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Abstract

This thesis is an overview of the theory of pure motives, as well as an introduction to the Tate
conjecture. After going through some preliminaries, we introduce algebraic cycles and Weil
cohomology. We then give Grothendieck’s classical definition of pure motives and discuss some
properties. After that, we move on to André’s motivated cycles introduced in [And96], and
the category of pure motives they give rise to. We briefly discuss the motivic Galois groups
attached to these motives.

The rest of this thesis regards the Tate conjecture, which says that the Tate classes of `-adic
cohomology are algebraic. Moonen showed in [Moo18] that if this is the case over a field of
characteristic zero, then the Galois representations given by `-adic cohomology are semi-simple.
We explain the proof in detail, taking the opportunity to use the theory of algebraic cycles and
motives developed in the earlier chapters.
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Chapter 1

Introduction

This thesis is mainly concerned with the theory of motives. Coming from algebraic geometry,
motives are objects with connections to many areas of mathematics such as number theory
and representation theory. The purpose of the present text is two-fold, and this is reflected in
the division of the last two chapters. We survey the basics of the theory of motives by giving
some definitions and elementary properties, and discussing open questions. Then we give a
brief introduction to the Tate conjecture, and go through an application of the theory discussed
beforehand.

Algebraic geometry. Algebraic geometry was born as the study of geometrical objects,
varieties, defined by systems of polynomial equations. It saw a huge explosion in the last
century, notably with the scheme theory introduced by the school of Grothendieck. In the
following decades, the impact of algebraic geometry on disparate mathematical disciplines has
mounted considerably and algebraic geometry now plays a central role in modern research
mathematics.

Classical algebraic geometry concerns varieties over the complex numbers and in this setting
we have a lot of geometrical intuition. Modern tools have facilitated the study of varieties over
arbitrary fields, even finite fields. Varieties over finite fields always have finitely many points,
and one may try to count how many there are. The roots of this problem go back to Gauss,
and Weil worked thought about it in the 1940’s.

The Weil conjectures. In the late 1940’s, Weil formulated some now famous (and resolved)
conjectures regarding the number of points on varieties over finite fields. Investigating these
questions, he saw connections to cohomological properties of complex varieties. A complex
variety may be given the structure of a complex analytic space. As such, it may be given the
complex analytic topology, which is much finer than the standard topology in algebraic geome-
try, the Zariski topology. Moreover, one may take the singular cohomology of the corresponding
complex analytic space, yielding the Betti cohomology of the variety.

Unfortunately, there was no cohomology theory in positive characteristic with quite as many
desirable properties as Betti cohomology had over the complex numbers. The existence of a
cohomology theory with some of those properties over arbitrary base fields, a so-called Weil
cohomology, then seemed to have the potential of making a lot of problems more approachable.
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The substitute for Betti cohomology over arbitrary characteristic came when Grothendieck
axiomatised coverings and defined Grothendieck topologies and in particular the étale topology
on the category of schemes. This enabled `-adic étale cohomology to be defined over arbitrary
base fields. Unlike Betti cohomology though, the coefficients could not be taken as rational but
rather as `-adic.

Motives. Since the time of the Weil conjectures, plenty of Weil cohomologies have been
defined, most of them connected in one way or another by comparison theorems, analogies, etc.
A wish to unify all these different approaches and construct a “universal” cohomology theory
led Grothendieck to conjecture the existence of motives. A definition of (pure) motives was
proposed, but progress in showing that it had some desirable properties was swiftly halted by
a lack of proof of Grothendieck’s standard conjectures on algebraic cycles.

Conjecturally, motives also generalise Galois theory. The category of pure motives is expected
to be equivalent to the category of finite-dimensional representations of a group scheme called
the motivic Galois group. The properties of such a group again hinge largely on the standard
conjectures.

The Tate conjectures. The standard conjectures are intimately connected with one of the
biggest open problems in algebraic geometry, the Tate conjecture. Although rather analogous
to the Hodge conjecture, the Tate conjecture has in many ways proven more difficult.

One can say that the Tate conjecture comes in two parts, one part about the semi-simplicity
of `-adic cohomology as a Galois representation and one part asserting the algebraicity of a
certain aspect of `-adic cohomology. Ben Moonen recently made an advance ([Moo18]) in the
understanding of the relationship between these two parts. This thesis is dedicated largely to
explaining this result.

1.1 Outline

After the introduction, the present text is divided into three main chapters. First, in chapter 2,
we go through some theory needed for the subsequent chapters. We begin by giving a crash
course in the theory of profinite groups. Then we go on to describe the basic theory of Galois
extensions, and their Galois groups which are the reason we started with profinite groups. We
take a brief detour into representation theory for a partial generalisation of Maschke’s theorem
to profinite groups. Finally, we round off the chapter with sections on graded vector spaces and
category theory. These exist mainly to nail down notation and make sure we have solid footing
when discussing those concepts in chapter 3.

With the preliminaries taken care of, we attempt a quick tour of the theory of pure motives
in chapter 3. We start off with the fundamentals: algebraic cycles and the definition of a Weil
cohomology. After that we give an introduction to the classical construction of pure motives.
Lastly, we have a section dealing with André’s modified category of pure motives. We start
this section with some motivation for the constructions that follow and go on to give a sketchy
account of how it works.

Chapter 4 is the final chapter, and in it all that came before is brought together. The chapter
is intended as an instructive application of pure motives (we use André’s construction), and is
centered around a recent result by Moonen [Moo18].
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Chapter 2

Preliminaries

In this chapter, we introduce some of the preliminary theory which we need in the subsequent
chapters. We use these sections to fix notation, and to recall important results for easier
referencing later. Perhaps the biggest omission from this chapter is any material on algebraic
geometry. We therefore assume familiarity with basic scheme theory, as well as the basics of
étale cohomology. For an introduction to the former, see [Har77]. For the latter, see [Del77]
or [FK88].

2.1 Profinite groups

This section introduces some basics regarding profinite groups. Our motivating example of a
profinite group is that of a Galois group. A concise introduction to profinite groups is given in
chapter 1 of [Sza09]. A much more comprehensive treatment may be found in [RZ10]. We shall
start with some prerequisites about projective and inductive limits, which are general concepts,
ubiquitous in mathematics in general and in algebra in particular.

2.1.1 Limits

In what follows, let objects and morphisms be from some fixed category C. A projective system
is a directed poset (I,≤) with a family of objects Ai, for i ∈ I and for every pair i ≤ j in I, a
morphism fij : Aj → Ai. Moreover, fii should be the identity on Ai and composition should be
respected: fij ◦ fjk = fik. A projective limit (or inverse limit) is an object A with morphisms
pi : A → Ai, for i ∈ I, called (natural) projections, which satisfy pi = fij ◦ pj for all i ≤ j.
Moreover, (A, pi) should satisfy the following universal property. If (B, qi) is any other such
object, with its own projections qi onto Ai, then there exists a unique morphism ϕ : B → A
such that pi ◦ ϕ = qi for all i in I. If the projective limit exists then it is unique up to unique
isomorphism.

When C is the category of e.g. groups, rings, or topological spaces we can construct a projective
limit explicitly as follows, Let (Ai, fij) be a projective system of groups (or rings or topological
spaces). Then consider the subgroup (or subring or subspace) of the direct product of the Ai
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defined by

lim←−
j∈I

Aj :=

{
(ai)i∈I ∈

∏

i∈I
Ai : fij(aj) = ai ∀i ≤ j

}
.

This is the projective limit of the system (Ai, fij). The natural projections are then defined by
restricting the projection morphisms

∏
iAi → Aj .

An inductive system is analogous to a projective system, but with the arrows reversed. The
inductive limit (or direct limit) is defined in the same way as the projective limit, but again
with all the arrows reversed. We can construct it explicitly in the case of groups (or rings or
topological spaces). Consider the equivalence relation ∼ on the disjoint union

∐
i∈I Ai, defined

by

ai ∼ aj ⇐⇒ ∃k ∈ I such that i ≤ k, j ≤ k, and fik(ai) = fjk(aj).

Then define the inductive limit as

lim−→
j∈I

Aj :=

(∐

i∈I
Ai

)
/ ∼ .

2.1.2 Profinite groups

Definition 2.1.1. A profinite group is a projective limit of finite groups.

A profinite group G carries a natural topology. Indeed, let (Gi) be a projective system of finite
groups such that

G = lim←−
i

Gi.

Then, we give each Gi the discrete topology and the direct product
∏
iGi the product topology.

Since G is isomorphic to a subgroup of
∏
iGi we can give it the induced subspace topology. This

turns G into a topological group, i.e. group multiplication and inversion are continuous maps.
Profinite groups are compact: a product of finite groups is compact by Tychonoff’s theorem,
and a closed subset of a compact set is compact.

Being defined as a projective limit, G has a natural projection pi : G→ Gi for each Gi. These
are continuous: the preimage of any subset of Gi under

∏
iGi → Gi is open in the product

topology, and intersecting the preimage with G yields an open set in the subspace topology. In
particular, ker pi is open for every i, and

G/ ker pi ∼= im pi ⊆ Gi,

so that ker pi has finite index.

Lemma 2.1.2. The ker pi form a neighbourhood basis of 1 in G.

Proof. Let V be a neighbourhood of 1 in G. We need to show that ker pi ⊂ V for some i. That is,
we need to show that there exists a pi such that pi(g) = 1 implies g ∈ V . Because the topology
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of G is inherited from the product topology there are finitely many indices i(1), . . . , i(N) such
that


Vi(1) × · · · × Vi(N) ×

∏

j 6=i(1),...,i(N)

Gj


 ∩G, (2.1)

is an open subset of V , where the Vi(k) are subsets of the Gi(k). As an open subset of (2.1) we
find


{1}i(1) × · · · × {1}i(N) ×

∏

j 6=i(1),...,i(N)

Gj


 ∩G. (2.2)

Since the indexing set is assumed to be directed, there is an index i(0) such that i(0) ≥ i(k) for
k = 1, . . . , N . Then, since the projections pi are compatible with the morphisms fij , we have
that, for g ∈ G, if pi(0)(g) = 1 then pi(k)(g) = fi(k),i(0) ◦ pi(0)(g) = 1. Thus, the following is an
open subset of (2.2)


{1}i(0) ×

∏

j 6=i(1),...,i(N)

Gj


 ∩G.

But this is exactly ker pi(0) so we are done.

Corollary 2.1.3. Any open subgroup of a profinite group has finite index.

Proof. If H is an open subgroup of G then H is in particular an open neighbourhood of 1. Thus
ker pi ⊆ H for some pi, and [G : H] ≤ [G : ker pi] <∞.

In fact, we have the following result:

Lemma 2.1.4. The open subgroups of a profinite group are exactly the closed subgroups of finite
index.

Proof. Let G be profinite. Suppose H ⊂ G is an open subgroup. Then gH is homeomorphic to
H, for all g in G. By the continuity of multiplication by g, and the fact that it has a continuous
inverse: multiplication by g−1. Thus {gH}g∈G is an open cover of G. Compactness implies
existence of a finite subcover, but since the cosets are disjoint this actually means that the
whole cover is finite. Thus [G : H] is finite. Moreover, the complement G \ H is

⋃
g/∈H gH,

which is open, and hence H is closed.

Conversely, suppose H is closed of finite index in G. Then again, G \H is
⋃
g/∈H gH and this is

a finite union of closed sets and hence closed. Thus H is open.

Example 2.1.5. Examples of profinite groups include finite groups, Galois groups (Lemma 2.2.9)
and étale fundamental groups. In fact, every profinite group is the Galois group of some Galois
extension: [Wat73].

Example 2.1.6 (p-adic numbers). Let p be a prime. The finite rings Z/pnZ for n ∈ N form a
projective system, with the obvious maps. The projective limit is Zp, the ring of p-adic integers.
It is an integral domain and its field of fractions is the field Qp of p-adic numbers.
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2.2 Galois theory

Chapter 4 of this thesis is about the Tate conjecture, which is a statement about Galois repre-
sentations, i.e. representations of Galois groups. The purpose of this section is to recall some
basics of Galois theory, which we use in chapter 4. For us, the two main results are (1) that
Galois groups are profinite (Lemma 2.2.9) and (2) the fundamental correspondence of Galois
theory (Prop. 2.2.10). For proofs of all the results in this section, see e.g. [Lan05] or [Bou07a].

2.2.1 Field extensions

We begin with some definitions regarding field extensions. Let L/K be a field extension, i.e.
an inclusion of fields K ⊆ L. Recall that an element α in L is algebraic over K if it is a zero
of a polynomial with coefficients in K. If α is algebraic over K then there is a unique monic
irreducible polynomial mα,K with coefficients in K, such that mα,K(α) = 0. This is the minimal
polynomial of α over K. If mα,K = mβ,K then α and β are conjugate over K. Say L/K is an
algebraic extension if every α ∈ L is algebraic over K.

Definition 2.2.1. A field K is algebraically closed if the only algebraic extension of K is K
itself.

Proposition 2.2.2. Any field K has an algebraic closure, i.e. an algebraic extension K̄ which
is algebraically closed.

An algebraic closure isn’t unique or even canonical in any way. Its isomorphism class is however
uniquely determined by K.

We say that an irreducible polynomial is separable if its formal derivative is non-zero. If α is
algebraic over K, then it is separable over K if its minimal polynomial mα,K is separable. An
algebraic extension L/K is separable if every element α in L is separable over K. Note that
every algebraic extension of characteristic zero is separable.

Definition 2.2.3. A field K is separably closed if the only separable extension of K is K itself.

Proposition 2.2.4. Any field K has a separable closure, i.e. a separable extension Ks which
is separably closed.

An algebraic extension L/K is normal if for every irreducible polynomial p(X) in K[X] either
has no roots in L or has all its roots in L. Equivalently, L/K is a normal extension if whenever
α is in L, all its conjugates are too.

Proposition 2.2.5. Let Ks be a separable closure of K. Then Ks is normal over K.

The degree [L : K] of an extension L/K is the dimension of L as a vector space over K.

2.2.2 Galois theory

Galois theory is about the relationship between an algebraic field extension L/K and the group
of automorphisms of L that fix K, denoted Aut(L/K). A special role is played by Galois
extensions.

Definition 2.2.6. An algebraic extension L/K is Galois if the subfield of L fixed under
Aut(L/K) is K. Say that L is Galois over K.

6



Lemma 2.2.7. Let L/K be an algebraic extension and let K̄ be an algebraic closure of K.

1. If L is finite over K, then HomK(L, K̄) ≤ [L : K], with equality if and only if L is
separable.

2. L is normal over K if and only if the image of every K-embedding of L into K̄ lies in L.

3. An algebraic extension L/K is Galois if and only it is both normal and separable.

Definition 2.2.8. When L/K is Galois, write Gal(L/K) = Aut(L/K). It is the Galois group
of L over K.

Note that for Galois extensions L/M , M/K and L/K we have natural projections

Gal(L/K)→ Gal(M/K)

obtained by restriction from L to M . The reason we can do this is part 2 of Lemma 2.2.7.
These are in fact surjective, since any automorphism of M can be extended into one of L, when
L/M is Galois. In particular we then have projections to Gal(M/K) for every finite Galois
subextension M/K, and intuitively it might seem that the Galois extension L/K should be
described as a limit of its finite subextensions. This leads us to the following result.

Lemma 2.2.9. The Galois group Gal(L/K) of any Galois extension is a profinite group.

Proof. We will define a projective system and show that its limit is Gal(L/K). As our indexing
set I we will take all the subextensions M of L/K which are finite over K. We order I
by inclusion. Now for each M in I, let GM = Gal(M/K). Then GM are finite groups of
orders [M : K]. For M ⊂ M ′ in I, let fM,M ′ : GM ′ → GM be the morphism that restricts
automorphisms of M ′ to automorphisms of M . Denote the limit of this projective system by
G.

Now define a homomorphism

ϕ : Gal(L/K)→
∏

M∈I
GM ,

by sending an automorphism of L to the product of its restrictions to all the M ∈ I. We need
to show that (1) ϕ is injective and (2) that imϕ = G.

(1) Suppose σ ∈ Gal(L/K) is sent to 1 under ϕ. This means that the restriction of σ to any
finite extension of K is trivial. But then σ must fix every element α in L since otherwise the
finite extension K(α) would be a counterexample. That K(α)/K is finite follows from the fact
that α is algebraic over K.

(2) Let’s start with imϕ ⊆ G. Let M ⊂M ′ be elements in I. Then, taking σ ∈ Gal(L/K),

ϕ(σ)M ′
∣∣
M

= (σ
∣∣
M ′)
∣∣
M

= σ
∣∣
M

= ϕ(σ)M ,

so that ϕ(σ) is indeed an element of G. For the reverse inclusion, G ⊆ imϕ, take an element
τ in G. Then we can define an automorphism σ in Gal(L/K) as follows: for each α in L, let
σ(α) = τM (α) for some M in I containing α. This is well-defined and independent of the choice
of M since the GM form a projective system. By definition, ϕ(σ) = τ , and we are done.

A Galois group Gal(L/K) thus has a natural topology, namely the profinite topology. In the
context of Galois groups, it is called the Krull topology. With the knowledge that Galois groups
are profinite, we may state the following result.
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Proposition 2.2.10 (Fundamental Correspondence of Galois Theory). Let L/K be a Galois
extension. For an intermediate extension E, let ϕ(E) be Gal(L/E) as a subgroup of Gal(L/K).
Conversely, for a closed subgroup H of Gal(L/K), let ψ(H) = LH be the subfield of L fixed by
H. Then φ and ψ are mutual inverses and set up a 1-1 correspondence

{E : L/E/K} ←→ {H ≤ G : H is closed}.

Moreover, letting E be an intermediate field and H the corresponding closed subgroup, the
following properties hold:

1. Inclusion-reversing: H ⊂ H ′ if and only if E ⊃ E′.
2. E is Galois over K if and only if H is normal in Gal(L/K). In this case,

Gal(E/K) = Gal(L/K)/H.

3. H is open if and only if E/K is a finite extension. In this case,

[Gal(L/K) : H] = [E : K].

With the fundamental correspondence in mind, the following lemma might be of interest.

Lemma 2.2.11. An extension L/K is algebraic if and only if every sub-K-algebra of L is a
field.

Example 2.2.12 (Absolute Galois groups). Let Ks be a separable closure of K. Then Ks/K
is Galois by Prop 2.2.5. We say that Gal(Ks/K) is the absolute Galois group of K. Every finite
Galois group of K appears as a quotient of the absolute Galois group.

The case when K = Q will be of special interest for us. In this case a separable closure is an
algebraic closure.

Example 2.2.13 (Cyclotomic extensions). Let µn be the n:th roots of unity over Q. Then
Q(µn)/Q is a Galois extension, and the Galois group is isomorphic to (Z/nZ)×. This isomor-
phism is given by the action on a primitive n:th root of unity ζ

Gal(Q(µn)/Q)
∼−−→ (Z/nZ)×

(ζ 7→ ζa) 7→ a (mod n)

When n = p is a prime, let µp∞ be the union of µpm where m ranges over N. Then we get

Gal(Q(µp∞)/Q) ∼= lim←−
m

(Z/pmZ)× = Z×p ,

an infinite extension with the p-adic units as Galois group.

2.3 A result from representation theory

This section introduces a lemma regarding representations of profinite groups. We will use this
result when dealing with Galois representations in chapter 4.

Lemma 2.3.1. Let G be a profinite group and V a representation of G. Let W ⊆ V be a
subrepresentation. Suppose V = W ⊕W⊥, for some W⊥ which is stable under an open subgroup
H of G. Then there exists a W̃⊥ stable under all of G, such that V = W ⊕ W̃⊥.
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Proof. Let π be the projection onto W associated with the direct sum V = W ⊕W⊥. That is,
π is idempotent with imπ = V and kerπ = W . Then π is H-equivariant.

Since H is open in G and G is profinite, H has finite index in G by Lemma 2.1.4. Let T be a
left transversal of H in G, i.e. a set of one representative for every left coset of H in G. Then
T is a finite set and we can define

π̃ =
1

|T |
∑

t∈T
tπt−1.

We first show that π̃ is independent of the choice of transversal. Indeed, let s = th for some
t ∈ T and h ∈ H, i.e. s is a different choice of representative for the coset of t. Then
sπs−1 = thπh−1t−1, and since π is H-equivariant, this is just tπt−1.

Now we show that π̃ is a projection onto W . It is the identity on W :

π̃(w) =
1

|T |
∑

t∈T
tπt−1(w)

=
1

|T |
∑

t∈T
tt−1(w) (W is stable under t−1, π is identity on W )

=
1

|T |
∑

t∈T
w

= w.

Now let v ∈ V . Then πt−1(v) is in W for every t ∈ T since imπ = W . Moreover, W is stable
under t, so tπt−1(v) is in W for every t ∈ T . Thus π̃(v) is the sum of elements in W and hence
an element of W , i.e. the image of π̃ is W .

Next, we show that π̃ is G-equivariant. Let g be in G. We have that

gπ̃g−1 =
1

|T |
∑

t∈T
gtπt−1g−1

=
1

|T |
∑

t∈T
gtπ(gt)−1,

and this is just π̃ since left multiplication by g permutes the cosets of H, and since we have
shown the definition of π̃ to not depend on the choice of representatives.

Finally, letting W̃⊥ = ker π̃ we get the desired result.

Corollary 2.3.2 (Maschke’s theorem). Finite-dimensional representations of finite groups are
semi-simple, i.e. decompose into irreducible subrepresentations.

Proof. A finite group is profinite, and the trivial group is an open subgroup.

2.4 Category theory

The purpose of this section is to fix some notation and naming conventions in category theory.
We do not go into details, we only give rough definitions. For more details, see chapter 2
of [And04], as we use the same notation.
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A ⊗-category is an F -linear category which is also monoidal, such that the product ⊗ is bilinear.
Such a category is rigid if every object has a “dual”. In a rigid ⊗-category, every endomorphism
has a “trace”, and the rank of an object M is the trace of idM . A functor between ⊗-categories
which respects the ⊗-structure is a ⊗-functor.

Now suppose T is a rigid abelian ⊗-category such that End 1 = F , where 1 is the (two-sided)
unit with respect to ⊗. Then a fibre functor ω on T is a faithful exact ⊗-functor

ω : T → VecL,

to the category of finite-dimensional L-vector spaces, for some extension L/F . If such a fibre
functor exists, T is Tannakian. If such a fibre functor exists with L = F , then T is neutral
Tannakian.

For much more about Tannakian categories, see [Del90].

2.5 Graded vector spaces

Cohomology will play a key role in the subsequent chapters. Roughly, cohomology theories are
nice ways of attaching graded vector spaces to different objects, in an attempt to linearise the
study of them. Therefore, we will spend some time in this section dealing with graded vector
spaces, so that we can work with them more easily in the sequel. In the literature, the reader
may refer to [Bou07b].

Fix a field F and let (M,+) be a monoid (which, for us, will always be N or Z). An (M -)graded
vector space over F is a collection (V i)i∈M of F -vector spaces, indexed by M . We will usually
denote such a graded vector space simply by V ∗. We may view V ∗ as a vector space by taking
the direct sum ⊕i∈MV i. If we want to forget the grading on V ∗, we shall write V . The elements
of V i are homogeneous of degree i ∈M .

An F -linear map T : V ∗ →W ∗ between graded vector spaces is homogeneous of degree i if

T (V j) ⊆W j+i

for all j ∈ M . Write Homi(V
∗,W ∗) for the homogeneous maps of degree i from V ∗ to W ∗. A

homogeneous map of degree zero is simply homogeneous.

The M -graded vector spaces over F , together with homogeneous maps, form the category of M -
graded vector spaces, which is denoted GVecMF . Note that GVecNF sits naturally inside GVecZF .
We have that GVecMF is an abelian category with direct sum given by

V ∗ ⊕W ∗ = (V i ⊕W i)i∈M

It is moreover a ⊗-category with tensor product given by

V ∗ ⊗W ∗ =
( ⊕

j+k=i

V j ⊗ V k
)
i∈M

The unit object with respect to ⊗ is F concentrated in degree 0.

Write HomF (V,W ) for the F -linear maps from V to W . We may consider

Hom∗(V ∗,W ∗) = (Homi(V
∗,W ∗))i∈M .
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as a graded vector space, but the way to forget the grading here is through point-wise addition
of maps, so we’ll write

∑
j Homj(V

∗,W ∗) for the underlying vector space. Since we view V ∗ as
a direct sum of its homogeneous parts, we get short exact sequences

0→ V i ιi−→ V ∗ πi

−→ V i → 0.

Using the ιi and πj for V ∗ and W ∗ we get can decompose a linear map T : V → W into linear
maps Tij : V i →W j . Thus we get a homogeneous map of degree j

T j :=
⊕

i∈M
(ιi+j ◦ Ti,i+j) : V ∗ →W ∗

for each j, where the ιi+j here map into W ∗. Then T =
∑

j T
j , and this gives us an isomorphism

∑

j

Homj(V
∗,W ∗) ∼= HomF (V,W ).

As a last note, we will in the sequel come across not only graded vector spaces but also e.g.
graded algebras. Such objects are defined analogously.
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Chapter 3

Motives

This chapter is greatly indebted to André’s book [And04]. We try to simplify the exposition
found there by leaving out many (often important) details, in an effort to get a view of the big
picture as quickly as possible.

3.1 Algebraic cycles

The purpose of this section is to give a brief overview of the fundamental definitions regarding
algebraic cycles. Apart from André’s book, a short and sweet introduction to Chow groups
and intersection theory is found in Appendix A of Hartshorne [Har77]. For a lot more details,
the reader may refer to for example the chapter on intersection theory in the Stacks Project
[Stacks].

Let K be a field and let X be a smooth projective variety over K. Write Z∗(X) for the free
abelian group generated by the closed integral subschemes of X, graded by codimension. It is
the graded group of algebraic cycles on X. The elements of Z1(X) are called (Weil) divisors
and the cycles of dimension zero (not codimension) are called zero cycles For any commutative
ring F , write Z∗(X)F for the tensor product Z∗(X)⊗ZF . This is the graded group of algebraic
cycles on X with coefficients in F .

For Z a closed integral subscheme of X, write [Z] for its image in Z∗(X), or in Z∗(X)F , or in
any of their quotients which will be defined later.

3.1.1 Intersection product and adequate relations

We would like to make the algebraic cycles into a graded algebra, by defining a suitable product.
The product in question is the intersection product from intersection theory.

If X is not of pure dimension, interpret dimX as a function which is locally constant. Say two
closed integral subschemes Z and Z ′ intersect properly if the dimension of their intersection is
dimZ + dimZ ′ − dimX. In this case, their intersection product Z · Z ′ can be computed. We
won’t go into the exact definition here, but it roughly amounts to taking the intersection while
keeping track of certain multiplicities. Please see [Stacks] or [Ful98] for details.
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In order to make the intersection product defined for every pair of elements, we will introduce
an equivalence relation ∼ on the algebraic cycles. By passing to the quotient

Z∗∼(X)F := Z∗(X)F / ∼

we’ll get a graded algebra. A hypothetical equivalence relation ∼ should satisfy three conditions.
The first condition (M) is meant to alleviate the need for a proper intersection and is often called
the “moving lemma”.

(M) For every α, β ∈ Z∗(X)F , there exists α′ ∼ α such that α′ and β′ intersect properly.

Secondly, when we mod out by ∼, the F -linear structure should be preserved:

(L) ∼ is compatible with the F -linear structure and the grading.

More explicitly, condition (L) means that the equivalence classes are homogeneous, and that if
α ∼ α′ and β ∼ β′, then a(α+ β) ∼ a(α′ + β′) for all a ∈ F .

The third and last condition is intended to ensure that the construction Z∗∼(X)F a contravariant
functor in X. Given two smooth projective K-schemes X and Y , we have a projection

pXYX : X × Y → X,

under which we take the may preimage of α ∈ Z∗(X)F . Given any γ ∈ Z∗(X × Y )F which
intersects (pXYX )−1(α) properly, we can define a cycle on Y by γ∗(α) := pXYY (γ · (pXYX )−1(α)).
In this way, cycles in the product X × Y lets us go from cycles on X to cycles on Y . We would
like the equivalence relation to satisfy:

(C) for every α ∈ Z∗(X)F and every γ ∈ Z∗(X × Y )F intersecting (pXYX )−1(α) properly, if
α ∼ 0 on X then γ∗(α) ∼ 0 on Y .

To see what this has to do with Z∗∼(−) being contravariant, take a morphism f : X → Y . Then
let Γf be its graph in X × Y and consider its transpose tΓf as a cycle on Y ×X. Then if β is
a cycle on Y intersecting tΓf properly, we get a cycle on X by f∗(β) := ( tΓf )∗(β). One can
check that this is functorial, and condition (C) ensures that this construction works well after
passing to the quotient. A proper morphism f also induces a covariant map f∗ on the Chow
groups. It is a morphism of F -modules is not compatible with the intersection product. We
skip the definition of f∗ here.

Definition 3.1.1. An equivalence relation ∼ on Z∗(X) is adequate if it satisfies the three
conditions (M), (L) and (C).

3.1.2 Rational and numerical equivalence, the Chow ring

The finest adequate relation is called rational equivalence. Under rational equivalence, we get
the Chow ring Z∗rat(X).

On the other side of the spectrum, the coarsest adequate relation is called numerical equivalence.
In this case we write Z∗num(X).
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3.1.3 Correspondences

Let ∼ be an adequate relation. The (algebraic) correspondences of degree r from X to Y (with
respect to ∼) are the elements of

Cr∼(X,Y ) := ZdimX+r
∼ (X × Y ).

Due to condition (C) on ∼, we may interpret the correspondences as homomorphisms from
Z∗∼(X) to Z∗∼(Y ). Moreover, due to the discussion after condition (C), we think of correspon-
dences as generalisations of morphisms of schemes.

Define composition of correspondences f ∈ Cr∼(X,Y ) and g ∈ Cs∼(Y, Z) by

g ◦ f := (pXY ZXZ )∗
(
(pXY ZXY )∗(f) · (pXY ZY Z )∗(g)

)
∈ Cr+s∼ (X,Z),

where again, we use p to denote projection on fibre product components.

3.2 Weil cohomology

When we have an embedding σ : K → C of the base field into the complex numbers, we have
Betti cohomology. Given a K-scheme X, we base change to get a complex variety Xσ :=
X ×σ SpecC. We can then consider the corresponding complex analytic space, which has a
much finer topology than the Zariski topology. Here, we have singular cohomology, which we
call the Betti cohomology of X, and it has many interesting properties.

If K is for example of characterstic p > 0, then no such embedding σ exists. When formulating
the Weil conjectures in [Wei49], Weil drew tentative connections between the number of points
on varieties over finite fields, and cohomological properties of varieties over C. If one could
define a cohomology theory with characteristic zero coefficients, for when the base field is of
positive characteristic, such that some of the properties enjoyed by Betti cohomology held, then
this should provide a way to tackle the Weil conjectures. So was born the notion of a Weil
cohomology theory.

In defining and discussing Weil cohomologies we follow section 3.3 in André’s book [And04]. In
particular we don’t (yet) demand that the coefficient field is of characterstic zero. Let K be a
field and denote the category of smooth projective schemes over K by P(K). The fibre product
×K makes this a monoidal category with unit SpecK. Recall the category GVecNF of N-graded
F -vector spaces, for some field F . As we discussed in section 2.5, this too is a monoidal category.

Definition 3.2.1. A Weil cohomology is a covariant functor

H∗ : P(K)→ GVecNF ,

respecting the monoidal structure and satisfying

dimF H
2(P1) = 1,

together with the trace maps and cycle class maps defined in Definition 3.2.2 below.
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Cup product. Any scheme X in P(K) has a canonical morphism ∆X : X → X ×X sending
it to the diagonal. Under H∗ this diagonal morphism is sent to a homogeneous map

H∗(∆X) : H∗(X ×X)→ H∗(X).

Since H∗ respects the monoidal structure we have a canonical isomorphism, called the Künneth
isomorphism,

H i(X ×X) ∼=
⊕

j+k=i

Hj(X)⊗Hk(X).

And thus H∗(∆X) induces a product on H∗(X), the cup product, which is additive in the degree
of homogeneous elements. The cup product is denoted by ∪.

Tate twists. Denote the one-dimensional H2(P1) by F (−1). Then F (−1) is (non-canonically)
isomorphic to F but in degree 2 as a graded vector space. Write F (1) for its graded dual
Hom∗(F (−1), F ) in GVecZF (note the extension of the grading monoid), which is then concen-
trated in degree −2. This is the inverse of F (−1) under ⊗ in GVecZF . Also write F (−1) =
F (1)⊗(−1) and F (r) = F (1)⊗r for r ∈ Z. Then F (r) ⊗ F (s) = F (r + s). The operation of
tensoring V ∗ in GVecZF by F (r) is called Tate twisting and is denoted by

V ∗(r) := V ∗ ⊗ F (r).

If V ∗ is concentrated between degrees 0 and k, then V ∗(r) is shifted to degrees between −2r
and k − 2r.

Definition 3.2.2. We now come to the trace maps and cycle maps referenced in Definition 3.2.1
of Weil cohomologies.

1. (Trace map, Poincaré duality) For every equidimensional X in P(K) of dimension d, we
should have a K-linear map

trX : H2d(X)(d)→ K,

called the trace map. It should satisfy trX×Y = trX trY and be an isomorphism when
X × Spec K̄ is connected. The trace map should lastly satisfy the Poincaré duality : the
pairing

〈, 〉 : H i(X)⊗H2d−i(X)(d)
∪−→ H2d(X)(d)

trX−−→ K

is a perfect pairing.

2. (Cycle class map) For every X in P(X) we should have group homomorphisms

γrX : CHr(X)→ H2r(X)(r),

called cycle maps, such that γ is contravariant in X, and such that

γr+sX×Y (α× β) = γrX(α)⊗ γsY (β),

and finally, such that when X is equidimensional of dimension d, the composition of γd

with trX is the same as the degree map on zero-cycles.
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Homological equivalence. If L is a subring of F , and H∗ is a Weil cohomology with coeffi-
cients in F , then a cycle α ∈ Zr(X)L is homologically equivalent to 0 if γr(α) = 0. Homological
equivalence is an adequate equivalence relation. It is finer than numerical equivalence and
coarser than rational equivalence. It is conjectured that numerical and homological equivalence
coincide.

Homological correspondences. Let X,Y ∈ P(K), H∗ a Weil cohomology and d = dimX.
By the Künneth isomorphism

H i(X × Y )(d) ∼=
⊕

j+k=i

Hj(X)(d)⊗Hk(Y ).

Note that the degrees on the right-hand side add up to i−2d as they should. Through Poincaré
duality we have an isomorphism

Hj(X)(d) ∼= HomF (H2d−j(X),K),

and thus

H i(X × Y )(d) ∼=
⊕

j+k=i

HomF (H2d−j(X), Hk(Y )) = Homi−2d(H
∗(X), H∗(Y ))

Summing over all degrees yields an F -linear isomorphism

H(X × Y )(d) ∼= HomF (H(X), H(Y )),

identifying H(X × Y )(d) with the linear maps from H(X) to H(Y ). The elements of H∗(X ×
Y )(d) are the homological correspondences from X to Y with respect to H∗. Note that the corre-
spondences in H2d(X×Y )(d) are identified with the homogeneous maps Hom0(H∗(X), H∗(Y )).
As a special case of this, note that the cycle maps

γrX : CHr(X)→ H2r(X)(r),

can be seen as mapping into correspondences. Namely,

H2r(X)(r) ∼= H2r(SpecK ×X)(r) ∼= Hom2r(F,H
∗(X)(r)).

3.3 Grothendieck’s pure motives

We would like a functor h from P(K) into some abelian ⊗-category of “motives”, such that if
H∗ is a Weil cohomology, then H∗ factors through h via a faithful realisation functor :

X � //
�

""

h(X)
_

��

H∗(X)

(3.1)

We have seen that the algebraic cycles on X give rise to cohomology classes through cycle class
maps. We have also seen that correspondences give homomorphisms between the algebraic cycle
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algebras, and that homological correspondences are the same as homomorphisms between the
cohomology algebras. This gives some intuition for the following construction by Grothendieck.

Definition 3.3.1. The category of pure motives over K, with an adequate relation ∼ and
coefficients in F , is denoted by M∼(K)F and has objects and morphisms as follows. The objects
are triples (X, e, r) where X ∈ P(K) is a smooth projective scheme over K, e ∈ C0

∼(X,X)F is
an idempotent correspondence from X to X, and r is an integer. The morphisms from (X, e, r)
to (Y, f, s) are the correspondences in Cs−r∼ (X,Y ) of the form

f ◦ g ◦ e, such that g ∈ Cs−r∼ (X,Y ),

with composition as correspondences.

We write h : P(K)→M∼(K)F for the contravariant functor sending X to (X, id, 0) and sending
f : X → Y to the transpose tΓf = f∗ of its graph. For a triple (X, e, r) we use the suggestive
notation eh(X)(r) and call it the motive cut out of X by e, (Tate) twisted r times.

The category of pure motives is an F -linear category with direct sum given by disjoint union of
schemes. It is moreover a ⊗-category by

eh(X)(r)⊗ fh(Y )(s) := (e⊗ f)h(X × Y )(r + s).

The unit object is 1 := h(SpecK). Tate twists make M∼(K)F into a rigid ⊗-category, where
duality on the objects is given by

[eh(X)(r)]∨ := ( te)h(X)(d− r), d := dimX,

for equidimensional X (extended additively), and duality on the morphisms is given by trans-
position of correspondences.

Example 3.3.2 (The motive of P1.). Let x be a point in P1(K). Then the diagonal in P1×P1

decomposes modulo ∼ as the sum of the idempotent correspondences [x]×P1 and P1× [x], and
these are independent of the choice of x ([And04, Exercise 3.2.2.2 1]). Thus h(P1) decomposes
as 1⊕ h̃(P1), where 1 is the trivial motive and h̃(P1) is the reduced motive of h(P1) cut out by
the idempotent [x] × P1. Then h̃(P1) is canonically identified with 1(−1), since [x] × P1 is the
transpose of P1 × [x], so

1 = 1∨ =
[
(P1 × [x])h(P1)

]∨
= ([x]× P1)h(P1)(1) = h̃(P1)(1),

Call 1(−1) the Lefschetz motive. Its dual 1(1) is the Tate motive.

When ∼ is rational equivalence, M∼(K)F is the category of Chow motives, and we’ll denote it
by CHM(K)F . With Chow motives, the universality outlined at the top of the section, in (3.1),
is realised.

Proposition 3.3.3. Defining a Weil cohomology over K with coefficients in F is equivalent to
defining a ⊗-functor

H∗ : CHM(K)F → GVecZF ,

such that H i(1(−1)) = 0 for every i 6= 2.

Proof. Proposition 4.2.5.1 in [And04].
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The proof of Proposition 3.3.3 rests on a stronger universality property which is explained in
section 4.2.4 of [And04]. The functors from CHM(K)F corresponding to Weil cohomologies are
called realisations of motives. The category of Chow motives is neither abelian nor semi-simple.

When∼ is numerical equivalence, M∼(K)F is the category of numerical motives, or Grothendieck
motives. It is denoted by NM(K)F . We have the following theorem.

Proposition 3.3.4 (Jannsen). The category NM(K)F is abelian and semi-simple. Conversely,
if M∼(K)F is abelian and semi-simple for some adequate relation ∼, then ∼ is numerical
equivalence.

Proof. Theorème 4.5.1.1 in [And04].

On the other hand, Weil cohomologies do not factor through Grothendieck motives unless
certain conjectures hold.

An adequate relation which Weil cohomologies do factor through is Mhom(K)F . If numerical
and homological equivalence coincide, then Mhom(K)F = NM(K)F is an abelian semi-simple
category of pure motives through which Weil cohomologies factor.

Artin motives Consider the subcategory V of P(K) consisting of schemes that are finite
étale over K. Let AM(K)F be the smallest full subcategory of M∼(K)F that contains h(X) for
all X ∈ V, and that is stable under ⊕, ⊗, direct summands and duals. This is the category of
Artin motives over K and is actually independent of the choice of adequate relation ∼. It is
equivalent to the category RepF (Gal(Ks/K)).

3.4 André’s pure motives

Apart from unifying the different Weil cohomologies, another source of motivation for motives
comes from Galois theory. The Galois correspondence can be reframed in the language of
schemes as an equivalence of categories

(finite étale K-schemes)
∼ // (finite sets with an action by Gal(Ks/K))

One may wish to find a linearised version of this equivalence. On the right-hand side this is
easily done: if S is a finite set with an action by Gal(Ks/K) then the free F -vector space FS

on S is finite-dimensional and carries a natural action by Gal(Ks/K). This gives a functor
into (continuous) finite-dimensional representations RepF (Gal(Ks/K)) of Gal(Ks/K). The
finite étale K-schemes on the other hand are linearised by Artin motives, and this does yield a
linearised equivalence.

(finite étale K-schemes)
∼ //

h

��

(finite sets with an action by Gal(Ks/K))

��

AM(K)F
∼ // RepF (Gal(Ks/K))

The idea is to generalise this to arbitrary dimension by replacing AM(K)F by the full category
of Grothendieck motives NM(K)F and Gal(Ks/K) by some group scheme, called the motivic
Galois group.
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If NM(K)F was Tannakian, with a fibre functor given by a realisation, e.g. `-adic cohomology,
then the motivic Galois group would be the Tannakian group, i.e. the ⊗-automorphism group
of the fibre functor.

There are several hurdles to NM(K)F being Tannakian in this way. Most importantly, Grothendieck’s
standard conjectures on algebraic cycles are still open. We won’t go into too much detail on
this important topic. For details, see [And04] or [Kle68]. We will focus on conjecture D.

Conjecture 3.4.1 (D(X)). Homological and numerical equivalence on X coincide, that is

Z∗hom(X)Q = Z∗num(X)Q, (D(X))

where X is a smooth projective K-scheme.

If conjecture D(X) holds on all of P(K), then Weil cohomologies do factor through NM(K)F ,
giving us an abelian semi-simple category of pure motives, in the way we hoped for. Trying to
use a Weil cohomology as fibre functor would still not make NM(K)F Tannakian though, as is
explained in section 6.1 of [And04]. The issue causing this set-back can be resolved either by
modifying NM(K)F into a slightly different category, or by considering super representations
instead of representations.

3.4.1 Motivated cycles

When the base field K is of characteristic zero the standard conjecture of Lefschetz type implies
the rest of the standard conjectures. We’ll give a brief introduction to this conjecture. Let K
be of characterstic zero and let H∗ be a Weil cohomology. Given an ample Cartier divisor on
X, one may define a Lefschetz operator

L : H i(X)(r)→ H i+2(X)(1 + r).

We say that the strong Lefschetz theorem holds for H∗ if

Ld−i : H i(X)(r)→ H2d−i(X)(d− i+ r)

is an isomorphism for every i such that i ≤ d and every r ∈ Z. The strong Lefschetz theorem
holds for every classical Weil cohomology. There is also a weak Lefschetz theorem, which also
holds for every classical Weil cohomology, but we won’t say more than that about it here.

Now suppose the strong and weak Lefschetz theorems holds for H∗. Define the Lefschetz
involution ∗L on ⊕i,rH i(X)(r) as Ld−i when i ≤ d and as the inverse of Li−d when i > d. We
may now state the standard conjecture of Lefschetz type.

Conjecture 3.4.2 (B(X): Lefschetz type). The Lefschetz involution is given by an algebraic
correspondence (over Q).

André proposed a way around the Lefschetz type standard conjecture in [And96]. The idea is
to formally adjoin the Lefschetz involution to the algebraic correspondences, thereby bypassing
the question of its algebraicity.

Definition 3.4.3 ([And96, Déf. 1]). A motivated cycle of degree r on X is an element in
H2r(X)(r) of the form (pXYX )∗(α∪ ∗L(β)) where Y is arbitrary, α and β are in Z∗hom(X × Y )F ,
and ∗L is the Lefschetz involution. Denote the set of motivated cycles on X by Z∗mot(X)F .
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The cycles in ZdimX+r
mot (X × Y )F are the motivated correspondences of degree r from X to Y .

We mirror the notation for algebraic correspondences and write

Crmot(X × Y )F := ZdimX+r
mot (X × Y )F .

André tells us in [And96, Prop. 2.1] that Zmot(X)F is a sub-F -algebra of ⊕rH∗(X)(r), under
cup product. Using motivated instead of algebraic correspondences, we get a new notion of
pure motives.

Definition 3.4.4. The category of André motives has objects (X, e, r) where X is a smooth
projective K-scheme, e is an idempotent motivated correspondence in ZdimX

mot (X ×X), and r is
an integer. The morphisms from (X, e, r) to (Y, f, s) are motivated correspondences of the form
f ◦ g ◦ e where g is in ZdimX−r+s

mot (X × Y ). We denote this category by Mot(K;F ).

Taking F = Q`, this is a semi-simple Q`-linear neutral Tannakian category with fibre functor
given by `-adic étale cohomology. By section 4 of [And96] we may conclude that the corre-
sponding motivic Galois group, which we’ll denote by GK , is a pro-reductive group and that
Mot(K;Q`) is equivalent to RepQ`

(GK). Weil cohomologies also factor through Mot(K;Q`),
and we have somewhat succeeded in generalising the linearised Galois correspondence at the
top of the section.

By abuse of notation, write H∗ for the functor from Mot(K;Q`), through which the Weil
cohomology H∗ factors. Then a motive (X, e, r) is sent to H∗(e)H∗(X)(r) under H∗, i.e. the
subspace of H∗(X) cut out by the projector H∗(e), Tate twisted r times. A motivated subspace
V of H∗(X, e, r) is a linear subspace stable under the action of GK . This is equivalent to V being
the realisation of a submotive M of (X, e, r). Since Mot(K;Q`) is semi-simple, V motivated
implies that there is a submotive M ′ such that (X, e, r) = M ⊕M ′.
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Chapter 4

The Tate Conjecture

We begin by fixing some notation. Let K a field which is finitely generated over its prime
subfield. Fix a prime number ` different from the characteristic of K and an algebraic closure
K̄ of K. Denote the absolute Galois group of K by ΓK = Gal(K̄/K).

Let X be a smooth projective scheme over K. Write H i(X) for the `-adic étale cohomology
H i

ét(XK̄ ,Q`). Denote its Tate twists H i
ét(XK̄ ,Q`(n)) by H i(X)(n).

Note that ΓK acts on K̄ by definition, and hence by functoriality on Spec K̄. Thus, ΓK acts on
the productXK̄×SpecKSpec K̄. Finally, ΓK then acts linearly onH i(X) by functoriality, turning
the cohomology to an `-adic Galois representation. The action of ΓK on the cohomology of XK̄

should in some sense encode the K-structure on X which we forget when we extend scalars.

4.1 Statement

A cohomology class ξ ∈ H i(X)(n) is a Tate class if its stabiliser in ΓK is an open subgroup.
In other words, if it is fixed by Gal(K̄/K ′) for some finite extension K ′/K. If ξ 6= 0, then we
must have i = 2n. With this in mind, define T n(X) ⊂ H2n(X)(n) to be the subspace of Tate
classes.

Tate conjectured the following in [Tat65] and elsewhere.

Conjecture 4.1.1. For every X/K as above and all integers i ≥ 0 and n,

(S) H i(X)(n) is a semi-simple representation of ΓK , and

(T) when n ≥ 0, the cycle class map CHn(XK̄)⊗Q` → T n(X) is surjective.

4.2 Motivation and known cases

The Tate conjecture (T) is known for divisors (that is, n = 1) on abelian varieties. When K
is a finite field, this is due to Tate [Tat66]. Faltings then showed it for K a number field in
[Fal83] (English translation in [CS86]). Totaro writes in the beginning of section 4 of [Tot17]
that Zarhin extended these results to finitely generated fields, but no reference is given. For an
abelian variety A, we have H1

ét(AK̄ ,Z`) ∼= HomZ`
(T`A,Z`) as Galois representations, where T`A

is the Tate module of A, i.e. the inverse limit of the `n torsion points A[`n] on A. Moreover,
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H∗ét(AK̄ ,Z`) ∼= ∧∗H1
ét(AK̄ ,Z`) as graded algebras. See for example [CS86, Ch. V, Theorem 15.1].

This gives some feeling for why the Tate conjecture is a lot more approachable for abelian
varieties than more general varieties.

More recently, the Tate conjecture has been confirmed for divisors on K3 surfaces. This is done
through the Kuga-Satake construction, which relates the cohomology of K3 surfaces to that of
abelian varieties. Note that for surfaces, divisors make up the only interesting case of the Tate
conjecture, codimension 0 and 2 cycles map into the one-dimensional H0 and H4 respectively
(since 4 is twice the dimension). For more of a discussion about this development, see [Tot17].

It is worth noting that the situation is very different for the Hodge conjecture, where the
general case of divisors has been known since 1924, long before the Hodge conjecture was even
formulated.

Most of Tate’s original motivation for his conjecture was for divisors. Tate writes in [Tat94]
about how he was lead to the divisor case of the Tate conjecture through the Tate-Shafarevich
conjecture as well as the Birch and Swinnerton-Dyer conjecture. He writes also that the con-
jecture in higher codimension arose mainly as a generalisation of the divisor case.

4.3 Moonen’s theorem

In 2017, Ben Moonen published the following result in [Moo18].

Proposition 4.3.1 (Moonen 2017). Suppose the characteristic of K is zero. If assertion (T) of
Conjecture 4.1.1 is true, then so is (S). In other words, if the cycle class map is surjective onto
the Tate classes, then the `-adic cohomology groups are semi-simple as representations of ΓK .

What follows is a short sketch of the main ideas in the proof. From here on, K will always
be of characteristic zero. We want to show that H i(X) is semi-simple, i.e. decomposable as
a direct sum of irreducible subrepresentations of ΓK . Write H = H i(X) and assume that H
has a subrepresentation V . It is then enough to show that V has a complement that is also
stable under the action of ΓK . By Lemma 2.3.1 it is actually enough to show that V has a
complement stable under the action of an open subgroup of Γ. The proof can then be seen
as having three parts.

Step 0: reduction. Reduce to the case K = Q. We shall skip this step and instead refer to
Moonen’s paper. Now let Γ = ΓQ.

Step 1: produce a Tate class. We want to use (T) in some way. That means we want to
at some point produce a Tate class ξ in H2k(Y )(k) for some Y and k. Assume that we have
such a Tate class ξ. Since ξ is fixed under the action of an open subgroup of Γ, the span of
ξ is a subrepresentation (of that open subgroup) isomorphic to the trivial representation Q`.
Tate twisting by −k we get a subrepresentation, of the open subgroup, of H2k(Y ) isomorphic
to Q`(−k). Thus, a reasonable strategy would be to try and produce such a subrepresentation
for some Y .

We have one obvious representation to work with, namely V . The dimension m := dimV can
be anything so it doesn’t make sense to try and show that V is isomorphic to Q`(−k), which is
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1-dimensional. However, consider Altm(V ). This is a one-dimensional representation of Γ and

Altm(V ) ⊂ Altm(H) ⊂ Hmi(Y ),

where Y is the m-fold fibre product of X with itself. We will show that Altm(V ) is isomorphic
to Q`(−k) as representations of an open subgroup of Γ. Then Altm(V )(k) will be spanned by
a Tate class.

Step 2: bring in the motives. Having Altm(V )(k) spanned by a Tate class, it is by (T)
spanned by the cohomology class of an algebraic cycle. That is, it is spanned by the image of
an algebraic cycle under the cycle class map. We will then get a decomposition H = V ⊕ V ′
as André motives. Then the `-adic realisation functor respects direct sums, so H = V ⊕ V ′ as
Galois representations, and we will be done.

4.4 The proof

By step zero, we set K = Q and let Γ = ΓQ. As in the previous discussion we write H = H i(X)
and let V ⊂ H be a sub-Γ-representation. We want to show that V has a complement invariant
under the action of an open subgroup of Γ.

4.4.1 Step 1

Let m denote dimV and write

Y = X ×SpecK · · · ×SpecK X

with m copies of X. By the Künneth isomorphism, H⊗m occurs as a summand in Hmi(Y ). We
then have a chain of inclusions

Altm V ⊂ AltmH ⊂ H⊗m ⊂ Hmi(Y ).

As discussed in the proof sketch, Altm V is one-dimensional. Our present goal is to show that, for
some open subgroup of Γ, the restricted representation on Altm V is isomorphic to Q(−k). By
the fundamental Galois correspondence, Proposition 2.2.10, an open subgroup of Γ corresponds
to a field F with finite degree over Q, i.e. a number field. Open subgroups of Γ are thus of the
form ΓF , for F a number field. Being a one-dimensional representation, Altm V is given by a
character

ψ : Γ→ Q×` .

Showing that Altm V and Q(−k) are isomorphic as ΓF -representations, for some number field
F , thus amounts to showing that ψ = χ−k on ΓF , where χ is the cyclotomic character

χ : Γ→ Gal(Q(µ`∞)/Q) ∼= Z×` .

We start by showing that the image of ψ is actually in Z×` . For this we need the following
lemma.

Lemma 4.4.1. V contains a Γ-stable Z-lattice.
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Proof. See [DS05, Prop. 9.3.5].

Lemma 4.4.2. The image of ψ is contained in Z×` .

Proof. Take a Γ-stable lattice v1, . . . , vm from Lemma 4.4.1 as a basis for V . Letting v =
v1 ∧ · · · ∧ vm in ∧mV we get an isomorphism

Altm V ∼= ∧mV ∼= Q`v.

The action of g ∈ Γ is g(v) = ψ(g)v, but it’s also

g(v) = g(v1) ∧ · · · ∧ g(vm),

which is an Z`-multiple of v since the vi make up a stable Z`-lattice. Combining the two yields
that ψ(g) is in Z×` , since it’s invertible in Z` (the inverse being ψ(g−1)).

We arrive at the main claim of the section. Let χ be the `-adic cyclotomic character.

Proposition 4.4.3. There is an open subgroup ΓF of Γ such that the restriction of ψ to ΓF is
an integral power of χ.

Start with a simple case.

Lemma 4.4.4. Proposition 4.4.3 is true if imψ is finite.

Proof. We have that imψ ∼= Γ/ kerψ so kerψ has finite index in Γ, and thus is open. Now the
restriction of ψ to kerψ is by definition trivial, so it is equal to the zeroth power, χ0, of the
cyclotomic character on kerψ.

We may thus assume that imψ is infinite, for the purposes of Proposition 4.4.3.

The subgroup kerψ ⊂ Γ is normal and closed. By the fundamental theorem of Galois theory, it
thus corresponds to an intermediate field extension, Q̄/L/Q, Galois over Q. Here, L = Q̄kerψ

(the fixed field of kerψ). Let Q∞ be a Z`-extension of Q, i.e. an extension with Galois group Z`.
It is unique up to choice of Q̄, for example by [Lan90, Thm. 5.2], since the Leopoldt conjecture
is known for Q and since there are no imaginary embeddings of Q in C.

Lemma 4.4.5. L contains the Z`-extension Q∞ as a subfield of finite index.

Proof. We have an isomorphism

Z×` ∼= µ(`− 1)× (1 + `Z`),

and thus a quotient map

Z×` � (1 + `Z`) ∼= Z`.

Since imψ is an infinite subgroup of Z×` , it contains an element of infinite order, which hence
generates a copy of Z. Moreover, since ψ is continuous it sends the compact Gal(Q̄/Q) to a
compact, and hence closed subset of Z×` . Thus, imψ contains a copy of the closure of Z in Z×` ,
which is a copy of Z`. We get a quotient map

imψ � Z`,

and by the fundamental Galois correspondence, this means that there is an intermediate field
L/M/Q such that Gal(M/Q) ∼= Z`. Thus, M = Q∞, by uniqueness. The degree [L : Q∞] is at
most size of µ(`− 1), which is finite.
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The prime ` is totally ramified in Q∞. For a prime λ of L above `, its inertia group Iλ ⊂
Gal(L/Q) is thus an open subgroup.

Proof of Prop. 4.4.3. In order to prove Proposition 4.4.3, we will need some results from p-adic
Hodge theory, a theory which we will use as a black box. The first claim is that H is a Hodge-
Tate representation of ΓQ`

, and this is proven by Faltings in [Fal88]. Although we won’t define
this concept, we’ll use it as a bridge. We have that V and Altm V are also Hodge-Tate. Then,
Remark 3.9(iv) of [Fon94] says, roughly translated:

A one-dimensional `-adic representation is Hodge-Tate if and only if there is an integer
ν ∈ Z, and an open subgroup J ⊂ Iλ such that every g in J acts by multiplication of
χ(g)ν .

Thus, applying this to Altm V we get that ψ = χν on J ⊂ Iλ. Let J ′ be the preimage of J
under the quotient map Γ � Gal(L/Q). Then J ′ is open, by continuity, and J = J ′/ kerψ, so
that ψ is the same on J and J ′ Thus, J ′ ⊂ Γ is the open subgroup we need.

We thus have that ψ = χν for an integer ν, on an open subgroup ΓF of Γ. In other words,
Altm V ∼= Q`(ν) as a ΓF -representation. But then

Q`
∼= (Altm V )(−ν) ⊂ Hmi(Y )(−ν),

so that (Altm V )(−ν) is fixed by ΓF . But since it is nonzero we must have mi = 2k and −ν = k
for some k ≥ 0. Thus, the line

(Altm V )(k) ⊂ T k(Y ) ⊂ H2k(Y )(k)

is spanned by a Tate class.

4.4.2 Step 2

By part (T) of the Tate conjecture, we have that (Altm V )(k) is spanned by the cohomology
class of an algebraic cycle in CHk(YF ). Recall the discussion regarding motivated subspaces in
section 3.4. We have that Altm V is a motivated subspace of AltmH. Letting GF be the motivic
Galois group of Mot(F ;Q`), we thus have that Altm V is a GF -submodule of AltmH.

Lemma 4.4.6. If Altm V is a GF -submodule of AltmH, then V is a GF -submodule of H

Proof. This is a general representation-theoretic result. We have that Altm is a map from the
set of m-dimensional subspaces in H to the set of one-dimensional subspaces of AltmH. It is
the Plücker embedding and is injective. To see this, let W and W ′ be m-dimensional subspaces
of H. Then, by first choosing a basis of W ∩W ′, then extending it to the rest of W and W ′ and
finally the rest of H, we may construct a basis e1, . . . , en of H such that e1, . . . , em is a basis of
W and ej , . . . , ej+m−1 is a basis of W ′. But a basis of ∧mH ∼= AltmH is then given by

ei1 ∧ · · · ∧ eim , 1 ≤ i1 < · · · < im ≤ n.
Thus, AltmW = AltmW ′ if an only if j = 1, i.e. W = W ′.

Let g ∈ GF . We have that g(Altm V ) = Altm V by assumption and hence

Altm(gV ) = g(Altm V ) = Altm V,

so, by the injectivity of the Plücker embedding, gV = V . This is true for all g ∈ GF so we are
done.

25



Now Mot(F,Q`) is a semi-simple category, and thus H decomposes as V ⊕ V ′ as a motive over
F . Applying the étale realisation functor, which respects sums, we thus get a decomposition
H = V ⊕ V ′ as representations of ΓF . This is exactly what we needed by Lemma 2.3.1, so we
are done.
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