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Abstract

Two dice are rolled repeatedly, but only their sum is registered. Have
the two dice been “shaved”, so two of the six sides appear more fre-
quently? Pavlides & Perlman (2010) discuss this somewhat compli-
cated type of situation through curved exponential families. Here we
contrast their approach by regarding data as incomplete data from a
simple exponential family. The latter, supplementary approach is in
some respects simpler, it provides additional insight about likelihood
equation and Fisher information, it opens up for the EM algorithm,
and it elucidates the information content in ancillary statistics.
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1 Introduction

In an entertaining and instructive article, Pavlides & Perlman (2010) con-
sider the following (artificial) inference problem. A pair of dice used at a
casino are possibly “shaved”, both identically, such that two mutually op-
posite sides of the die have a higher probability than the other four sides.
A statistical complication is that the two dice are rolled together and the
statistics collected “unfortunately” do not represent the individual dice out-
comes, but only the sum of the two outcomes. Pavlides and Perlman show
how this complication leads away from a simple binomial situation to a
curved multinomial exponential family, with a scalar parameter but a mini-
mal sufficient statistic of much higher dimension (4 or 5 for shaved ordinary
dice). One consequence, typical for curved families, is that the likelihood
equation does not have an explicit solution. Pavlides and Perlman demon-
strate how the Fisher information can be calculated and used to judge the
sample size needed for a desired precision in the parameter, in particular in
comparison with individual dice data. They also show and illustrate how
these results much depend on what pair of faces is assumed to possibly have
been shaved, including how the dice were labelled.

The purpose of this note is to point out that another instructive way
to look at such data is as incomplete data from an exponential family of
individual die data. The results are of course not in conflict with the results
of the curved approach, but they may be considered simpler in some sense,
and they give different insights in the results. In particular they open up
for the EM algorithm, including control of its speed of convergence, and for
a more elucidating analysis of ancillarity.

2 Incomplete data approach

With observed data regarded as incomplete data from an exponential family
with scalar canonical statistic t and canonical parameter θ, the likelihood
equation can be written

E[t | data] = E[t], (1)

where the left hand side is the conditional expected value of t, given the
observed incomplete data (Sundberg 1974). Both sides are functions of the
parameter, which need not be the canonical θ, but the equation holds for
any choice of parameterization. The observed information for the canonical
parameter θ is

J(θ; data) = Var[t]−Var[t | data],

and the corresponding Fisher information is the expected value of J ,

I(θ) = Var[t]− E[Var[t | data]] = Var[E[t | data]].
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In another parameterization, by ψ = g(θ), we have I(ψ) = Var[E[t |data]]/g′(ψ)2.
In both cases, Var[E[t |data]] is expressed in terms of the adequate parame-
ter. For complete data, E[t|data] = t, so Var[t |data] = 0 and Var[E[t |data]]
simplifies to Var[t]. It follows that for any parameterization, the relative
Fisher information, as compared with complete data, is

Irel = Var[E[t |data]]/Var[t], (2)

where both numerator and denominator are functions of the parameter. The
last part of theory we need is that 1− Irel is not only the expected relative
loss of information due to incompleteness, but also the rate of convergence
of the EM algorithm, which updates the parameter by solving Eq. (1) with
the current parameter value on the left hand side and the new one on the
right hand side (Sundberg 1976, Dempster et al. 1977).

More specifically, in the present case we can take t = x =
∑
xi/n, where

xi = 0, 1
2 or 1, is the proportion of dice in the ith of n rolls of the pair of

dice showing any of the two larger faces (the shaved ones). Then E[t] is the
probability to get one of the larger faces when rolling a single die, which we
can take as parameter itself (mean value parameterization) or express as a
function of some other convenient parameter. Denoting the observed sum
in the ith roll by yi, the left hand side of the likelihood equation (1) can be
written

E[t | data] =
n∑

i=1

E[xi| yi]/n =
12∑
j=2

E[x | y = j] fj , (3)

where j = 2, . . . , 12 are the possible sum outcomes and fj is the observed
relative frequency of outcome j. Thus we need formulas for these E[x | y = j],
expressed as functions of the parameter. For some j-values they will be
immediat§e, equal to 0, 1

2 or 1, whereas for other j-values we have to apply
the definition of conditional probability to the expression

E[x | y = j] = 1
2 Pr(x = 1

2 |y = j) + Pr(x = 1|y = j).

When we have this list of conditional mean values for all j (see example
below), the computer easily calculates (3), which we need on the left hand
side of (1). Replacing the fj in (3) by the corresponding theoretical proba-
bilities (known functions of the parameter, already used in the conditional
probabilities), we would get E[t], again.

Only slightly more complicated is to instruct the computer to calculate
the observed and Fisher information quantities. We just need expressions
for Var[x | y = j] instead of E[x | y = j] in (3). The Fisher information is
obtained from the observed information by again replacing the fj by the
corresponding theoretical probabilities, and Irel in (2) by dividing by Var[t].
The procedure is exemplified in more detail in the next section. Finally, we
could follow Pavlides & Perlman (2010, Fig. 3) and plot Irel as function of
the parameter.
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3 Example

As an example of the calculations to be carried out in the “incomplete data”
approach, we look at the first example of Pavlides & Perlman (2010), with
two ordinary dice possibly shaved along one of the two opposite faces 1
and 6. The other die variants considered by Pavlides & Perlman (2010) are
treated analogously. We follow their notations, letting a be the probability
for each of the faces 1 and 6, and b the probability for each of the other
faces, under the obvious constraint 2a+ 4b = 1. We need only consider the
case of a single roll of the two dice (n = 1). By symmetry we could reduce
the number of registered outcomes y by merging 2 and 12, 3 and 11 etc, but
we need not do so for the procedure below.

First and foremost we need the conditional distribution of x, the average
number of outcomes 1 or 6, given the sum y. For symmetry reasons we
need only consider y ≤ 7 here. For y = 2 and y = 3, x is nonrandom,
x = 1 and x = 1

2 , respectively. For the other y-values we have a binary
distribution, so we only need the probability for the non-zero outcome, and
it will immediately yield the conditional means and variances for x. Here is
a list of the conditional probabilities we need:

Pr(x = 1 | y = 2) = a2/a2 = 1

Pr(x = 1
2 | y = 3) = 2ab/2ab = 1

Pr(x = 1
2 | y = 4) = 2ab/(2ab+ b2)

Pr(x = 1
2 | y = 5) = 2ab/(2ab+ 2b2)

Pr(x = 1
2 | y = 6) = 2ab/(2ab+ 3b2)

Pr(x = 1 | y = 7) = 2a2/(2a2 + 4b2)

They are here expressed such that the denominator of the ratio form is the
probability for the particular y-value, the same as in Pavlides & Perlman
(2010, eqs (2.1)). The conditional variance is the non-zero x-value squared
times the product of the conditional probability and its complement. So for
example, Var[x | y = 2] = Var[x | y = 3] = 0, and

Var[x | y = 4] = (12)2 (2ab) (b2) /(2ab+ b2)2. (4)

Its contribution to the expected E[Var[x | y]] is obtained by multiplying by
Pr(y = 4), that is by deleting one of the factors (2ab+b2) in the denominator
of (4). Calculating E[Var[x | y]] in this way yields the following formula:

1− Irel =
b

4

{
1

2a+ b
+

1

a+ b
+

3

2a+ 3b
+

4a

a2 + 2b2

}
(5)

This of course resembles the formula for e1,6(a) in Pavlides & Perlman
(2010), since Irel and e1,6(a) are necessarily identical. The terms on the
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right hand side tells how the incompleteness in the different y-values im-
plies loss of information. For a = b = 1/6 the right hand side becomes
(1/24){2 + 3 + 3.6 + 8} = 0.69. The four terms correspond to y = 4 or
10, y = 5 or 9, y = 6 or 8, and y = 7, respectively. It is clear that the
incompleteness in y = 7 contributes most to the loss of information. We
return to this matter in Section 4.

As calculated already by Pavlides & Perlman (2010), e1,6(1/6) = 0.31.
This implies that if we use the EM algorithm to compute the MLE â of a,
assumed close to a = 1/6, we should expect the deviation from â to decrease
by a factor 1− 0.31 = 0.69 per iteration. In other words, one more decimal
will be right per about 6 iterations (0.696 = 0.11).

4 Ancillarity

For precision estimation in inference with actual data we can choose between
observed and expected information, or even better a conditional expected
information, if there is an ancillary statistic (precision index) to condition
on. Pavlides & Perlman (2010, Sec. 5.6) discuss the existence of alternative
ancillary statistics and the choice between them for a non-conventionally
labelled type of die. The incomplete data approach also elucidates ancillarity
effects, and to show this, we continue on the example above. First, a division
of the possible outcomes y in the sets of even and odd values is easily seen to
be ancillary, in the sense of both frequencies being binomial with (parameter-
free) probability 1

2 , and as we will see it is also a precision index. A further
division of the even y-values in those < 7 and those > 7 is also distribution-
constant in the same sense, but does not form a useful precision index.
Minimal sufficiency, or symmetry, tells us to aggregate over y = 7 − j and
y = 7 + j.

Let even and odd be represented by the statistic u. First we note that
E(x|u) is independent of u. Hence the conditional mean value of the MLE
is at least approximately independent of u, whereas Var(x|u) depends on
u, so u is a proper precision index. The former property actually holds for
any distribution-constant division of the set of y-values for any labelling of
the dice. Formula (5) for 1− Irel quantifies u as a precision index. The first
and third of the four terms correspond to u = “even”. From the numerical
values when a = 1/6 it is seen that the by far largest information loss is
when y = 7, which is in the set u = “odd”. Thus, if the odd y-values are
less frequent than expected (i.e.< 50%), we should expect a higher precision
than expected on average over u, but a lower precision if the odd outcomes
are > 50%.

The situation is even more extreme in Sec. 5.6 of Pavlides & Perlman
(2010), where faces 1 and 2 have the possibly higher probability a. The set
u of y-values {2, 5, 9} in their division S1 has probability 1/4, independent
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of a, and Var(x |u) = 0. In other words, for outcomes in u there is no loss of
information, so a high frequency of such outcomes is highly beneficial, and
vice versa if the frequency is low, and this is quantified by conditioning on
the ancillary S1.

5 Discussion

The curved family analysis of Pavlides & Perlman (2010) and the incomplete
data analysis above contribute in different ways to the understanding of
the models. The incomplete data analysis seems to be simpler, since it
only involves a one-dimensional sufficient statistic. The derivations of the
likelihood equations and the Fisher information are perhaps not considerably
simpler, but they appear to yield more understanding of the results than the
curved family approach.

Situations in which the duality between curved exponential families and
incomplete data from simple exponential families should be considered are
not infrequent. More generally than in the example of Pavlides & Perl-
man (2010), they often appear in contingency tables when some cells are
aggregated. In particular this is so in genetics, where the aggregation may
correspond to one genotype dominating another genotype, thus controlling
the observed phenotype. Two illustrations are the introductory example of
Dempster et al. (1977), where four cells (categories) have the probabilities
{(2+π)/4, (1−π)/4, (1−π)/4, π/4} for some parameter π, 0 < π < 1, and
the classical example of blood-groups A, B and 0, modelled under Hardy–
Weinberg equilibrium.

Under a relative degree of incompleteness as in the example above, the
EM algorithm is a serious competitor to the Newton–Raphson algorithm
for calculating the MLE, because EM converges reasonably fast, is easier to
program, and has a lower risk for divergence since the likelihood increases
for each iteration. Note that with a different design of the dice, the rate of
convergence will be different, whereas the sample size n does not have an
effect on the formula for the EM expected rate of convergence.

We have also seen that the incomplete data approach helps to understand
the effects of conditioning on ancillary statistics. It should be kept in mind,
however, that if we really want to make a precise inference about shaved
dice, very large sample sizes are needed, and then with high probability the
ancillary statistics will be close to their expected values. As a consequence,
the conditional variance given an ancillary statistic is likely to be close to
its expected value.
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