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Abstract 
 
 
  
 

In this thesis we study the Kronecker product and its applications  
in solving matrix equations. First we will give some preliminaries  
as a good tool to understand the calculations we will do with  
the Kronecker product. The preliminaries contain material from 
linear algebra and ordinary differential equations (ODE).  
We deal with the Kronecker product together with the vec – operator  
on matrix equations. The method is then applied to a special 
class of matrix equations, Lyapunov equations, in particular 
their relations to stability theory for linear dynamical systems are 
investigated. We will also study three different methods to solve the least 
square problem in the formulation of Kronecker product. 
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1. Introduction 
 

In this thesis we study the Kronecker product and its applications.  In particular we 
investigate the preservation of matrix structures under such an operation. The thesis is 
organized as follows.   

In Section 2 we gather some definitions and theorems from linear algebra and linear 
ordinary differential equations in matrix form for later use. The purpose is to make it easier 
for the reader to follow the rest of the text. In Section 3 we present the main topic in 
details. We begin by the definition of the Kronecker product and present its basic 
properties, especially the matrix structure preservation under the Kronecker product, such 
as LU-, QR-, Cholesky-factorization, and singular value decomposition. For the reader to 
feel comfortable with the properties of the Kronecker product we also present some 
examples. Then we study some linear matrix equations using the Kronecker product in 
order to get the "standard" form of linear equation "matrix-times-vector-equals-vector-
form". To this end we introduce the vec-operator, Kronecker sum and their properties and 
how they can be used to reshape the matrix equations. Among these equations, the 
Sylvester and the Lyapunov equations brought up in Section 4 where we investigate the 
Lyapunov equation in great detail, from a brief introduction of the stability theory to 
different solution methods to unique solvability of positive definite solutions of the 
resulting Lyapunov equation. Finally in Section 5 we study how the least square problems 
in Kronecker product form can be solved using the information and solutions or 
factorizations from the smaller matrices involved and thus we can avoid working on large 
problems. 
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2. Preliminaries 
 
In this section some elemental material relevant to this text is collected. 
The material will be from linear algebra and ordinary differential equations. 
 

2.1 Linear Algebra 
 
Let us go through some basic definition from linear algebra focusing on factorization 
properties. 
 

2.1.1 Basic definitions 
 
We will though take as granted that the meaning of vector space, linear combinations, 
determinant is known for the reader. However, we repeat matrices and linear independence 
of vectors and some of their properites. 
 
We use the notation !!,! for the set of !×! matrices over some field !  (! =  ℝ or ℂ) 
and !! if ! = !. 
 
Definition 2.1 (Invertible Matrix), see page 24 in [1]:  
Let ! ∈ !! is called invertible if there exists an ! ∈ !! such that 
 

!" = !" = !! 
 

where !! denotes the !×! identity matrix and the multiplication used is the ordinary 
matrix multiplication. If ! is invertible, then the matrix ! is uniquely determined by ! and 
is called the inverse of !, denoted !!!. A simple property is that det ! ≠ 0. 
 
Definition 2.2 (Norm), see page 235 in [1]: 
 
Let ! be a complex or real vector space. A norm in ! is a function 

 
! → ℝ, 

 
which for every vector ! calculates  !  satisfying follwing three properties: 
 

• ! ≥ 0, and ! = 0⇔ ! = 0, 
• !" = ! ∙ ! , for any ! ∈ !,    ! !" !"#ℎ!" ℝ !" ℂ , 
• ! + ! ≤ ! + !  for any !, ! ∈ ! (triangle inequality). 
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In this text we consider only finite dimensional vector spaces. More precisely dim ! = !. 
 
Theorem 2.1 
Let !!,… , !! be vectors in !. Let ! be a matrix, the columns of which, !! are the 
coordinates of !! in some basis !!,… , !!. Then the following conditions are equivalent: 

 
• The vectors !! are linearly independent, 
• The vectors !! generate !, 
• The vectors !! form a basis for !, 
• det ! ≠ 0, 
• rank of ! or ! ! = !, 
• ! is invertible or ! is nonsingular, 
• The system !" = ! has a unique solution for any column vector !, 
• The system !" = 0 has only the trivial solution ! = 0. 

 
Proof: see page 75 in [1]. 

  
Definition 2.3 (Diagonalizable), see page 118 in [1]: 
A square matrix A is diagonalizable if it is similar to a diagonal matrix 
! = !"#$ !!, !!,… , !! . In other words if there exists an invertible matrix ! such that 

 
!!!!" = ! = !"#$ !!, !!,… , !! . 

 
Definition 2.4 (Eigenvalues and eigenvectors), see page 118 in [1]: 

 
A non-zero vector ! is called an eigenvector for a linear operator ! if 

 
!" = !" 

 
for some scalar !. This scalar is called an eigenvalue for ! associated with !. 
Considering a matrix as an operator we can say the same: 
A nonzero column vector ! is called an eigenvector for ! if 

 
!" = !" 

and ! is called its eigenvalue. 
 
Definition 2.5 (Positive definite), see page 429-430 in [2]: 
A real symmetric matrix ! ∈ !! over ℝ is positive definite if !!!" > 0  
for all nonzero ! ∈ ℝ!. A matrix is positive semidefinite if !!!" ≥ 0 for all nonzero 
! ∈ ℝ!. Consequently !!!" is real for all ! ∈ ℝ!. Conversely, if ! ∈ !! and !!!" is 
real for all ! ∈ ℝ!, then ! is symmetric, so assuming that ! is symmetric in the preceding 
definitions, while customary, is actually superfluous. Of course, if ! is positive definite, it 
is also positive semidefinite. 
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Theorem 2.2: 
Any real symmetric matrix has only real eigenvalues and is always diagonalizable and the 
eigenvectors may be choosen orthogonal.  
Furthermore ! = !!Λ!, where !!! = !!! = !. 
 
Proof: See page 266 in [1]. 
 
Definition 2.6 (Trace) see page 88 in [1]: 
Assume ! ∈ !!. The trace of ! is !!! +⋯+ !!! (or !!!!

!!! ), the sum of the diagonal 
elements. 
 
Definition 2.7 (Commutator) [3], 
If !,! ∈ !! then we can define the commutator of ! and ! to be 
 

!,! = !" − !". 
 

2.1.2 Matrix factorization 
 
In this subsection we only work on ! = ℝ for simplicity of exposition. 
 
Theorem 2.3 (LU-factorization/decomposition): 
For every matrix ! there exist a permutation matrix !, an matrix ! which has the shape 
resulting from Gaussian elimination (echelon form) and a lower triangular matrix ! with 
ones on the main diagonal such that 

!" = !" 
 

This is called the LU-decomposition (or LU-factorization) of !. 
 
Proof: See page 35 [1]. 
For more information about LU-decomposition see page 216 [2]. 
 
Theorem 2.4 (QR-decomposition), see page 262 in [1]. 
Every invertible matrix A has a unique QR-decomposition (or QR-factorization), namely 
 

! = !", 
 
where ! is orhtogonal matrix and ! is a upper triangular matrix with positive elements on 
the main diagonal. Generally, if ! ∈ !!,! we can find a decomposition ! = !" where ! 
is an orthogonal matrix and ! has an echelon form with the positive pivot elements. But 
this decomposition is not unique if ! is not invertible. 
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More concrete, 
Let ! ∈ !!,! be given. 
 

a) If ! ≥ !, there is a ! ∈ !!,! with orthonormal columns and an upper triangular 
! ∈ !!   with nonnegative main diagonal entries such that ! = !". 

b) If ! < !, then the factors ! and ! in a) are uniquely determined and the main 
diagonal entries of ! are all positive. 

c) If ! = !, then the factor ! in a) is unitary. 
d) There is a unitary ! ∈ !! and an upper triangular ! ∈ !!,! with nonnegative 

diagonal entries such that ! = !". 
 
Proof: See the pages 262 in [1] and pages 89-90  in [2]. 
 
Theorem 2.5 (Cholesky factorization), see page 441 in [2]: 
Let ! ∈ !! be symmetric. Then ! is positive semidefinite (positive definite, respectively) 
if and only if there is a lower triangular matrix ! ∈ !! with nonnegative (respectively, 
positive) diagonal entries such that ! = !!!. If ! is positive definite, ! is unique. If ! is 
real, ! may be taken to be real. 
 
Proof: 
First we show that there exists a positive definite (semi-definite) matrix !

!
! such that 

! = !
!
! !

!
!. Since ! is positive definite (semi-definite) there exists a ! with  

!!! = !!! = !  such that ! = !!Λ! and Λ = diag !!,… , !! . By the Theorem 2.2 in 
the previous subsection all !! > 0 !" ≥ 0 , so Λ = Λ

!
!Λ

!
!,  with Λ

!
! = !"#$ !!,… , !! . 

Thus ! = !!Λ
!
!Λ

!
!! = !!Λ

!
!!!!Λ

!
!! = !!Λ

!
!! !!Λ

!
!! = !

!
!!

!
!.  

Let !
!
! = !" be a !" factorization and let ! = !!. Then ! = !

!
!!

!
! = !!!!!" = !!! . 

The asserted properties of ! follow from the properties of !.                                           ∎ 
 
Definition 2.8 (Rank), see page 37 in [1]: 
The rank !(!) of a matrix A is the rank of the matrix U in its 
LU-decomposition !" = !" i.e. the number r of pivot elements in U. 
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Theorem 2.6 (Sinuglar value decomposition or SVD), see page 149-154 in [2]: 
Let ! ∈ !!,! be given, let ! = min !,! , and suppose that ! ! = !. 
 

(a) There are orthogonal matrices ! ∈ !! and ! ∈ !!, and a square diagonal matrix 
 

Σ! =
!! . 0

. ⋱ .

0 . !!
 

 such that !! ≥ !! ≥ ⋯ ≥  !! > 0 = !!!! = ⋯ = !! and ! = !Σ!! in which  
 

• Σ = Σ! if ! = !,  
• Σ = Σ!  0 ∈ !!,! if ! > !, 
• Σ = Σ!

0 ∈ !!,! if ! > !.   
   .   

(b) The parameters !!,… ,!! are the positive square roots of the decreasingly ordered 
nonzero eigenvalues of !!! , which are the same as the decreasingly ordered 
nonzero eigenvalues of !!!. They are called singular values of !. 

 
.  

The proof of the theorem and more can you find on page 150-151 in [2].  
 
Remark: 
It is very easy to think about SVD is just another matrix decomposition. However we want 
to point out something more fundamental. We recall the following theorem 
 
The fundamental theorem of linear algebra [4]. 
 
Remember that linear transformation (or matrices A) are the important object in linear 
algebra. Associated with them are the four fundamental vector spaces, 
 

I. Column space ! !  that spans by the columns in A, (or image/range space of A). 
II. Row space (or coimage) ! !! , spans by the rows in A. 

III. Nullspace (or kernel) ! ! = ! ∈ ℝ!:!" = 0 ,  
IV. Left null space (or cokernel) ! !!  where !! is the transpose of  A. 
 
They are related to each other by The fundamental theorem of linear algebra: 
 
Let ! ∈ !!,! be real matrix. 
 

1. The column space and the row space have the samme dimension ! which is called                       
rank of !. The nullspace ! !  have dimension ! − !, and the left 
nullspace ! !!  have dimension ! − !. 
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More precisely: 
 

• dim  ! ! = dim ! !! = ! = !"#$ !  
• !"# ! ! = ! − ! 
• dim ! !! = ! − ! 

 
 

2.  ! !! =  ! ! ! or ℝ! = ! !! ⊕! !                                     
! !! =   ! ! ! or ℝ! =! !! ⊕ ! !  
 

3. There exists orthogonal matrices ! ∈ !! respectively ! ∈ !! such that     
 

!" = !Σ 
 

where Σ is the block matrix in the form 
 

Σ = !"#$(!!,… ,!!) 0!× !!!
0 !!! ×! 0 !!! × !!!

 

 
and !"#$(!!,… ,!!) is the diagonal matrix with !!,… ,!! elements on the diagonal. 
Note that 
 

!" = !Σ  ⇔ ! = !Σ!! 
 
which is the wellknown Singular value decomposition (SVD). 

 
Let columns in V and W be !!,… , !! and !!,… ,!!, respectively. Then !!,… , !! are 
orthonormal and similar for !!,… ,!!. 
 
It’s obvious that SVD isn’t just a matrix decomposition. It creates ON-basis !!,… , !! and 
!!,… ,!! for the four fundamental vector spaces (I. – IV.). 
 
More precisely we have columnwise from 3. above: 
 
• !!! = 0, ! = ! + 1,… ,!. so ! ! = !"#$ !!!!,… ,!! ,    
• !!! = !!!! , ! = 1,… , !,!! ≠ 0 ⇒ !! ∈ ! !   

 
but ! ! = ! !! !  and ! !! = ! ! ! respectively. So !!,… ,!!  is an  
ON-basis for the row space and !!!!,… , !!  is an ON-basis for the column space. 
 

• If we consider A as a linear transformation from the row space to the column space, 
!!! = !!!! for ! = 1,… , ! means that the matrix representation for A in the basis 
!!,… ,!!  in the rowspace is a diagonal matrix in ON-basis !!,… , !!  (in the 

column space).  
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Remark:  
We can use the singular value for the norm  ! ! = !!"# !  (the maximal singular value 
of !). 
 

2.2 Linear algebra and relations to linear systems ODEs 
The material in this subsection is based on e.g. Sontag. See page 467 – 492 in [5]. 
 

2.2.1 System of first order equations and state form 
 
In continuous time, a first order system is defined in terms of !! ! , !! ! ,… , !! !  that 
are functions of the continuous variable !. These variables are related by a system of ! first 
order differential equations of the following general form: 
 

!! ! = !! !! ! ,… , !! ! , !
!! ! = !! !! ! ,… , !! ! , !

⋮
!! ! = !! !! ! ,… , !! ! , !

 

 
where !! = !!!

!"  and !! are continuous functions of !! ! , !! ! ,… , !! ! , !. In matrix form 
 

! ! = ! ! ! , ! , 
 

where ! ! = !! ! ,… , !! !
! and ! = !!,… , !! !  

 
 
If a continuous-time system is linear then it has the following form called state space form 
 

!! ! = !!! ! !! ! + !!" ! !! ! +⋯+ !!! ! !! ! + !!(!)
!! ! = !!" ! !! ! + !!! ! !! ! +⋯+ !!! ! !! ! + !!(!)

⋮
!! ! = !!! ! !! ! + !!! ! !! ! +⋯+ !!! ! !! ! ++!!(!)

 

 
as before, the !! ! , ! = 1,2,… ,! are state variables, the !!"(!) are coefficients, and 
!! ! , ! = 1,… ,! are forcing terms. In order to guarantee existence and uniqueness of 
solution, the !!"(!) are assumed to be continuous in !. The linear system in matrix form is  
 

! = ! ! ! ! + !(!) 
 
where the ! !  is the ! × 1 vector, ! !  is the ! × 1 forcing vector and ! !  is the ! × ! 
matrix of coefficients referred to as the system matrix. If the matrix ! ! = !, independent 
of !, the system is said to be time invariant. [6] 
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2.2.2 Matrix exponential  
 
Theorem 2.7 (Matrix exponential), see page 386 in [7]:  
Let ! ∈ !!. 
 

a) There exist functions !! ! ,!! ! ,… ,!! ! , such that 
 

!!" = !! ! !!!!!!!! + !! ! !!!!!!!! +⋯+ !!!! ! !" + !!!. 
 

b) For the polynomial (in r) 
 

! ! = !! ! !!!! + !! ! !!!! +⋯+ !!!! ! ! + !! ! . 
 
if ! is an eigenvalue of !, then !! = ! ! , so that !!" = ! !" . 
 

c) If ! is an eigenvalue of multiplicity !, then 
 

!! = !"(!)
!" !!!

, !! = !!!(!)
!!! !!!

 ,… , !! = !!!!! !
!!!!! !!!

.  

 
2.2.3 Variation of constant formula, see page 21 in [7] 
 
A way to solve for to solve linear equations via an integrating factor 

1. Write the linear equation in the form !"!" + ! ! ! = !(!). 
2. Calculate the integrating factor ! ! ! !". 
3. Evaluate the integral ! ! ! ! ! !"!! and then multiply this result by !! ! ! !" . 
4. The general solution to !"!" + ! ! ! = ! !  is 

 

! = !!! ! ! !" + !! ! ! !" ! ! ! ! ! !" !". 
 
So if we consider first order system of the form 
 

! = !" + !(!) 
 
 
where ! is a vector with continuous functions as its entries. 
That system has solution 

!(!) = !!"! + !!" !!!"! ! !". 
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It is easiest to understand the derivation of this solution in terms of a general fundamental 
matrix and the method of variation of parameters. If we also have an initial condition, the 
solution can be written to take this into account. Thus 
 

! = !" + ! ! , ! !! = !! 
 
has solution 

! ! = !! !!!! !! + !!" !!!"! ! !"
!

!!

. 

 
Lets us do one example with it without the initial condition in mind.  
See page 396-397 in [7]. We will solve the following problem 
 

! = 1 −4
−2 −1 ! + − sin !

!! . 
 
To solve this we can calculate the matrix exponential by Theorem 2.6 and get 
 

!!! = 1
3
!!!! + 2!!! 2!!!! − 2!!!
!!!! − !!! 2!!!! + !!!  

 
We also need to calculate !!!"! ! !". We note that !!!" is easily calculated from !!" to 
simply replacing ! with – !. Then we have 
 

!!!"! ! !" = 1
3
!!! + 2!!!! 2!!! − 2!!!!
!!! − !!!! 2!!! + !!!!

− sin !
!! !" = 

 

= 1
3
−!!! sin ! − 2!!!! sin ! + 2!!! − 2!!!!
−!!! sin ! + !!!! sin ! + 2!!! + !!!! !" = 

 

= 1
30

2!!!! cos ! + 6!!!! sin ! + !!! cos ! − 3!!! sin ! + 5!!! + 10!!!!
!!! cos ! − 3!!! sin ! − !!!! cos ! − 3!!!! sin ! − 5!!!! + 5!!! . 

 
We then left multiply by !!" and obtain, after a lot of simplifications, 
 

1
10

cos ! + sin ! + 5!!
−2 sin ! . 

 
We add this last vector to the product of !!" with an arbitrary vector. In the formula, we 
gave the arbitrary constant vector as !, but for comparison purposes, we let ! be our 
arbitrary constant vector. 
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! ! = 1
3
!!!! + 2!!! 2!!!! − 2!!!
!!!! − !!! 2!!!! + !!!

!!
!! + 1

10
cos ! + sin ! + 5!!

−2 sin ! = 

 

= 1
3

!! + 2!! !!!! + 2!! − 2!! !!!
!! + 2!! !!!! + −!! + !! !!!

+ 1
10

cos ! + sin ! + 5!!
−2 sin ! . 

 
Now let !! = !!!!!!

!   and !! = !!!!!!
!  then our answer can be written as 

 

! ! = !!!!!! 1
1 + !!!!! −2

1 + !! 1/2
1 + cos ! 1/10

0 + sin ! 1/10
−1/5 . 

 

3. Kronecker Product 
 
Now we introduce the definition of Kronecker product. We will do some examples with 
the properties of Kronecker product! 
 
Definition 3.1 (Kronecker product), see page 11 in [8]: 
Consider two matrices ! ∈ !!,! and ! ∈ !!,! we define the Kronecker product of ! and 
! as follows 

!⨂! =
!!!! ⋯ !!!!
⋮ ⋱ ⋮

!!!! ⋯ !!"!
, 

 
which is a matrix of size !"×!". 
 
 

3.1 Basic properties of Kronecker product [9] 
 
 
!"#) !"#$#% −  !"# !"" !"!#!$%& ! !" ℂ ,! ∈ !!,! !"# ! ∈ !!,!:  
 

!" ⊗ ! = !⊗ !" = ! !⊗ ! . 
 
!"#) !"#ℎ! − !!"#$!%&#!'( − !"# ! ∈ !!,! !"# ! ∈ !!,! !"# ! ∈ !!,!:  
 

! + ! ⊗ ! = !⊗ ! + !⊗ !. 
 
 
!"#) !"#$ − !"#$%"&'$"() − !"#  ! ∈ !!,! !"# ! ∈ !!,!  !"# ! ∈ !!,!:  
 

!⊗ ! + ! = !⊗ ! + !⊗ !. 
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!"#) !"#$%&'( !"#$%"&'$"() !"" !"#$ 12 !" 8 :  
!" ! + ! ∈ !!,! !"# (! + !) ∈ !!,!  !ℎ!":  
 

! + ! ⊗ ! + ! = !⊗ ! + !⊗ ! + !⊗ ! + !⊗ !  
 
Proof: 
Let ! = ! + !  then we have  
 

!⊗ ! + ! = [!"#)] =  !⊗ ! + !⊗ ! = !"# !"#$ ! + ! = 
= ! + ! ⊗ ! + ! + ! ⊗ ! = [!"#)] = !⊗ ! + !⊗ ! + !⊗ ! + !⊗ ! . 
 
Same result will be obtained if we choose instead ! = ! + ! .                     ∎ 
 
!"#) !""#$%&'%() −  !"# ! ∈ !!,! ,! ∈ !!,!  !"# ! ∈ !!,!:  
 

!⊗ ! ⊗ ! = !⊗ !⊗ ! . 
 
!"#) !"#$%&'%( − !"# ! ∈ !!,! !"# ! ∈ !!,!:   
 

!⊗ ! ! = !! ⊗ !! . 
 
!"#) !"#$%&'() − !"# ! ∈ !!,! !"# ! ∈ !!,!:  
 

!⊗ ! ∗ = !∗⊗ !∗. 
 
!"#) !"!"#$% !"!# !"##$% !"#$% !"#$%&' !"#!$"%&   
            !"# ! ∈ !!,!,! ∈ !!,! ,! ∈ !!,!  !"# ! ∈ !!,!: 
 

!⊗ ! !⊗ ! = !"⊗ !". 
 
!"#) !"##$%&%"' − !"# ! ∈ !!,!,! ∈ !!,! ,! ∈ !!,!,! ∈ !!,!:  
 

!⊗ !,!⊗ ! = !"⊗ !" − !"⊗ !". 
 
Proof: 
 
!⊗ !,!⊗ ! = !"#.  !.! = !⊗ ! !⊗ ! − !⊗ ! !⊗ ! = [!"#)] = 

                                                 = !"⊗ !" − !"⊗ !".                                             ∎  
 
 
!"#$) !"#$% − !"# ! ∈ !!,! ∈ !!:  
 

!" !⊗ ! = !" !⊗ ! = !" ! !" !  
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!"##) !"#$ − !"#ℎ !×! !"#$%& ! !"# !×! !"#$%& !:  
 

!"#$ !⊗ ! = !"#$(!)!"#$(!) 
 
!"#$) !"#"$%!"#"$ − !"# ! ∈ !!,! ∈ !!:  
 

det !⊗ ! = det !⊗ ! = det ! ! det ! ! 
 
A consequence of this property is that !⊗ ! or !⊗ ! is nonsingular if and only if both ! 
and ! are nonsingular.  
 
!"#$) !" ! ∈ !! !"! ! ∈ !!  !"# !"!#$!%&'() !ℎ!"  

!⊗ ! !! = !!!⊗ !!!. 
 
We get this property directly from !"#) and !"#$) 
 
!"#$) !"#$%&'&()* − !"# ! ∈ !!,!  !"# ! ∈ !!,!:  
 

!⊗ ! = !!,! !⊗ ! !!,!! , 
!ℎ!"!  

!!,! = !!! ⊗ !! ⊗ !!
!

!!!
= !! ⊗ !! ⊗ !!!

!

!!!
 

 
!" !"##$% !ℎ! !"#$"%& !"#$$%& !"#$%&'&()* !"#$%&.  !"#ℎ!"#ℎ !ℎ! !"#$%&'%" !"#$%&' 
!" !"# !"##$%&%'(),  !! !"" ℎ!"! !ℎ!" !" !" !" !"#$% !"#$%&'&()* !"#$%&'"! !".  
!"#$) !" !"#$%&' 3.3 !" !"#$%&' !" !"#$%&! !" !ℎ!" !"# !"#$ !"  
!"#$%!"#$% !"#$%& ! !"# !"#$%&'(") !"#$%& !!.  
 

3.2 Properties of factorization [9] 
 
!"#$) !"− !"#$%&'("$'%)  - Let ! ∈ !! !"# ! ∈ !! !" !"#$%&!'($  
 
!"# !"# !!, !!,!!,!! , !! ,!!  !" !ℎ! !"#$%&'( !"##$%&"'()'* !" !ℎ!"# !" !"#$%&'("$'%)* 
!"#ℎ !"#$%"& !"#$%"&'.!ℎ!" !" ℎ!"# !ℎ! !" !"#$%&'("$'%) !"#ℎ !"#$%"! !"#$%"&'  
!" !ℎ!"# !"#$%&'%" !"#$%&':  
 

!⊗ ! = !!⊗ !! ! !!⊗ !! !!⊗ !! . 
 
Proof: 
!"# ! = !!!!!!!, ! = !!!!!!!, !! = !!!!! !"# !! = !!!!! !" !"# 
 

!⊗ ! = !!!!!!! ⊗ !!!!!!! = !!!! ⊗ !!!! = [!"#)] = 
= !!⊗ !! !!⊗ !! = !!!!! ⊗ !!!!! !!⊗ !! = [!"#)] = 

= !!! ⊗ !!! !!⊗ !! !!⊗ !! = [!"#)] = !!⊗ !! ! !!⊗ !! !!⊗ !! .     ∎ 
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!"#$)− !"#$%&'( !"#$%&'("$'%) –  !"# ! ∈ !! !"# ! ∈ !! !" !" !"#$%$&' 
!"#$%$&",!"! !"# !!, !!  !" !ℎ! !"#$%&'( !"##$%&"'()'* !" !ℎ!"# !ℎ!"#$%& !"#$%&'("$'%)* 
!ℎ!" !" !"# !"#$%& !"#$%" !ℎ! !ℎ!"#$%& !"#$%&'("$'%) !" !ℎ!"# !"#!"#$"% !"#$%&';  
 

!⊗ ! = !!⊗ !! !!⊗ !! ! . 
 
Proof: 
!"# ! = !!!!! , ! = !!!!!  !" !"# 
 

!⊗ ! = !!!!! ⊗ !!!!! = !"# = !!⊗ !! !!! ⊗ !!! = [!"#)] = 
                                          = !!⊗ !! !!⊗ !! ! .                                      ∎   

 
The fact that !⊗ ! is positive (semi) definite follows from the eigenvalue theorem which 
we will establish later. 
 
!"#$)− !" !"#$%&'("$'%) − !"# ! ∈ !!,! ,! ∈ !!,! , 1 ≤ ! ≤ !, 1 ≤ ! ≤ !, 
!" !" !"## !"#$,!"# !"# !!,!!,!! ,!!  !" !ℎ! !"#$%&'( !"##$%&"'()'* !" !ℎ!"#   
!" − !"#$%&'("!"#$%.!ℎ!" !" ℎ!"# !ℎ! !" !"#$%&'("$'%) !" !ℎ!"#  
!"#$%&'%" !"#$%&'.   
 

!⊗ ! = !!!! ⊗ !!!! = !!⊗ !! !!⊗ !! . 
 
!"#$)− !"#$% !"#$%&'("$'%)− !"!ℎ ! ∈ !! ,! ∈ !! !"# !"# !!,!!,!! ,!! 
 !" !ℎ! !"#$%&'( !"##$%&"'()'* !" !ℎ!"# !"ℎ!" !"#$%&'("$'%)*. 
!ℎ!" !" ℎ!"# !ℎ! !ℎ!" !"#$%&'("$'%) !" !ℎ!!" !"#$%&'%" !"#$%&':  
 

!⊗ ! = !!⊗ !! !!⊗ !! !!⊗ !! ∗. 
 
Proof: 
!"# ! = !!!!!!∗,! = !!!!!!∗ , !! = !!!! and !! = !!!!, !" !"## ℎ!"# 
  

!⊗ ! = !!!!!!∗ ⊗ !!!!!!∗ = !!!!∗ ⊗ !!!!∗ = [!"#)] =  
= !!⊗ !! !!∗⊗ !!∗ = !!!!⊗ !!!! !!∗⊗ !!∗ = [!"#)] = 

= !!⊗ !! !!⊗ !! !!∗⊗ !!∗ = [!"#)] = !!⊗ !! !!⊗ !! !!⊗ !! ∗.   ∎ 
 
 
!"#$)−  !"#$%&'( !"#$% !"#$%&$'()($* !" !"#−  
!"# ! ∈ !!,!,! ∈ !!,!  ℎ!"# !"#$ !! !"# !! !"# !"# !!,!!, Σ!,!! ,!! , Σ!  !"  
!ℎ! !"#$%&'( !"##$%&"'()'* !" !ℎ!"# !"#$.  
!ℎ!" !" ℎ!"# !ℎ! !"# !" !ℎ!"# !"#$%&'%" !"#$%&':  
 

!⊗ ! = !!⊗ !! Σ!⊗ Σ! !!⊗!! ! . 
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Proof: 
!"# ! = !!Σ!!!

! ,! = !!Σ!!!
! , !! = !!Σ! !"# !! = !!Σ!, !" !"## !"# 

 
!⊗ ! = !!Σ!!!

! ⊗ !!Σ!!!
! = !!!!

! ⊗ !!!!
! = [!"#)] = 

= !!⊗ !! !!
! ⊗!!

! = !!Σ! ⊗ !!Σ! !!
! ⊗!!

! = [!"#)] = 
= !!⊗ !! Σ!⊗ Σ! !!

! ⊗!!
! = [!"#)] = !!⊗ !! Σ!⊗ Σ! !!⊗!! ! .  ∎ 

 

3.3 Examples on Kronecker product properties 
 
In this subsection we illustrate some properties by working through some examples. 
 
!"_!"#:  
 
Let ! = 2 1

0 1 ,! = 3 0
1 2  !"#  ! = 1 2

2 3  
 
And do first ! + ! ⊗ !: 
 

2 1
0 1 + 3 0

1 2 ⊗ 1 2
2 3 = 5 1

1 3 ⊗ 1 2
2 3 =

5 1 2
2 3 1 1 2

2 3
1 1 2
2 3 3 1 2

2 3
= 

 

=
5 10
10 15

1 2
2 3

  1  2
  2  3

3 6
6 9

. 

 
And now the other way : 
 

!⊗ ! + !⊗ ! =
2 1 2
2 3 1 1 2

2 3
0 1 2
2 3 1 1 2

2 3
+

3 1 2
2 3 0 1 2

2 3
1 1 2
2 3 2 1 2

2 3
= 

 

=
2 4
4 6

1 2
2 3

0 0
0 0

1 2
2 3

+
3 6
6 9

0 0
0 0

1 2
2 3

2 4
4 6

=
5 10
10 15

1 2
2 3

  1  2
  2  3

3 6
6 9

. 

 
So ! + ! ⊗ ! = !⊗ ! + !⊗ !. 
We will get similar result if we did the same with !"#) 
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!"_!"#:  
 
Let us use same !,! and ! to check the next property – !⊗ ! ⊗ ! = !⊗ !⊗ ! : 
 
 

!⊗ ! ⊗ ! = 2 1
0 1 ⊗ 3 0

1 2 ⊗ 1 2
2 3 = 

 

=
2 3 0
1 2 1 3 0

1 2
0 3 0
1 2 1 3 0

1 2
⊗ 1 2

2 3 =
6 0
2 4

3 0
1 2

0 0
0 0

3 0
1 2

⊗ 1 2
2 3 = 

 

=

6 1 2
2 3 0 1 2

2 3
2 1 2
2 3 4 1 2

2 3

3 1 2
2 3 0 1 2

2 3
1 1 2
2 3 2 1 2

2 3
0 1 2
2 3 0 1 2

2 3
0 1 2
2 3 0 1 2

2 3

3 1 2
2 3 0 1 2

2 3
1 1 2
2 3 2 1 2

2 3

= 

 

=

   
  6 12
12 18

0 0
0 0

2 4
4 6

4 8
8 12

      
3 6 
6 9 

0 0
0 0

1 2 
2 3 

2 4
4 6

 
0 0 
0 0 

0 0 
0 0 

0 0 
0 0 

0 0 
0 0 

3 6 
6 9 

0 0
0 0

1 2 
2 3 

2 4
4 6

. 

 

!⊗ !⊗ ! = 2 1
0 1 ⊗ 3 0

1 2 ⊗ 1 2
2 3 = 

 

= 2 1
0 1 ⊗

3 1 2
2 3 0 1 2

2 3
1 1 2
2 3 2 1 2

2 3
= 2 1

0 1 ⊗
3 6 
6 9 

0 0 
0 0 

1 2
2 3

2 4
4 6

= 

 

=

2
3 6 
6 9 

0 0 
0 0 

1 2
2 3

2 4
4 6

1
3 6 
6 9 

0 0 
0 0 

1 2
2 3

2 4
4 6

0
3 6 
6 9 

0 0 
0 0 

1 2
2 3

2 4
4 6

1
3 6 
6 9 

0 0 
0 0 

1 2
2 3

2 4
4 6

= 
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=

   
  6 12
12 18

0 0
0 0

2 4
4 6

4 8
8 12

      
3 6 
6 9 

0 0
0 0

1 2 
2 3 

2 4
4 6

 
0 0 
0 0 

0 0 
0 0 

0 0 
0 0 

0 0 
0 0 

3 6 
6 9 

0 0
0 0

1 2 
2 3 

2 4
4 6

. 

 
!⊗ ! ⊗ ! and !⊗ !⊗ !  are the same. 

 
!"_!"#:  
Let !,! ∈ !!  
 

!⊗ !!, !! ⊗ ! = !⊗ !! !! ⊗ ! − !! ⊗ ! !⊗ !! = 
= ! ∙ !! ⊗ !! ∙ ! − !! ∙ ! ⊗ ! ∙ !! = !! ⊗ !! − !! ⊗ !! = 0 

 
!"_!"#$:  
Here is an example of (2,3)-perfect shuffle matrix  
 

!!,! =

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

 

 
Note that !!⊗ !! ≠ !!⊗ !!. However if !! ∈ !!,!,!! ∈ !!,! then 
 

!!,!(!!⊗ !!)!!,!! = !!⊗ !! 
 
The perfect shuffle is also “behind the scenes” when the transpose of a matrix is taken, 
e.g.,  

!!,!!"# ! =

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

!!!
!!"
!!"
!!"
!!!
!!"

=

!!!
!!"
!!"
!!!
!!"
!!"

= !"#(!!) 

 
where !"#(!) is stacking the columns on top of each other from the first column to the last 
column. The !"#(!) is studied in next section. 
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3.4 Vec-operator and Kronecker product 
 
Definition 3.2 (Vec-operator), see page 2 and 4 in [10]: 
For any matrix ! ∈ !!,! the vec-operator is defined as 
 

!"# ! = !!!,… ,!!!,!!",… , �!!,… ,!!!,… ,!!" ! , 
 
i.e. the entries of ! are stacked columnwise forming a vector of length !". 
A property of this definition is with the square matrices !×!  ! !"# !: 
 

!"#$% !!! = !"# ! !!"! ! , 
 
Theorem 3.1 
Vec-operator is linear. Linearity holds for the vec-operator. 
 
Proof: 
To be a linear operator the following properties must hold: 
 
• !"# ! + ! = !"# ! + !"# !  !"#  !,! ∈ !!. 
• !"# !" = ! ∙ !"# !  !"# ! !" !! ! ! ! !"#$%&.!"# ! !" !" !"# !"#$ !"#$%&. 

 
Let us have two vec-operator 

!"# ! =
!!!
!!"
⋮
!!!

, !"# ! =
!!!
!!"
⋮
!!!

. 

 
Proof of the first property: 
 

!"# ! + ! = !"# !!! + !!!,!!" + !!",… ,!!! + !!! = 

=
!!! + !!!
!!" + !!"

⋮
!!! + !!!

=
!!!
!!"
⋮
!!!

+
!!!
!!"
⋮
!!!

= !"# ! + !"# ! .  

                                                                               
and the second property: 

                                !"# !" =
!!!!
!!!"
⋮

!"!!
= !

!!!
!!"
⋮
!!!

= !"#$ ! .                              ∎  
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Definition 3.3 (Kronecker Sum),  see page 268 in [11]: 
Let ! ∈ !! and ! ∈ !!, the Kronecker sum of ! and ! is defined as 
 

!⊕ ! = !! ⊗ ! + !⊗ !! , 
 
which will be used later. 
 
 

3.5 Matrix equations 
 
Consider matrix equations 
 

I. !" = !,                  !"!"#$ !"#$%&'( 1   
II. !" + !" = !,      !"#$%&'%( !"#$%&'(  

III. !"# = !,             !"#$%& !"#$%&'( 2  
IV. !!! + !" = !     !"#$%&'( − !"#$%&'(  
 
They can be formulated as system of linear equations in the form of matrix times a vector 
using Kronecker product and vec-operator. 
 

i. !⊗ ! !"# ! = !"# !  
ii. !⊗ ! + !! ⊗ ! !"# ! = !⊕ !! !"# ! = !"# !  

iii. !! ⊗ ! !"# ! = !"# !  
iv. !⊗ !! !"# ! + !! ⊗ ! !"# ! = !! ⊕ !! !"# ! = !"# !  

 
 Let us prove 2 of them: 
 
Proof (i.), see page 2-3 in [10]: 
 
Note that !" = !"#. 
 

!" = ! ⇒ !"# !" = !"# ! ⇒ !"# !"# = !"# ! ⇒ 
⇒ !⊗ ! !"# ! = !"# ! .  ∎ 

 
Proof (ii.) 

!" + !" = ! ⇒ !"# !" + !" = !"# ! ⇒ !" !"#$%&"'( ⇒ 
⇒ !"# !" + !"# !" = !"# ! ⇒ !"#$ !"#$% ⇒ !"# !"# + !"# !"# = !"# ! ⇒ 

⇒ !⊗ ! !"# ! + !! ⊗ ! !"# ! = !"# ! ⇒ [!"#$%$&$'% !.!] ⇒ 
⇒ !⊕ !! !"# ! = !"# ! .    ∎ 
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Theorem 3.2 (eigenvalues and eigenvectors for Kronecker product),  
see page 13-14 in [8]. 
 
Let ! ∈ !! with eigenvalues !!, !!, !!,…  , !! and the corresponding eigenvectors 
!!,!!,!!,…  ,!!. Let ! ∈ !! with eigenvalues !!, !!, !!,…  , !! and the corresponding 
eigenvectors !!, !!, !!,…  , !!. Then the matrix !⊗ ! has the eigenvalues !!!! with the 
corresponding  eigenvectors !! ⊗ !!, where 1 ≤ ! ≤ ! and 1 ≤ ! ≤ !.  
 
Proof: 
We will use the eigenvalue equations to solve this theorem. 
The equations look like following: 
 

                                               !!! = !!!!       !ℎ!"!   1 ≤ ! ≤ !                                             (1) 
 

                                               !!! = !!!!     !ℎ!"!   1 ≤ ! ≤ !                                             2  
     
Lets do the Kronecker product of !!! with !!!. We will get to results 
1] 

!!! ⊗ !!! = !"# 1  !"#  2 = !!!! ⊗ !!!! = !"#) !"#ℎ !!  = 
= !! !! ⊗ !!!! = !"#) !"#ℎ !!  = !!!! !! ⊗ !!  

2] 
 

!!! ⊗ !!! = !"#) = !⊗ ! !! ⊗ !! . 
 
We can now combine 1] and 2] and get 
 

!⊗ ! !! ⊗ !! = !!!! !! ⊗ !!  
 
which is exaclty of the form of eigenvalue equation. Here the eigenvalues of !⊗ !  will 
be !!!! and its corresponding eigenvectors will be !! ⊗ !! which we were looking for.      
       ∎ 
There is an other theorem and will be important later: 
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Theorem 3.3 (Eigenvalues and eigenvectors for Kronecker sum), see page 14-15 in [8]:  
Assume the same condition on ! and ! as in Theorem 3.2 then the eigenvalues and 
eigenvectors of !⊕ ! = !⊗ !! + !!⨂! will be !! + !! and !! ⊗ !! respectively. 
 
Proof: 
Our goal is to get the eigenvalue equation for  

!⊗ !! + !!⨂! !! ⊗ !!  
 
Let us calculate it and see what happens: 
 

!⊗ !! + !! ⊗ ! !! ⊗ !! = !"#) = 
= !⊗ !! !! ⊗ !! + !! ⊗ ! !! ⊗ !! = !"#) = 

= !!! ⊗ !!!! + !!!! ⊗ !!! = !"# 1  !"#  2 = 
= !!!! ⊗ !!!! + !!!! ⊗ !!!! = 

= !!!! ⊗ !! + !! ⊗ !!!! = !"#)− !"#$#% !" !!  !"# !! = 
= !! !! ⊗ !! + !! !! ⊗ !! = !! + !! !! ⊗ !! . 

 
Now the expression !⊗ !! + !!⨂! !! ⊗ !! = !! + !! !! ⊗ !!  
looks exactly like the eigenvalue equations which we wanted.                                   ∎ 
 

4. Lyapunov equation 
 
In this section we will use our knowledge of Kronecker product to solve the Lyapunov 
equation, 
 

!!! + !" = −!. 
 
where ! is known square matrix and ! is symmetric and known. ! is symmetric and 
unknown. 
 
This equation plays very important role in Lyapunov stability and  optimal control theory.  
In Section 4.1 we give a brief derivation of Lyapunov equation for linear systems. Then in 
Section 4.2 we study the existence and uniqueness of solution to this equation, and we give 
in Section 4.3 the closed form of solution and conditions for it to be positive definite. 
Finally in Section 4.4 we show that this closed form solution is exactly the same solution 
obtained using Kronecker product. 
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4.1 Lyapunov theory for linear systems 
 
Lyapunov, in his original 1892 work, proposed two methods for demonstrating stability.  
Roughly speaking stability is about convergence of solutions a dynamical to its equilibria, 
which is called (asymptotical) stability. The first method developed the solution in a series 
which was then proved convergent within limits. The second method, which is now 
referred to as the Lyapunov stability criterion or the direct method, makes use of a 
Lyapunov function V(x) which has an analogy to the potential function of classical 
dynamics. It is introduced as follows for a system ! = ! !  (mentioned in Section 2.2) 
having an equilibrium at ! = 0. It is locally (asymptotically) stable if there is a 
differentiable function  !:ℝ! → ℝ such that, in a neighborhood ! of ! = 0,  ! ! > 0  
for all ! ≠ 0,! 0 = 0 and  
 
!"
!" =

!"
!!!

!!!
!" +

!"
!!!

!!!
!" +⋯+ !"

!!!
!!!
!" = !"

!!!
!! ! + !"

!!!
!! ! +⋯+ !"

!!!
!! ! = 

 
=  ∇! ∙ !(!) < 0 for all ! ≠ 0. 

 
It is easy to prove that this local property is global for the linear system ! = !".  In other 
words, ! ! → 0 as ! → ∞.  A Lyapunov candidate !(!) for this system could be 
!(!) = !!!" where ! is a symmetric positive definite matrix.  Clearly !(0) = 0 and 
!(!) > 0  for all ! ≠ 0.  Next we derive the condition for ! to fullfil the last condtion 
! = !"

!" < 0 (See [12] and see page 218-233 in [5]). 
 
The derivative of V is: 
 

! = !!!" + !!!! 
Since ! = !" we have 
 

! = !" !!" + !!! !" = !!!!!" + !!!"# = 
= !! !!!" + !"# = !! !!! + !" ! = !! !!! + !" ! 

 
Hence ! < 0 if there exists a positive definite matrix ! and ! satisfies the matrix equation  
 

!!! + !" = −! 
 because 
 

!! !!! + !" ! = −!!!" < 0 
 
since Q is positive definite. 
 
Now we can see an expression, !!! + !" = −! which is the Lyapunov equation! 
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4.2 Solution of Lyapunov equation using Kronecker product 
 
There are a few ways to find the solution ! of the Lyapunov equation.  In this subsection 
we make use of Kronecker product. Vectorize the equation in the following steps. 
 
We rewrite it in Vec-operator as  
 

!"# !!! + !" = −!"# ! ⇔ !"# !!!" + !"# !"# = −!"#(!)⇔ 
⇔ !⊗ !! !"# ! + !! ⊗ ! !"# ! = −!"# ! ⇔ 

⇔ !! ⊕ !! !"# ! = −!"# ! . 
 
Our  expression !! ⊕ !! !"# ! = −!"# !   looks like a familiar one which is !" = !. 
(a linear equation). One way for us to solve such expression is by taking the left inverse of 
A and get 
 

!" = !⇔ !!!!" = !!!!⇔ ! = !!!!. 
 
To implement this on our original expression we would get: 
 

!! ⊕ !! !"# ! = −!"# ! ⇔ !"# ! = − !! ⊕ !! !!!"#(!) 
 
if !! ⊕ !!  is invertible which we’ll prove now. 
  
To solve that kind of equation on our original expression we would begin by finding the 
eigenvalue of !! ⊕ !!  and  the eigenvectors. By Theorem 3.3, 
the eigenvalue of !! ⊕ !!  is !! + !! and eigenvectors !! ⊗ !!. Note that !! + !! ≠ 0,  
for ! ≠ !⇔ det !! ⊕ !! ≠ 0 will show that the solution is unique (Theorem 2.1).  
In other words, !!  and –!!, or equivalently ! and –!, have no common eigenvalues. 
However this does not guarantee that the solution is positive definite. 
 

4.3 Positive definite solution of Lyapunov equation 
 
In order to find the unique positive definite solution we will show that there is a closed 
form of ! which is  
 

! = !!!!!!!"!"
!

!
. 

 
 
It is clearly well defined if !" !! ! < 0 for all ! = 1,… ,!.  
Moreover ! satisfies the Lyapunov equations because 
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!!! + !" = !!!!!!!!!" + !!!!!!!"! !"
!

!
= 

!
!" !

!!!!!!" !"
!

!
= !!!!!!!" !

! = lim
!→!

!!!!!!!" − ! = 

= [!" ℎ!"#$% !" ! < 0]  = 0− ! = −!. 
 
Since ! is positive definite, there is an invertible matrix ! (e.g. a Cholesky factor) such 
that ! = !!!. Next we show that ! defined above is positive semi-definite. It is obvious 
that for any vector !, 
 

!!!" = !! !!!!!!!"!"
!

!
! = !!!!!!!! (!!!"!)!"

!

!
= !!!"! !!"

!

!
≥ 0 

 
So ! is positive semidefinite.  Finally we see that ! is positive definite since ! and !!!! 
are invertible.  Note that !" !!(!) < 0 for all ! = 1,… ,! guarantees that ! and –! have 
no common eigenvalues which is required in the previous section.  
 

4.4 Uniqueness of solutions 
 
It remains to show that ! obtained in Section 4.2 and 4.3 are the same.  In this text we take 
an alternative approach (which we couldn’t find in the literature). 
 
We have already shown that the vectorized Lyapunov equation has a unique solution if  
!! + !! ≠ 0, for ! ≠ ! which holds since now we have !" !!(!) < 0 for all ! ≠ !. Hence 
we have to prove that    
 
The LHS is 
 

!"# !!!!!!!" !"
!

!
= !!!! ⊗ !!!! !"

!

!
!"# !  

 
Thus it remains to show that  
 

!!!! ⊗ !!!! !"
!

!
= − !! ⊕ !! !! 

 
or equivalently 

!! ⊕ !! !!!! ⊗ !!!! !"
!

!
= −!. 
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We get  

!! ⊕ !! !!!! ⊗ !!!! !"
!

!
= !! ⊗ ! + !⊗ !! !!!! ⊗ !!!! !"

!

!
. 

Now let ! = !! ,! = !,! = !!!!, our expression will now look, 
 

!⊗ ! + !⊗ ! !⊗ ! !"
!

!
. 

We will substitute again where ! = !⊗ !, ! = !⊗ ! and ! = !⊗ !  and have 
 

!⊗ ! + !⊗ ! !⊗ ! !"
!

!
= ! +! ! !"

!

!
= !" +!" !"

!

!
= 

= !" !"
!

!
+ !" !"

!

!
. 

which look easier. Let us now substitute back and will get 
 

!" !"
!

!
+ !" !"

!

!
= !⊗ ! !⊗ !  !"

!

!
+ !⊗ ! !⊗ !  !"

!

!
= 

= !⊗ ! !⊗ !  !"
!

!
+ !⊗ ! !⊗ !  !"

!

!
= [!"#)] = 

= !"⊗ !"  !"
!

!
+ !"⊗ !"  !"

!

!
= !!!!!! ⊗ !!!!!  !"

!

!
+ !!!!! ⊗ !!!!!!  !"

!

!
= 

= !!!!!! ⊗ !!!!  !"
!

!
+ !!!! ⊗ !!!!!!  !".

!

!
 

. 
 
Since !!!!!! = !

!" !!!!  we use partial integration to evaluate the integral i.e.  
 

!!!!!! ⊗ !!!!  !"
!

!
= !

!" !!!! ⊗ !!!!  !"
!

!
= 

= !!!! ⊗ !!!! !
! − !!!! ⊗ !

!" !!!! !"
!

!
+ !!!! ⊗ !

!" !!!! !"
!

!
= 

 
= !!!! ⊗ !!!! !

! = −!, 
 
where all eigenvalue of ! have negative real parts.              ∎ 
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5. Least square problem 
 
In many applications we have to solve the following minimization problem 
 

min
!

!⊗ ! ! − !  
 
where .  is the 2-norm (Euclidean norm), can be efficiently solved by computing the QR 
factorizations (or SVDs) of B and C. Barrlund’s book Efficient solution of constrained 
least square problems with Kronecker product structure (1998, SIAM),  page 154-160 
shows how to minimize !!⊗ !! ! − !  subject to the constraint that  !!⊗ !! ! =
!, a problem that comes up in surface fitting with certain kinds of splines. [13] 
 

5.1 Least square – primer 
 
First we give a short review on how to solve minimization problem   
 

min
!

!" − ! !, 
 
where  ! ∈ !!,! and ! > ! and !"#$ ! = !. 
 

5.1.1 Normal equation 
 
Using standar calculus the necessary condition for the minimum is 
 

grad( ! − !! !) = 2 !!!" − !!! = 0. 
 
The last equation is equivalent to  
 

!!!" = !!! !"#$%& !"#$%&'( , 
 
Since !!! is positive definite the function !" − ! ! is convex and the normal equation 
has unique solution. Therefore this unique solution is the global minimum. 
In other words to solve the optimization problem above is equivalent to find the solution to 
the over-determined system !" = !,which can be done as follows 
 

!!!" = !!!⇔ ! = !!! !!!!! 
 
The expression !!! !!!! = !! is called (Moore-Penrose) pseudoinverse. 
It would now look like ! = !! !. 
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In practise we don’t invert matrix but we use Cholesky-decomposition  
 

!!! = !!! 
where R is overtriangular matrix. 
 

5.1.2 QR-decomposition 
Another alternative is the use of QR-decomposition:  
 

! = !" = !! !! !!
0 = !!!! 

 
where ! ∈ !! is orthogonal !!! = !  and R is overtriangular.  
The columns in !! ∈ !!,! form an ON-basis for the range space ! !  and the columns in 
!! spans the orthogonal complement. The decomposition ! = !!!! is  called sometimes 
”economy” QR – decomposition. 
 
Let ! ≔ ! − !", be called the residue, then 
 

! !
! = !!!! !

! = !!! !
! = !!

0 ! − !!!
!

!
= !!! − !!!! !

! + !!!! !
!. 

 
We can’t do so much with the term !!!! !

! but we can choose a proper value of ! such 
that it affects !!! − !!!! !

!. Because we minimize !  we choose ! such that we can 
solve the equation  
 

!!! − !!!! = 0⇔ ! = !!!!!!!!. 
 

5.1.3 Singular value decomposition 
A third method to solve the overdetermined system of equation is 
with the Singular Value Decomposition (SVD). 
 
For ! ∈ !!,!, we have 
 

! = !Σ!! = !! !! Σ!
0 !! = !!Σ!!! , 

 
where ! ∈ !!and ! ∈ !! is orthogonal matrices and Σ ∈ !!,! is diagonal with the 
diagonalelement 

!! ≥ !! ≥ ⋯ ≥ !! > 0 !"#$%&'( !"#$% !" !  
 
!! ∈ !!,!Σ! ∈ !! and ! ∈ !!. 
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Let the columns in ! be !!,… , !! and in ! be !!,… ,!!. Then we have 
 

!" − ! !
! = !!! ! !!! ! − ! !

! = !! !"!!! − ! !
! = 

 
= !!!"!!! − !!! !

! = !!!" !!! − !!! !
! = Σ!!! − !!! !

! = 
 

= Σ! − !!! !
! = !!!! − !!!! !

!

!!!
+ !!!! !

!

!!!!!
. 

 
The second term on the last line is known and we can’t do anything about. But the first one 
we can choose such that it can be 0. Then we get a solution for ! and therefore ! = !". 
We will notice that 2-norm of ! and ! are the same: 
 

!! = !!!!
!!
,   ! = 1,… , ! and !! arbitrarily for ! = ! + 1,… ,! 

 
and 

min
!

!" − ! !
! = !!!! !

!

!!!!!
.  

 

5.2 Least Square - Kronecker Product 
 
Now we solve the problem min !⊗ ! − ! . Assuming !⊗ ! has full column rank, 
i.e ! and ! have full column ranks. Since !"#$(!⊗ !) is equal to !"#$ ! !"#$ ! . 
 
Alternative 1 (Using normal equation): 
We need to solve 
 

!⊗ ! ! !⊗ ! ! = !⊗ ! !!⇔ !!! ⊗ !!! ! = !! ⊗ !! !. 
 
Since !,! have full column ranks, !!! and !!! is invertible. Thus !!! ⊗ !!!  is 
invertible. Then 
 

! = !!! ⊗ !!! !! !! ⊗ !! !⇔ !"#$) ⇔ 
⇔ !!! !!⊗ !!! !! !! ⊗ !! !⇔ !"#) ⇔ !!! !!!! ⊗ !!! !!!! !. 

 
From this we see that we only have to find the inverse for the matrices ! and !, 
respectively. That is, it is not necessary to invert the big matrix !⊗ ! ! !⊗ ! . 
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Alternative 2 (using QR): 
Assume  that we have the economy QR-factorization for ! and !: 
 

! = !!!! , ! = !!!!  
 
where !! and !!  are triangular. Then 
 

!⊗ ! = !!!! ⊗ !!!! = !! ⊗ !! !! ⊗ !!  
 
According to the solution in the previous subsection we have 
 

! = !! ⊗ !! !! !! ⊗ !! !! ⇔ !"#$) !"# !"#) ⇔ !!!!⊗ !!!! !!! ⊗ !!! ! ⇔ 
⇔ [!"#)]⇔ !!−1!!! ⊗ !!−1!!! !. 

 
Again we only have to carry out matrix computaions for the smaller matrices ! and !. 
 
Alternative 3 (using SVD): 
Let ! = !!Σ!!!! ,   ! = !!Σ!!!!, !!, !! and !! ,!!   have orthonormal columns and the 
factorizations are in economy form. Then 
 
!⊗ ! = !!Σ!!!! ⊗ !!Σ!!!! ⇔ !"#) !!" !"#) ⇔ !! ⊗ !! Σ! ⊗ Σ! !! ⊗ !! !   

 
So all the calculations are boiled down to the smaller matrices ! and ! as follows::     
! = !! ⊗ !! !,    ! = !!! , !!!  with !! ∈ ℝ!" and  
 
Σ! ⊗ Σ! !! = !! ⊗ !! !! = !"#) = !!! ⊗ !!! ! ⇔ !! = Σ! ⊗ Σ! !! !!! ⊗ !!! ! = 

= !"#$) = Σ!!! ⊗ Σ!!! !!! ⊗ !!! ! = !"#) = Σ!!!!!! ⊗ Σ!!!!!! ! 
 
and !! arbitrary. 
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