
imwrite(fInitial,bildNamn); 
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A=fDownBrus; 
B=fdown; 

MSE.m 

function Mean_Square_Error= MSE(Reference_Image, Target_Image) 
Reference_Image=imread(Reference_Image); 
Target_Image=imread(Target_Image); 
Reference_Image = im2double(Reference_Image); 
Target_Image = im2double(Target_Image); 
[M N] = size(Reference_Image); 
error = Reference_Image - Target_Image; 
Mean_Square_Error = sum(sum(error .* error)) / (M * N); 
end 

POCS1.m 

function x=POCS1(obsBild,start,brus,antalIter) 
fdownbrus=imread(obsBild); 
fdownbrus=im2double(fdownbrus); 
fstart=imread(start); 
fstart=im2double(fstart); 
fdownbrus=reshape(fdownbrus.',[],1); 
fstart=reshape(fstart.',[],1); 
nollV=zeros(1,10000); 
fpocs1=zeros(1,10000); 
H=fspecial('motion',5,180); 
H=[H, zeros(1,9995)]; 
c = [H(1) fliplr(H(end-length(H)+2:end))]; 
r=H; 
conv=toeplitz(c,r); 
h=fspecial('motion',5,180); 
res=fdownbrus-conv*fstart; 
for j=1:1:antalIter     
   for i=1:1:10000 
   ri=res(i); 
       if i<9995 
           positions=[i:4+i]; 
           convVector=nollV; 
           convVector(positions)=h; 
           convVector=transpose(convVector); 
       end 
       if (ri)>brus 
             a=fstart+(1/((norm(h)^2)))*(ri-brus)*convVector; 
           elseif (ri)<-brus 
             a=fstart+(1/((norm(h)^2)))*(ri+brus)*convVector; 
           else  
             a=fstart; 
       end; 
     fpocs1(i)=a(i); 
     clear a; 
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   end; 
fdownbrus=fstart; 
fstart=fpocs1; 
end; 
fpocs1=vec2mat(fpocs1,100); 
brusString=num2str(brus);  
bildNamn=strcat('fDownBrusPocs1',brusString); 
bildNamn=strcat(bildNamn,'.jpg'); 
imwrite(fpocs1,bildNamn);  
x=fpocs1; 

POCS2.m 

function x=POCS2(obsBild,start,brus,lambda) 
fstart=imread(obsBild); 
fstart=im2double(fstart); 
fstart=reshape(fstart.',[],1); 
fpocs1=imread(start); 
fpocs1=im2double(fpocs1); 
fpocs1=reshape(fpocs1.',[],1); 
H=fspecial('motion',5,180); 
H=[H, zeros(1,9995)]; 
c = [H(1) fliplr(H(end-length(H)+2:end))]; 
r=H; 
conv=toeplitz(c,r); 
res=fpocs1-conv*fstart; 
fpocs2=fpocs1+inv(transpose(conv)*conv+((1/lambda))*eye(10000))*transpose(conv)*res; 
fpocs2=vec2mat(fpocs2,100); 
brusString=num2str(brus);  
lambdaString=num2str(lambda);  
bildNamn=strcat('fDownBrusPocs2',brusString); 
bildNamn=strcat(bildNamn,lambdaString); 
bildNamn=strcat(bildNamn,'.jpg'); 
imwrite(fpocs2,bildNamn);  
x=fpocs2; 
 

SRbilder.m 

function x=SRbilder(obsBild,antalBilder) 
bild=imread(obsBild); 
bild=im2double(bild); 
for h=1:1:antalBilder 
    for i=1:1:100 
        rad=bild(i,:); 
        for j=1:5:100 
            delRad=rad(j:j+4); 
            sortVektor=randperm(5); 
            nyDelRad=zeros(1,5); 
            for k=1:1:5 
                nyDelDelRad=delRad((sortVektor(k))); 
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                nyDelRad(k)=nyDelDelRad; 
            end 
            genvarname('A',  num2str(j)); 
            eval(['A' num2str(j) '= nyDelRad']); 
        end 
nyRad=horzcat(A1,A6,A11,A16,A21,A26,A31,A36,A41,A46,A51,A56,A61,A66,A71,A76,A81,
A86,A91,A96); 
        genvarname('B',  num2str(i)); 
        eval(['B' num2str(i) '= nyRad']); 
    end 
x=vertcat(B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16,B17,B18,B19,B20,B21,B22,
B23,B24,B25,B26,B27,B28,B29,B30,B31,B32,B33,B34,B35,B36,B37,B38,B39,B40,B41,B42,B43,B44,
B45,B46,B47,B48,B49,B50,B51,B52,B53,B54,B55,B56,B57,B58,B59,B60,B61,B62,B63,B64,B65,B66,
B67,B68,B69,B70,B71,B72,B73,B74,B75,B76,B77,B78,B79,B80,B81,B82,B83,B84,B85,B86,B87,B88,
B89,B90,B91,B92,B93,B94,B95,B96,B97,B98,B99,B100); 
bildNummer=num2str(h);  
utbild=strcat('SRdelBild',bildNummer); 
utbild=strcat(utbild,'.jpg'); 
imwrite(x,utbild); 
end; 

DownSR1.m 

function [A B]=DownSR1(brus) 
 
for h=1:1:16 
    bildNummer=num2str(h); 
    bildNamn=strcat('SRdelBild',bildNummer); 
    bildNamn=strcat(bildNamn,'x0.5'); 
    bildNamn=strcat(bildNamn,'.jpg') 
    forg=imread(bildNamn);  
    forg=im2double(forg); 
    forg=reshape(forg.',[],1); 
 
    H=fspecial('motion',3,180); 
    H=[H, zeros(1,2497)]; 
    c = [H(1) fliplr(H(end-length(H)+2:end))]; 
    r=H; 
    conv=toeplitz(c,r); 
    fDownBrus=conv*forg+normrnd(0,brus,2500,1); 
    for i=1:1:2500 
        rect=rand; 
        if rect<0.02 
            fDownBrus(i)=fDownBrus(i)+0.1; 
        end; 
    end; 
         
    fDownBrus=vec2mat(fDownBrus,50); 
    brusString=num2str(brus);  
    bildNamn=strcat('fDownSRBrus',brusString); 
    bildNamn=strcat(bildNamn,'x'); 
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    bildNamn=strcat(bildNamn,bildNummer); 
    bildNamn=strcat(bildNamn,'.jpg'); 
    imwrite(fDownBrus,bildNamn);  
    fInitial = imgaussfilt(fDownBrus); 
    brusString=num2str(brus);  
    bildNamn=strcat('fInitialSR4',brusString); 
    bildNamn=strcat(bildNamn,bildNummer); 
    bildNamn=strcat(bildNamn,'.jpg'); 
    imwrite(fInitial,bildNamn); 
end; 
A=fDownBrus; 
B=fInitial; 

POCS1SR.m 

function x=POCS1SR(obsBild,start,brus,antalIter) 
fdownbrus=imread(obsBild); 
fdownbrus=im2double(fdownbrus); 
fstart=imread(start); 
fstart=im2double(fstart); 
fdownbrus=reshape(fdownbrus.',[],1); 
fstart=reshape(fstart.',[],1); 
nollV=zeros(1,2500); 
fpocs1=zeros(1,2500); 
H=fspecial('motion',3,180); 
H=[H, zeros(1,2497)]; 
c = [H(1) fliplr(H(end-length(H)+2:end))]; 
r=H; 
conv=toeplitz(c,r); 
h=fspecial('motion',3,180); 
res=fdownbrus-conv*fstart; 
for j=1:1:antalIter 
   for i=1:1:2500 
   ri=res(i); 
   if i<2497 
       positions=[i:2+i]; 
       convVector=nollV; 
       convVector(positions)=h; 
       convVector=transpose(convVector); 
   end 
      if (ri)>brus 
              a=fstart+(1/((norm(h)^2)))*(ri-brus)*convVector; 
      elseif (ri)<-brus 
              a=fstart+(1/((norm(h)^2)))*(ri+brus)*convVector; 
      else  
          a=fstart; 
      end; 
      fpocs1(i)=a(i); 
      clear a; 
   end; 
    fdownbrus=fstart; 
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    fstart=fpocs1; 
end; 
fpocs1=vec2mat(fpocs1,50); 
brusString=num2str(brus);  
bildNamn=strcat('fDownBrusPocs1SRx4x',brusString); 
bildNamn=strcat(bildNamn,'.jpg'); 
imwrite(fpocs1,bildNamn); 

ConcatSR2.m 

function x=concatSR2(brus) 
 
nyBild=zeros(100); 
nyBild=double(nyBild); 
 
for h=1:1:16 
     
    bildNummer=num2str(h); 
    brusString=num2str(brus); 
    bildNamn=strcat('fDownBrusPocs1SRx',bildNummer); 
    bildNamn=strcat(bildNamn,'x'); 
    bildNamn=strcat(bildNamn,brusString); 
    bildNamn=strcat(bildNamn,'.jpg'); 
    bildi=imread(bildNamn); 
    bildNamn; 
    bildi=im2double(bildi); 
        
    h; 
      
   if h<5 
       k=h-1; 
       m=0; 
       for i=1:4:197 
           m=m+1; 
           l=0; 
        for j=1:4:197 
            l=l+1; 
            m; 
            l; 
            pixel=bildi(m,l);      
            nyBild(i,j+k)=pixel; 
            i; 
            j;        
        end; 
 
       end; 
     
      end; 
             
        if (h > 4) && (h < 9)         
       h 
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       k=h-5; 
       m=0; 
       for i=2:4:198 
           m=m+1; 
           l=0; 
        for j=1:4:197 
            l=l+1; 
            m; 
            l; 
            pixel=bildi(m,l);      
            nyBild(i,j+k)=pixel; 
            i; 
            j;        
        end; 
 
       end; 
     
      end; 
       
      if (h > 8) && (h < 13) 
       
       k=h-9; 
       m=0; 
       for i=3:4:199 
           m=m+1; 
           l=0; 
        for j=1:4:197 
            l=l+1; 
            m; 
            l; 
            pixel=bildi(m,l);      
            nyBild(i,j+k)=pixel; 
            i; 
            j;        
        end; 
 
       end; 
     
      end; 
       
      if 12<h 
       k=h-13; 
       m=0; 
       for i=4:4:200 
           m=m+1; 
           l=0; 
        for j=1:4:197 
            l=l+1; 
            m; 
            l; 
            pixel=bildi(m,l);      
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            nyBild(i,j+k)=pixel; 
            i; 
            j;        
        end; 
 
       end; 
     
      end;  
       
end; 
x=nyBild; 
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