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Abstract

The aim of this thesis is to investigate various aspects of the heat
equation. We first consider the derivation of the heat equation and
relevant historical background. Thereafter, we explore the Fourier se-
ries solution to the heat equation in terms of the method of separation
of variables. The analysis of the solutions to the heat equation are
examined in light of two of their properties; that is to say, uniqueness
and existence. Furthermore, the thesis treats two boundary condi-
tions; namely, the homogeneous and inhomogeneous Neumann bound-
ary condition and Dirichlet boundary condition for the homogeneous
heat equation; with a focus on the latter. Finally, the thesis studies
the finite or bounded domains in which we assume a < x < b that is
scaled to 0 < x < 2π in a one dimensional space where x ∈ R of an
idealized, homogeneous rod that is infinitely thin.

Keywords: heat equation, Fourier series, partial differential equa-
tions, diffusion, separation of variables.
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1 Introduction

1.1 Preliminaries and Notational Conventions

1.1.1 Heat Flux and Thermal Conductivity

Definition 1.1. Let P0 = (x0, y0, z0) be a point on a body Ω (subset in Rn)
and assume its surface S is a smooth surface through a point P0 (see figure
below):

Figure 1: A Body Ω

Let #»n be a surface normal to S at point P0. At time t, the heat flux
Φ = Φ(P0, t) along S at point P0 in the vector direction #»n is the amount of
heat flow rate intensity in terms of energy per unit of time and unit of area
that passes along P0 in that direction. As such, the heat flux is measured in
J/m2s.

If u(x, y, z, t) represents the temperature at the points (x, y, z) of the body
at time t and if n indicates the magnitude of the distance in direction #»n ;
namely n = | #»n |, then the heat flux Φ(x0, y0, z0, t) is positive when the direc-
tional derivative du

dn
is negative at point P0 and negative when du

dn
is positive

at the same point. A fundamental postulate, known as Fourier’s law within
the mathematical theory of thermal conductivity, states that the magnitude
of the flux Φ(x0, y0, z0, t) is proportional to the directional derivative du

dn
(or

temperature gradient ∇U) at point P0 and time t so that the local heat flux
density for an isotropic body #»q ; namely, one whose thermal and mechanical
properties are identical in all directions, is given by
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#»q = −k∇U
where k is a constant called the thermal conductivity of the material [W/mK]1.

Definition 1.2. Heat energy is the transmission of thermal energy from
one system to another by kinetic energy due to a difference in temperature,
flowing from a warmer (energy source) to a cooler object (energy receiver)
with SI unit Joule (J). Thermal energy is the random kinetic energy of the
moving particles in matter. However, when heated, objects expand and so
the bonds that keep the atoms together stretch. This results in more elastic
energy. Thus, thermal energy is the sum of kinetic and elastic energy of
atoms and molecules. It is a type of internal energy since it is energy that is
within the object [14, p. 128].

Definition 1.3. Entropy is described as the dispersal of energy. The larger
the dispersal or spreading, the greater the entropy. Entropy was first in-
troduced by Rudolf Clausius (1822-1888) in response to Carnot’s use of the
term waste heat. Clausius thus created an alternative version of the Second
Law using the term entropy. To exemplify, suppose one adds ice to a glass
of water: the water and ice are separate. The water has higher thermal
energy compared to the ice, and so the system has low entropy. When the
ice melts the water and ice can no longer be dissociated from one another.
The thermal energy is dispersed throughout the system; thus, entropy has
increased. However, thermal energy from the (warm) environment has been
dispersed to the ice water (the system), and so the entropy of the environ-
ment has decreased. Whatsoever, calculations illustrate that the increase in
the ice/water mixture is more significant than the decrease in the surround-
ing environment. Thus, an assertion of the Second Law is that the entropy
of the system and the environment can never decrease. Maximum entropy
is achieved when the temperature of the system and environment reaches
equilibrium [14, p. 135].

1Square brackets denote the ”dimension of”
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2 The Heat Equation

2.1 Definition of the Heat Equation

A partial differential equation or PDE is any differential equation that con-
sists of an unknown function of multiple independent variables and certain
partial derivatives of that function. The distribution of thermal energy within
a body Ω in Rn (where Ω ⊂ Rn is open) can be described then, under ap-
propriate premises, by the PDE

ut = k∆u, x ∈ Ω, (1)

where u(x, t) represents the temperature at a given point x, and time t > 0 .
The Laplacian ∆ is taken with regards to the spatial variables with arbitrary
dimensions x = (x1, ..., xn) : ∆u = ∆xu =

∑n
i=1 uxixi . Here, it is sufficient to

assume that k is a positive constant, known as the thermal diffusivity of the
body. It governs the thermal conductivity of the medium, which by scaling
x allows us to fix it equal to 1 [6]. Otherwise, the coefficient k is given by

k =
λ

ρc

where λ is the thermal conductivity, c is the specific heat capacity per unit
mass [c] = H/mT , (basic units are H = heat energy, m = mass, T = tem-
perature) in other words the amount of heat energy required to increase the
temperature of a material per unit mass [14], and ρ is the density of the body
(mass per unit volume). If not specified otherwise; then, k, c, and ρ will be
constant throughout the body. Under these assumptions, the derivatives of
the spatial variables (∂u

∂x
, ∂u
∂y
, ∂u
∂z
, ∂

2u
∂x2
, ∂

2u
∂y2
, ∂

2u
∂z2

) together with the temperature
function are continuous throughout the entire interior of the corresponding
body in which no heat is generated or destroyed. When

ut − k∆u = 0

the equation is said to be homogeneous. The physical interpretation of this
phenomenon can be such that the material lacks access to any heat sources.
On the contrary, when

ut − k∆u 6= 0

the partial differential equation is inhomogeneous and the opposite physical
property applies. Physically, the heat equation describes the transmission of
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heat per unit volume over an infinitesimally small volume in a domain and
obeys the second law of thermodynamics; namely, that all natural processes
authorize heat to travel in the direction that prompts entropy to increase, i.e
from bodies of higher temperature to bodies of lower temperature in efforts
to reach equilibrium anew. This causes an irreversible process to transpire
(entropy flows in the direction that prompts an increase in the entropy of the
system and environment where the final entropy is greater than the initial
entropy); after which, the entropy of the system plus the environment can re-
main constant for a reversible process to commence; namely where the initial
entropy is equal to the final entropy in an equilibrium state [13]. In addition
to this, the heat equation also describes how the density of some quantity
varies in time, for instance the chemical concentration of a substance. An
example is the rate of diffusion of gases and liquids. In a similar manner to
conduction and the second law of thermodynamics, diffusion describes the
procedure in which particles uniformly disperse from areas of higher concen-
tration to areas of lower concentration. This partial differential equation is
commonly stated together with an initial condition that designates the ini-
tial temperature distribution in a material, as well as a boundary condition
(or lack thereof) that can take various forms and describes what occurs at
the endpoints. For reasons of simplicity, we will from this point forward
consider the one-dimensional case where x ∈ R and consider an idealized,
homogeneous rod that is infinitely thin. Thus, the initial condition may be
represented by

u(x, 0) = g(x), 0 < x < a, x ∈ R, (2)

where g(x) is a distribution function of heat and is a function of x only. By
doing this, the initial temperature at every point on the material is specified;
namely, the initial temperature distribution of the rod u(x, 0) [10, p. 130].
Boundary conditions on the other hand, may vary. If the temperature at any
end is kept constant, for example by the use of an ice water bath or heat;
the conditions can be expressed as follows,

u(0, t) = T0, u(a, t) = T1 t > 0 (3)

where T1 and T0 may be identical or different. Principally, the temperature
at the boundary does not necessarily need to remain constant but merely be
regulated or managed so as to be controlled. If we from this point onward
consider a and b to be the endpoints (unless specified otherwise); namely, we
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assume the finite interval a < x < b, the boundary conditions become

u(a, t) = A(t), u(b, t) = B(t) (4)

where A(t) and B(t) are functions of time [10, p. 131]. This is known as the
Dirichlet boundary condition or condition of the first kind. Overall, this can
be expressed as,





∂tu = uxx + f(x, t)

u(x, 0) = g(x), a < x < b

u(a, t) = A(t), u(b, t) = B(t)

where f(x, t) is a function of space and time. Another boundary condition
is known as the Neumann condition or condition of the second kind where
the rate of flow of heat is regulated. In this case, a gradient of the type

u′x(a, t) = A′, u′x(b, t) = B′ (5)

is applied to each extremity. This is permitted due to the fact that Fourier’s
law of heat conduction stipulates that the heat flow rate is proportional to the
magnitude of the negative gradient of the temperature [10]. In one dimension
it is given by,

q = −ku′x, (6)

where q is the heat flow rate in the positive direction, k is the thermal
conductivity, units [k] = L2/T (L = length, T = time) and u′x is the negative
temperature gradient. Often, A′ which is a function of time is taken to be
equal to zero,

u′x(a, t) = 0

illustrating an insulated surface since there is no heat flow. In consideration
of a finite body, the same can hold true for the surface at the other end.
Specifically, the homogeneous Neumann boundary condition with respect to
the inhomogeneous heat equation, stipulates the values of the derivative of
the solution on the boundaries, which together with the initial conditions
can be expressed in R as follows,
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



∂tu = uxx + f(x, t)

u(x, 0) = g(x), a < x < b

ux(a, t) = A′(t), ux(b, t) = B′(t).

If A′ = B′ = 0, the rate of change in terms of transfer of heat in and
out the boundary (flow rate) is null; thus, heat distribution is constant and
controlled so the edge is insulated. The homogeneous Dirichlet condition on
the other hand, maintains that the value (of the temperature) of the solution
on the boundary is specified and equal to zero.

Furthermore, a union of the two can give rise to various different boundary
conditions: one of which is known as the Robin boundary condition, named
after French mathematical analyst Victor Gustave Robin, which describes
the linear combination of the values of the derivative at the one boundary
as well as the values of the function [10, p. 131]. This is a condition of the
third kind and fulfills Newton’s law of cooling [10, p. 131]. There are a myr-
iad of properties the heat equation possesses; namely, stability, maximum
principle, linearity, regularity, existence and uniqueness. This thesis however
will be interested in the two latter for the analysis of the existence-solution;
specifically, the Fourier series solution in terms of separation of variables.
Furthermore, the thesis will treat the two of the aforementioned boundary
conditions; namely, the homogeneous and inhomogeneous Neumann bound-
ary condition for the homogeneous heat equation, as well as the homogeneous
and inhomogeneous Dirichlet boundary condition for the homogeneous heat
equation. The thesis will consider the finite case where we assume a < x < b
which is scaled to 0 < x < 2π in a one dimensional space.

The first chapter of this thesis is concerned with preliminaries, theorems,
definitions and notational conventions deemed necessary.

The second chapter will deal with the derivation and definition of the heat
equation, boundary conditions, related equations, and historical background
where most information has been gathered from [16] and [10].

Chapter three in which we treat the 1D heat equation where the Fourier
method is presented will begin with a section towards Fourier analysis which
relies heavily on the theory presented in [15] and [18]. The method, i.e
separation of variables uses elementary analysis.
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2.2 Derivation of the Heat Equation

Consider a rod made of a specific heat-conductive material whose cylindrical
surface is insulated, as such represented in Figure 1. The first problem that
becomes evident in the quest to derive this PDE, is whether temperature
can be expressed to account for all types of bodies: namely, those where
temperature is uniformly distributed contra those where it is non-uniformly
distributed [10]. To simplify matters, we intend to assume a uniform rod
(made from a single material: where quantities such as volume, area or length
of the material will be equal to the mass of any other equal quantity of
the specific material; the specific heat capacity c, thermal conductivity k,
density ρ and cross-sectional area A are constant e.t.c) and cross-section,
where the temperature does not alter from one point to another on a section,
in attempts to secure that the temperature depends solely on position x and
time t, as suggested in Figure 1 [9]. The fundamental concept when deriving
this partial differential equation is to employ the first law of thermodynamics
(a variant of the law of conservation of energy) to a cross-sectional strip with
dimensions as such denoted in Figure. 2. The conservation of energy is a
principle which maintains that no energy can be lost nor produced in an
isolated or closed system and therefore the total energy remains constant.
Energy can however change form, for instance a rock at the top of a cliff may
possess potential energy but once it starts rolling downwards, that energy is
transformed to kinetic energy. Specifically, this law can be formulated as,

δQ = dU + δW (7)

which translates to: the amount of heat δQ that is supplied to the region is
equal to the change in internal energy dU plus the amount of energy lost due
to work done δW in the system [10]. Furthermore, the law is also valid when
in consideration of rates per unit time, rather than amounts. As such, we
can re-define the law to equate: the rate at which heat enters a region plus
what is produced inside is equal to the rate at which heat leaves the region
plus the rate of heat storage. We now allow q(x, t) where [q] = H/tL2 (H
= heat energy, t = time, L = length) to signify the heat flux of the rod at
point x and time t, and q(x+ ∆x, t) to signify the heat flux at point x+ ∆x
and time t as illustrated in Figure. 2. As q is a vector, it has direction and
magnitude; thus, positive when the flow of heat is to the right. We let A
denote the area of a cross-section. Then, Aq(x, t) and Aq(x + ∆x, t) define
the rates at which heat enters and leaves the strip from the surfaces at x and
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x+ ∆x, respectively.

Figure 2: A heat-conductive rod.

Figure 3: Cross-sectional strip.

The rate of change of temperature in the strip of the rod is proportional
to the rate of heat storage. We assume that only the ends are exposed as the
remaining surfaces of rod are insulated. Additionally, no source of heat may
be found inside the rod. Therefore, if c is the specific heat capacity per unit
mass [c] = H/mT , and ρ is the density of the body (mass per unit volume),
we may estimate the rate of heat storage in the strip by (here, we use an
alternative notation for the partial derivatives for reasons of simplicity)

Heat energy storage of strip = ρcA∆x
∂u

∂t
(x, t)

where u(x, t) is the temperature throughout the strip as it is arbitrarily thin.
This can be deduced from the more general heat storage equation which
asserts that ∆E = mc∆T . Mass is equal to the density multiplied by the
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volume of a body which is equivalent to ρA∆x, thereby resulting in the above
formula by the following substitution:

we have
ρcA∆xu(x, t)

and at a later time
ρcA∆xu(x, t+ h)

the change is:
ρcA∆x(u(x, t+ h)− u(x, t))

for the rate of change, we divide by the time increment

u(x, t+ h)− u(x, t)

t+ h− t
u(x, t+ h)− u(x, t)

h

lim
h→0

u(x, t+ h)− u(x, t)

h
=
∂u

∂t
(x, t)

The mean value then:

u(x, t+ h)− u(x, t)

= (t+ h− t) · ∂u
∂t

(x, t1)

u(x, t+ h)− u(x, t)

h
=
∂u

∂t
(x, t1), t1 ∈ [t, t+ h]

where t1 is close to t if h small.
Thus, the rate of heat energy storage in the strip is given by

ρcA∆x
∂u

∂t
(x, t1).

There is a multitude of ways in which energy may flow in (and out) of the
strip; namely, through radiation, convection, chemical reaction and so forth.
We shall account for all these different ways of heat entering and leaving,
into what is called a ‘generation rate.’ We let g be the rate of generation per
unit volume [g] = H/tL3, then the rate in which heat is generated inside the
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strip is given by A∆xg. We can now apply the law of conservation of energy
on the strip, as all factors have been identified. We then get the expression

Aq(x, t) + A∆xg = Aq(x+ ∆x, t) + A∆xρc
∂u

∂t
.

We subtract Aq(x+∆x, t) and A∆xg from both sides and then divide by
∆x

Aq(x, t)− Aq(x+ ∆x, t)

∆x
=
A∆xρc∂u

∂t
− A∆xg

∆x
.

We factor out A and divide both sides

q(x, t)− q(x+ ∆x, t)

∆x
= ρc

∂u

∂t
− g.

We recognize that the ratio

q(x+ ∆x, t)− q(x, t)
∆x

describes by definition the partial derivative of q with respect to x in the
limit ∆x→ 0. If we take the limit of this difference quotient when ∆x tends
to zero, we obtain

lim
∆x→0

q(x+ ∆x, t)− q(x, t)
∆x

=
∂q

∂x
.

This limit therefore yields the form

−∂q
∂x

= ρc
∂u

∂t
− g (8)

for the law of conservation of energy on the strip.
Given the dependent variables q and u we require another equation to

connect the two.
Fourier’s law of heat conduction stipulates that the heat flow rate is pro-

portional to the magnitude of the negative gradient of the temperature [10].
In one dimension it is given by,

q = −λ∂u
∂x

(9)
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where q is the heat flow rate in the positive direction, λ is the thermal
conductivity and ∂u

∂x
is the negative temperature gradient. If the body is not

uniform, λ may depend on x, as well as the temperature. For our purpose,
it is equally valid to assume λ to be a constant since we are dealing with a
homogeneous body. Fourier’s law substituted in the equation for the law of
conservation of energy in (8) gives,

∂

∂x
(λ
∂u

∂x
) = ρc

∂u

∂t
− g (10)

Thus,

λ
∂2u

∂x2
= ρc

∂u

∂t
− g (11)

We assume that ρ, c and λ are constants. We multiply both sides with
1

ρc
, and the heat balance equation is expressed as

λ

ρc

∂2u

∂x2
=
∂u

∂t
− g

ρc
. (12)

This yields, given that the thermal diffusivity k is given by

k =
λ

ρc

that the equation can be written as,

∂u

∂t
= k

∂2u

∂x2
+

g

ρc
. (13)

From this, we derive the heat equation

∂u

∂t
− k∂

2u

∂x2
=

g

ρc
(14)

for 0 < x < a, and t > 0. When g = 0 we have the homogeneous case of
the heat equation. When g 6= 0 then we have the alternate case where the
equation is said to be inhomogeneous.

13



2.2.1 Boundary Conditions

Boundary conditions may take a variety of forms and are essential when
solving a boundary value problem: they need to be imposed to get uniqueness
when solving a differential equation whose domain is provided. Boundary
conditions set requirements on the value of the function in the boundaries to
the area in which the equation is to be solved. Since we consider an idealized
body or rod, we assume L to be a line segment [0, a].

(i) The temperature u is given on the line segment L. The boundary
condition is{
u(0, t) = u0(t)

u(a, t) = ua(t)

where u0(t) and ua(t) is the temperature of the surrounding medium at the
two endpoints.

(ii) Along L an exchange of heat occurs with the surroundings, in such a
way that it per unit of area and time, passes through the line segment L and
the surrounding medium’s temperature is u0(t) in one boundary and ua(t)
at the other. The boundary condition then takes the form

u′x(0, t) + h(u(0, t)− u0(t)) = 0 (15)

where h > 0 is the heat exchange coefficient.
(iii) If the initial temperature is prescribed at time t = 0, another initial

condition may arise; namely,

u(x, 0) = f(x), x ∈ [0, a]

where f(x) is the temperature distribution of the line segment at time t = 0.

2.2.2 Related Equations

If the heat flux is in 2D, there is no variation in the z-axis; for example,u =
u(x, y, t) and the heat equation can be written as

u′t = k(u′′xx + u′′yy) + r (16)

where r is a given function. The 1D heat equation is a special case of the
above equation:

u′t = k(u′′xx) + r (17)
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where u = u(x, t). If the temperatures remain constant in time, then u′t is
eliminated (as it is no longer dependent on time) and set equal to zero; thus,
we obtain Laplace’s equation,

∇2u = u′′xx + u′′yy = 0, (18)

where we assume r = 0 (this is a special case of Poisson’s equation). The
PDE, ∇2u = −r of elliptic type, (second order linear PDE where solutions to
such equations do not have discontinuous derivatives; thereby, discontinuities
are smoothed out) is named after the French mathematician and physicist
Siméon Denis Poisson, as Poisson’s equation [3].

The solutions to the 2D and respective 3D variations of the heat equa-
tion are known as harmonic functions which are characterised as being twice
continuously differentiable functions f : U → R where U is an open subset
of Rn that satisfies Laplace’s equation.

2.3 Historical Background

During the 18th century, mathematicians did not seem to be concerned about
the numerous disparities in their mathematical formulations and train of
thought. The important aspect seemed to be that the methods worked (or
seemed to do so); however, in the beginning of the 19th century a reconsid-
eration of the fundamentals was deemed vital. Subsequently, some of the
problems that began to arise concerned series; particularly, series of func-
tions. In combination with the disquisition of some differential equations
that pertain in physics, the Frenchman Jean Baptiste Joseph Fourier (1768-
1830) studied series of the form

a0

2
+
∞∑

n=1

(ancosnx+ bnsinnx)

(19)

and suggested that each function in the interval 0 < x < 2π can be devel-
oped in a so-called Fourier series. Fourier’s argument for this was regarded as
non-convincing and in the discussion that followed, the question of whether a
series of functions with continuous terms may have a discontinuous sum was
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debated, among other things. Both Leonhard Euler (1707- 1783) and Daniel
Bernoulli (1700-1782), prior to this at around 1750, were also involved with
the development of a theory regarding solutions in terms of trigonometric
series or the present-day Fourier series [3, p. 101]. Even, Joseph-Louis La-
grange who with the use of vibrating string computed the coefficients of a
trigonometric series and Jean-Baptiste le Rond d’Alembert who undertook
preliminary investigations on the field, believed that the solutions seemed
obscure.

Fourier was nonetheless the first to systematically study heat conduction
theory. Fourier consequently became renowned due to his work that helped
facilitate the solutions and analysis of heat conduction/transfer in solids and
proved to be an effective mechanism for the analysis of the dynamic motion
of heat. In addition, the equation has helped solve a myriad of diffusion-type
problems ranging from the biological sciences and earth sciences to the social
sciences. Fourier accomplished this with the help of trigonometrical series
since he was intrigued by solutions in general and saw it as an unsolved prob-
lem of his time. He therefore solved a plethora of specific examples of the
heat equation by separation of variables and expansions of the Fourier series,
amongst others. From 1802 to 1807 he conducted his researches on not only
heat diffusion but also Egyptology whenever he found spare time from his
administrative position as Prefect (Governor) appointed by Napoleon for the
Department of Isère in Grenoble [4]. It was later that the German mathe-
maticians Bernhard Riemann (1826-1866) and Karl Theodor Wilhelm Weier-
strass (1815-1897) laid solid grounds for mathematical analysis and thereby
showed that even discontinuous functions can be expressed as trigonometric
series. In fact, there are continuous functions that are not differentiable at
any single point and one of the most famous examples was derived by Karl
Weierstrass:

W (x) =
∞∑

k=0

akcos(bkπx),

(20)

where 0 < a < 1 , ab > 1 + 3π
2

and b is an odd integer greater than 1.
The graph of W (x) is, with modern terminology, a fractal curve. Another
known continuous curve without a tangent at any point and constructed by
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geometry is von Koch’s snowflake, named after the Swedish mathematician
Helge von Koch (1870-1924). Principally, the one that is primarily associated
with the amelioration of mathematical analysis is Weierstrass. It was he who
first gave the familiar ε − δ definitions for limits, continuity e.t.c. With
Weierstrass, geometric arguments did not seem sufficient in mathematical
analysis. He considered that instead of geometric intuition to be the building
blocks of mathematical analysis, real numbers should be the fundamental
basis. Weierstrass’s project is commonly called ”arithmetic analysis”, and it
was performed successfully during the 19th century [17]. In the end, a concern
about the basis of the real numbers themselves emerged. The two most
common ways of constructing them from the rational numbers are through
the Cauchy sequences and Dedekind cuts. Furthermore, Bernhard Riemann,
known for the notion of integral that was named after him in the field of
mathematics recognized as real analysis. He expressed the integral as a limit
value - previously, it had been perceived as an infinite sum of infinitely small
terms [17]. Research on the Fourier series and their convergence (where and
towards what do they converge?) led to the necessity to expand the concept
of a function. Therefore, Fourier’s lack of clarity and formality when defining
the concept of an integral and function was salvaged by Riemann.

Today, Fourier analysis is a highly developed and technically challenging
field of mathematics: the study of approximating and presenting functions
as the sum of trigonometric functions. The general 3D heat equation has,
through time, been solved via different complicated methods that have tran-
spired due to the help of modern computer engineering. Fourier’s findings
have influenced a number of other fields over the past two centuries; namely,
electricity, molecular diffusion, flow in porous materials and stochastic dif-
fusion. Georg Simon Ohm of Germany (1787–1854) who was curious of the
nature of electricity and its relation to magnetism became aware of the anal-
ogy with heat conduction and regarded that the flow of electricity is precisely
analogous to the flow of heat. To describe this relation he formulated the
equation,

γu′t = χ(u′′xx)−
bc

ω
u, (21)

where γ is analogous to heat capacity, χ is electrical conductivity, u is the
electrostatic force, b is a transfer coefficient, c is the circumference, and ω is
the area of cross section. Ohm was not entirely correct in his formulations
however, which led to another scientist James Clerk Maxwell (1831–1879) in

17



the field of mathematical physics to experimentally derive the equation but
in another context. Consequently, a major progress in terms of terrestrial
heat flow studies saw the development of a probe that measures temperature
gradients in the bottom of the oceans by Edward Crisp Bullard (1907–1980)
in 1949. In terms of molecular diffusion, mathematician and medical prac-
titioner Adolf Fick (1829–1901) helped Thomas Graham (1805–1869) to see
the analogy between heat conduction in solids and diffusion of solutes in liq-
uids and expressed this in a parabolic partial differential equation in 1855.
The analogy of Fourier’s heat conduction model did not only apply to the
diffusion of liquids but also gases and solids. Soon after, in consideration
of flow in porous materials, engineers Jules-Juvenal Dupuit (1804–1866) and
Philipp Forchheimer (1852–1933) published the theoretical foundation which
considered how the heat equation was applicable in the analysis of water flow
in groundwater and the ciculation of water to wells, in 1863 and 1886 respec-
tively. Forchheimer [1886] further illustrated how the stable drainage of water
can be expressed by the use of the Laplace equation and used complex vari-
able theory to solve 2D problems in the volume in which the flow takes place
that may occur in dams. Lastly, in the first half of the nineteenth century,
processes such as the flow of electric current; diffusion in the three states of
matter (liquids, solids, and gases); and the movement of solutions in porous
mediums were all directly affected by Fourier’s heat conduction model. In
such evaluations, Fourier’s model was used in an empirical manner, to decode
experimental data from observable systems. Contrary to an empirical use of
the heat diffusion equation, the second half of the nineteenth century ob-
served a more theoretical approach to the problems concerned with the heat
equation: stochastic processes coined by Langevin. It marked the beginning
of an expansion towards issues of a more theoretical character, concerning
the general manifestation of random processes [16, p. 165]. The birth of
stochastic differential equations remained somewhat implied in the findings
of four distinct scientists: the theory of sound by Lord Rayleigh [1880] which
ultimately showed that the calculation to find the amplitude and intensity of
n vibrations of undetermined phase satisfies Fourier’s heat conduction equa-
tion; the law of error by Edgeworth [1883] where the differential equation he
derived described the nature of compound error; the theory of speculation by
Bachelier [1900] where due to the randomness of stock prices where a compar-
ison between stock option prices and the diffusion equation could be made;
and lastly the theory of Brownian motion by Einstein [1905] where particles
suspended in a fluid collide resulting in random fluctuations or motion.
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3 Solving the Heat Equation

3.1 The Fourier Series

Definition 3.1. A function f is said to be even if for every x ∈ Df it is true
that −x ∈ Df and f(−x) = f(x). In other words, the graph is symmetric
about the y-axis.

A function g is said to be odd if for every x ∈ Df it is true that −x ∈ Df

and g(−x) = −g(x). In other words, the graph has rotational symmetry
with respect to the origin.

Definition 3.2. Let f ∈ C∞ (in other words f has derivatives f (n) for all n,
and f (n) is continuous) at a point a and suppose that

f(x) :=
∞∑

n=0

f (n)(a)

n!
(x− a)n, (22)

has a positive radius of convergence (see Definition 3.9 for convergence): the
series converges for some r > 0 so that |x− a| < r, and the biggest r so that
this holds true is called radius of convergence. A function f is analytic if
there exists an open interval I such that I ⊆ R and its Taylor series about
any point, say x where x ∈ I, converges to the function in some neighborhood
for every point in its domain. See [12 p. 232].

In this chapter we will treat functions that are not so smooth as the
aforementioned f , functions that perhaps have a finite number of derivatives
at some points while being discontinuous in other (points). In such cases
they will not have a power series expansion of the type in (28). To attain
representations of non-smooth functions, we turn to expansions in terms of
trigonometric functions such as

1, cosx, cos2x, cos3x, ..., cosnx, ...,

sinx, sin2x, sin3x, ..., sinnx, ...

A trigonometric series looks as follows,

1

2
a0 +

∞∑

n=1

(ancosnx+ bnsinnx), (23)
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where {an}∞0 and {bn}∞1 are independent of x whilst dependent of n.
For convenience, take I = [−π, π] and f : I → R. The coefficients an
and bn, n = 0, 1, 2, ..., can be determined so that f can be represented by
(23). To accomplish this, we will utilize the orthogonality relationships of the
trigonometric functions listed in Theorem 1. However, let us first consider
the following Lemma:

Lemma 3.1. Integrals of Even and Odd Functions
If f : [−c, c]→ R is even, =⇒

∫ c
−c f(x)dx = 2

∫ c
0
f(x)dx.

If g : [−d, d] → R is odd, =⇒
∫ d
−d g(x)dx = 0 . The proof is left to the

reader.
An example of an even function is x 7→ cosx and an example of an odd

function is x 7→ sinx.
Note: Let f1 : I1 → R be odd and f2 : I2 → R be even; for x ∈ I1 ∩ I2 we

have f1 · f2(x) odd and f 2
1 (x), f 2

2 (x) even. This is utilized in determining an
and bn.

Theorem 1. For m,n integers, we have

∫ π

−π
cosmx · cosnxdx =

∫ π

−π
sinmx · sinnxdx = π · δmn (24)

and

∫ π

−π
cosmx · sinnxdx = 0, for m,n = 1, 2, ..., (25)

where δmn = 1 for m = n and δmn = 0 otherwise, is known as Kronecker’s
delta. Furthermore, these relations can be verified with single variable cal-
culus.

Proof:
To prove (24) we begin with the case when m 6= n. We get,

∫ π

−π
cos(mx) · cos(nx)dx =

1

2

∫ π

−π
2cos(mx) cos(nx)dx =

We then use the product-to-sum identity: 2 cos θ cosφ = cos(θ − φ) +
cos(θ + φ). We obtain,

1

2

∫ π

−π
cos(mx− nx) + cos(mx+ nx)dx =
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=
1

2

∫ π

−π
cos((m− n)x)dx+

∫ π

−π
cos((m+ n)x)dx =

=
1

2

[
sin((m− n)x)

m− n

]π

−π
+

1

2

[
sin((m+ n)x)

m+ n

]π

−π
=

where m− n in the denominator is defined since m 6= n,

=
1

2

(
sin((m− n)π)

m− n −sin(−(m− n)π)

m− n

)
+

1

2

(
sin((m+ n)π)

m+ n
−sin(−(m+ n)π)

m+ n

)
,

and m − n 6= 0 implies that it is a whole number. So if we let m − n = k,
then sin(kπ) = 0 and

∫ π

−π
cos(mx) · cos(nx)dx = 0.

Thus, δmn = 0 for m 6= n.
The proof for

∫ π
−π sinmx · sinnxdx is similar and left to the reader.

We continue with the second case; namely, when m = n.

∫ π

−π
cos(nx) · cos(nx)dx =

∫ π

−π
cos2(nx)dx =

We apply Pythagorean identities and the sum rule:
∫ π

−π

1

2
+

cos(2nx)

2
dx =

∫ π

−π

1

2
+

∫ π

−π

cos(2nx)

2
dx =

=

[
1

2
x

]π

−π
+

[
sin(2nx)

4n

]π

−π
=

1

2
π+

1

2
π+

sin(2nπ)

4n
− sin(−2nπ)

4n
= π+0 = π.

Thus, δmn = 1 for m = n. The analysis for
∫ π
−π sinmx · sinnxdx is similar

and left to the reader.
To prove (25), we can consider the rules of odd and even functions of

integrals as such in Lemma 3.1. We know that the product of cosmx · sinnx
is odd since cosmx is even and sinnx is odd which means that the integral
will be zero.
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Definition 3.3. (Uniform convergence) Asssume that f is defined f : [−π, π]→
R, then the series

∑∞
n=1 fn(x) is said to converge uniformly to f(x) in −π 6

x 6 π if

sup
−π6x6π

|f(x)− SN(f)(x)| → 0

as N → ∞, where SN(x) is the Nth partial sum defined by SN(x) =∑N
k=1 fk(x).

[15, p. 173]

Theorem 2.

Let I = [−π, π] and f ∈ C(I). Suppose that the series

s =
1

2
a0 +

∞∑

n=1

(ancosnx+ bnsinnx), (26)

converges uniformly towards f, ∀x ∈ I (written sN = a0
2

+
∑N

n=1(ancosnx +
bnsinnx)→ f(x) when N →∞ ). Then,





a0 = 1
π

∫ π
−π f(x)dx

an = 1
π

∫ π
−π f(x)cosnxdx

bn = 1
π

∫ π
−π f(x)sinnxdx

(27)

and n = 1, 2, 3...
Proof: First, we define the partial sums

sk(x) =
a0

2
+

k∑

m=1

(amcosmx+ bmsinmx), (28)

sk(x) → f(x) implies that sk(x)cosnx → f(x)cosnx, when k → ∞, for
every fixed n. We recognize directly that,

|sk(x)cosnx− f(x)cosnx| = |sk(x)− f(x)| · |cosnx| ≤ |sk(x)− f(x)| → 0

⇒ sk(x)cosnx⇒ f(x)cosnx.
(29)
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In a similar fashion, we have

sk(x)sinnx→ f(x)sinnx,

for every fixed n. We then acquire for every fixed n,

f(x)cosnx =
a0

2
cosnx+

∞∑

m=1

(amcosmxcosnx+ bmsinmxsinnx).

This uniformly-convergent series can be integrated one term at a time, be-
tween −π and π, due to its uniform convergence since we can change the
summation order of two convergent series (the series and the Riemann-sum
that is its integral). This leads to

∫ π

−π
f(x)cosnxdx = π · an. (30)

Similarly, for f(x)sinnx we attain the latter formula in (34).

Definition 3.4. The coefficients an and bn are known as the Fourier coeffi-
cients of f and are often written as an(f) and bn(f), respectively. When a0, an
and bn are given in the form exhibited in (27), then (26) represents the Fourier
series of a function f(x). �
Now let f : [−π, π] → R be an integrable function. The coefficients can be
determined in accordance to (27). However, this is no guarantee that the
series in (23) converges towards f(x); in general we have,

f(x) ∼ a0

2
+
∞∑

n=1

(ancosnx+ bnsinnx) (31)

to highlight that the series may or may not converge towards f . One of the
most fundamental problems in Fourier analysis is to identify the classes of
functions where = replaces ∼.

Definition 3.5. Let f : Df → R be a function and let k be a cluster point
of Df . Then the left-hand limit of f at k is written as limx→k− f(x) = A if
for every ε > 0 there exists δ > 0 such that
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k 6 x < k + δ

x ∈ Df

}
⇒ |f(x)− A| < ε

Similarly, the right-hand side limit of f at k is written as limx→k+ f(x) =
B if for every ε > 0 there exists δ > 0 such that

k − δ < x < k

x ∈ Df

}
⇒ |f(x)−B| < ε.

When both the right-hand side limit and the left-hand side limit exist
and are equal, then the limit of f(x) when x→ k exists and is equal to that
value.

Definition 3.6. A function f : [a, b]→ R is said to be piecewise continuous
at [a, b] iff i) there exists a partition

a = x0 < x1 < x2 < ... < xn = b (32)

such that f ∈ C(xk−1, xk) and ii) with every xk there exists both f(xk−) and
f(xk+) where f(xk+) denotes the right-hand limit of f at xk and f(xk−) de-
notes the left-hand limit of f at xk, as per definition (3.5). �

A piecewise continuous function has a finite number of discontinuities at
x0, x1, ..., xn and at every such point there exists limx→xk− f(x) and limx→xk+ f(x).
The magnitude of f(xk+)−f(xk−) represents the jump at xk, whereas an(f)
and bn(f) are not affected when and if the value of the function changes at
a finite number of points in [a, b]. One can show that, two functions f1 and
f2 that are identical (f1 = f2) except at a finite number of points, have
an(f1) = an(f2) and bn(f1) = bn(f2); in other words, f1 and f2 have the same
Fourier series.

We say that a piecewise continuous function is standardized at a dis-
continuous point xi if f(xi) = 1

2
(f(xi+) + f(xi−)). With standardizing the

Fourier series is not altered; therefore in the continuation, all functions are
standardized.

Definition 3.7. A function f : [a, b] → R is said to be piecewise smooth
if i) f is piecewise continuous and ii) f ′ is piecewise continuous in every
subinterval ]xk−1, xk[, k = 1, 2, ..., n. �
[10, p. 68].

Let f : [−π, π) → R be piecewise continuous. The periodic enlargement

f̃ of f is given by the formula,
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f̃(x) =

{
f(x), π ≤ x < π

f̃(x− 2π), x ∈ R
(33)

We then standardize f̃ at −π and π as well as all other discontinuous
points so that the domain of the function (set of independent variables or
input for which the function is defined) Df̃ = R.

Example 1. We want to derive the Fourier series of the function f(x)
defined by

f(x) = x, x ∈ [−π, π].

The periodical enlargement x 7→ f̃(x), x ∈ R is standardized as depicted
in Figure 4. We obtain,

Figure 4: Periodical enlargement of f in Example 1.

an =
1

π

∫ π

−π
xcosnxdx = 0

due to the fact that xcosnx is an odd function, since x is an odd function
and cosnx is an even function in the interval x ∈ [−π, π]. Furthermore, the
integral of an odd function will always be zero. To compute bn we begin with
integration by parts,

bn =
1

π

∫ π

−π
xsinnxdx =

1

π

[
x(− cos(nx))

n

]π

−π
− 1

π

∫ π

−π

1(− cos(nx))

n
dx =

(34)
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=
1

π

(
−π cos(nπ)

n
− π cos (−nπ)

n

)
+

1

π

∫ π

−π

cos(nx)

n
dx

=
− cos(nπ)

n
− cos (−nπ)

n
+

1

π

[
sin(nx)

n2

]π

−π

=
− cos(nπ)

n
− cos (−nπ)

n
+

1

π

(
sin(nπ)

n2
− sin(−nπ)

n2

)π

−π
.

Here, sin(nπ)
n2 and sin(−nπ)

n2 are equal to zero and cos (nπ) = (−1)n. We
obtain,

bn =
− cos(nπ)

n
− cos (−nπ)

n

−(−1)n

n
− (−1)n

n

=
−2(−1)n

n
= −1

2(−1)n

n
=

2(−1)n−1

n
.

So,

bn =
1

π

∫ π

−π
xsinnxdx = 2

(−1)n−1

n
,

where f(x) ∼ 2(sinx− 1
2
sin2x + 1

3
sin3x + ...), x ∈ [−π, π] and bn represents

f̃(x).

3.1.1 Sine and Cosine Series

Definition 3.8. (Orthogonal system) A set of orthogonal functions {φ1, ..., φn, ...}∞1
is complete if ∀ε, where ε > 0, there exist scalars a1, a2, ... so that

∥∥∥∥∥f −
∞∑

k=1

akφk

∥∥∥∥∥

2

=
1

2π

∫ π

−π

∣∣∣∣∣f(x)−
∞∑

k=1

akφk(x)

∣∣∣∣∣

2

dx < ε

where ‖f‖ is the L2-norm.

Suppose that we wish to find the Fourier series of a function f : [0, π]→ R.
Since the Fourier coefficients an(f) and bn(f) are given in terms of integrals
from −π to π we have to somehow alter Df to [−π, π]. We can do this easiest
by defining f arbitrarily in the subinterval [−π, 0). Since we are interested
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in f : [0, π] → R, the convergence properties in [−π, 0) are of no significant
interest. However, we have two choices: it is useful to expand f in [−π, 0)
either as an even function, namely f(−x) = f(x), −π 6 x < 0, or as an odd
function f(−x) = −f(x), −π 6 x < 0. We therefore have,

fj(x) =

{
f(x), 0 6 x 6 π

f(−x),−π 6 x < 0
(35)

fu(x) =

{
f(x), 0 6 x 6 π

−f(x),−π 6 x < 0
(36)

where fj(x) ∼ cosine series and fu(x) ∼ sine series and form a complete or-
thogonal system in the interval [−π, π] (where one can project an arbitrary
square-integrable function on a complete base in a infinite dimensional func-
tion space); the expansions of which go by the name half-range expansions.

Example 2. Given a function f(x) defined by,

f(x) =

{
0, for 0 6 x < π

2

1, for π
2
6 x 6 π

(37)

we are to determine its Fourier series. We first extend f to an even periodic
function, as represented in the figure below, and then is standardized so that
f̃(π

2
) = f̃(3π

2
) = f̃(−π

2
) = 1

2
.

If f̃j(x) is even, in accordance to the formulas in (34), we obtain bn =

0 ⇒an = 1
π

∫ π
−π f̃j(x)cosnxdx = 2

π

∫ π
0
f̃j(x)cosnxdx = 2

π

∫ π
π
2

cosnxdx, n =

0, 1, 2, ...

⇒a0 = 1 and an = 2
π

[
sinnx
n

]π
π
2

= 2
n
(−sinnπ

2
), n > 1 and by applying (33)

and Definition 3.2 we acquire,

27



⇒f̃j(x) ∼ 1
2
− 2

π
(cosx− 1

3
cos3x+ 1

5
cos5x− ...) for −π 6 x 6 π.

We now extend f to an odd periodic function f̃u(
3π
2

), as shown in the
figure below,
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The standardized function has f̃u(x) = (−3π
2

) = f̃u(
π
2
) = ... = 1

2
, f̃u(−π) =

f̃u(π) = 0 and f̃u(−π
2
) = f̃u(

3π
2

) = ... = −1
2
.With the same reasoning used

above for the case of the even function, we obtain an = 0, for n = 0, 1, 2, ...,
and bn = 2

π

∫ π
0
f̃u(x)sinnxdx = 2

π

∫ π
π
2

sinnxdx = 2
nπ

(cosnπ
2
− cosnπ) or more

precisely,

bn =

{
2
nπ
, n odd

2
kπ

((−1)k − 1), n = 2k, k > 1.
(38)

⇒f̃u(x) ∼ 2
π
( sinx

1
−2 sin2x

2
+ sin3x

3
+ sin5x

5
−2 sin6x

6
+ sin7x

7
−...), for −π 6 x 6 π.

Note: If f is piecewise smooth in the interval [c−π, c+π], we can construct
an expansion of a periodic function to f and determine the Fourier coefficients
an and bn in accordance to formula (27). However, since the trigonometric
functions sine and cosine are periodic with period 2π, these coefficients are
given by

an = 1
π

∫ 2π

0
f(x)cosnxdx, bn = 1

π

∫ 2π

0
f(x)sinnxdx.

The standard form of the Fourier expansion has hitherto been considered
in the interval −π ≤ x < π. In other cases, it is required to build the Fourier
series of f(x) that is defined in an interval −L ≤ x < L, where L is a positive
number 6= π. This is achieved by change of variables; we therefore introduce
a new variable t that ranges from −π to π when x varies between −L and L:

t

π
=
x

L
⇐⇒ t =

πx

L
⇐⇒ x =

Lt

π

The function f : [−L,L] → R is transformed thereby to g : [−π, π] →
R, g(t) = f(Lt

π
) = f(x) and if we suppose that f(x) fulfills Dirichlet’s

conditions, so does g(t). We expand therefore g(t) to a Fourier series in the
usual form

g(t) ∼ 1

2
a0 +

∞∑

n=1

(an cosnt+ bn sinnt)

where the Fourier coefficients are again the usual

an =
1

π

∫ π

−π
g(t)cosntdt, n = 0, 1, 2, ...

bn =
1

π

∫ π

−π
g(t)sinntdt, n = 1, 2, ...
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We can then come back to f :

f(x) ∼ 1

2
a0 +

∞∑

n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
(39)

with the Fourier coefficients,

an(f) =
1

L

∫ L

−L
f(x)cos

nπx

L
dx, n = 0, 1, 2, ...

bn(f) =
1

L

∫ L

−L
f(x)sin

nπx

L
dx, n = 1, 2, ...

Example 3 Let us expand in a Fourier series, the function f : [−2, 2]→ R
defined by

f(x) =

{
0, for − 2 6 x < 0

1, for 0 6 x 6 2
(40)

Then,
a0 = 1,
an(f) = 1

2

∫ 2

−2
f(x)cosnπx

2
dx = 1

2

∫ 2

0
cosnπx

2
dx

∀n ≥ 1 : an = 1
2

∫ 2

0
cosnπx

2
dx = 0;

∀n ≥ 1 : bn = 1
2

∫ 2

0
sinnπx

2
dx = 1

2
[− 2

nπ
cos nπx

2
]20 = 1−(−1)n

nπ
;

Note: cosnπ = (−1)n.
We obtain the expansion (when k = 2n− 1),

f(x) ∼ 1

2
+
∞∑

k=1

1− (−1)k

nπ
sin

kπx

2
=

1

2
+

2

π

∞∑

n=1

1

2n− 1
sin

(2n− 1)πx

2
.

This converges to a 4-periodic f̃(x) with f(0) = f(±2) = f(±4) = ... = 1
2
.

We will now consider the case of the Fourier transform for functions de-
fined on an interval of the type: [a, b), with a, b being two arbitrary real
numbers with a < b. To do so, we will expand f(x) to a periodic function
within the domain; namely, with period T = b− a. We let L be half the dis-
tance of the interval, that is L = T

2
, and c = a+b

2
. We represent the extended

function as F (x), in other words,

30



F (x) = f(x) for a 6 x 6 b, F (x+ 2L) = F (x). (41)

We introduce variable s that ranges between −π to π when x varies from a
to b, as follows

s =
π

L
(x− c) (42)

which results from first centering the interval [a, b) at 0 and then scaling the
interval since the length of [a, b) is b−a and the length of [−π, π] is 2π so the
scaling factor is 2π

b−a = π
L

. (Thus, we attain a Fourier transform on a general
interval between a and b by translating the interval so that it’s centered at
0). We denote

H(s) := F (x) = F

(
L

π
(s+ c

π

L
)

)
. (43)

We then obtain,

H(s+2π) = F

(
L

π
(s+2π+c

π

L
)

)
= F

(
L

π
(s+c

π

L
)+2L

)
= F (x+2L) = F (x) = H(s).

(44)
Thus, H(s) is 2π periodic, and its Fourier series can be expressed as

H(s) =
1

2
a0 +

∞∑

n=1

(ãn cos(ns) + b̃n sin(ns)), (45)

where

a0 =
1

π

∫ π

−π
H(s)ds =

1

π

∫ b

a

F (x)
π

L
dx =

1

L

∫ b

a

F (x)dx, (46)

ãn =
1

π

∫ π

−π
H(s) cos(ns)ds =

1

π

∫ b

a

F (x) cos
(nπ
L

(x− c)
)π
L
dx

=
1

L

∫ b

a

F (x) cos
(nπ
L

(x− c)
)
dx,

and

b̃n =
1

π

∫ π

−π
H(s) sin(ns)ds =

1

π

∫ b

a

F (x) sin
(nπ
L

(x− c)
)π
L
dx
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=
1

L

∫ b

a

F (x) sin
(nπ
L

(x− c)
)
dx.

The Fourier series is therefore given by,

F (x) =
1

2
a0 +

∞∑

n=1

(
ãn cos

(nπ
L

(x− c)
)

+ b̃n sin
(nπ
L

(x− c)
))

. (47)

We observe that in (47), there is a “movement” in the trigonometric terms, in
other words, x is shifted to the right by c units. Whatsoever, by the use of the
orthogonality conditions of functions sin

(
nπ
L
x
)

and cos
(
nπ
L
x
)

in the interval
[a, b], the Fourier series can be acquired without this shift. To begin with,
we note the orthogonality conditions of the aforementioned trigonometric
functions (sine and cosine) in the interval [a, b). Since b = a + 2L, for any
integer n 6= 0, we obtain,

∫ b

a

sin
(nπ
L
x
)
dx =

∫ b

a

cos
(nπ
L
x
)
dx = 0. (48)

For any integers n and m,

∫ b

a

sin
(nπ
L
x
)

cos
(mπ
L
x
)
dx = 0. (49)

For any integers n > 0 and m > 0,

∫ b

a

sin
(nπ
L
x
)

sin
(mπ
L
x
)
dx =

∫ b

a

cos
(nπ
L
x
)

cos
(mπ
L
x
)
dx = δmnL, (50)

in which

δmn =

{
1,m = n

0,m 6= n
(51)

The orthogonal conditions allow us to write the Fourier series of F (x) as

F (x) =
1

2
a0 +

∞∑

n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
, (52)
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where a0 is the same as in (46) and

an =
1

L

∫ b

a

F (x)cos(
nπx

L
)dx, bn =

1

L

∫ b

a

F (x)sin(
nπx

L
)dx, (53)

and in accordance to a lemma, the Fourier series (47) of function F (x) is
equivalent to the Fourier series (52). For the proof of this Lemma, readers
are advised to see [19, p. 13]. Thus, the Fourier series representation for an
arbitrary interval [a,b) is the given by the same formula as that with interval
−L ≤ x < L shown in (39), but where L = T

2
. [19, p. 10-12].

3.1.2 Convergence Theorems

The criteria to follow is used to decipher when Fourier Series can be differ-
entiated and integrated termwise.

Definition 3.9. If the sequence (sn)∞n=0 of the partial sums to a series∑∞
k=0 ak tends to a limit, the series is called convergent. If the partial sums

do not have a limit, the series is called divergent.

Theorem 3. (Pointwise Convergence)f is smooth implies

lim
n→∞

|f(x)− SN(f)(x)| = 0.

[15, p. 173]

Theorem 4. Let f be 2π periodic and piecewise smooth. Then SN(x) →
f̃(x) pointwise on R, where

f̃(x) :=
(f(x+) + f(x−))

2
.

[1, p. 4].

Lemma 3.2. Let f be a 2π periodic function that is piecewise smooth.
Then the Fourier coefficients an(f) and bn(f), n ≥ 1, fulfill the following
inequalities:

|an| ≤
c

n
, |bn| ≤

c

n
, n = 1, 2, ...

where c is dependent only on f .
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Proof: Suppose that the jump occurs in

−π = x0 < x1 < x2 < ... < xr = π.

Then we have for an(f), n = 1, 2, ..., an(f) = 1
π

∫ π
−π f(t) cosntdt =

1
π

∑r
k=1

∫ xk
xk−1

f(t) cosntdt. Integration by parts gives

an(f) =
1

π

r∑

k=1

[
f(t) sinnt

n

]xk

xk−1

−
∫ xk

xk−1

1

π

r∑

k=1

1

n
f ′(t) sinntdt.

Since f and f ′ are bounded, we obtain an estimation of an by means of the
triangle inequality. We obtain,

|an(f)| =
∣∣∣∣∣
1

n

{
1

π

r∑

k=1

[
f(t) sinnt

]xk

xk−1

−
∫ xk

xk−1

1

π

r∑

k=1

f ′(t) sinntdt

}∣∣∣∣∣

=
1

n

∣∣∣∣∣

{
1

π

r∑

k=1

[
f(t) sinnt

]xk

xk−1

−
∫ xk

xk−1

1

π

r∑

k=1

f ′(t) sinntdt

}∣∣∣∣∣

=
1

n

∣∣∣∣∣

[
1

π

r∑

k=1

[
f(xk) sinnxk − f(xk−1) sinnxk−1

]
−
∫ xk

xk−1

1

π

r∑

k=1

f ′(t) sinntdt

∣∣∣∣∣

≤ 1

n

{
1

π

r∑

k=1

|f(xk) sinnxk|+
1

π

r∑

k=1

|f(xk−1) sinnxk−1|+
∫ xk

xk−1

1

π

r∑

k=1

|f ′(t)||sinnt|dt
}

Since |sinx| ≤ 1 for any x,

≤ 1

n

{
1

π

r∑

k=1

|f(xk)|+
1

π

r∑

k=1

|f(xk−1)|+
∫ xk

xk−1

1

π

r∑

k=1

|f ′(t)|dt
}

and since |f(x)| ≤ max|f | < c due to the fact that |f ′(x)| ≤ max|f ′| < c′

for any x and constant c, since a continuous function on a closed interval
maintains a maximum in that interval,

≤ 1

n

{
1

π
c · r +

1

π
c · r +

1

π
c′ · r

}
=

1

π

(
K · r
n

)
=
K · r
πn

. (54)
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since f(x) 6 c so each term is less than or equal to a constant and so the
whole sum is less than or equal to a constant multiplied by the number of
terms r, namely c · r.

The estimation of bn is acquired similarly.
Corollary Suppose that f and its derivative of order p are 2π periodic

and piecewise smooth. Then the Fourier coefficients inequalities are fulfilled,
namely

|an| ≤
c

np
, |bn| ≤

c

np
, n = 1, 2, 3, ...

where c does not depend on n.
Proof: We apply integration by parts p times, in a similar manner as in

lemma 3.2. The corollary states that the more derivatives f has, the faster
its Fourier coefficients tend to zero as n→∞.

Proposition 1 Assume that f is 2π periodic, continuous, and piecewise
smooth. Abbreviate by an, bn the Fourier coefficients of f and by An, Bn the
Fourier coefficients of f ′. Then,

An = nbn Bn = −nan.
Proof: Integration by parts gives,

An =
1

π

∫ π

−π
f ′(x) cosnxdx =

1

π

[
f(x) cosnx

]π

−π
+
n

π

∫ π

−π
f(x) sinnxdx = nbn

since cos π and f are both periodic. Similarly, Bn = −nan. [9]
As a concequence, we get:

Theorem 5. (Term by term differentiation of the Fourier series)
Let f be continuous everywhere and be 2π periodic. Let f ′ be piece-

wise smooth and standardised where the function f satisfies the conditions
f(−π) = f(π), f ′(−π) = f ′(π). Then,

(i) The Fourier series of f uniformly converges towards f on [−π, π] for
all x.

(ii) The series acquired after the termwise differentiation of the Fourier
series of f converges in every point to f ′.

Proof:

35



To show that the Fourier Series of f converges uniformly to f , we use
the fact that f ′(x) is piecewise smooth and consequently that f ′′(x) is piece-
wise continuous. We assume f is smooth or piecewise smooth which implies,
f(x) = limN→∞

1
2
a0 +

∑N
n=1(an cosnx + bn sinnx) given that f is piecewise

smooth then it satisfies the assumption of Theorem 4 and uniformly con-
verges. We also assume Theorem 4. Since, from Theorem 4, we know that
SN(x)→ f(x) pointwise (where SN(x) is the partial sum of the Fourier series
of f) , we may write for each x ∈ R:

f(x)− SN(f)(x) =

(
a0

2
+
∑

n≥1

an cosnx+ bn sinnx)

)
−
(
a0

2
+

N∑

n=1

an cosnx+ bn sinnx)

)

=
∞∑

n=N+1

an cosnx+ bn sinnx

and

|f(x)− SN(f)(x)| =
∣∣∣∣∣
∞∑

n=N+1

an cosnx+ bn sinnx

∣∣∣∣∣ ≤
∞∑

N+1

(|an|+ |bn|).

We abbreviate by an, bn the Fourier coefficients of f and by An, Bn the
Fourier coefficients of f ′. To prove the absolute convergence it is enough
to show that |an|, |bn| ≤ M

n2 for some constant M independent of n. Then,∑
n≥1 |an| and

∑
n≥1 |bn| converge by the comparison test which implies the

absolute convergence of the Fourier series. Additionally, uniform convergence
is implied from the Weierstrass M-test. From proposition 1, an = −Bn

n
. This

means,

an =
1

π

∫ π

−π
f(x) cosnxdx = − 1

nπ

∫ π

−π
f ′(x) sinnxdx.

We have assumed that f ′ is piecewise smooth; therefore, f ′′ is continuous
excluding a finite number of points where it has a jump. Suppose that f ′′ is
continuous in the interval a < x < b, then

1

nπ

∫ b

a

f ′(x) sinnxdx =
1

n2π

[
f ′(x) cosnx

]b

a

− 1

n2π

∫ b

a

f ′′(x) cosnxdx
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=
1

n2π

[
f(b−) cosnx− f(a+) cosnx

]
+

1

n2π

∫ b

a

f ′′(x) cosnxdx.

Given that |f ′(x)|, |f ′′(x)| ≤ K for a constant K and all x (at points
x where f ′ and f ′′ have a jump discontinuity, the left-and right-hand side
derivatives for f ′ have to be taken.) So,

1

nπ

∣∣∣∣
∫ b

a

f ′(x) sinnxdx

∣∣∣∣ ≤
K(2 + (b− a))

n2π
≤ 2K(1 + π)

n2π
≤ 4K

n2
.

Given that f ′′ has a finite number of discontinuities, the integral
∫ π
−π f

′(x) sinnxdx

can be expressed as a finite number, say p, of integrals
∫ b
a
f ′(x) sinnxdx over

integrals where f ′′ is continuous. So,

|an| =
1

nπ

∣∣∣∣
∫ π

−π
f ′(x) sinnxdx

∣∣∣∣ ≤
4Kp

n2
.

Accordingly, |bn| ≤ 4Kp
n2 .

From |an| ≤ 4K
n2 we can deduce,

|f(x)− SN(f)(x)| 6
∞∑

N+1

(|an|+ |bn|) ≤
∞∑

N+1

c

n2
,

independent of x. We then recall from calculus that the tail of a convergent
series tends to 0; namely, as

∑∞
1

1
n2 converges implies that

∑∞
N+1

1
n2 → 0

when N →∞.
See [8] and [1] for more detail.
To show the convergence of the differentiated series to f ′, let the dip of

f ′ occur in

−π = x0 < x1 < x2 < ... < xr = π

We define

g(x) =

∫ x

−π
f ′(t)dt

and note that g is continuous because f ′ is continuous. In accordance to the
fundamental theorem of calculus, g′ − f ′ ≡ 0 for xi−1 < x < xi, i = 1, 2, ..., r
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so g − f = k, where k is a constant in all subintervals. When both g and f
are continuous, so is g − f ≡ a constant.

The termwise differentiation of the series

f(x) =
1

2
a0 +

∞∑

n=1

(an cosnx+ bn sinnx)

gives the Fourier series of f ′(x), since

d

dn
(an cosnx+ bn sinnx)

= −nan sinnx+ nbn cosnx)

Where we are allowed to differentiate under the summation symbol due to
the fact that the series is convergent. Finally, we attain

f ′(x) =
∞∑

n=1

(nbn cosnx− nan sinnx).

As by Proposition 1. [8].

Theorem 6. (Term by term integration of the Fourier series) Let f be 2π
periodic and piecewise smooth. Suppose that the Fourier coefficient a0 = 0
and define,

F (x) =

∫ x

−π
f(t)dt.

Then the Fourier series for F (x) is obtained by termwise integration of the
Fourier series of f , except the constant term A0 that is given by

A0 = − 1

π

∫ π

−π
xf(x)dx.

Proof:
The condition a0 = 0 is required so that F can be 2π periodic. The

relation between the Fourier coefficients of F and the Fourier coefficients of
f follows from Theorem 5. To find A0 we observe that,
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A0 =
1

π

∫ π

−π

(∫ x

−π
f(t)dt

)
dx

=
1

π

∫ π

−π
f(t)

(∫ π

t

dx
)
dt

=
1

π

∫ π

−π
(π − t)f(t)dt

= − 1

π

∫ π

−π
tf(t)dt.

Note:
(i) If f is such that a0 6= 0, we define f(x)− 1

2
a0 = g(x) and use Theorem

6.
(ii) Theorem 6 does not require uniform convergence for the derivative

F ′(x) = f(x). [11, p. 66].

3.1.3 Fourier Method

The vector spaces that interest us are function spaces.

Definition 3.10. A linear space of functions or a function space is a class
of functions with a fixed domain and range together with addition and mul-
tiplication by scalars. The elements of the space are functions (between two
sets).

Definition 3.11. A linear operator L on a given function space transforms
every real-valued function u to a function L u, which does not necessarily
have to belong to the same space, and possesses the property of preserving
the linear operations mentioned in the aforementioned Definition 3.10. These
two operations can be summarized in the following relation:

L (c1u1 + c2u2) = c1L u1 + c2L u2, c1, c2 ∈ R.

where c1 and c2 are scalars. For c1 = c2 = 1 we attain addition and for
c1 = 1, c2 = 0 scalar multiplication. This can be expanded to a finite number
of functions. If (ui)

n
i=1 and (ci)

n
i=1, from above it follows that

L
n∑

i=1

(ciui) =
n∑

i=1

ciL ui. (n ∈ N)
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is called linear if L is a linear operator. If
∑n

i=1 ciL ui = 0, it is identified
as a homogeneous linear equation. Alternatively, if the right-hand side is
not equal to zero it is an inhomogeneous linear equation. Thus, every linear
homogeneous PDE has the form L u = 0. Furthermore, L2 is the vector
space of all functions so that the integral of the square of the absolute value
is finite in some interval i.e

∫ π
−π |f(t)|2dt <∞. An example of a linear L on

L2 space is L = x2 ∂2

∂x2
− 3x ∂

∂x
+ 4. The one-dimensional heat equation in L2

takes the form,

L u = (
∂

∂t
− k ∂

2

∂x2
)u = 0 ⇐⇒ u′t − ku′′xx = 0.

The above equation is homogeneous since the right hand side ≡ 0. Accord-
ingly, a PDE L u = f , with f 6= 0 is an inhomogeneous PDE. The most
common linear operations in this thesis are integration and differentiation.

A boundary value problem consists of a PDE and the corresponding con-
ditions. These conditions can be either homogeneous or inhomogeneous in
nature. Consider an idealized, uniform a rod with an isolated surface that oc-
cupies the interval [ a, b] as mentioned in (4) and has homogeneous boundary
conditions, such as

u(a, t) = 0, u′x(a, t) = 0 or u′x(a, t) = hu(a, t) (55)

where h > 0 is a constant.
All can be included in the form

cosα · ux(a, t)− sinα · u(a, t) = 0

where 0 ≤ α ≤ π; when α = π
2

we have u(a, t) = 0 and when α = 0 we have
u′x(a, t) = 0. When tanα = h, we have the third condition u′x(a, t) = hu(a, t).
In the same manner, the general condition at x = a can be written,

cos β · u′x(b, t) + sin β · u(b, t) = 0.

The constant β is not related to α. Note that we can write

Lα = cosα
∂

∂x
− sinα, Lβ = cos β

∂

∂x
+ sin β

similarly, the conditions are expressed
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(Lαu)(a, t) = 0, (Lβu)(b, t) = 0.

The superposition principle is fundamental when solving linear boundary
value problems with the Fourier method. It is the basic approach that states
that the Fourier expression of the general solution can be expressed as the
sums of simple solutions. In other words, the principle of superposition states:

Principle of Superposition. If u1, u2, ... are solutions of the same linear
homogeneous PDE L u = 0, then so is

u = c1u1 + c2u2 + ...

where c1, c2, ... are constants (real or complex).
It includes series of the type

u =
∞∑

i=1

ciui

(provided it converges) where ci are constants and ui specified functions. [11,
p. 3]

Theorem 7. Suppose that fn : [a, b]→ R, for each k = 1, 2, ..., is integrable
on [a, b] and that fn(x)→ f(x) uniformly on [a, b] as n→∞.

Then the limit function f(x) is integrable on [a, b] and
∫ b
a
f(x)dx =

limn→∞
∫ b
a
fn(x)dx. This also holds for series.

Theorem 8. Suppose that every smooth function ui in an infinite sequence
u1, u2, u3, ... has a continuous derivative on [a, b] and satisfies a linear homo-
geneous PDE L ui = 0 or the homogeneous boundary conditions Lui = 0.
Suppose further that:
i) The series

∑∞
n=1 un(x0) converges at some point on x0 ∈ [a, b], and the

series of derivatives
∑∞

n=1 u
′
n(x) converges uniformly on [a, b], to f(x) =∑∞

n=1 u
′
n(x) say, and is differentiable with regard to all the derivatives that

are included in L F or LF and
ii) there is a given continuity condition at the boundary that is fulfilled by
L F (since it has to be at least twice differentiable) Then even

F (x) =
∞∑

n=1

cnun(x) (56)
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satisfies the same PDE or the same boundary conditions, where the se-
ries

∑∞
n=1 un(x) converges at every x, and the sum F (x) =

∑∞
n=1 cnun(x)

is differentiable with F ′(x) = f(x) (so f(x) is the derivative of F (x) =∑∞
n=1 cnun(x)).

Proof: To prove this theorem, for reasons of simplicity, we will suppose
that L = d

dx
.

Since each u′n is continuous and
∑∞

n=1 u
′
n is uniformly convergent, f is

continuous on [a, b] since the limit of a uniformly convergent sequence of
continuous functions is continuous. Thus, u′n and f are integrable on [a, b].
Employing Theorem 7 to u′n and f on [x0, x] we get

∞∑

n=1

∫ x

x0

u′n(x)dx =

∫ x

x0

f(x)dx. (57)

The LHS of (57) can be expressed as

∞∑

n=1

∫ x

x0

u′n(x)dx = lim
m→∞

m∑

n=1

∫ x

x0

u′n(x)dx =

limm→∞
∑m

n=1(un(x)− un(x0)) = limm→∞(
∑m

n=1 un(x)−∑m
n=1 un(x0))

(58)
The limit limn→∞

∑m
n=1 un(x0) exists due to the hypothesis that (56)

converges, therefore the series F (x) = limm→∞
∑m

n=1 un(x) converges for each
x ∈ [a, b]. Therefore, a function F : [a, b] → R is well-defined and from (57)
and (58) we acquire

F (x)− F (x0) =

∫ x

x0

f(x)dx.

Differentiation in x gives F ′(x) = f(x) for x ∈ [a, b] since f is continuous.
The above discussion can be applied for linear homogeneous boundary

condition Lu = 0. In this case we may require that the function Lu satisfies
a continuity condition at the points on the boundary so that their value there
represent the limit when these points approach the domain from within. [2,
p. 1]

3.2 Method: Separation of Variables

In this section, we will begin with a description of the most common method
used for solving the heat equation; namely, the separation of variables. In
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other words, we search for particular solutions in the form

u(x, t) = X(x)T (t) (59)

and attempt to obtain ordinary differential equations for X(x) and T (t).
The aforementioned equations will contain a parameter called the separation
constant. The function u(x, t) in (59) is called a separated solution. Subse-
quently, we can employ the superposition principle to acquire more general
solutions of a linear homogeneous PDE as sums of separated solutions. A
second order homogeneous PDE in two variables, say x and t, can always be
expressed in the canonical form

a(x, t)u′′xx + c(x, t)u′′tt + d(x, t)u′x + e(x, y)u′t + f(x, y)u = 0.

If a = 0 or if c = 0 the equation is parabolic, and such is the one-
dimensional homogeneous heat equation u′′xx − ku′t = 0, where a = e = 1
and the rest zero. Furthermore, a boundary value problem or an initial
value problem are said to be well-posed if they satisfy the following three
conditions:

i) Existence: there is at least one solution,
ii) Uniqueness: there is at most one solution
iii) The solution depends continuously on data and parameters; which in

turn regulate the behaviour of the functions. [11, p. 9]

Example 4 The linear boundary value problem, namely





u′t = ku′′xx, 0 < x < b, t > 0

u(0, t) = 0, t > 0

u(b, t) = 0, t > 0

u(x, 0) = f(x), 0 6 x 6 b

(60)

is a problem for temperature u(x, t) for an idealized, heat conducting ho-
mogeneous rod that is infinitely thin of length b. It is also assumed that
f is piecewise smooth and that the surface is completely insulated. The
cross-sectional area is circular due to the cylindrical shape of the rod and
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the diameter d� b. It is assumed that k is a positive constant and that the
rod lacks a heat source. To determine the non-trivial functions that satisfy
the conditions u′t − ku′′xx = 0 and u(0, t) = u(b, t) = 0 we let the coordinate
system be represented as shown in Figure 5 above and use the method of the
separation of variables of variables x and t.

Figure 5: Idealized, homogeneous rod

Let, u(x, t) = X(x) · T (t).
The imposition of the boundary conditions yields:

u(0, t) = u(b, t) = 0 ⇐⇒ X(0)T (t) = X(b)T (t) = 0 ⇐⇒ X(0) = X(b) = 0
(61)

for arbitrary T(t). We differentiate the function u(x, t) = X(x) · T (t) with
respect to t as well as with respect to x and then put it back into our PDE
in (60) to obtain,

X(x) · T ′(t) = k ·X ′′(x) · T (t) ⇐⇒ T ′(t)

k · T (t)
=
X ′′(x)

X(x)
= −α2

⇐⇒
{
X ′′(x) + α2X(x) = 0

T ′(t) + kα2T (t) = 0
(62)

where α is a positive constant since the left-hand side of (62) only depends
on the variable t and the right-hand side only depends on the variable x and
since the two of them are equal, we conclude that there must exist a constant
α. We know that the constant is equal to −α2 since if we consider the other
two cases; namely, when the constant is equal to α2 or 0 we obtain the
following:
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For a constant α2 (as opposed to −α2), α ∈ R :

X ′′(x)− α2X(x) = 0

where the solution is
X(x) = C1e

αx + C2e
−αx (63)

We apply the boundary conditions,
X(0) = 0 which substituted into (63) gives 0 = C1 + C2 ⇒C1 = −C2

X(b) = 0⇒ C1e
αb − C1e

−αb = 0⇒ C1(e2αb − 1) = 0, α > 0, b > 0

⇒ C1 = 0, C2 = 0

where we recover a trivial solution.
For α2 = 0

X ′′(x) = 0

We integrate twice,
X ′(x) = C1 (64)

X(x) = C1x+ C2

For some constants C1, C2.
We apply the boundary conditions,

X(0) = 0⇒ 0 = C2

⇒ X(x) = C1x

X(b) = 0⇒ 0 = C1b, b > 0

⇒ C1 = 0

which is a trivial solution. Thus, (62) is equal to −α2 as the other two cases
recover trivial solutions. It now becomes an issue of solving the so-called
Sturm-Liouville-problem [11, p. 84-85].

X ′′(x) + α2X(x) = 0, X(0) = X(b) = 0. (65)
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X ′′ + α2X = 0 ⇐⇒ X(x) = C1 cosαx+ C2 sinαx

X(0) = 0⇒ C1 = 0⇒ X(x) = C2 sinαx

X(b) = 0⇒ C2 sinαb = 0⇒ sinαb = 0 ⇐⇒ αb = nπ

⇐⇒ α =
nπ

b
, n = 1, 2, 3, ... (66)

All these numbers constitute the spectrum (eigenvalues) of the operator
− d2

dx2
. The corresponding eigenfunctions are

Xn(x) = Bn · sin
nπx

b
, n = 1, 2, 3...

(67)

Let us return to the T-equation in (62). We insert the value of α2 and the
equation is transformed to

T ′(t) + k(
n2π2

b2
)T (t) = 0

and has solutions

Tn(t) = Cne
− kn2π2t

b2 (68)

The non-trivial solutions to the homogeneous equation that fulfill the
boundary conditions u(0, t) = u(b, t) = 0 is given by

Un(x, t) = Xn(t)Tn(t) = an · e−
kn2π2t
b2 · sin nπx

b

where an = BnCn, n = 1, 2, ... We formally (i.e glossing over some details
such as convergence) build a series since the principle of superposition states
that the sum of solutions of a linear homogeneous equation is also a solution:

u(x, t) =
∞∑

n=1

an · e−
kn2π2t
b2 · sin nπx

b
.
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(69)

Note: we need to worry whether this makes sense as a function later.
Now: in accordance to the initial condition, we substitute t = 0 in (69) and
obtain the condition:

u(x, 0) = f(x) =
∞∑

n=1

an sin
nπx

b

(70)

We now need to determine the constants an from this expression; there-
fore, we use an orthogonality relationship. Note that from earlier computa-
tions; namely, equation (50):

∫ b

0

sin
nπx

b
· sin mπx

b
dx =

{
0, n 6= m
b
2
, n = m

so if we go back to 70 and apply the above, we begin by multiplying sin mπx
b

to both sides and then integrating over [0, b] and obtain:

∫ b

0

f(x) sin
(mπx

b

)
dx =

∫ b

0

∞∑

n=1

an sin
(nπx

b

)
sin
(mπx

b

)
dx (71)

∫ b

0

f(x) sin
(mπx

b

)
dx =

∞∑

n=1

∫ b

0

an sin
(nπx

b

)
sin
(mπx

b

)
dx. (72)

(above, we ignore the question about interchanging
∑∞

n=1 and
∫ b

0
.) On the

right hand side we will be integrating an infinite number of terms we assume
that n = m since we have an infinite number of terms from n = 1 to ∞
where the integral will be zero for n 6= m but one of them will correspond to
n = m and in that case we get 1

2
but for every other term we will be adding

zero:

∫ b

0

f(x) sin
(mπx

b

)
dx = am(

b

2
+ 0 + 0 + 0 + ...) (73)
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∫ b

0

f(x) sin
(mπx

b

)
dx =

amb

2
(74)

Thus f can be expanded in a Fourier Series with an given by:

∀n > 1 : an =
2

b

∫ b

0

f(x) sin
(nπx

b

)
dx (75)

Finally, the series

u(x, t) =
∞∑

n=1

(
2

b

∫ b

0

f(s) sin
nπs

b
ds)e−

kn2π2t
b2 sin

nπx

b
,

(76)

is a formal solution to the heat equation problem 60. A formal solution is an
object that, on the face of its appearance, solves a certain problem, but where
it is not clear whether the object is well-defined as a function or similar.

Example 5 We consider Example 1 from chapter 3 where we have com-
puted the Fourier coefficients of f(x) = x for x ∈ [−π, π]. Hence, our problem
is 



u′t = ku′′xx, −π < x < π, t > 0

u(−π, t) = 0, t > 0

u(π, t) = 0, t > 0

u(x, 0) = f(x) = x, −π 6 x 6 π
In Example 1 we obtained,

bn =
1

π

∫ π

−π
xsinnxdx = 2

(−1)n−1

n
,

The same method is used as in Example 4 and from (76) we obtain,

u(x, t) =
∞∑

n=1

2
(−1)n−1

n
e−

kn2π2t
b2 sin(nx).

Example 6 (Continuation of Example 4) Suppose that the initial temper-
ature distribution is given by f(x) = x(b−x) where a = 0, b = 1 and k = 1

10
.
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Let us recall that αn = nπ
b

which in our case is reduced to nπ. Also, note
that the following analysis for functions defined on [0, 1] is permitted due to
the fact that the Fourier transform for functions defined on an interval of the
type: [a, b), with a, b being two arbitrary real numbers with a < b is given
by (52).

From (75), we aim to compute the Fourier coefficients

an = 2

∫ 1

0

x(1− x) sin(nπx)dx

Integration by parts yields

an = 2

∫ 1

0

x(1− x)
(cos(nπx)

nπ

)′
dx

=
2

nπ

[[
− x(1− x)

cos(nπx)

nπ

]1

0
+

∫ 1

0

(1− 2x)
cos(nπx)

αn
dx

]

=
2

nπ

∫ 1

0

(1− 2x)

(
sin(nπx)

nπ

)′
dx

=
2

nπ

[[
(1− 2x)

sin(nπx)

nπ

]1

0
−
∫ 1

0

(−2)
sin(nπx)

nπ
dx

]

=
4

(nπ)2

∫ 1

0

sin(nπx)dx =
4

(nπ)2

[
−
[cos(nπx)

nπ

]1

0

]
=

4[1− (−1)n]

(nπ)3

.
So the solution is

u(x, t) =
4

π3

∞∑

n=1

[1− (−1)n]

n3
e−

n2π2t
10 sin (nπx).

For more detail concerning this example, readers are advised to consult
[7, p. 9].

Example 7 (Continuation of Ex.4) In this example we will consider an-
other case which differs from the previous two due to the fact that one bound-
ary condition is inhomogeneous. The method to be used will reduce the
inhomogeneous problem to a homogeneous problem.
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Suppose that the temperature at one of the endpoints is u(b, t) = u0, t >
0. Then the problem becomes



u′t = ku′′xx, (0 < x < b, t > 0)

u(0, t) = 0, u(b, t) = u0, (t > 0)

u(x, 0) = f(x), (0 6 x 6 b)

(77)
We now need to build an appropriate auxiliary function that satisfies the

boundary conditions, say j(x). If, g(t) represents the boundary condition
on the end of the rod and h(t) represents the boundary condition at the
beginning of the rod, then the construction of an auxiliary function is given
by,

j(x, t) =
g(t)− h(t)

b
x+ h(t)

j(x, t) =
u0 − 0

b
x+ 0 =

u0

b
x.

We now let u(x, t) = v(x, t) + j(x) so we obtain, u(x, t) = v(x, t) + u0
b
x.

Substituted in (77) (firstly, we wish to find v(0, t) so putting x = 0 we attain
u(0, t) = v(0, t)+ u0

b
·0 which gives that v(0, t) = 0; secondly, we want v(b, t),

so if we substitute x = b, we get u0 = v(b, t)+ u0
b
b and obtain that v(b, t) = 0;

thirdly, we want v(x, 0) so if t = 0 then, u(x, 0) = v(x, 0)+ u0
b
x, and we obtain

that f(x) = v(x, 0) + u0
b
x) produces the homogeneous problem




v′t(x, t) = kv′′xx(x, t), (0 6 x 6 b, t > 0)

v(0, t) = 0, v(b, t) = 0, (t > 0)

v(x, 0) = f(x)− u0x
b
, (0 6 x 6 b)

The solution can be written directly from 76,

u(x, t) =
∞∑

n=1

(
2

b

∫ b

0

(f(s)− u0s

b
) sin

nπs

b
ds) · e− kn

2π2t
b2 sin

nπx

b
.

[18, p. 28].
Example 8
In this example, we will treat another case; namely, a Neumann boundary

condition. The linear boundary value problem
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



u′t(x, t) = ku′′xx(x, t), (0 < x < b, t > 0)

u′x(0, t) = 0, u′x(b, t) = 0, (t > 0)

u(x, 0) = f(x), (0 6 x 6 b)

(78)

is a problem for the temperature u(x, t) of a heat conducting flat disk (which
we consider as an interval), bounded by x = 0 and x = b, but otherwise not
bounded in the y- and z- axes. Its sides are insulated so no heat comes in or
out. It is assumed that a heat source is absent here.

Figure 6: Heat conducting flat disk

Separation of variables u(x, t) = X(x)T (t) gives

⇒
{
X ′′(x) + α2X(x) = 0, X ′(0) = X ′(b) = 0

T ′(t) + α2T (t) = 0
(79)

Equation (78) with the boundary conditions constitute of an eigenvalue
problem (Sturm-Liouville’s problem) with eigenvalues

λ0 = 0, λn =

(
nπ2

2

)
, n = 1, 2, 3...

and eigenfunctions

X0(x) = 1, Xn(x) = cos
nπx

b
, n = 1, 2, 3...
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The T-equation from (79) has the corresponding solutions

T0(t) = 1, Tn(t) = e−(nπ
b

)2kt

The product of the two constitutes the solution to (78):

un(x, t) = Xn(x)Tn(t) = e−(nπ
b

)2kt cos
nπx

b
n > 1.

In accordance to the superposition principle, the generalized linear com-
bination becomes,

u(x, t) = A0 +
∞∑

n=1

Ane
−(nπ

b
)2kt cos

nπx

b
. (80)

which is the solution to

u′t = ku′′xx, u′x(0, t) = u′x(b, t) = 0.

To find A0 and An, we take into account the initial condition,

u(x, 0) = f(x)⇔ 2
A0

2
+
∞∑

n=1

An cos
nπx

b
= f(x)⇔

⇔ A0 =
2

b

∫ b

0

f(x)dx

and

An =
1

b

∫ b

0

f(x) cos
nπx

b
dx.

We substitute the values of A0 and An back to our solution (80). Thus,
the problem is well-posed and as such entirely solved.

3.2.1 Existence and Uniqueness of Solutions to the Boundary
Value Problem of the Heat Equation

We have hitherto encountered formal solutions in which a concern whether
u(x, t) makes sense as a function arises, since if we start with a nice func-
tion f as the initial condition, then the series we build not only “solves” the
problem but actually produces a function of x and t. However, one could
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imagine that if f is very wild, for example not piecewise continuous, then the
function series we might obtain may not give a function that is differentiable.
This is the distinction between formal solution and solution in the sense of
pointwise convergence satisfying the heat equation as a function. Thus, we
are to now examine two properties of solutions which will help clarify any
uncertainties and illustrate how the heat equation satisfies both properties.

I) Existence
In the preceding section, for the boundary-value problem (60) in Example

4, we found that (76) is the formal solution of the heat conduction problem,
where an is given by (75). We shall illustrate that series (76) (or (69))
is the formal solution to the problem, if f(x) is continuous in [0, b], that
f(0) = f(b) = 0 and that f ′ is piecewise continuous in [0, b]. Since f(x) is
bounded, we have

|an| =
2

b

∣∣∣∣
∫ b

0

f(x) sin
(nπx

b

)
dx

∣∣∣∣ 6
2

b

∫ b

0

|f(x)|dx 6 C, (81)

where C is a positive constant. So, for some finite t0 > 0, we have

∣∣∣∣ane
− kn2π2t

b2 sin
nπx

b

∣∣∣∣ 6 Ce−
kn2π2t0

b2 , t ≥ t0.

The ratio test for numerical series illustrates how the series of terms∑∞
n=1 e

− kn
2π2t0
b2 converges. Therefore, in accordance to the Weierstrass M-

test, series (76) converges absolutely with respect to x and t when t ≥ t0 and
0 6 x 6 b. Hence u(x, t) makes sense as a function.

Since the series is convergent and differentiating a linear operator, term
by term differentiation of (76) with respect to t gives

u′t = −
∞∑

n=1

a

(
nπ

b

)2

ke−
kn2π2t
b2 sin

nπx

b
.

(82)

We note that for t ≥ t0 we have,
∣∣∣∣∣−anK

(
nπ

b

)2

e−
kn2π2t
b2 sin

nπx

b

∣∣∣∣∣ 6 C

(
nπ

b

)2

Ke−
kn2π2t0

b2
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and the series of terms

C

(
nπ

b

)2

·Ke−(nπ
b

)2kt0

converges in accordance to the ratio test. It follows that u′t converges uni-
formly from the Weierstrass M-test when t ≥ t0 and 0 6 x 6 b. In the same
way, if series (69) is differentiated two times with respect to x, we obtain

u′′xx = −
∞∑

n=1

an

(
nπ

b

)2

e−
kn2π2t
b2 sin

nπx

b
. (83)

From (82) and (83),

u′t = ku′′xx.

Thus, equation (69) is the solution to the 1D heat equation and boundary-
value problem in (60) in the region 0 6 x 6 b, t ≥ t0.

Subsequently, we shall show that the boundary conditions are fulfilled.
We note that series (69) which represents u(x, t) uniformly converges in the
interval 0 6 x 6 b, t ≥ t0. Given that a function defined by a uniformly
convergent series of continuous functions is itself continuous, in turn means
that u(x, t) is continuous at x = 0 and x = b from which it follows that when
x = 0 and x = b, series (69) satisfies

u(0, t) = u(b, t) = 0, ∀t > 0.

It remains to show that u(x, t) satisfies the initial condition

u(x, 0) = f(x), 0 6 x 6 b.

As of previous assumptions, f(x) given by

f(x) =
∞∑

n=1

an sin
nπx

b

is uniformly and absolutely convergent. So, by Abel’s test of convergence
(which states that if

∑∞
1 bn(x) converges uniformly on P and that {an(x)}

is a monotone uniformly bounded sequence, then
∑∞

1 an(x)bn(x) converges
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uniformly on P ) [5, p. 434], the product of the terms of a uniformly conver-
gent series (which we know is uniformly convergent from Theorem 5)

∞∑

n=1

an sin
nπx

b

and a uniformly bounded and monotone sequence e−(nπ
b

)2kt is uniformly con-
vergent with respect to t. Thus, the series

u(x, t) =
∞∑

n=1

an · e−
kn2π2t
b2 · sin nπx

b

converges uniformly for 0 6 x 6 b, t > 0, and in the same manner, u(x, t) is
continuous in 0 6 x 6 b, t > 0. The initial condition

u(x, 0) = f(x), 0 6 x 6 b

is therefore fulfilled. The existence of solution is thus confirmed. [15, p. 251].
II) Uniqueness
Uniqueness is a fundamental feature of the heat equation. It demonstrates

how any solution is decided by the corresponding initial and boundary con-
ditions. There are different ways to prove this feature; however, we will focus
on the energy method.

Theorem 9. Let u(x, t) be a continuous differentiable function. If u(x, t)
satisfies the PDE

u′t = ku′′xx, 0 6 x 6 b, t > 0

with the boundary conditions

u(0, t) = 0, u(b, t) = 0, t > 0

and initial condition

u(x, 0) = f(x), 0 6 x 6 b

then there exists at most one solution u.

Proof Suppose that there exist two solutions u1 and u2 to the heat equa-
tion on (0, b). Let v(x, t) = u1(x, t)− u2(x, t). Then,





v′t = kv′′xx, 0 6 x 6 b, t > 0

v(0, t) = v(b, t) = 0, t > 0

v(x, 0) = 0, 0 6 x 6 b
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(84)

We consider the “energy” which is defined by the integral of the function
(where v = v(x, t)),

J(t) =
1

2k

∫ b

0

v2dx.

J(t) is differentiated with respect to t and we obtain,

J ′(t) =
1

k

∫ b

0

vv′tdx

=

∫ b

0

vv′′xxdx.

by virtue of the second equation in (84). Integration by parts gives

=

∫ b

0

vv′′xxdx = [vv′x]
b
0 −

∫ b

0

v′x
2dx.

Since v(0, t) = v(b, t) = 0,

J ′(t) = −
∫ b

0

v′x
2dx 6 0.

From the initial condition v(x, 0) = 0 we have that J(0) = 0. This condition
and J ′(t) 6 0 indicate that J(t) is a decreasing function of t. Thus,

J(t) 6 0.

But per definition of J(t)

J(t) > 0.

Hence,

J(t) = 0, t > 0.
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Since v(x, t) is continuous J(t) = 0 implies

v(x, t) = 0,

in 0 6 x 6 b, t > 0. From which it follows that u1 = u2 and the solu-
tion (if it exists) is unique. [15, p. 254]. One could apply this method for
Newmann’s boundary conditions since the [vv′x] part from the integration by
parts that disappeared because v is zero at the boundary points, (homoge-
nenous Dirichlet conditions) disappears even if it is v′x that is zero on the
boundary points (homogeneous Neumann boundary conditions).
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