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Abstract

A general way to estimate continuous functions consists of approxima-
tions by means of Bernstein polynomials. Sancetta and Satchell (2004)
proposed to apply this technique to the problem of approximating copula
functions. The resulting so-called Bernstein copulae are nonparametric cop-
ula estimates with some desirable mathematical features like smoothness. In
the present paper, we extend previous statistical results regarding bivariate
Bernstein copulae to the multivariate case and study their impact on mul-
tiple tests. In particular, we utilize them to derive asymptotic confidence
regions for the family-wise error rate (FWER) of simultaneous test proce-
dures which are empirically calibrated by making use of Bernstein copulae
approximations of the dependency structure among the test statistics. This
extends a similar approach by Stange at al. (2015) in the parametric case.
A simulation study quantifies the gain in FWER level exhaustion and, con-
sequently, power which can be achieved by exploiting the dependencies, in
comparison with common threshold calibrations like the Bonferroni or the
Sidék correction. Finally, we demonstrate an application of the proposed
methodology to real-life data from insurance.

Keywords: Asymptotic oscillation behavior, Bonferroni correction, family-wise er-
ror rate, p-value, risk management, Sidak correction, simultaneous test procedure
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1 Introduction

Copula-based modeling of dependency structures has become a standard tool in
applied multivariate statistics and quantitative risk management; see, e. g., [23],
[17], [14], [12], and Chapter 5 of [22]. The estimation of an unknown copula is key
to a variety of modern multivariate statistical methods. In particular, applications
of copulae to the calibration and the analysis of multiple tests have been considered
in [10], [3], [31], [6], [28], and [27]; see also Sections 2.2.4 and 4.4 in [9]. Specifically,
the copula-based construction of simultaneous test procedures (STPs) in the sense
of [13] developed in [10] and [31] under parametric assumptions regarding the type
of dependencies among test statistics considerably extends previous approaches
as in [15] which are confined to asymptotic Gaussianity and, consequently, linear
dependencies.

In the case of a parametric copula, generic estimation techniques like the (gen-
eralized) method of moments or maximum likelihood estimation are established
notions; cf. Section 3.2 of [31] and references therein. The empirical copula as
well as its asymptotic properties as a nonparametric estimator have been studied,
among others, in [25], [8], [33], and, more recently, in [5], [29], and [4], to mention
only a few references. However, similarly as multivariate histogram estimators, the
empirical copula in dimension m has some undesirable properties. For example, it
is discontinuous, and it typically assigns zero mass to large subsets of [0, 1]™, even
if the sample size n is large, due to the concentration of measures phenomenon.
One way to tackle these issues consists of smoothing of the empirical copula. In
particular, in [26] smoothing by Bernstein polynomials has been proposed, lead-
ing to so-called Bernstein copulae. Approximation theory for Bernstein copulae
has been derived in [7], and asymptotic statistical properties of Bernstein copula
estimators in the bivariate case (m = 2) have been proven in [16] and [2]. Appli-
cations of Bernstein copulae to modeling dependencies in non-life insurance have
been considered in [11].

In the present work, we contribute to theory and applications of Bernstein
copulae in the case of a general dimension m > 2. In Section 2, we extend the
asymptotic theory regarding the Bernstein copula estimator by proving its rate
of convergence in infinity norm as well as its asymptotic normality, together with
explicit expressions for the limit variance for arbitrary m. Section 3 is then de-
voted to applications of Bernstein copulae in multiple testing, in particular to the
calibration of multivariate STPs for control of the family-wise error rate (FWER),
avoiding restrictive parametric dependency assumptions. The application of the
central limit theorem derived in Section 2 allows for a precise quantification of the
uncertainty about the realized FWER in the case that the copula of test statis-
tics is pre-estimated prior to calibrating the significance threshold of the STP. This
extends the results in [31] to the case of nonparametric copula pre-estimation. Sec-



tion 4 demonstrates by means of a simulation study that the latter pre-estimation
approach leads to a better exhaustion of the FWER level and thus enhances the
power of the STP compared with traditional approaches which only take univari-
ate marginal distributions of test statistics into account. Finally, we apply the
proposed multiple testing methodology to real-life data from insurance (Section
5), and we conclude with a discussion in Section 6. Lengthy proofs and some
auxiliary results are deferred to Section 7.

2 Oescillation behavior of empirical Bernstein cop-
ulae

Let X = (X1,...,X,,)" be a random vector taking values in the probability space
(X, F,P), where X C R™ F is a o-field over X, and P denotes the (joint)
distribution of X. The univariate marginal cumulative distribution functions (cdfs)
of X we denote by Fj, j = 1,...,m, whereas C stands for the copula related to
the distribution P.

Assume that Xy,...,X,, are stochastically independent and identically dis-
tributed (i.i.d.) random vectors with X; ~ P. Then, the empirical copula C,
pertaining to Xy, ..., X, is given by

én (u) = I:In (ﬁ‘g (U-))

with Ff (u) = (I:’lﬁl(ul),,ﬁgn(um)f In this, an denotes the generalized
inverse of the marginal empirical cumulative distribution function (ecdf) in coor-

- 1
dinate 1 < j <m, given by F}, (z;) := - St Lcooa,) (Xiyj), and

1(_w’x} (Xl) *

- 1
1

n

2

The symbol 1 4 denotes the indicator function of set A and (—o0, x| = (—o0, z1] X
... X (=00, ;). An analogous bold-face notation for vectors will be used throughout
the remainder.

The Bernstein copula estimation is based on the Bernstein polynomial approx-
imation, which is for a fixed copula C' given by

K m
Bk (u) ==Y C(k/K) I Py, .k, (u5),
k=0 Jj=1
where Y5 = fo:@ e ZkKn;”:o, k/K := (k—ll, . %’;),

Pty = ()t (1=,
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and Ki,..., K, are given positive integers. It has been proved in [7, Corollary
3.1] that limk o0 Bk (u) = C' (u). The Bernstein copula estimator for C' is then

given by
K

=3 Co (%/K) [ Py, e (1) -
k=0 j=1
Theorem 2.1 establishes the consistency of B’nK
Theorem 2.1 (Chung—Smirnov consistency rate). Let K = K(n) — oo
such that 377" _1/2 =0 ( ~1/2 (log log n)l/Q). Then
HB”K — C’H =0 (n_1/2 (log log n)l/Q) a.s. for n — oo,

where ||g||o, = suPycjo.1) |9 (0)| for g : [0,1] — R.
Proof. By the triangle inequality, it holds that
Bk — €| < |Bux — Be|_ + 1B —Cll. 0

From Lemma 7.2 we get that ||Bx — C||,, = O (n*1/2 (log log n)1/2>.
For the first summand in (1), we get

|Bux — Bx| < sup Z\C (k/K) — (k/K)]ﬁlij,Kj (uj)

u€(0,1]

< max ‘C’ (k/K) — (k/K)’,

where {0,..., K} :={0,..., K;} x...x{0,..., K,,}. Let E}j,, denote the marginal
ecdf of U, ; = F;(X;;) for j =1,...,mand ¢ = 1,...,n and let H, stand for
the ecdf of Uy,..., U,. Application of the identity (see, e.g. [34, Section 3])
Ff (u)) = F (Fj;( j)) leads to C,, (k/K) = H, (F (k/K)) and

C (k/K)|
< max_|H, (F; (k/K)) - C (Fy (k/K))| (2)

Fe <kﬂ> _ky _
MAEK;) K

From [18, Theorem 2| we get that the summand in (2) is of order O (n_l/Q (loglog n)l/Q)

H, (F{ (k/K)) -

(3)

max
k;€{0,....K;}

as well as that each summand in (3) is of order O (n‘1/2 (loglog n)1/2>. This com-
pletes the proof. n



In Theorem 2.2 we prove a pointwise central limit theorem for the Bernstein
copula estimator.

Theorem 2.2 (Asymptotic normality). Assume bounded second order partial
derivatives for C on (0,1). If n'/2 3", Kj_l/2 — 0, n — oo, then it holds for all
u € (0,1) and sequences (u,), .y in (0,1) with lim, . u, = u that

w2 (Buac (w) = € () <5 A7 (0,02 (w)

where
0% (u) :=C (u) - (1 - C (w)) + fjl (8;C () u; (1 —uy)
230,00 W0 )
i i 9,C (w) 9;,C () (P [Usj <y, Ui jr < uyr] — wjuge)
=1lj'=j+1

Proof. Tt holds that
n'/? (Bux (u,) = C (uy)) = n'’? (Bux (w,) — By (un))+n'/? (Bx () — C (u,)).

From Lemma 7.2 we have

n'? (B (u,) — C (u,)) = O <n1/2 3 ij) =o0(1)
j=1
by our assumption on K.
Let U;; = Fj (X;;). Since the remainder term in Lemma 7.3 does not depend
on u, we conclude that

n1/2.(.én’K (un) - BK (un ) = n_1/2 ZY un +O ( 1/4 . (].Og n>1/2 . (log ]()g n)1/4) :

where

=2 (1 (~ook/k] (Ui) = C (k/K)

k=0
Ui k;

- Zaﬂ'c (k/K) (1(0077{]‘/19‘] (Uig) — K) ) H P, k, (uy) -
j=1 J j=1

From Lemma 7.5 we get
—1/225/ (uy,) iu\/(o o? (u)),

completing the proof. O



Remark. If the marginal distributions of X are known, then the Bernstein copula
estimator can be constructed by replacing C,, (u) with H,, (F* (u)). In this case,
the Y; k can be simplified to

K

Yik (0) = Y (Looia (Us) = C (k/K)) I1 P, ()

k=0 j=1

with variance

V[Yixk (0)]=C(u)-(1-C(u))+0 (i Kj—m) ,

Jj=1

and it holds "
n1/2 . (Bn,K (u) — BK (u)) = n_1/2 . Z Y;’K (11) .

=1

3 Calibration of multivariate multiple test pro-
cedures

In this section, we assume that we have uncertainty about the distribution of X.
We thus consider a statistical model of the form (X, F,(Pyc : 9 € ©,C € C)).
The probability measure Py ¢ is indexed by two parameters. The parameter C'
denotes the copula of X, and ¥ is a vector of marginal parameters which refer
to I, ..., F,,. The model for the i.i.d. sample Xy, ...,X,, consequently reads as
(X", For (Pyc: 9 € ©,C €C)), where Py o = Py
Based on this model, we consider multiple test problems of the form (X™, F&" (Py ¢ :

¥ €0,CeC),H), where H={Hy,...,H,} withO0 # H; COforall 1 <j<m
denotes a family of m null hypotheses regarding the parameter . The copula
C' is not the primary target of statistical inference, but a nuisance parameter in
the sense that it does not depend on 9. This is a common setup in multiple test
theory. We will mainly consider a semi-parametric situation, where © is of finite
dimension, while C is a function space.

Remark 3.1. The assumption that the number of tests equals the dimension of X
is only made for notational convenience. The case that these two quantities differ
can be treated with obvious modifications.

A multiple test for H is a measurable mapping ¢ = (@1, ..., o) : (X", F") —
{0,1}™, where ¢;(x1,...,%,) = 1 means rejection of the j-th null hypothesis H;
in favor of the alternative K; = © \ H;, 1 < j < m. We restrict our attention
to multiple tests which are such that p; = 1, o0)(T}), where T = (T1,. .. )T
X™ — R™ denotes a vector of real-valued test statistics which tend to larger values
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under alternatives, and ¢ = (cy,...,cy,) " are the corresponding critical values. In

many problems of practical interest, T; will only use the data (z; ;)1<i<n, for every
1 < j < m. In particular, this typically holds true if 9 = (9/,..., 9} )7, Y
represents a set of functionals of F}, and H; only concerns 9;, for every 1 < j < m.

For the calibration of ¢, we aim at controlling the FWER in the strong sense.
For given ¥ € © and C € C, the FWER is defined as the probability for at least
one false rejection (type I error) of ¢ under Py ¢, i. €.,

FWERy c(p) =Py o ( U {vi= 1}) :

JEI(Y)

where Ip(¥) = {1 < j <m: 9 € H;} denotes the index set of true null hypotheses
under 9. The multiple test ¢ is said to control the FWER at level a € [0, 1], if

sup FWERyc(p) < a.
9€0,0€eC

Notice that, although the trueness of the null hypotheses is determined by 1 alone,
the FWER depends on ¥ and C, because the dependency structure in the data
typically influences the distribution of ¢ when regarded as a statistic with values
in {0, 1}™.

Throughout the remainder, we assume that the following set of conditions is

fulfilled.
Assumption 3.2.

(a) Letting Hy = (L, H; denote the global hypothesis of H, there exists a 9" €
Hy such that

VO elC:V9eO: FWERQC(QO) < FWER@*@*(QO)

Notice that this assumption can be weakened by considering closed test pro-
cedures, where our proposed methodology is applied to every non-empty in-
tersection hypothesis in H; cf. Remark 1 in [32] for details.

(b) The vector of marginal cdfs of T = (T4,...,T,,)" depends on 9 only, and is
(at least asymptotically as n — o0) known under ¥*. We denote the vector
of marginal cdfs of T = (T1,...,T,,)" under 9 by G = (G1,...,Gpn)".

(c¢) Letting Cy~ denote the copula of T under 9", there exists a continuously
differentiable function h : [0,1] — [0,1] such that Cg-(u) = h(C(u)) for all
u € [0,1]™. The function h may be unknown. Notice that, if T; only uses
the data (x;;)1<i<n, for every 1 < j < m, then Cy+ = Cr is independent of
9",



Before we start to explain the proposed method for the calibration of c, let us
illustrate prototypical example applications of our general setup.

Example 3.3.

(a)

Let © = R™ and assume that 9, € R is the expected value of X; for every
1 < 7 < m. The j-th null hypothesis may be the one-sided null hypothesis
H; = {v¥; < 0} with corresponding alternative K; = {J; > 0}. Assume that
the scale parameter of the marginal distribution of each X; is known and
without loss of generality equal to one. A suitable test statistic 7} is then
given by T; (Xy,...,X,) = >, X;,;/+v/n. Under 9° = 0 € R™, we have
that G; = ® (the cdf of the standard normal law on R) is the cdf of the
(asymptotic) null distribution of T} for every 1 < j < m. If the considered
copula family C consists of multivariate stable copulae (meaning that the
observables follow a multivariate stable distribution), then the copula Cy+ is
of the same type as C, hence all parts of Assumption 3.2 are fulfilled.

Let X = [0,00) and assume that the stochastic representations X; < V;7;
with ¥; > 0 hold true for all 1 < j < m, where Z; is a random variable
taking values in [0,1]. The parameter of interest in this problem is ¥ =
(V1,...,9m)" € © = (0,00)™. For each coordinate j, we consider the pair
of hypotheses Hj; : {0; < U5} versus Kj : {; > 9}, for a given vector
9" = (93,...,9%)" € (0,00)™ of hypothesized upper bounds for the supports
(or right end-points of the distributions) of the X;’s. This has applications in
the context of stress testing in actuarial science and financial mathematics
(cf., e. g., [21]). Suitable test statistics are given by the component-wise
maxima of the observables, i. e., T; (Xy,...,X,) = maxij<;<, Xi,j/ﬁ;, 1<
J < m. Assuming that the tail behavior of each X is known such that the
marginal (limiting) extreme value distribution of 7 under 19" can be derived
and letting C consist of max-stable copulae, all parts of Assumption 3.2 are
fulfilled here, too.

Let us remark here that these two examples have been treated under the restrictive
assumption of one-parametric copula families C in [31].

The following lemma is taken from [10] and connects FWERy () with Cy-.

Lemma 3.4. Let Assumption 3.2 be fulfilled and assume that @ is a simultaneous
test procedure (STP) in the sense of [13], meaning that all m critical values are
identical, say c; = c(a) for all 1 < j <m. Then we have that

FWERg c(¢) <1— Co(1 — ayoe),



where al(gz =1— Gj(c(ow)) denotes a local significance level for the j-th marginal
test problem. In practice, it is convenient to carry out the STP in terms of p-values

p; =1 —G;(T;) such that p; = 11[07(151'))(]79‘)'

Lemma 3.4 shows that the problem of calibrating the local significance levels
corresponding to ¢(«) is equivalent to the problem of estimating the contour line
of Cy+ at contour level 1 — . Any point on that contour line defines a valid set of
local significance levels. Thus, one may weight the m hypotheses for importance
by choosing particular points on the contour line. If all m hypotheses are equally
important it is natural to choose equal local levels ozl(gz = qqe forall 1 < 5 < m.
This amounts to finding the point of intersection of the contour line of Cy+ at
contour level 1 —a and the “main diagonal” in the m-dimensional unit hypercube.

Recall that we assume that C' and, consequently, Cy- are unknown. Based
on our investigations in Section 2 and making use of Assumption 3.2.(c), we thus
propose to calibrate ¢ empirically. If h is known, this can be done by solving the
equation

h(Bux (1= cu)) =1-a (4)

for oy, for fixed weights. If for a given « the solution of (4) with the chosen
weights is not unique, one should choose the smallest set of local significance levels
such that (4) holds. To facilitate the argumentation, let us from now on assume
(4)

that we choose equal local levels. We denote the solution of (4) with ay).

by Qocn. This leads to the definition

= Qjoc

Gloem =1 — A;K (h (1 —a)),

where B,‘L_K (p) := inf {u € [0,1] ‘BnK (..., u) > p} for p € (0,1). Since B, x
depends on the data, ¢, is a random variable and

FTN-E\P{,&*’CVGO) =1- Cﬂ* (1 — OAéloc,n, ey 1— OAélOC’n)

is a random variable, too, which is distributed around the target FWER level
«. The following theorem is the main result of this section and quantifies the
uncertainty about the realized FWER if the empirical calibration of ¢ is performed
via (4).

Theorem 3.5. Let Assumption 3.2 be fulfilled. Then Wﬂw has the following
properties.

a) Consistency:

vC eC: meg(g@) — a almost surely.



b) Asymptotic Normality:
VC € C: /n (FWERy co(p) — ) 5 N(0,02),

where

O_QZG( 1?*(1~_O‘)7"'7 1;(1_&))_ é/* 0w — 2
: e (Che (C (1= a))

and C (u) == C (u,...,u),Cy+ (u) := Cy= (u, ..., u).

c) Asymptotic Confidence Region:

ﬁ * _—
V€ (0,1):¥C €C: lim Py c (ﬁ WhRy clp) —a zla) =1-9,

On

where 6% : X™ — (0,
o2. In this, z5 =
distribution on R.

) is a consistent estimator of the asymptotic variance
Y(B) denotes the B-quantile of the standard normal

00
P
Proof.

(a) Let C' € C be arbitrary, but fixed. Since h is continuously differentiable, h
is also Lipschitz-continuous with Lipschitz constant L > 0. Therefore, with
Theorem 2.1 we get

’Fmg*7c((,0) - a‘ =]1—a—Cyp (1= &uocn)|
= | (Bux (1 = 6uen)) = 7 (C (1= Guoen))|
<|[# (Bux) =1 (O]
<L-[[Bux =],
=0 (n’1/2 (loglog n)1/2) a.s.

(b) Letting p := h* (1 — «), Lemma 7.6 yields that

Vi (1= e — C (p)) = v (B () = C (p))

d o (C(p),....C" (p))
N (0’ & (O () )
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Therefore, applying the Delta Method to Cyg-, we have that
Vi (FWERy- o() — a) = =/ (Cor (1 — dtoen) — (1 - )
= /1 (Cor (1= Gitge) — Cor (C (1))

d 0<C<_ (p),...,CM_ (p>> ~1 — 2
N (0, & e o) -(cﬂ* (e (p))) )

The result follows from the definition of p.
(c) Follows directly from part b) using Slutsky’s Theorem.
O

If the function h is unknown, one may approximate the value of &q.,, With
high precision by a Monte Carlo simulation for a given number M of Monte Carlo
repetitions. To this end, generate M x n pseudo-random vectors which follow the
estimated (joint) distribution of X under 9, by combining B, k and the marginal
cdfs Fy,..., F, of Xq,...,X,, under the global hypothesis. From these, calcu-
late a pseudo-sample Ty,..., Ty, from the distribution of T under 9¥*. Then,
G(Ty),...,G(Ty) constitutes a pseudo-random sample from the estimator of
Cy+, and the empirical equi-coordinate (1 — «)-quantile of this pseudo-sample ap-
proximates Qjoc,. Since the number M of pseudo-random vectors to be generated
is in principle unlimited, Theorem 3.5 continues to hold true if this strategy is
pursued.

4 Simulation study

In this section we report the results of a simulation study regarding the FWER
and the power of multiple tests which are empirically calibrated as proposed in
Section 3. Assume w.l.o.g. that Iy (¢) := {1,...,me} and let m; := m — my. The
empirical FWER and the empirical power, respectively, are given by

L
— _ ¢
FWERyc (¢) =L 1 ., o) (x”,....x)
/=1 i=1\% T
and
— RN () 0
power (@) ==L |mit > ]l{ ([)_1}(3{1 ,...,Xn) :
(=1 j=mo+1 % T
where (xg), . ,ng)> € X" denotes the pseudo-sample in the /-th simulation run.

In this simulation we use the setting given in [31, Section 4.3]. This means that we
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are in the situation of Example 3.3.(b) except that the copula C of X is not max-
stable. The distribution of Z is given by an m-variate t4-copula with Beta(3,4)
marginal distributions, where X; ; := 11—y + plyizjy, 1 < 4,7 < m. The extreme
value copula of the multivariate ¢-distribution has been derived in [24]. It has
an analytically intractable form. In [31], this extreme value copula has been ap-
proximated by a Gumbel-Hougaard copula with an estimated copula parameter.
In contrast, we approximated this extreme value copula nonparametrically with
the Bernstein copula estimator. The calculation of Bernstein copulae has been
performed as in [7, Example 4.2], using K; :=n for all j € {1,...,m}.

Since the function h is intractable, we calibrate the test with the following
algorithm which was outlined at the end of Section 3.

Algorithm 4.1.
(a) Choose a number M of Monte Carlo repetitions.

(b) For eachb=1,..., M draw a sample U, ... , Ut of BnK and calculate

b . .
ijb:Ff‘(Uﬁ),lgzgn,lgjgm.

(c) Foralll < j < m, compute Tj#b =T; (be, .. ,X#b) and obtain the pseudo-
sample
#b _ 1m #b
Vi =1 (1)

from the copula of T. Notice that, due to the stochastic independence of the
observables, the marginal cdfs of T are given by ng.

(d) Finally, calibrate &uoen by solving
#{VH <1 — e} = [(1 - a) M]. (5)

Notice that in Algorithm 4.1, we implicitly weight the hypotheses. This means
that the weights corresponding to the obtained &y, depend on the simulation
data, for convenience of implementation. In comparison, the classical Bonferroni
and Sidék corrected local significance levels are given by

a(j):ganda(j):1—(1—@)1/m,1§j§ma
m

lo loc

respectively.

12



m=206

p=0.2 p=0.5 p=0.8
my = mo =4 my = mgy =4 my = mgy = 4
Empirical FWER
Bonferroni 0.0172  0.0280 0.0156  0.0220 0.0120 0.0172
Sidak 0.0176  0.0284 0.0156  0.0228 0.0120 0.0172
Bernstein 0.0232  0.0404 0.0216  0.0340 0.0192  0.0280
Empirical power
Bonferroni 0.4904  0.4902 0.4913  0.4838 0.4892  0.4778
Sidak 0.4920  0.4912 0.4930  0.4846 0.4906  0.4794
Bernstein 0.5038  0.5034 0.5048 0.5014 0.5040  0.4946
m =12
p=0.2 p=05 p =028
mog=>5 mog=10 mog=9>5 mgo=10 mog=>5 mg=10
Empirical FWER
Bonferroni 0.0188  0.0268 0.0156  0.0184 0.0112  0.0132
Sidak 0.0188 0.028 0.0156  0.0184 0.0116  0.0132
Bernstein 0.0360 0.062 0.0268  0.0476 0.0208  0.0320
Empirical power
Bonferroni 0.4477  0.4490 0.4481  0.4568 0.4499  0.4510
Sidak 0.4488  0.4498 0.4495  0.4580 0.4513  0.4522
Bernstein 0.4694  0.4686 0.4709  0.4770 0.4685  0.4738

Table 1: Comparison of empirical FWER and power regarding Bonferroni, Siddk
and Bernstein corrections with m € {6, 12}, varying mq, p € {0.2,0.5,0.8}, a =
0.05, L = 2500, M = 400, and n = 100.

With the notation introduced in Example 3.3.(b), we put 9* = (2,...,2)" and
2 for j <
9= (01,...,00) with 9, ={" orJ = o,
24U, U ~ UNI(0,0.5], otherwise.

The results of the simulation study for different values of m, mg, and p are displayed
in Table 1. It reveals that the Bernstein correction performs better in all cases,
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i. e., its empirical FWER is closer to a and its empirical power is higher than
those of the generic calibrations. Of course, one could increase the difference in
empirical powers between the Bernstein calibration and the Bonferroni or Sidak
calibrations by choosing other values for the ¥; under the alternatives.

Distribution of the empirical FWER Distribution of the empirical FWER
[==]
& - —
o -
o =
= — I
o | | —
[=] [ea]
o I
= =
g o | g 8 |
") [
=} o
3 ]
R R
(== (=R
r T T 1 r T T 1
0.015 0.020 0.025 0.030 0.015 0.020 0.025 0.030
Bonferroni Sidak
Distribution of the empirical FWER
[=]
=3
(=2 [
[es)
=
2 8-
)
o
=
<+
=1
(3]
o 4

T T T 1
0.030 0.035 0.040 0.045
Bernstein

Figure 1: Distribution of the empirical FWER regarding Bonferroni, Sidék and
Bernstein correction with m =6, mg =4, p = 0.5, a = 0.05, L = 2500, M = 400,
and n = 100.

Figure 1 and Figure 2 provide a more detailed view on the distribution of the
empirical FWER and the empirical power, respectively, of the three concurring
calibrations from Table 1. Namely, we performed the entire simulation algorithm
comprising L simulation runs with M Monte Carlo repetitions for the approxima-
tion of h in each of these runs 200 times. In the figures, we display results for one

14



particular parameter configuration (m, mg, p). For other parameter configurations,
the results are very similar.
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Figure 2: Distribution of the empirical power regarding Bonferroni, Siddk and
Bernstein correction with m =6, mg =4, p = 0.5, a = 0.05, L = 2500, M = 400,
and n = 100.

As expected from Theorem 3.5, the histograms look normal, each with a small
variance.

5 Application

In this section, we analyze insurance claim data from m = 19 adjacent geograph-
ical regions (see Table 4). For every region j € {1,...,19} these claims have,
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for confidentiality reasons, been adjusted to a neutral monetary scale. The claim
amounts and types have been aggregated to full years, such that temporal depen-
dencies are considered negligible. However, strong non-linear spatial dependencies
are likely to be present in the data. Hence, we treat each of the n = 20 rows in
Table 4 as an independent repetition X; = x; of an m-dimensional random vector
X = (X1,...,X,)", where 1 < i < 20 is the time index in years and m = 19
refers to the regions.

An important quantity for regulators and risk managers is the region-specific
value-at-risk (VaR). The VaR at level p for region j is defined as the p-quantile of
the (marginal) distribution of Xj, i. e.,

VaR; (p) .= F; (p)-

In insurance mathematics, typically considered values of p are close to one. Here,
we chose p = 0.995. Our goal is to derive multiplicity-corrected confidence intervals
for ¥; = VaR,; (0.995), 1 < j < m = 19 which are compatible with (i. e., dual to)
the Bonferroni, Sidék and Bernstein copula-based correction methods discussed
before. To this end, let auxiliary point hypotheses be defined as Hﬁ; : {19]- = 19;‘}
for fixed ¥ > 0. According to the Extended Correspondence Theorem (see [9,
Section 1.3]), the set of all values ¥} for which Hﬁ;ﬁ is retained by a multiple test at
FWER level « (leading to a local significance level ozl(gg in coordinate j) constitutes
a confidence region at simultaneous confidence level 1 — « for 9;, 1 < j < m. We
set a = 5%.

In quantitative risk management, it is common practice to model the excess
distribution of X; over some given threshold u; by a generalized Pareto distribution
(GPD) (cf., e. g., [22, Section 7.2.2]).

Definition 5.1 ([22, Definition 7.16]). For shape parameter ¢ € R and scale
parameter 8 > 0, the cdf of the GPD is given by

1 (1+&x/B)~¢ e 40,
1—exp(—z/8)  ,£=0,

where x > 0if £ >0and 0 <z < -/ if € < 0.

Gep(z) = {

In the remainder, we make the following assumption.

Assumption 5.2. For every 1 < j < m = 19 there exists a threshold u; and
parameter values §; and 3; such that

PX; —uj <z|X;>u;]~ Gy, 5, (x)
for all x € R.
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Under Assumption 5.2, an approximation of the VaR at level p for region j is
given by

N 5;‘ 1—p —&j B
VaRy, 5, (p) = u; + g ((1—ij(uj)> - 1) =:q; (&, 55) ,

provided that p > FXx; (u;). For ease of notation, we let ¥; = ¢; (§;,3;) in the
sequel.
For computational convenience, we carried out the test for Hg; as a confidence-

region test in the sense of [1] based on the family

(Hes; : {6 = 6.8, =8;}18; > 0, €R) (6)
of point hypotheses. Namely, the test procedure works as follows.

Algorithm 5.3.
€)

loc

7)

e denotes a multiplicity-

1. Test each Hex g- by an arbitrary level ozl( test, where a

corrected significance level based on the Bonferroni, Siddk or Bernstein cop-
ula calibration, respectively.

2. Let a confidence region Cg, g, (X1,...,X,) at confidence level 1 — ozl(g(): for
(&5, B;) be defined as the set of all parameter values (£, 8;) for which He: 1
15 retained.

3. Reject Hy: at level ozl(gg, if the set {(&5,585) : ¢ (fj*,ﬁj*) = U3} has an empty
intersection with Cg, g, (X1,...,Xn).

Due to Algorithm 5.3, it suffices to construct point hypothesis tests for (6).
A standard technique for testing parametric hypotheses is to perform a likeli-
hood ratio test. In the risk management context, this method is described in
22, A.3.5]. Define the random variable N, := # {1 <i <n|X;; > u;} and let

X, X Nuj.i denote the corresponding sub-sample for region j. Then the ex-
cesses Y7 j,. .. aYNu]- j over u; are defined by
Yij = Xij — uj.

The test statistic for testing Hg;ﬂ; is then given by

Ty (Yig - Yo, 5360 8;) o= —2log A (Y-, Yo, i€, 87) »
where the likelihood ratio A is defined by
L(Yij ... Yn, i€ 57)
supges) L (Yis, > Yo, 516 5)

A(Yig o Y, 536, 8)) =
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with log-likelihood function

Nu.
1) & Y,
log L (Yij,.., Y, ji&B) = =Ny, log 8 — (1 + 5) > log (1 +f”> :
=1
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Figure 3: Raw data and mean excess plots for regions 2 and 4. The graphs in the
upper panel display the data from Table 4 for j € {2,4}, respectively. The graphs
in the lower panel show the corresponding mean excess plots.

Under Hg;ﬁ;, T} is asymptotically x*-distributed with two degrees-of-freedom.
This means that the (asymptotic) confidence interval C¢, 3, (x1,...,X,) in the
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second step of Algorithm 5.3 is given by

Cery (X, Xa) = {(§,87) T (Vi Y, 560 8;) < Fg' (1= i) }-
(7)
Utilizing (7), the confidence region [y, J;"*"] for ¥J; based on the third step of
Algorithm 5.3 is constructed by finding the minimum value 9 = min ¢; (&}, 55)
and the maximum value ¥;** = max ¢;({7, 8;), where (£, 35) are located on the
boundary of C¢, s, (X1,...,Xy).

A graphical method for the determination of a suitable threshold u; is based on
the mean excess plot in coordinate j; see [22, Section 7.2.2] for details. Namely, all
possible values u of u; are plotted against the mean of the values of Y7 ; ..., Yn, ;.
If the GPD model is appropriate, the plot should yield an approximately linear
graph for arguments exceeding u;. Usually the few largest values of u are ignored,
because they lead to very small values of N,.

For example, Figure 3 shows the mean excess plots for the two regions 2 and 4.
The mean excess plot for region 2 is approximately linear when ignoring the three
smallest and the four largest values of u. This means that a suitable threshold wus
would be between 18.815 and 28.316. Similarly, the mean excess plot for region 4 is
approximately linear when ignoring the two largest values of u, hence uy < 0.321.
Based on such considerations, we chose the thresholds u = (uy,...,u19)" given by

u:=(1.0,28.0,9.0,0.3,0.2,0.4,2.6,1.2,0.4,1.1,0.1,0.2,22.5,1.6,3.2,0.2,12.5,1.2,0.5) " .

Finally, it remains to determine the local significance levels (al(f,(): In the

)1<j<19'
case of the Bonferroni or the Siddk method, this is trivial. To calibrate the local
significance levels with the Bernstein method, we employed a modified version of
Algorithm 4.1 based on the empirical excess distribution. Algorithm 5.4 yields a
resampling-based approximation of the copula of the vector T = (T,...,T,,)" of
the region-specific likelihood ratio test statistics.

Algorithm 5.4 (Calibration of the local significance levels for FWER level «).

(a) For every 1 < j < m, estimate the parameters & and B; of the excess
distribution of X; via maximum likelihood and calculate N .

(b) Choose a number M of Monte Carlo repetitions.

(¢) For each 1 <b < M draw a pseudo sample U, .. ,U# from the (empiri-
cal) Bernstein copula B, x and calculate the corresponding GPD excesses

#b #b : ;
YA =GE, (Uf)) 1<i< N, 1<j<m,

where U(;ﬁ’j denotes the i-th reverse order statistic of (Uj;b)lgign-
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(d) For each 1 < j <m, compute Tj#b =T; <Yfﬁ-b, o ,Y]#b_vj;fj,ﬁj) and obtain

Y
the pseudo-sample

Vi =G (T77) 1 <5 <m

from the copula of T.

e) Finally, calibrate Qoen solvin
(e) Finally, calib Xioen Y Solving
#{VH <1 — e} = [(1— a) M].

Table 2 displays the parameter estimates for the region-specific GPD models,

and Table 3 displays the lower bounds (ﬁ;ower)K ~ of the region-specific confi-
>Jjsm

dence intervals for the 99.5% VaR obtained by the Bonferroni, Siddk and Bernstein
copula calibration, respectively.

3 0.41 1.17 0.75 1.43 0.87 1.51 | 1.10 | 0.30 | 0.49 | 0.79 ]
7 0.56 0.98 1.00 0.73 0.47 | 0.81 | 1.08 | 0.60 | 0.89

B 19.59 | 22.21 | 18.41 | 0.82 1.10 1.56 | 4.57 | 9.75 | 2.91 | 6.46 ]
7 0.64 0.99 5.12 3.42 | 20.34 | 452 | 6.98 | 1.96 | 1.64

Table 2: Estimated parameters fj, Bj, 1 < j <19, for the region-specific GPD
models. Estimation has been performed via maximum likelihood.

. 89.08 | 283.30 | 126.20 | 19.41 10.00 36.68 | 62.57 | 39.45 | 14.62 | 51.14 ]
Bonferroni
3.74 10.13 53.74 25.43 | 101.62 | 37.11 | 84.99 | 12.79 | 14.80
Sidk 89.22 | 284.03 | 126.46 | 19.48 10.03 36.81 | 62.75 | 39.51 | 14.64 | 51.25 ]
3.75 10.15 53.82 25.47 | 101.78 | 37.20 | 85.20 | 12.81 | 14.83
Bernstein 91.59 | 287.32 | 127.61 | 19.81 10.13 37.37 | 63.54 | 38.82 | 14.73 | 51.74 ]
3.78 10.25 52.89 26.27 99.90 37.58 | 82.71 | 12.91 | 14.98

Table 3: Lower confidence bounds 9 for the 99.5% VaR, 1 < j < 19, obtained
by the Bonferroni, the Sidék and the Bernstein copula method, respectively.

Similarly as in Algorithm 4.1, an implicit weighting has been employed for the
determination of the local significance levels (ozl(gZ)K _in Algorithm 5.4. There-
j<m

fore, the confidence bounds obtained with the Bernstein copula method are not
guaranteed to be more informative (i. e., larger) than the ones obtained by the
Bonferroni or the Sidék methods for all regions. However, we observe improve-
ments in almost all regions j. It is remarkable that this expected behavior of
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the Bernstein copula calibration can already be verified for the rather moderate
sample size of n = 20, because the likelihood ratio tests and the Bernstein copula
calibration are both based on asymptotic considerations.

Raw data x; ; region j
[ 1 T 2 T 3 T 4 T 5 6 7 8
1 23.664 [ 154.664 | 40.569 | 14.504 | 10.468 | 7.464 | 22.202 [ 17.682
2 1.080 | 59.545 | 3.297 [ 1.344 | 1.859 [ 0477 | 6.107 | 7.196
3 21.731 | 31.049 | 55.973 | 5816 | 14.869 | 20.771 | 3.580 | 14.509
4 28.990 | 31.052 | 30.328 | 4709 | 0.717 | 3.530 | 6.032 [ 6.512
5 53.616 | 62.027 | 57.639 | 1.804 | 2073 | 4.361 | 46.018 | 22.612
6 29.950 | 41722 | 12.964 | 1127 | 1.063 | 4.873 | 6.571 | 11.966
7 3.474 | 14429 [ 10.869 | 0.945 | 2198 | 1.484 | 4547 | 2.556
8 10.020 | 31.283 | 21.116 | 1.663 | 2153 | 0.932 | 25.163 | 3.222
9 5816 | 14.804 | 128.072 | 0523 | 0.324 [ 0477 | 3.049 [ 7.791
year i 10 170.725 | 576.767 | 108.361 | 41.599 | 20.253 | 35.412 | 126.698 | 71.079
11 21.423 | 50.595 | 4.360 | 0.327 | 1.566 | 64.621 | 5.650 | 1.258
12 6.380 | 28316 | 3.740 | 0442 [ 0736 | 0470 | 3.406 | 7.859
13 124.665 | 33.359 | 14.712 [ 0.321 | 0975 | 2.005 | 3.981 | 4.769
14 20.165 | 49.948 | 17.658 | 0.595 | 0.548 [ 29.350 | 6.782 | 4.873
15 78.106 | 41.681 | 13.753 | 0.585 | 0.259 | 0.765 | 7.013 | 9.426
16 11.067 | 444.712 | 365.351 | 99.366 | 8.856 | 28.654 | 10.589 | 13.621
17 6.704 | 81.895 | 14266 | 0972 | 0519 | 0.644 | 8.057 [ 18.071
18 15.550 | 277.643 | 26.564 | 0.788 | 0.225 | 1.230 | 26.800 | 64.538
19 10.099 | 18815 | 9.352 | 2.051 | 1.089 | 6.102 | 2.678 | 4.064
20 8.492 | 138.708 [ 46.708 | 3.680 | 1.132 | 1.698 | 165.600 | 7.926
9 10 [ 11 [ 12 13 14 15 16 17 18 19

12.395 | 18.551 | 1.842 4.100 46.135 14.698 44.441 7.981 35.833 10.689 7.299
1.436 3.720 0.429 1.026 7.469 7.058 4.512 0.762 14.474 9.337 0.740
17.175 | 87.307 | 0.209 2.344 22.651 4.117 26.586 3.920 13.804 2.683 3.026
0.682 3.115 0.521 0.696 31.126 1.878 29.423 6.394 18.064 1.201 0.894
1.581 11.179 | 2.715 1.327 40.156 4.655 104.691 | 28.579 17.832 1.618 3.402
15.676 | 24.263 | 4.832 0.701 16.712 11.852 29.234 7.098 17.866 5.206 5.664
0.456 1.137 0.268 0.580 11.851 2.057 11.605 0.282 16.925 2.082 1.008
1.581 5.477 0.741 0.369 3.814 1.869 8.126 1.032 14.985 1.390 1.703
4.079 7.002 0.524 6.554 5.459 3.007 8.528 1.920 5.638 2.149 2.908
21.762 | 64.582 | 9.882 6.401 106.197 | 44.912 | 191.809 | 90.559 | 154.492 | 36.626 | 36.276
0.626 3.556 1.052 8.277 22.564 8.961 19.817 16.437 25.990 2.364 6.434
0.894 3.591 0.136 0.364 28.000 7.574 3.213 1.749 12.735 1.744 0.558
2.006 1.973 1.990 | 15.176 57.235 23.686 | 110.035 | 17.373 7.276 2.494 0.525
2.921 6.394 0.630 0.762 25.897 3.439 8.161 3.327 24.733 2.807 1.618
2.180 3.769 0.770 | 15.024 36.068 1.613 6.127 8.103 12.596 4.894 0.822
9.589 19.485 | 0.287 0.464 24.211 38.616 51.889 1.316 173.080 3.557 11.627
5.515 13.163 | 0.590 2.745 16.124 2.398 20.997 2.515 5.161 2.840 3.002
2.637 80.711 | 0.245 0.217 12.416 4.972 59.417 3.762 24.603 7.404 19.107
2.373 2.057 0.415 0.351 10.707 2.468 10.673 1.743 27.266 1.368 0.644
2.972 5.237 0.566 0.708 22.646 6.652 14.437 63.692 | 113.231 7.218 2.548

Table 4: Insurance claim data from 19 adjacent geographical regions over 20 years.
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We omitted the values of (19;”“) , because they are uninformative (ex-

1<j<m
tremely large). This is in line with the fact that all scale parameter estimates &; in
Table 2 are positive. For & > 0, the GPD has infinite support, thus the modeled
99.5% VaR tends to be very large.

6 Discussion

We have derived a nonparametric approach to the calibration of multivariate STPs
which take the joint distribution of test statistics into account. In contrast to
previous approaches which were restricted to cases with low-dimensional copula
parameters, the Bernstein copula-based approximation of the local significance
levels proposed in the present work can be applied under almost no assumptions
regarding the dependency structures among test statistics or p-values, respectively.
This makes the proposed methodology an attractive choice for data which have
not been explicitly modeled prior to the statistical analysis. Furthermore, our em-
pirical results on simulated as well as on real-life data indicate the gain in power
which is possible by an explicit consideration of the dependency structure among
test statistics in the calibration of the multiple test. This is particularly impor-
tant for modern applications with high dimensionality of, but also pronounced
dependencies in the data.

On the other hand, Theorem 3.5 provides a precise asymptotic performance
guarantee for the empirically calibrated multiple test, meaning that a sharp upper
bound for its realized FWER can be obtained, at least asymptotically for large
sample sizes. This is in contrast to most of the existing resampling-based multiple
test procedures like the 'max T’ and 'min P’ tests proposed in [35], which are
obvious competitors of our approach.

Future work shall explore the case that some qualitative assumptions regarding
the dependency structure are at hand. For example, it will be interesting to
quantify the uncertainty of the FWER of an STP which is calibrated by assuming
an Archimedean p-value copula as in [3]. In this case, nonparametric estimation
of the copula generator function as for instance proposed in [19] will lead to an
empirical calibration of the multiple test.

7 Appendix

In this section several lemmas are formulated and proved which are used in the
proofs of Theorem 2.1 and Theorem 2.2.

Lemma 7.1. It holds that
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where the last inequality follows from part b) of the lemma.

Lemma 7.2. It holds that
1N 12
1Bx = Cllae < 5 K77,
j=1

where ||g|, = SUPue(o0,1] lg (w)] for g :[0,1] — R,
Proof. We get

1Bk — Ol < sup 32 1C (k/K) — C ()| I] Poyc, (1))

u€l0,1] k=o j=1
K m
< sup ZZ FJ._UJ 'HP’%KJ' (uj)
u€(0,1] k—g j=111*J j=1

where the last inequality follows from the Lipschitz property of multivariate copula
(cf., [26, Section 2]). The rest of the proof follows from part b) of Lemma 7.1. [

Lemma 7.3. Assume bounded second order partial derivatives for C on (0,1) and
letue (0,1). Then,

nl/Q-(Bn,K( ) — Bk (u ) — L2 ZY ( —1/4 (log n>1/2 - (log log n)1/4)
where

Z(ﬂ (—ook/K] (Ui) = C (k/K)

k=0
k;
- Z@C (k/K) (1(—007’%'/19] (Ui, ) — K) ) H Pk K “J)
j:1 Vi ] 1

and U; j = F; (X, ;).

Proof. It holds that

nl/2 . (Bn,x( ) — ) Zn ( (k/K) — C (k/K) ) Hpk «, (uy) .
7=1

From [33, Section 4] we get

2 (G, (/K) - C (k/K)) =a, (k/K) — Xm: 0,C (k/K)an (1,...,k;/K;, ..., 1)

J=1

+0 (n_1/4 (logn)'/* - (log log n)1/4)

where d, (k/K) 1= n"Y2- 21 (1(Coosx (Ui) = C (k/K)ﬁ) and U; = F (X;) ~ C.
The result of the lemma now follows directly from the definition of Y; k. O
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Lemma 7.4. Assume bounded second order partial derivatives for C' on (0,1) and
letue€ (0,1). Then, for alli € {1,...,n} and K € N™ we get that E[Y; x (u)] =0
and

~23°0,0 (W) C () (1 - )

+2) Y 0,C(0)0;C (u) (P[Us; < uy, Uiy < uy] —ujuy).

j=15'=j+1

Remark. The variance of Y; x (u) only depends on n.

Proof. Since E {]1(_0071(/1{} (Uz)} =C (k/K) and E []1(—oo,kj/Kj](Ui,j>:| = Ik{—J we get
E[Y;k ()] = 0.

Let fo (k) := X7, 0;C (k/K) (oo, /xc,)(Usj) — %) It holds that

V{Yik (0)] =E [YK ()’

_ZZC (kAK)/K) HPkK u;) Pk, ()

k=0k’'=0
-2 Z Z C (k/K) C (k'/K) H Py x; (ug) P e, ()
k=0 k'—0 j=1
K K m /
ke kAR
9 9,C (K /K) ( ( AL N
S KUK R,

~C /K 2 ) T P, 0 Pry )

i/ j=1

+3 > C(k/K)C (K/K) H Py i, () P e (uz)

k=0 k'=0 j=1

K K m

k=0k’'=0
K K
+> > Elfo(k) fo (k)] H Py, x; (u3) Pk, (u;)
k=0 k'—0 j=1
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Since E [fc (k)] = 0, we have

K K m
VYik (w,)]=>_ > C(&AK)/K) ] P, x; (w)) P se; (uy) (D)
k=0k’=0 7j=1
K K m
= 2 C&/K)C(K/K)[] Py, x, (u)) Py i, (1) (IT)
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K K /
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kX:%)kZo]:zjl ’ K K; Ko
Ky m
C0e/K) ) 1T P, () Py, () )
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FY3 Y 9,0 (0/K) 0,0 (K/K)

plo, < by, <Rk K ﬁ ) Py s, (u;) (IV)
i,j > Kj’ i, > Kj’ K K = u] kK U

By the Lipschitz property of multivariate copula (cf., [26]) and Lemma 7.1 we
conclude for term (I)

k; /\k:’ e
)+ Z Z © (Z K, ) 11 Py () P, ()
k=0k'= j=1 J 7=1
=C'(u) + O (Z K ”2) -
j=1

By Lemma 7.2 we get for term (II)

(ID) = —Bx (0’
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For term (III), we get by Taylor series expansion that

9,C (u) + O (Z K—W)]

7'=1
ki AK,

)m(f

(111):-2% ii(

)

" 1

=3 > 9,0 (u)9;C (u) (IP [Us; < uj, Uiy < uje] 420 (Z K_1/2) —ujuj,)

= Z Z @C’ (Ll) Gj/C’ (ll) (]P) [Ui,j S Uj, Ui,j’ S Uj/] — ujuj (Z K 1/2)

J=1

VlYik (W] =C(u)-(1-C(w)+ i (9;C (W) uj (1 —uy) —2 f:é?jc (u) € (u) (1 - uy)

Jj=1

+2> > 0,0 (W) 0y C(w) (P[Ui; <y, Uiy < uy] = ujuy)
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The first term comes from (I) and (II), the second from (IV), the third from (III),
the forth from (IV). O

Lemma 7.5. Let 37, Kj_l/z — 0, n — oo. Then for all u € (0,1) and all
sequences (Uy,), oy in (0,1) with lim, . u, = u

n~1/? zn:Y;,K (u,) —d> N (O, o2 (u)) )
i—1

Proof. We want to use the Lindeberg Central Limit Theorem (see [30, Section
1.9.3] or [20, Theorem 11.2.5]). Let X;,, := n~Y2Y;k (u,),1 < i < n. Because of
Lemma 7.1, the remainder term in Lemma 7.4 does not depend on u. Therefore,
we have E[X;,] = 0 and

03 =V [Z Xm]
i=1

= V[Yik ()]
=0’ (u,) + 0 (fj K;W)
=3 ot (),

because o2 is continuous. From the convergence | X ,| — 0 a.s. and the dominated
convergence theorem, we get the Lindeberg Condition, i.e.

SE XLt ] 00" = E Y2 L afseon] 007

i=1
=20
for all € > 0. The result follows from [30, Section 1.9.3]. O

Lemma 7.6. Let p € (0,1). Suppose that C' (C* (p)) > 0 exists, then

Vi (B ) = 0 ) a7 (0. ),

where C* (p) := inf {u € [0,1]|C (u,...,u) > p} and C (u) := C (u,...,u).
Proof. We argue similarly to the proof of Theorem A in [30, Section 2.3.3]. Fix
p € (0,1) and let

w2 (Bix () = C* (1) _ t

g

G, (t) =P

?
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=2 ._ o(C(p),..C(p) e o —1/2
where % := T Let u, :=ton="/? + C* (p). We have

1/2 Bn My mn -C (RS mn
where Z,, := = (Brtcltm - sin) =l )). Furthermore, we get

O(t)—G,(t)=P[Z, < —cp)] — (1 =D (1))
=P[Z, < —cu] = P(—cpn) + P (t) — D (cp)

Since C' and 0,;C,1 < j < m are continuous, we have

L6 C)-CCm)
(o )

lim ¢,; = lim

n—00 n—00 ey Up) ton=1/2
=l .oy C @)
=1t.

Further, by Theorem 2.2 and Polya’s Theorem (see [30, Section 1.5.3]), since & is
continuous, we have

lim sup |P[Z, < z] — ® (z)] = 0.

00 eR
Using these two properties, (1) results in
lim |® () — G, (t)| < lim sup|P[Z, < z] — @ (z)| + lim |® () — D (cn)|

=0.
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