
Mathematical Statistics

Stockholm University

A Note on the Connection Between
Some Classical Mortality Laws and

Proportional Frailty

Mathias Lindholm

Research Report 2016:15

ISSN 1650-0377



Postal address:
Mathematical Statistics
Dept. of Mathematics
Stockholm University
SE-106 91 Stockholm
Sweden

Internet:
http://www.math.su.se



Mathematical Statistics
Stockholm University
Research Report 2016:15,
http://www.math.su.se

A Note on the Connection Between Some
Classical Mortality Laws and Proportional

Frailty

Mathias Lindholm∗

September 2016

Abstract

We provide a simple frailty argument that produces the Gompertz-
Makeham mortality law as the population hazard rate under the as-
sumption of proportional frailty given a common exponential hazard
rate. Further, based on the result for the Gompertz-Makeham law a
heuristic argument provides a slight change of proof which immedi-
ately produces a version of Perks mortality law. Moreover, we give
conditions for which functional forms of the baseline hazard that will
yield proper frailty distributions given that we want to retrieve a cer-
tain overall population hazard within the proportional frailty frame-
work.

Keywords: Survival analysis, Frailty, Makeham, Perks.

∗Stockholm University, Dept. Mathematics.



1 Main Results

The main result concerns the so-called Gompertz-Makeham mortality law
proposed by William Makeham as an extension to the Gompertz law pro-
posed by Benjamin Gompertz. This mortality law is one of a number of
standard mortality models used in demographics and actuarial science in
countries that have the tradition of modelling mortality in continuous time.

The Gompertz-Makeham mortality law, h(t), expressed as a hazard rate
is given by

hM(t) = a+ bect, a, b, c ≥ 0, (1)

and the standard Gompertz law is obtained by setting a ≡ 0, see e.g. [6, Eq.
(3.9.36)]. Note that the formulation of the Gompertz-Makeham law in (1) is
in terms of ect, whereas the original formulation is in terms of c̃x. We have
chosen to use the above formulation for convenience.

In the present note we will make use of known relations between pop-
ulation hazard rates (or laws) and the concept of proportional frailty. We
will now give a brief summary of notation and results needed to prove our
main results stated below: The population hazard rate h(t) is related to the
(absolutely continuous) life time distribution T via the following relations:

S(T > t) = exp{−
∫ t

0
h(u)du} = exp{−H(t)}, (2)

where S(t) is the survival function of T , see e.g. [1, Ch. 1.1.2]. The con-
cept of proportional frailty given a common baseline hazard α(t) and frailty
distribution Z is then given by

h(t|Z) := α(t)Z, (3)

and

S(t|Z) := exp{−Z
∫ t

0
α(s)ds} = exp{−ZA(t)}, (4)

which yields the total population survival function

S(t) := E[S(t|Z)] = LZ(A(t)), (5)

where LZ(t) is the Laplace transform of Z, see e.g. [1, Ch. 6.2.1].
Given the above together with that the Gompertz-Makeham law is a

generalisation of the Gompertz law, one can ask if it is possible to describe
the Gompertz-Makeham law by using a simple Gompertz hazard common to
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all individuals and adding individual frailty. The answer is affirmative and
the main result is as follows:

Proposition 1. The Gompertz-Makeham mortality law defined by the hazard
rate in (1) can be expressed as the population hazard when all individuals
are following a common baseline hazard rate α(t) = exp{ct} mixed with an
individual proportional frailty Z given by

Z := X + Y,

where X ∼ Γ(a/c, 1/c) in terms of rate, i.e. E[X] = a and Var(X) = ac, and
Y ∼ δ(b) (degenerate distribution).

Remark: The distribution of Z can be seen as a translation of a Γ-distribution.
Note that Proposition 1. tells us that we can generate a Gompertz-

Makeham law at population level when each individual follows a common
baseline hazard rate ect combined with individual frailty which follows a cer-
tain translated Γ-distribution. One can also note that the special case with
the Gompertz law, which corresponds to that a = 0, gives us a constant (de-
generate) frailty distribution corresponding to a single heterogeneous popu-
lation. This is perhaps not surprising since the baseline hazard ect is a special
case within the Gompertz family.

Other results concerning frailty that relate to the Gompertz-Makeham
law are e.g. [3], [2] and [4] and [5] and the references therein.

Another mortality law to which the Gompertz-Makeham law is a special
case is Perks law defined as

hP (t) :=
νeβx + γ

δeβx + 1
, (6)

where β, δ, γ, ν ≥ 0, see e.g. [6, Eq. (3.9.41)]. A slight change of proof of
Proposition 1. gives us the following corollary which is a version of Perks
law:

Corollary 1. The following version of Perks law

hP ′(t) = δν(
λ

θ + δ(eνt − 1)
+ ζ)eνt, (7)

can be expressed as the population hazard when all individuals are following
a common baseline hazard rate α(t) = δν exp{νt} mixed with an individual
proportional frailty Z given by

Z := X + Y,
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where X ∼ Γ(λ, θ) in terms of rate, i.e. E[X] = λ/θ and Var(X) = λ/θ2 and
Y ∼ δ(ζ) (degenerate distribution).

It is straightforward to identify the Gompertz-Makeham law from (7) and
again see that the Gompertz law is a degenerate case of (7). The version of
Perks law given in (7) is similar to the one obtained in [3], but the result of
[3] is mainly focused on the mortality for high ages and does not retrieve the
Gompertz-Makeham law. The same is the case with the approach in e.g. [2]
and [4, 5].

Another comment with respect to (6) is that by noting that the denomi-
nator is close to being a primitive function to the numerator, one can see that
it is possible to retrieve yet another version of Perks law. More precisely: let
α(t) = ν/δ denote the common constant baseline hazard and let the frailty
distribution be given by the following two-point distribution

Z :=

{
1 with prob. δ/(1 + δ),
1 + βδ/ν 1/(1 + δ).

(8)

Then, by using definition (5) we get the population survival function which
can be differentiated in order to obtain the following version of Perks law:

hP ′′(t) :=
νeβx + β + ν/δ

δeβx + 1
, (9)

where β, ν, δ ≥ 0. Consequently, by comparing with (7) we see that we for
some parametrisations now have two representations of the same population
hazard. One can also note that (9) can be seen as a mixture of two sub-
populations: one baseline population and one that is extra frail.

More generally, the above results are all versions of the following inverse
problem: given a common baseline hazard and a known overall population
hazard, is it possible to retrieve a proper (probability) frailty distribution?
A partial answer to this question is given by the following result:

Proposition 2. Given a population hazard rate h(t), with corresponding
H(t) =

∫
h(s)ds, and a common baseline hazard rate α(t), with corresponding

A(t) =
∫
α(s)ds, the mean and variance of the induced frailty distribution is

given by

E[Z] =
h′(A−1(0))

α(A−1(0))
, (10)

Var(Z) =
h(A−1(0))α′(A−1(0))− h′(A−1(0))α(A−1(0))

(α(A−1(0)))3
, (11)
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where
α′(A−1(0)) := α′(t)|t=A−1(0)

and
h′(A−1(0)) := h′(t)|t=A−1(0),

given that A−1(t) exists.

From (10) and (11) it is possible to deduce which forms of baseline hazard
rates α(t) that will yield a non-degenerate frailty distribution. As an example
it follows that α(t) ≡ α can not generate a proper Gompertz-Makeham law.

2 Proofs

2.1 Proof of Proposition 1

By combining (1) and (2) we get

S(t) = exp{at+
b

c
(ect − 1)}. (12)

Now, let the baseline hazard be α(t) = eνt which gives us that A(t) =
(eνt − 1)/ν, which by equating (12) and (5) yields

LZ(t) = S(A−1(t)) =
1

(1 + νt)a/ν
exp{−b

c
((1 + νt)c/ν)}, (13)

and the claimed result follows by setting ν = c and noting that

LZ(t) =
1

(1 + ct)a/c
exp{−bt} (14)

= LX(t)LY (t), (15)

where LX(t) is the Laplace transform of X ∼ Γ(a/c, 1/c) in terms of rate, i.e.
E[X] = a and Var(X) = ac, and LY (t) is the Laplace transform of Y ∼ δ(b)
(degenerate distribution).

2.2 Proof of Corollary 1

The proof of Corollary 1 follows by noting that the overall population hazard
h(t) can be expressed as

h(t) =
−S ′(t)
S(t)

,
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due to (2), combined with the definition of survival function under propor-
tional frailty from (5) when using

α(t) = δν exp{νt},

and that
Z := X + Y,

where X ∼ Γ(λ, θ) in terms of rate, i.e. E[X] = λ/θ and Var(X) = λ/θ2,
Y ∼ δ(ζ) (degenerate distribution) and re-using the Laplace transforms from
the proof of Proposition 1.

2.3 Proof of Proposition 2

From (2) and (5) we get that

S(t) = LZ(A(t)) = exp{−H(t)},

which gives us
LZ(t) = S(A−1(t)),

where we assume that A−1(t) exists. Since LZ(t) := E[exp{−tZ}], it follows
that

E[Z] = − d

dt
logLZ(t)|t=0, (16)

and

Var(Z) =
d2

dt2
logLZ(t)|t=0. (17)

Hence, we want to differentiate logLZ(t), which gives us

d

dt
logLZ(t) =

S ′(A−1(t)) d
dt
A−1(t)

S(A−1(t))
, (18)

d2

dt2
logLZ(t) = −

(S ′(A−1(t)) d
dt
A−1(t))2

(S(A−1(t)))2
(19)

+
S ′′(A−1(t)( d

dt
A−1(t))2

S(A−1(t))

+
S ′(A−1(t) d

2

dt2
A−1(t)

S(A−1(t))
.
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Further, from (2) we get that

S ′(t) = −h(t)S(t), (20)

S ′′(t) = −h′(t)S(t) + (h(t))2S(t), (21)

and that

d

dt
A−1(t) =

1

α(A−1(t))
, (22)

d2

dt2
A−1(t) =

−α′(A−1(t))
(α(A−1(t)))3

=
−α′(A−1(t))
(α(A−1(t)))2

d

dt
A−1(t). (23)

By combining (18) and (19) with (20)-(23) and substituting the resulting
expressions into (16) and (17) yields the desired result.
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