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Table 1: Table of Notation
R Real axis.

C Complex plane.

C+ Upper half complex plane.

y

x

(x) d

dx

y(x), di↵erentiation only applies to the real variable x.

PT -symmetric Functions invariant under simultaneous involution and complex
conjugation, u(x) = u(�x).

Hermitian, Self-adjoint Operators invariant under simultaneous transposition and com-

plex conjugation, A = A

T

.

L

2 Space of equivalence classes of functions with respect to the norm:

||f ||
L

2 =

✓R
R

f(x)f(x)dx

◆ 1
2

. Viewed as a Hilbert space with the

inner product given by (f, g) = ||fg||2
L

2

⇠ Asymptoticly equal, f(x) ⇠ g(x) () f(x)
g(x) ! 1, |x| ! 1
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Abstract

In this thesis we study Darboux transformation of the zero potential

Schrödinger equation. By considering complex-valued solutions and eigen-

values we obtain two distinct families of regular, complex-valued and PT -

symmetric potentials not found in the literature. Formulas for the bound

state eigenfunctions are provided and the associated scattering problems

are solved. Both families of potentials are shown to decay exponentially

fast and admit a finite number of bound states associated to the poles

of the transmission coe�cients, analogous to real-valued potentials in the

Faddeev class.

1 Introduction

Sometimes mathematics is more art than mathematics, such is the case with
Darboux transformation. In this thesis our goal is to obtain exactly solvable
examples of PT -symmetric Schrödinger operators by means of Darboux trans-
formation. Historically, Darboux transformation was introduced as a covariance
transformation [9] of the following equation:

�y

xx

(x) + u(x)y(x) = �y(x), �, x 2 R. (1)

More precisely, given any equation of type (1), the time-independent Schrödinger
equation, and all of its solutions, using Darboux transformation of rank N it is
possible to construct a new Schrödinger equation from N solutions of the old
Schrödinger equation in such a way that the N solutions provides an explicit
formula for all solutions to the new equation. However, more than a given for-
mula, the choice of the N solutions does not, a priori, reveal any properties
of the new equation or any of its solutions. The art is to choose the starting
solutions in such a way to obtain a desired outcome. Since one has, in this
sense, complete control over the new equation and its solutions, Darboux trans-
formation is indeed a ubiquitous tool in the study of exactly solvable systems
and in soliton theory. For an introduction to the many applications of Darboux
transformation, see for instance [6] and [9].

It is of interest to mention a few applications of Darboux transformation re-
lated to this thesis. For instance, in the paper [8] by V. Matveev, Darboux
transformation is used to construct the so-called positon potential, which in
turn is a singular, slowly decaying solution to the Korteweg-de Vries equation.
Furthermore, P. Kurasov and F. Packalén studied the scattering problem for the
positon potential using Darboux transformation in [7], where it is shown that the
inverse scattering problem can not be solved uniquely. In [11], A L Sakhnovich
uses a generalized matrix Darboux transformation to study a non self-adjoint
matrix Schrödinger equation of type (1) and obtains a PT -symmetric potential
ũ(x) and an explicit formula for the unique bound state solution of the corre-
sponding Schrödinger equation. In this thesis, we obtain the same potential ũ,
as a limit case of a more general potential.
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Self-adjoint Schrödinger operators of the form (1) are a classical area of re-
search in conventional quantum mechanics and mathematics. The requirement
of being self-adjoint ensures that the spectrum of equation (1) is real and the
time evolution, determined by the equation iy

t

(x, t) = �y

xx

(x, t) + u(x)y(x, t),
is unitary with respect to the Hilbert space L

2. However, in 1999, C.Bender, S.
Boettcher and P. Meisinger introduced the seminal paper [1] in which they stud-
ied Schrödinger operators with potentials of the form u(ix) = x

2(ix)✏, ✏ > 0.
Schrödinger operators with potentials u(ix) = x

2(ix)✏ are not self-adjoint, but
PT -symmetric. It was proven by Dorey et al. in [5] that the spectrum of
Schrödinger operators (1) with potentials u(ix) = (ix)N is in fact real and posi-
tive for all N � 2. Hence the notion of PT -symmetric quantum mechanics was
introduced as a form of alternative to conventional quantum mechanics. For
a concise introduction to the still active research area of PT -symmetric quan-
tum mechanics, see [2] and the additional references therein. It is of interest
to mention that A. Mostafazadeh showed in [10], that PT -symmetric quantum
mechanics and conventional quantum mechanics are in a sense equivalent as
physical theories.

In this thesis we show that when using Darboux transformation, no assump-
tion on the reality of the eigenvalues �, or on the solutions y(x) of equation (1)
is required. We exploit this and obtain two distinct families of complex-valued,
regular and exponentially decaying PT -symmetric potentials. Furthermore, the
scattering problems of the associated Schrödinger equations are solved and the
potentials are shown to exhibit properties similar to real-valued potentials in
the Faddeev class, i.e. potentials satisfying the estimate:

Z

R
(1 + |x|)|u(x)|dx < 1.

For instance, it is well known [4], that potentials in the Faddeev class admit a
class of solutions called Jost solutions, which characterize the scattering prop-
erties of the potential. Moreover, potentials in the Faddeev class can be shown
to have a finite number of bound states associated to the poles of the transmis-
sion coe�cient T (k). These poles can be shown to lie on distinct points on the
imaginary axis in C+.

This paper is organized as follows, in Section 2 we introduce the Darboux
transformation and show that it is justified to consider complex solutions and
eigenvalues. Next, we consider Darboux transformation of rank N = 2 and
characterize two sets of solutions to the zero potential Schrödinger equation
from which we are able to obtain the sought complex-valued, regular and PT -
symmetric potentials. In section 3 we study the properties of corresponding
Schrödinger operators. We solve the associated scattering problems and pro-
vide explicit formulas for the bound state solutions. This is achieved by studying
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the asymptotic properties of a particular class of solutions, which are shown to
have the same properties as the Jost solutions for ral-valued potentials in the
Faddeev class.

2 Darboux Transformation and new Potentials

In this section we first define the Darboux Transformation (DT) originally in-
troduced by Gaston Darboux in 1882, presented in a modern fashion by V.
Matveev and M.Salle in [9]. Originally considered for Schrödinger equations
with real-valued potentials we will show that the ideas extend to the case of
complex-valued potentials. Following the introduction of Darboux transforma-
tion, in theorems 1 and 2 we characterize two distinct sets of solutions from
which we are able to obtain two complex-valued, regular and PT -symmetric
potentials. The section is concluded by providing explicit formulas for the new
potentials.

2.1 The Darboux Transformation

To introduce the Daroux transformation, suppose we have the following one-
dimensional Schrödinger equation:

�y

xx

(x) + u(x)y(x) = �y(x), x 2 R, (2)

and suppose we know all the solutions y(x,�). The Darboux transformation
using N fixed solutions y1, ..., yN , of the above equation is the function given
by:

y[N ](x) =
W(y1, ... , yN , y)

W(y1, ... , yN )
, (3)

where the function y in the above definition is any solution of equation (2). We
have denoted by W(y1, ..., yN ) the Wronskian determinant of the N solutions
y1, ..., yN which is given by:

W(y1, ..., yN ) =

���������

y1 y2 . . . y

N

y1x y2x . . . y

Nx

...
...

. . .
...

d

N�1

dx

N�1 y1
d

N�1

dx

N�1 y2 . . .

d

N�1

dx

N�1 yN

���������

.

It is required that the N +1 solutions y1, ..., yN and y, are linearly independent,
otherwise the Wronskian determinant vanishes everywhere and the transforma-
tion does not result in an interesting function. The theorem of Darboux then
states that the function defined by formula (3) satisfies the following equation:

�y

xx

[N ] + u[N ]y[N ] = �y[N ]. (4)
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Where the potential u[N ](x) is determined by the N solutions y1, ..., yN of
equation (2) and is given by:

u[N ](x) = u(x)� 2
d

2

dx

2
lnW(y1, ... , yN ). (5)

It should be noted that equation (4) only makes sense whenever the Wronskian
of the N solutions y1, ..., yN , is non-zero. Using Darboux transformation it is
then possible to obtain new solvable Schrödinger equations, starting from any
known Schrödinger equation. The proof that the function y[N ](x) is in fact a
solution to equation (4) is due to M. Crum and can be found in [9]. Here we
will prove the original case N = 1:

Let y1 be a fixed solution and y be an arbitrary solution to equation (2). If
we introduce � as the logarithmic derivative of y1:

� =
d

dx

ln y1 =
y1x

y1
,

then we have the following:

y[1] =
W(y1, y)

y1
= y

x

� �y,

u[1] = u(x)� 2�
x

We will consider each term in equation (4) separately. The first term is given
by:

�y

xx

[1] = �y

xxx

+ 2�
x

y

x

+ �

xx

y + �y

xx

,

since y is a solution to equation (2), we have �y

xx

= (�� u)y and hence:

�y

xx

[1] = �u

x

y � uy

x

+ �y

x

+ 2�
x

y

x

+ �

xx

y + �(u� �)y (6)

= (2�
x

+ �� u)y
x

+ (�u

x

+ �

xx

+ u� � ��)y (7)

Next, we compute the second term:

u[1]y[1] = (u� 2�
x

)(y
x

� �y) = (u� 2�
x

)y
x

� (u� � 2��
x

)y (8)

If we combine equations (7) and (8) above, we obtain:

�y

xx

[1] + u[1]y[1] = �y

x

+ (�u

x

+ �

xx

+ 2��
x

� ��)y, (9)

and by the definition of � we have:

�

xx

+ 2��
x

=
d

dx

(�
x

+ �

2) =
d

dx

(
y1xx

y1
� y

2
1x

y

2
1

+
y

2
1x

y

2
1

) =
d

dx

(u� �) = u

x

.

Hence we may write equation (9) as:

�y

xx

[1] + u[1]y[1] = �y

x

� ��y = �y[1].
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Indeed we have shown the function y[1](x) defined by formula (3) is a solution
to equation (4).

The theorem was originally proven for real-valued potentials and eigenvalues
�. However, we see that the preceding calculation hold without any assumption
of � or u(x) being real-valued. The proof for general N � 2 essentially follows
by repeated application of the same procedure as above. In this sense, Darboux
transformation determines a set of potentials for which the Schrödinger equa-
tion is exactly solvable and provides explicit formulas for the solutions. This is
precisely what we will use to obtain families of PT -symmetric potentials in the
following section.

2.2 New Potentials

In this section our goal is to construct two families of complex-valued, regular
and PT -symmetric potentials using Darboux transformation, starting with the
zero potential Schrödinger equation:

�y

xx

= �y. (10)

This goal is achieved by characterizing solutions to (10) which have non-vanishing
and PT -symmetric Wronskian determinants, theorems 1 and 2 show that there
are essentially two such families of solutions. Following this characterization,
we provide explicit formulas for the potentials by performing the calculation ac-
cording to formula (5) and study their properties. We note that since u(x) = 0
the properties of the Wronskian of the two solutions y1 and y2 of equation (10)
is what determines the properties of the potential. In this thesis we will consider
Darboux transformation of rank N = 2, specifically we will consider solutions,
y1 and y2, of equation (10) such that the Wronskian determinant satisfies the
following conditions:

(i) W (x) 6= 0, x 2 R
(ii) W (x) = W (�x), x 2 R.

Where condition (i) guarantees that the potential exists and is non-singular on
the entire real axis and as we shall see, condition (ii) assures that the potential
obtained from formula (5) is indeed PT -symmetric. Hence consider the general
solutions to equation (10) given by:

y1(x) = ↵e

ik1x + �e

�ik1x
, y2(x) = �e

ik2x + �e

�ik2x
, (11)

with ↵,�, �, �, k1, k2 2 C, then derive constraints on the parameters such that
the Wronskian determinant of the solutions y1 and y2 satisfy conditions (i)
and (ii). If any two of ↵,�, �, � are equal to zero then the potential vanish
identically. Indeed, if either both ↵,� or �, � are equal to zero, then either y1

or y2 is identically equal to zero and there is nothing to prove. Suppose � and �
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are equal to zero, a similar calculation shows the other cases. We compute the
derivatives of the Wronskian W(eik1x

, e

ik2x) and we find:

W
x

(eik1x
, e

ik2x) = �(k2 + k1)(k2 � k1)e
i(k1+k2)x

W
xx

(eik1x
, e

ik2x) = �i(k2 + k1)
2(k2 � k1)e

i(k1+k2)x
,

hence indeed, the numerator in the potential given by formula (5) vanishes
identically. As the following theorems prove, we can essentially obtain two
distinct families of Wronskian determinants able to satisfy conditions (i) and
(ii).

Theorem 1. Consider the solutions (11) and assume that ↵��� 6= 0. Then, if
k1, k2 are non-real the Wronskian W(y1, y2) satisfy condition (ii) if and only if:

↵� = ��, ↵� 2 R, �� 2 R, k2 = ±k1.

Furthermore, if k1, k2 2 R then the Wronskian W(y1, y2) satisfy condition (ii)
if and only if:

arg(�) = arg(↵) + n2⇡, arg(�) = arg(�) + n2⇡ n 2 Z.

Proof. The Wronskian of the two solutions is given by:

W (x) = i↵�

�
k2 � k1

�
e

i(k1+k2)x + i↵�

�
k1 + k2

�
e

i(k1�k2)x

+ i��

�
k1 + k2

�
e

�i(k1�k2)x + i��

�
k1 � k2

�
e

�i(k1+k2)x
.

To satisfy condition (ii) we search for Wronskian determinants able to satisfy:

W (�x) = �i↵�(k2 � k1)e
i(k1+k2)x � i↵�(k1 + k2)e

i(k1�k2)x (12)

� i��(k1 + k2)e
�i(k1�k2)x � i��(k1 � k2)e

�i(k1+k2)x = W (x).

Since W(�x) and W(x) are given by finite sums of exponential functions, for
condition (ii) to hold it is necessary that the same set of frequencies appear in
the exponential functions. There are four di↵erent cases to check when matching
the frequencies. We check each case separately:

Case 1: (
k1 + k2 = k1 + k2,

k1 � k2 = k1 � k2,
=) k1, k2 2 R,

Case 2: (
k1 + k2 = k1 + k2,

k1 � k2 = �k1 + k2,
=) k1 = k2.

Case 3: (
k1 + k2 = k1 � k2,

k1 � k2 = k1 + k2,
=) k1, k2 2 R

10



Case 4: (
k1 + k2 = k1 � k2,

k1 � k2 = �k1 � k2,
=) k1 = �k2.

Hence indeed, k1 = ±k2 or k1, k2 2 R. We study first the case when k1 =
a+ ib, k2 = a� ib, ab 6= 0. The Wronskian determinant is given by:

W(x) = ↵�2be2iax � i↵�2ae�2bx + i��2ae2bx � ��2be�2iax

= 2b
�
↵�e

2iax � ��e

�2iax
�
+ 2ia

�
��e

2bx � ↵�e

�2bx
�
. (13)

If we again study condition (ii), we have:

W(x) = 2b
�
↵�e

2iax � ��e

�2iax
�
+ 2ia

�
��e

2bx � ↵�e

�2bx
�
=

W(�x) = 2b
�
↵�e

2iax � ��e

�2iax
�
� 2ia

�
��e

�2bx � ↵�e

2bx
�
, (14)

in particular we require the coe�cients of the last two terms of both lines in
the above equation to match, since W(x) and W (�x) must agree in the limits
x ! ±1. This immediately implies that the coe�cients of the first two terms
must match as well. Hence we indeed obtain the following conditions on the
parameters ↵,�, �, �:

↵� = ��, ↵�, �� 2 R.

Suppose instead that k1, k2 2 R, if we study formula (12) we find that:

↵� = �↵�, ↵� = �↵�, �� = ���, �� = ���,

from which we can indeed deduce that:

arg(�) = arg(↵) + n2⇡, arg(�) = arg(�) + n2⇡.

In what follows, will restrict our attention to the case when k1 = a+ib, k2 =
a � ib, ab 6= 0. We note that from the conditions on the parameters ↵,�, �, �

we may introduce the single complex number C = ↵

�

=
�
�

�

�
, and study the

solutions:

y1(x) =
1

�

�
Ce

ik1x + e

�ik1x
�
, y2(x) =

1

�

�
Ce

ik1x + e

�ik1x
�

. From formula (13) we can obtain a Wronskian determinant given by:

W1(x) =
W(x)

��

= 2b
�
↵�

��

e

2iax � e

�2iax
�
+ 2ia

�
�

�

e

2bx � ↵

�

e

�2bx
�

Which we may write as:

W1(x) =2b
�
CC � 1

�
cos(2ax) + 4a=(C) cosh(2bx)

+ i

✓
2b
�
CC + 1) sin(2ax) + 4a<(C) sinh(2bx)

◆
. (15)

11



In the following section we will calculate the potential obtained from formula (5)
using the Wronskian W1(x) with varying complex parameter C. We have not
yet, however, assured that the above defined Wronskian satisfies condition (i).
It is nontrivial to completely describe how the parameter C a↵ects the zero-set
of the equation:

W1(x) = 0.

We note that the Wronskian is equal to zero if and only if the real and imaginary
parts vanish simultaneously, hence for a fixed C we have to look for solutions,
x 2 R, to the following system of equations:

(
b(|C|2 � 1) cos(2ax) + 2a=(C) cosh(2bx) = 0,

b(|C|2 + 1) sin(2ax) + 2a<(C) sinh(2bx) = 0.
(16)

If there are no real x such that the system (16) is satisfied, then the Wron-
skian does not vanish on the real axis and hence satisfies condition (i). We will
however restrict ourselves here to providing some examples where the system
(16) has real solutions, and consequently condition (i) is not satisfied, and some
examples where the system (16) has no real solutions and condition (i) is indeed
satisfied.

Example 1:
Suppose k = a+ ib with |a

b

| > 1
2 . If we pick the complex number C = 1

2 (1 + i),
then from the first line in (16) we obtain the following:

� b

2
cos(2ax) + a cosh(2bx) = 0,

=) cos(2ax) = 2
a

b

cosh(2bx) > 1,

from the last line above we find that there can be no real solutions. Hence in
this case condition (i) is indeed satisfied since the real part of the Wronskian
does not vanish for x 2 R.

Example 2:
If C = ±1 then the first line in (16) vanishes identically, and x = 0 is a zero of
the Wronskian and condition (i) is not satisfied.

Example 3:
Our main example will be if we pick C = ±i, then for any k = a + ib 2 C
the first line in (16) is equivalent to cosh(2bx) = 0, which has no real solutions.
In which case the Wronskian indeed satisfies conditions (i) and (ii). We will
return to this example in the following section, where we explicitly calculate the
potential in this case.

Before we proceed with calculating the potentials, we characterizes a second
family of Wronskian determinants able to satisfy conditions (i) and (ii)

12



Theorem 2. Consider again the solutions (11) and assume that ↵ or � is
equal to zero, then, for k1, k2 not both real the Wronskian W(y1, y2) satisfies
conditions (i) and (ii) if and only if:

k1 2 R, k2 2 iR and � = ��.

Similarly, if � or � is equal to zero and k1, k2 not both real then the Wronskian
satisfies conditions (i) and (ii) if and only if:

k2 2 R, k1 2 iR and � = �↵.

If both k1 and k2 are real, then the Wronskian satisfies condition (ii) if and
only if:

↵� = �↵�, ↵� = �↵�.

Proof. Let � = 0, the proof extends word by word to the other case. The
Wronskian to study is given by:

W (x) = i↵�

�
k2 � k1

�
e

i(k1+k2)x + i↵�

�
k1 + k2

�
e

i(k1�k2)x
.

From condition (ii) we require that:

W (�x) = �i↵�(k2 � k1)e
i(k1+k2)x � i↵�(k1 + k2)e

i(k1�k2)x = W (x).

By similar argument as in the case � 6= 0 it is necessary to match the frequencies
of the exponential functions, hence we have to check the following cases:

Case 1: (
k1 + k2 = k1 + k2,

k1 � k2 = k1 � k2,
=) k1, k2 2 R

Case 2: (
k1 + k2 = k1 � k2,

k1 � k2 = k1 + k2.
=) k1 2 R, k2 2 iR.

Indeed, k1 2 R and k2 2 iR or k1, k2 2 R. If we first let k1 = k 2 R and
k2 = �i, 2 R, then the solutions are on the form:

y1(x) = ↵e

ikx

, y2(x) = �e

x + �e

�x

.

The Wronskian to study is then given by:

W(x) = ↵e

ikx(�ex � �e

�x)� ik↵e

ikx(�ex + �e

�x)

= ↵e

ikx

✓
�

�
� ik

�
e

x � �

�
+ ik

�
e

�x

◆
.
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If we again consider condition (ii), we require that:

W(x) = ↵e

ikx

✓
�(� ik)ex � �(+ ik)e�x

◆
=

W(�x) = ↵e

ikx

✓
�(+ ik)e�x � �(� ik)ex

◆
,

in particular, by considering the limits x ! ±1 we obtain � = ��, from which
we immediately obtain that ↵ 2 R. Hence the Wronskian is given by:

W2(x) = ↵e

ikx

✓
�(� ik)ex + �(+ ik)e�x

◆
. (17)

Which indeed satsifies condition (ii). If we consider condition (i), we have that
the above Wronskian vanishes if and only if:

�(� ik)ex + �(+ ik)e�x = 0,

if we let �(� ik) = A, we may write the above equation as:

Ae

x +Ae

�x = (A+A) cosh(x) + (A�A) sinh(x)

= 2<(A) cosh(x) + i2=(A) sinh(x) = 0

which evidently has no solutions for real x. Hence for the Wronskian given by
formula (17) conditions (i) and (ii) are indeed satisfied.

If k1 and k2 are both real, then the solutions are given by:

y1(x) = ↵e

ik1x
, y2(x) = �e

ik2x + �e

�ik2x
,

and the Wronskian of the two solutions is given by:

W(x) = ik2↵e
ik1x(�eik2x � �e

�ik2x)� ik1↵e
ikx(�eik2x + �e

�ik2x)

= i↵e

ik1x

✓
�

�
k2 � k1

�
e

ik2x � �

�
k2 + k1

�
e

�ik2x

◆
.

If we study condition (ii) we require that:

W(x) = i↵e

ik1x

✓
�

�
k2 � k1

�
e

ik2x � �

�
k2 + k1

�
e

�ik2x

◆
=

W(�x) = �i↵e

ik1x

✓
�

�
k2 � k1

�
e

ik2x � �

�
k2 + k1

�
e

�ik2x

◆
,

if we consider W(x)�W(�x) = 0, we indeed have that:

↵� = �↵�, ↵� = ↵�.

In what follows we will restrict our attention to the case when k1 2 R and
k2 2 iR. The potentials obtained from formula (5) using the Wronskian given
by formula (17) constitute the second family of potentials. In the next section,
we will provide explicit formulas for both families of potentials.

14



2.2.1 Constructing the Potentials

In the previous section we obtained two distinct families of PT -symmetric
Wronskian determinants from Darboux transformation of rank N = 2 start-
ing with complex-valued solutions to the zero potential Schrödinger equation.
We showed that both families of Wronskian determinants could be chosen to
be PT -symmetric and non-vanishing on the real axis. In what follows we use
formula (5) to obtain two distinct families of complex-valued, regular and PT -
symmetric potentials u1(x) and u2(x) from the corresponding Wronskian de-
terminants W1(x) and W2(x). The following Lemma shows that in the case
of the free Schrödinger equation (10), it is indeed su�cient for the Wronskian
determinant to satisfy condition (ii) in order for the potential obtained from
formula (5) to be PT -symmetric.

Lemma 1. Assume that the initial potential u(x) is PT -symmetric:

u(�x) = u(x).

If the solutions y1, ... , yN are chosen such that the Wronskian is PT -symmetric:

W(�x) = W(x).

Then the potential obtained by Darboux transformation of order N is PT -symmetric.

Proof. We have:

d

dx

✓
W(�x)

◆
= �W

x

(�x) = �W
x

(x),

d

2

dx

2

✓
W(�x)

◆
= � d

dx

W
x

(�x) = W
xx

(�x) = W
xx

(x),

hence:

d

2

dx

2

✓
lnW(�x)

◆
=

W
xx

(�x)W(�x)�W
x

(�x)
2

W(�x)
2

=
W

xx

(x)W(x)�W
x

(x)2

W(x)2
=

d

2

dx

2

✓
lnW(x)

◆
,

and indeed we have:

u[N ](�x) = u(�x)� 2
d

2

dx

2

✓
lnW(�x)

◆

= u(x)� 2
d

2

dx

2

✓
lnW(x)

◆
= u[N ](x).

15



In particular, since the initial potential u(x) was chosen equal to zero and
both W1(x) and W2(x) satisfy the assumptions of the above Lemma, we have
that the corresponding families of potentials u1(x) and u2(x) are indeed PT -
symmetric. In what follows, we will calculate explicitly the potentials given by
formula (5) for each of the Wronskian determinants given by formulas (15) and
(17).

2.2.2 The Potential u1(x)

We recall the Wronskian W1(x):

W1(x) = C1 cos(2ax) + C2 cosh(2bx) + i

�
C3 sin(2ax) + C4 sinh(2bx)

�
.

For each fixed C 2 C the coe�cients are given by:

C1 = 2b(|C|2 � 1), C2 = 4a=(C),

C3 = 2b(|C|2 + 1), C4 = 4a<(C),

In order to calculate the corresponding potential we need to compute the first
and second derivative of the above defined Wronskian, they are given by:

W1x(x) = �2aC1 sin(2ax) + 2bC2 sinh(2bx) + i

�
2aC3 cos(2ax) + 2bC4 cosh(2bx)

�
,

W1xx(x) = �4a2C1 cos(2ax) + 4b2C2 cosh(2bx) + i

�
� 4a2C3 sin(2ax) + 4b2C4 sinh(2bx)

�
.

To finnish the construction of the potential, we need to calculate the terms
W1xx(x)W(x) and W1x(x)2. If we calculate the term W1xx(x)W(x) find it is
given by:

W1xx(x)W(x) =

� 4a2C2
1 cos

2(2ax)� 4a2C1C2 cos(2ax) cosh(2bx)� i2a2C1C3 sin(4ax)� i4a2C1C4 cos(2ax) sinh(2bx)

+ 4b2C1C2 cos(2ax) cosh(2bx) + 4b2C2 cosh
2(2bx) + i4b2C2C3 cosh(2bx) sin(2ax) + i2b2C2C4 sinh(4bx)

� 2ia2C1C3 sin(4ax)� 4ia2C2C3 cosh(2bx) sin(2ax) + 4a2C2
3 sin

2(2ax) + 4a2C3C4 sin(2ax) sinh(2bx)

+ i4b2C4C1 sinh(2bx) cos(2ax) + i2b2C2C4 sinh(4bx)� 4b2C4C3 sinh(2bx) sin(2ax)� 4b2C4 sinh
2(2bx).

Next, we calculate the term W1x(x)2 and find that it is given by:

W1x(x)
2 =

4a2C2
1 sin

2(2ax)� 4abC1C2 sinh(2bx) sin(2ax)� i2a2C1C3 sin(4ax)� i4abC1C4 sin(2ax) sinh(2bx)

� 4aC2 sinh(2bx) sin(2ax) + 4b2C2
2 sinh

2(2bx) + i4abC2C3 sinh(2bx) cos(2ax) + i2b2C2C4 sinh(4bx)

� 2ia2C1C3 sin(4ax) + i4abC2C3 sinh(2bx) cos(2ax)� 4a2C2
3 cos

2(2ax)� 4abC3C4 cos(2ax) cosh(2bx)

� i4abC1C4 sin(2ax) cosh(2bx) + 2ib2C2C4 sinh(4bx)� 4abC3C4 cos(2ax) cosh(2bx)� 4b2C2
4 cosh

2(2bx).

If we consider the similarities of the two expressions above, we find, for example,
that the di↵erence of the terms on the diagonals of the two expressions is equal

16



to a constant. Proceeding similarly when we compute the factor W
xx

(x)W(x)�
W

x

(x)2 appearing in formula (5), we collect the terms with the same functions
and obtain the potential:

u1(x) =

D1 + cosh(2bx)

✓
D2 cos(2ax) + iD3 sin(2ax)

◆
+ sinh(2bx)

✓
iD4 cos(2ax)�D5 sin(2ax)

◆

✓
C1 cos(2ax) + C2 cosh(2bx) + i

�
C3 sin(2ax) + C4 sinh(2bx)

�◆2 ,

(18)

With the coe�cients D
i

given by:

D1 = �8
�
a

2(C2
3 � C

2
1 ) + b

2(C2
2 � C

2
4 )
�
,

D2 = �8C1C2(b
2 � a

2)� 16abC3C4,

D3 = �8C2C3(b
2 � a

2)� 16abC1C4,

D4 = �8C1C4(b
2 � a

2) + 16abC2C3,

D5 = �8C2C4(b
2 � a

2) + 16abC1C2.

If the parameter C is chosen such that W1(x) does not vanish on the real
axis, as was the case in Example 2, then formula (18) describes a regular,
complex-valued, PT -symmetric potential with the additional property that in
both limits x ! ±1, u1(x) decays exponentially. We can see that it is indeed
PT -symmetric by checking that simultaneous involution and conjugation acts
trivially on all terms. Moreover, we can see that it decays exponentially if we
note that the denominator contains an exponentially increasing function of a
higher power than in the numerator.

It is of interest to again consider Example 2 from the previous section; If we
take C = �i, we obtain:

C1 = 0, C2 = �4a, C3 = 4b, C4 = 0.

Furthermore if we let b = 1
2 , we have the coe�cients:

D1 = �64a2, D2 = 0, D3 = 64a(
1

4
� a

2), D4 = �64a2, D5 = 0,

hence we obtain the potential:

u(x) =
�64a2 + i64a( 14 � a

2) cosh(x) sin(2ax)� i64a2 cos(2ax) sinh(x)
�
� 4a cosh(x) + i2 sin(2ax)

�2 .

If we let a ! 0 we obtain the potential:

ũ(x) =
�4 + 2ix cosh(x)� 4i sinh(x)

�
cosh(x)� ix

�2 = 2

✓
(sinh(x) + i)2

(cosh(x)� ix)2
� cosh(x)

(cosh(x)� ix)

◆
,

17



which is precisely the potential obtained by A.L. Sakhnovich in [11] using
some generalized matrix Darboux transformation of the zero potential matrix
Schrödinger equation. However, we note that we obtain this potential in the
limit as a ! 0, in this sense the potential u(x) is slight a generalization of ũ(x).

2.2.3 The Potential u2(x)

Following theorem 2, we choose k1 = k and k2 = �i,  2 R such that the
Wronskian to study is given by:

W2(x) = e

ikx

✓
�(k � i)ex + �(k + i)e�x

◆
, � 2 C.

To complete the calculation of the potential given by formula (5), we compute
the derivatives:

W2x(x) = e

ikx

✓
�(k � i)(+ ik)ex � �(k + i)(� ik)e�x

◆
,

W2xx(x) = e

ikx

✓
�(k � i)(+ ik)2ex + �(k + i)(� ik)2e�x

◆
.

With the above formulas for the derivatives of the Wronskian, we calculate first
the term W2xx(x)W2(x):

W2xx(x)W2(x) =

e

2ikx

✓
�

2(k � i)2(k + i)2e2x + |�(k + i)|2
�
(k + i)2 + (k � i)2

�
+ �

2(k + i)2(k � i)2e�2x

◆
.

Next, we calculate the term W2x(x)2:

W2x(x)
2 =

e

2ikx

✓
�

2(k � i)2(k + i)2e2x � 2|�(k + i)|2(k2 + 

2) + �

2(k + i)2(k � i)2e�2x

◆
,

after some simplification we find from formula (5) the potential of type 2 is
given by:

u2(x) =
�8|�(k � i)|2k2

✓
�(k � i)ex + �(k + i)e�x

◆2 . (19)

The constructed potential is indeed PT -symmetric. We can see this by noting
that simultaneous involution and conjugation act trivially on both the numera-
tor and denominator. Moreover we also have that in both limits x ! ±1 the
potential decays exponentially.

In the preceding sections started with the free Schrödinger equation (10) and
constructed two families of potentials, u1(x) and u2(x). From these potentials

18



we may obtain new Schrödinger equations and by the properties of Darboux
transformation, equation (3) provides an explicit formula for all the solutions.
In what follows we will study further the Schrödinger equations:

�y

xx

+ u

i

(x)y = �y,

with potential u1(x), given by formula (18) and potential u2(x) given by formula
(19).

3 The Scattering Problem

In this section we study the scattering problem for the Schrödinger equations:

�y

xx

+ u

i

(x)y = �y, (20)

with potential u
i

(x) given by formulas (18) and (19). We will determine the
bound state eigenvalues, calculate the corresponding eigenfunctions and com-
pute the associated scattering matrix for each Schrödinger equation. In theorem
3 we introduce a class of solutions, y(k, x). By studying this class of solutions
we obtain the bound state solutions and scattering matrix of the Schrödinger
operator with potential (18) and (19) respectively. Before we proceed, we prove
two auxiliary results regarding the Wronskian determinant of arbitrary solutions
y1(k1, x), y2(k2, x) to the free Schrödinger equation (10):

Lemma 2. ����
y1 y2

y1xx y2xx

���� = W

x

(x)

Proof. We compute:

W

x

(x) =
d

dx

✓
y1y2x � y1xy2

◆

= y1xy2x + y1y2xx � y1xxy2 � y1xy2x

= y1y2xx � y1xxy2 =

����
y1 y2

y1xx y2xx

����

Lemma 3. ����
y1x y2x

y1xx y2xx

���� = �k1k2W(x)

Proof. We compute:
����
y1x y2x

y1xx y2xx

���� = y1xy2xx � y1xxy2x = �y1xk
2
2y2 + k

2
1y1y2x

= ik2k
2
1y1y2 � ik1k

2
2y1y2 = �k1k2

�
ik2y1y2 � ik1y1y2

�

= �k1k2

�
y1y2x � y1xy2

�
= �k1k2W(x)

19



Theorem 3. Suppose y1(k1, x) and y2(k2, x) are solutions of the zero poten-
tial Schrödinger equation (10), then solutions to the Schrödinger equation with
potential u[2](x) determined by formula (5) are given by:

y(k, x) =

✓
� k

2 � k1k2 � ik

W
x

(x)

W(x)

◆
e

ikx

. (21)

We note that the Wronskian determinant appearing in the above defined
function y(k, x) is the Wronskian determinant W(y1, y2).

Proof. For each k 2 C, y(x) = e

ikx is a solution to the free Schrödinger equation
(10). For any such solution the properties of Darboux transformation guarantee
that solutions to the Schrödinger equation with potential u(x) are given by:

y[2](x) =
W(y1, y2, y)

W(y1, y2)
.

Hence using Lemmas 2 and 3 we may compute:

W(y1, y2, y) =

������

y1 y2 y

y1x y2x y

x

y1xx y2xx y

xx

������
= y(x)

����
y1x y2x

y1xx y2xx

����� y

x

(x)

����
y1 y2

y1xx y2xx

����+ y

xx

(x)

����
y1 y2

y1x y2x

����

= �y(x)k1k2W(x)� y

x

(x)W
x

(x) + y

xx

(x)W(x),

if we substitute y(x) = e

ikx and divide by W(y1, y2) we immediately obtain the
desired solutions:

y(k, x) =
W(y1, y2, eikx)

W(y1, y2)
=

✓
� k

2 � k1k2 � ik

W
x

(x)

W(x)

◆
e

ikx

.

In particular, we may substitute W(x) for any of the Wronskian determi-
nants W1(x) or W2(x) and obtain solutions to the corresponding Schrödinger
equations with potentials u1(x) and u2(x).

As we shall see, the properties of the above defined solutions allow us to solve
the corresponding scattering problems.

3.1 Scattering Problem for u1(x)

To solve the scattering problem for the Schrödinger equation (20) with potential
u1(x) given by formula (18) we will study the solutions derived in Theorem 3.
To this end, we first compute:

lim
x!±1

W1x(x)

W1(x)
= lim

x!±1

�2aC1 sin(2ax) + 2bC2 sinh(2bx) + i

�
2aC3 cos(2ax) + 2bC4 cosh(2bx)

�

C1cos(2ax) + C2 cosh(2bx) + i

�
C3 sin(2ax) + C4 sinh(2bx)

�

=
±2bC2 + i2bC4

C2 ± iC4
= ±2b,
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From the calculation above we obtain the following asymptotic behavior of the
solutions y(k, x):

y(k, x) ⇠
✓
� k

2 � |k1|2 � 2ikb

◆
e

ikx

=

✓
� k

2 � |k1|2 � k(k1 � k1)

◆
e

ikx

= �
�
k + k1

��
k � k1

�
e

ikx

, x ! 1.

We may obtain the Jost solution from the left f

l

(k, x), characterized by the
following properties:

f

l

(k, x) ⇠ e

ikx + o(1), =(k) > 0, x ! 1,

f

l

(k, x) ⇠ 1

T

l

(k)
e

ikx +
R

l

(k)

T

l

(k)
e

�ikx + o(1), x ! 1,

by considering the function:

ŷ(k, x) =
y(k, x)

�
�
k + k1

��
k � k1

�
,

indeed:

ŷ(k, x) =
y(k, x)

�
�
k + k1

��
k � k1

� ⇠ e

ikx

, x ! 1.

Moreover, we have that:

y(k, x) ⇠
✓
� k

2 � |k1|2 + 2ikb

◆
e

ikx

=

✓
� k

2 � |k1|2 + k(k1 � k1)

◆
e

ikx

= �
�
k � k1

��
k + k1

�
e

ikx

, x ! �1.

Hence, from the above calculation we have that:

ŷ(k, x) =
y(k, x)

�(k + k1)(k � k1)
⇠ e

ikx

, x ! 1

ŷ(k, x) ⇠
�
k � k1

��
k + k1

�
�
k + k1

��
k � k1

�
e

ikx =
1

T

l

(k)
e

ikx

, x ! �1.

We also note that if we calculate the asymptotic behavior of y(�k, x) we obtain
the Jost solution from the right f

r

(k, x) characterized similarly by:

f

r

(k, x) ⇠ e

�ikx + o(1), =(k) > 0, x ! �1

f

r

(k, x) ⇠ 1

T

r

(k)
e

�ikx +
R

r

(k)

T

r

(k)
e

ikx + o(1), x ! 1,
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indeed, if we compute:

ỹ(�k, x) =
y(�k, x)

�(k + k1)(k � k1)
⇠ e

�ikx

, x ! �1

ỹ(�k, x) ⇠ (k � k1)(k + k1)

(k + k1)(k � k1)
e

�ikx =
1

T

r

(k)
e

�ikx

, x ! 1.

Hence we find that the left and right transmission coe�cients agree: T

l

(k) =
T

r

(k) = T (k) and the transmission coe�cient of the potential u1(x) is given by:

T (k) =

�
k + k1

��
k � k1

�
�
k � k1

��
k + k1

�
.

We also find that u1(x) is in fact reflectionless since R

r

(k) = R

l

(k) = 0, hence
we obtain the following:

Theorem 4. The scattering matrix for the Schrödinger equation with potential
u1(x) given by formula (18) is given by:

S(k) =

✓
T (k) 0
0 T (k)

◆
,

where:

T (k) =
(k + k1)(k � k1)

(k � k1)(k + k1)
.

We find that if we take =(k1) = b > 0 the poles of T (k) also lie in C+ anal-
ogous to the case of real-valued potentials in the Faddeev class. Furthermore,
the solutions given by:

y(k1, x) =

✓
� k

2
1 � |k1|2 � ik1

W1x(x)

W1(x)

◆
e

ik1x
, (22)

y(�k1, x) =

✓
� k

2
1 � |k1|2 + ik1

W1x(x)

W1(x)

◆
e

�ik1x
,

correspond to bound state eigenfunctions with eigenvalues �k

2
1 and �k

2
1. We

can see that they are indeed bounded on the entire real axis if we note that
when x ! 1 the exponential functions decay since =(k1) = �=(k1) = b > 0.
Moreover, the asymptotic analysis of the function y(k, x) showed that in the
limit x ! �1 we have that y(k, x) ⇠ �(k � k1)(k + k1)eikx. Hence indeed
k = k1 and k = �k1 are the unique values of k such that the function y(k, x)
remain bounded on the entire real axis.

3.2 Scattering Problem for u2(x)

Following the method of solving the scattering problem for the preceding po-
tential we first compute:

lim
x!±1

W2x(x)

W2(x)
= lim

x!±1

�(� ik)(+ ik1)ex � �(+ ik)(� ik1)e�x

�(� ik)ex + �(+ ik)e�x

=

(
(+ ik1), x ! 1,

�(� ik1), x ! �1.
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We note that the number k1k2 appearing Lemma 3 is given by ik1. Hence
with the Wronskian W2(x) the asymptotic behaviors of the solution y(k, x)
constructed in Theorem 3 are given by:

y(k, x) ⇠
✓
� k

2 � ik1 � ik(+ ik1)

◆
e

ikx

= �
�
k + i

��
k � k1

�
e

ikx

, x ! 1

y(k, x) ⇠
✓
� k

2 � ik1 + ik(� ik1)

◆
e

ikx

= �
�
k � i

��
k � k1

�
e

ikx

, x ! �1,

from which we can obtain the left and right Jost solutions by considering the
functions:

ŷ(k, x) =
y(k, x)

�
�
k + i

��
k � k1

�
,

ỹ(�k, x) =
y(�k, x)

�
�
k + i

��
k � k1

�
.

If we compute the asymptotic behavior of the functions above we indeed find
that:

ŷ(k, x) ⇠ e

ikx

, x ! +1

ŷ(k, x) ⇠ k � i

k + i

e

ikx =
1

T

r

(k)
e

ikx

, x ! �1

ỹ(�k, x) ⇠ e

�ikx

, x ! �1

ỹ(�k, x) ⇠ k � i

k + i

e

�ikx =
1

T

l

(k)
e

�ikx

, x ! 1.

From which we immediately obtain:

Theorem 5. The scattering matrix for the Schrödinger equation with potential
u2(x) given by formula (19) is given by:

S(k) =

✓
T (k) 0
0 T (k)

◆
,

where:

T (k) =
k + i

k � i

.

We find that the solution:

y(i, x) =

✓


2 � k1 + 

W2x(x)

W2(x)

◆
e

�x (23)
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correspond to the solution with eigenvalue �

2, associated to the pole i of
the transmission coe�cient T (k), which may be chosen to lie in C+ if we take
 > 0, analogous to the case of real-valued potentials in the Faddeev class.
Furthermore, by similar argument as for the solutions to the potential in the
previous section, we indeed have that k = i is the unique value of k such that
the solution y(k, x) remain bounded on the entire real axis.

4 Conclusion

In this thesis we studied PT -symmetric Darboux transformation were able to
obtain two distinct families of complex-valued, regular and PT -symmetric po-
tentials given by formulas (18) and (19), not found in the literature. Moreover,
we obtained the bound state eigenfunctions of the corresponding Schrödinger
operators, they are given by formulas (22) and (23). Furthermore, in Theo-
rems 4 and 5 we obtained the associated scattering matrix of each Schrödinger
operator, hence we were able to characterize the scattering properties of the
new potentials. Moreover, we showed that both Schrödinger operators admit
solutions characterized by the same asymptotic properties as the Jost solutions.
By studying these solutions we found that each Schrödinger operator only ad-
mits a finite number of bound states, associated to the poles of the respective
transmission coe�cient. These properties are analogous to those of Schrödinger
operators with real-valued potentials in the Faddeev class.
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