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Abstract

We study the spread of sexually transmitted infections (STIs) and other
infectious diseases on a dynamic network by using a branching process ap-
proach. The nodes in the network represent the sexually active individuals,
while connections represent sexual partnerships. This network is dynamic
as partnerships are formed and broken over time and individuals enter and
leave the sexual active population due to demography. We assume that indi-
viduals enter the sexually active network with a random number of partners,
chosen according to a suitable distribution. We discuss branching process
approximation for the initial stages of an outbreak of the STI and charac-
terize the basic reproduction number, R0 and the probability of extinction.
In addition, we expose the dependencies between individuals and show how
these dependencies complicate the branching process approximation. We
illustrate these complications through computations of the probability of a
minor outbreak.

Keywords Epidemic Model; Branching process; Basic reproduction number; dy-
namic network



1 Introduction
Sexually transmitted infections (STIs) are among the world’s most common dis-
eases remaining as a major global threat. In addition to accounting for millions of
deaths so far, over a million STIs are acquired every day worldwide, and STI pan-
demics continues to cause a major socio-economic burden on many developing
countries (see, e.g. WHO, 2015).

Over the past decades, several authors have used mathematical models to asses
the impact of partnerships structure in the spread of HIV (Eaton et al, 2011;
Heesterbeek et al, 2015), (see also the Introduction of the PhD thesis of Leung
(2016) for an excellent discussion). In order to study the disease dynamics of
HIV and other infectious diseases, much attention has been devoted to static net-
works (see e.g. Newman, 2002; Diekmann et al, 2013; Ball et al, 2010, and refer-
ences therein). The underlying assumption of that work is that once a connection
is formed between two individuals this will remain unaltered and during an epi-
demic outbreak no new partnerships are formed. However, social interactions do
often vary over time: new connections being formed and others being dissolved,
providing short term opportunities for disease transmission. To incorporate the
dynamics, Leung et al (2012) (see also Leung, 2016) developed and analysed a
deterministic model for the spread of an SI epidemic on a dynamic network. Here
S stands for susceptible and I stands for infective. Their network model incorpo-
rates demographic turnover through individuals entering the population and dying
and allows for individuals to have multiple partners at the same time, with the
number of partners varying over time. This network model can be seen as an ex-
tension of pair formation models to situations where individuals are allowed more
than one partner at a time (Kretzschmar and Dietz, 1998). Leung et al (2015) fur-
ther extend their model by incorporating the assumption that individuals have at
most n partners at a given time.

A key parameter in epidemic modelling is the basic reproduction number, R0.
It is usually defined as the expected number of secondary infections caused by an
index case in a completely susceptible population and this concept is used both in
deterministic and stochastic models for infection spread (Diekmann et al, 2013).
It is well known that for a susceptible-infectious-recovered (SIR) epidemic in a
homogeneous mixing population the process describing the number of infectious
individuals during the early stages of the epidemic is well approximated by a suit-
able branching process (Ball and Donnelly, 1995). In those branching process
approximations, giving birth corresponds to infecting someone and death corre-
sponds to actual death or recovery, while R0 corresponds to the offspring mean in
the branching process. In particular, if R0 ≤ 1, then no epidemic is possible, while
if R0 > 1 the probability of a large outbreak is strictly larger than 0, but often
strictly less than 1. There has been a lot of research on analysing the epidemic
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threshold, i.e. R0 = 1, by rigorous branching approximation for the stochastic
epidemic models involving networks (see, e.g, Britton, 2010, and references
therein). In fact, the technique of Ball and Donnelly (1995) can be used to ap-
proximate the initial phase of an epidemic on the contact network that has a large
size by a suitable branching process (see, e.g, Ball et al, 2009, 2014).

The present study is an extension of the work of Leung et al (2015) and Le-
ung (2016). Leung and co-authors use deterministic models to study different
epidemic models on the dynamic graphs introduced in their work (that we briefly
discuss in the following paragraph). In this deterministic approach, one implicit
assumption is that the initial fraction of the population which is infectious might
be very small, but the number of initially infectious individuals is always large,
effectively assuming that the total population size is infinite. In the present study,
we consider the epidemic and population dynamics as stochastic processes, where
the expected population size is large but finite.

The network model of Leung et al (2015); Leung (2016) can be described as
follows (for a detailed description see Section 2). Individuals enter the population
at rate µN and die at rate µ per individual. This implies that the population size
converges to N, which is assumed to be very large (and in the deterministic models
effectively chosen to be infinite). Individuals enter the population without part-
ners. An individual has at most n partners at a time, where n is a strictly positive
integer (and can be chosen to be ∞). The possible partnerships are represented
by so-called binding sites. At time t, let n(1−F(t)) be the average number of
partners per individual in the population, i.e. F(t) is the fraction of binding sites
that is “free” at time t. If an individual has k partners at time t it acquires a new
partner at rate ρ(n− k)F(t) and partners divorce at rate σ per partnership. In the
SI epidemic framework, a susceptible individual becomes infectious at a rate β

times the number of his or her infectious partners. Infectious individuals cannot
recover, but of course they stop spreading when they die. A key ingredient in
the models of Leung and co-authors is the meanfield at distance one assumption,
which is a (non-exact) approximation of the distribution of the number of partners
of partners of a newly-infected individual (Leung et al, 2015).

We approach the models by Leung and co-authors from a stochastic perspec-
tive. To do this, we make some further assumptions, which make computations
easier and the communication of our main message clearer. In contrast to the de-
terministic models mentioned before, we do not assume that a new individual in
the population starts as single. Instead, we assume that the individuals upon en-
tering the population immediately form a (random) number of partnerships with
individuals already in the population. The distribution of this random number is
chosen in such a way that the distribution of the number of partners of an indi-
vidual does not change over time. That is to say, incoming individuals have a
stationary distribution of the number of partners (usually referred to as the de-
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gree distribution). The advantage of this assumption is the possibility of deriving
explicit and relatively simple formulas for the basic reproduction number and in
some cases for the probability of extinction of the epidemic (i.e. the probability
that an epidemic stays small), without the mean-field at distance 1 approximation
of Leung et al (2015); Leung (2016). We follow Leung et al (2015) to ignore the
difference between male and female in our model and in this way effectively con-
sider a homosexual or asexual population. Although this might be unrealistic, we
think our main message is highlighted clearer by this omission.

The main purpose of this paper is to analyse possible approximations of the
early stages of a stochastic epidemic in the described network by suitable branch-
ing processes. Our analysis focuses on the early stage of an epidemic outbreak
where only a small number of individuals is initially infected. Note that this as-
sumption does not fit within the deterministic framework, where the number of
initial infectives is either exactly 0 or large, because in those models the initial
fraction of the (effectively infinite) population infected has to be either 0 or strictly
positive. In particular, we are concerned with deriving explicit formulas for the
threshold parameter, R0 and the probability of extinction. For this, we use two
representations of the model.

In the first representation we consider a general maximal number of partners,
n, but because of certain dependencies to be described in detail afterwards, it is
not possible to do more than computing R0.

The second representation is only valid for n = 1, which corresponds to the
pair formation model of Kretzschmar and Dietz (1998). What makes this approach
different from the first is that here we can describe the dynamics of the disease
through a proper branching process. From this we can easily obtain the extinction
probability as well as a threshold parameter, denoted by R̂0. This reproduction
number R̂0 differs from R0 and cannot be interpreted as the expected number of
individuals infected by a typical infected individual. The interpretation of R̂0 is
discussed in subsection 3.2. For further reflections on R0, we refer the reader to
Cushing and Diekmann (2016). Unfortunately, we did not find a way to generalize
this approach to n > 1.

Finally, in order to avoid undesirable dependencies that appear and complicate
the branching process in the two representations of the model, we also study the
case in which there is no maximal number of partners, i.e. when n = ∞ (c.f. Alt-
mann (1995)). For this model, we can compute the reproduction number as well
as an implicit expression for the extinction probability.

The main contributions of the current work are:

• to present a branching process approach for analysing the early stages of
an outbreak of a sexually transmitted infection, or a small outbreak, along
the dynamic network. In doing this, we show why some appealing straight-
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forward branching process approximations of the epidemic process are not
correct, because they ignore some subtle dependencies.

• to characterize the basic reproduction number and the probability of extinc-
tion for the dynamic network by using a branching process approach.

The paper is structured as follows. Section 2 is devoted to the model defini-
tion and assumptions. In Section 3, we present two stochastic representations of
the model. In the first, we use a naive (appealing but wrong) branching process
approximation to analyse the early phase of an epidemic spreading through a dy-
namic sexual network. We use the second (less intuitive) representation of the
model to compute a threshold parameter R̂0 and the correct probability of extinc-
tion during the initial phase of the epidemic. Here we also provide a discussion
of the influence of the dependencies. In Section 4, the first representation of the
model is used to study the epidemic on the dynamic network when the partner-
ship capacity is infinite, i.e. when n = ∞. In this particular case, dependencies
fall away and we may use branching processes to analyse the early phase of an
epidemic spreading through a dynamic sexual network. In particular, we compute
the reproduction number R0, the offspring distribution and compare reproduction
numbers when n→ ∞. Finally, we discuss our analytical findings and give an
outlook on future work in Section 5.

2 Model definition and assumptions
In our model we assume that individuals enter the population at rate µN (i.e.
according to a Poisson process with intensity µN) and that individuals have in-
dependent exponentially distributed “lifetimes” (or time they stay in the active
population), with expectation 1/µ , i.e. individuals leave the active population at
rate µ times the number of individuals in this population. This implies that the
distribution of the population size, say N∗(t), converges as t → ∞ to a Poisson
distribution with mean N, i.e. the stationary and limiting distribution of the popu-
lation size is Poisson distributed with expectation N (Resnick, 2013, Ch. 5). We
assume that N is very large.

When an individual enters the population, he or she immediately forms part-
nerships with a random number of partners. This random number of partners is
independent for different individuals and binomially distributed with parameters
n and pin, where n is a positive integer, representing the maximal number of part-
ners an individual can have at any given time (the partnership capacity) and pin is a
constant between 0 and 1, to be specified later. So, the probability that an entering
individual has ` partners is

(n
`

)
(pin)

`(1− pin)
n−`. The probability that the incom-

ing individual forms a partnership with an individual that already has k partners at
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that moment is proportional to n− k. A given individual with ` partners acquires
new partners among the individuals already in the population at rate ρ(n−`)F(t),
where F(t) is a time dependent quantity (defined below). Again, the probability
that a partnership is formed with an individual that at that moment already has k
partners is proportional to n− k. Note that we can interpret this construction as
follows: a given individual with ` partners and a given individual with k partners
form a partnership at rate ρ(n− `)(n− k)/(nN). Partnerships have independent
exponential durations with expectation 1/σ , i.e. partnerships dissolve at rate σ

per partnership (if the partnership has not ended by death of one of the partners).
If an individual leaves the active population, then all of its partnerships break.

From a modelling perspective individuals can be seen as collections of n
“binding sites”, where binding sites can either be free or occupied (by a part-
ner). As long as individuals are alive, their binding sites behave independently
where partnership formation and separation is concerned. Let F(t) be the fraction
of binding sites in the population, which is free at time t. We want this fraction to
converge (with high probability) to a constant F , which we use in the formulation
of the branching process. Observe that, because the number of partnerships of an
individual just after entering the population is binomially distributed with parame-
ters n and pin, as a result, we can consider the binding sites of such an individual to
be independent and free with probability 1− pin. We choose the parameters such
that F is equal to 1− pin, because that is a necessary condition for the distribution
of the number of partners of an individual to be stationary. Note that if a binding
site is occupied it becomes empty at rate σ + µ , where the σ term is caused by
separation and the µ term is caused by death of the partner. A binding site, that is
already in the population, acquires new partners already present in the population
at rate ρF(t). The rate at which occupied binding sites enters the population is
µNnpin. The number of free binding sites in the population is F(t)N∗(t)n. There-
fore, per binding site, the rate of acquiring newly arrived partners is µNnpin

F(t)N∗(t)n . So

an empty binding site acquires a new partner at rate ρF(t)+ µNnpin
nN∗(t)F(t) . If F(t)

indeed converges to F = 1− pin (and using the fact that N∗(t)/N converges in
probability to 1 as N → ∞), then the rate of acquiring a new partner at a binding
site is well approximated by ρF + µ(1−F)

F .
Putting the above together with the theory of Markov on-off processes (Resnick,

2013, p.405), the long run fraction of a binding site to be free is given by:

σ +µ

σ +µ +ρF + µ(1−F)
F

=
(σ +µ)F

µ +σF +ρF2 .

This fraction should be equal to F. As a result,

ρF2 = σ(1−F) (1)
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or,

F =
−σ +

√
σ2 +4ρσ

2ρ
. (2)

So, we choose pin = 1− −σ+
√

σ2+4ρσ

2ρ
. The parameters of our model are summa-

rized in Table 1.
Because every binding site is in stationarity, the number of partners of a living

individual is binomially distributed with parameters n and 1−F(t), i.e. the num-
ber of partners of a living individual is k with probability

(n
k

)
(1−F(t))kFn−k(t).

Furthermore, for a given individual assuming that the individual does not die, the
transitions of the number of partners are described by

k −→ k+1 with rate
(

ρF(t)+
µ(1−F(t))

F(t)

)
(n− k),

k −→ k−1 with rate (σ +µ)k.

In the following lemma (the proof is presented in the Appendix), we show
that F(t) indeed converges (in some sense) to F as time t and the population size
parameter N tends to infinity.

Lemma 1 As N → ∞ the fraction of free binding sites F(t) satisfies on every
bounded interval with probability tending to 1 the following differential equation

dF(t)
dt

=−ρF2(t)+σ (1−F(t))−2µ (pin− (1−F(t)) . (3)

It is not hard to see that the asymptotically stable equilibrium solution of the dif-

ferential equation (3) is −(σ+2µ)+
√

(σ+2µ)2+4ρ(σ+2µ(1−pin))
2ρ

. So what it says is
that as t→ ∞:

F(t)→ F =
−σ +

√
σ2 +4ρσ

2ρ
.

In the following analysis we assume that the population has already reached equi-
librium and F(t) can be replaced by the constant F .

Next, we consider an SI epidemic spreading on the dynamic network described
above. In this SI model, pairs of individuals make contacts according to indepen-
dent Poisson processes with per partnership intensity β , as long as the pair is in
a partnership. If a susceptible individual contacts an infectious one, it becomes
infectious immediately and stays so until it leaves the population. We assume
that the infection is introduced in the population by a single infectious individual,
when the network is stationary. All other individuals are at that moment suscep-
tible. With some abuse of terminology, we say that a binding site is susceptible
(respectively infectious) if the partner at the binding site is susceptible (respec-
tively infectious).
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Table 1: The descriptions of the parameters for the model (1).
N Expected number of individuals in population
n Number of binding sites per individual
ρ/(nN) Rate of making attempts of new connections per pair of free binding sites
µ Natural mortality rate per individual
σ Divorce rate per partnership
β Disease transmission rate per partnership
F(t) Fraction of free binding sites at time t
pin Fraction of binding sites of new individuals which is occupied

3 Branching process approaches to the spread of epi-
demics

3.1 A first naive approach
In this subsection, we study the spread of an STI (or other infectious disease) on
the partnership network in the beginning of an epidemic by employing an appeal-
ing but wrong branching process approach. Here, we assume that everyone has n
binding sites (i.e. an individual has at most n partners at the same time). In the
present approach, the dynamic network model can be seen as a discrete space,
continuous time Markov chain. So, we can describe the dynamics of the process
in terms of rates (depending on the current state of the population), where times
between events are exponentially distributed.

In the branching process approach, we want to keep track of properties of
the infectious individuals and their binding sites. We implicitly assume that the
number of susceptible individuals that are not connected to infectious individu-
als is very large and their properties, such as the distribution of the number of
other susceptible partners etc., does not change as long as the branching process
approximation is valid, i.e. we study the initial phase of the epidemic.

The possible states of a binding site of an infectious individual are: free (de-
noted by φ ) or occupied by a susceptible (denoted by −) or occupied by an infec-
tious individual (denoted by +). The binding sites of an individual move among
the possible states according to a Markov process. The disease is transmitted from
an infectious partner to a susceptible partner at rate β . Such a transmission causes
a transition of the state of the binding site from − state to + state. Other possible
transitions are from− or + to φ , which both happen at rate σ +µ and from φ to−
at rate ρF + µ(1−F)

F . Finally, the dynamics of this particular Markov process stops
by death of the infectious individual under consideration, which happens at rate
µ . The states and the transitions of this Markov process are shown schematically
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in Figure 1.

−

φ

+

σ + µ

ρF + µ(1−F )
F

β

σ + µ

µ

µ

µ

Figure 1: Flow chart describing the possible transitions between states (φ), (+),
(−) and their corresponding rates. The continuous red line represents transmis-
sion of the infection while the dashed line represents death. The dash-dotted blue
line represents occupied binding site becoming free while the dotted orange line
represents free binding site becoming occupied.

Recall that an infectious individual can produce new infectious binding sites
through contacts at his or her susceptible binding sites. The number of new in-
fections caused by one infectious individual is the same as the sum of the number
of times we have a transition from the − state to the + state, where the sum is
taken over all its binding sites. Thus, in our consideration a child is born (i.e. an
infectious binding site is created) whenever there is a passage from the − state
to the + state. In the terminology of Galton-Watson branching processes (Jagers,
1975), infectious binding sites generated by an infectious individual are consid-
ered as his or her offspring. However, we stress again, as we show later, that the
epdemic process is not well approximated by a genuine branching process.

Next, we define the following probabilities:

πφ : Probability that a φ binding site becomes + before it disappears, i.e. before
the individual under consideration dies.

π−: Probability that a − binding site becomes + before it disappears.
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π+: Probability that a + binding site becomes + again after having been − or φ

before it disappears.

Using the Markov property, the probability that the destination of a transition out
of a given state (say i) to another given state (say j) is proportional to the transition
rate from i to j. By making use of this property, it is straightforward to deduce
that πφ , π− and π+ satisfy the following balance equations (see Figure 1.):

πφ =
ρF + µ(1−F)

F

µ +ρF + µ(1−F)
F

π−,

π− =
β

β +σ +2µ
+

σ +µ

β +σ +2µ
πφ ,

π+ =
σ +µ

σ +2µ
πφ .

(4)

Recalling (1): ρF2 = σ(1−F), we deduce from system (4) that

πφ =
β (σ +µ)(1−F)

D
,

π− =
β (σ(1−F)+µ)

D
,

π+ =
β (σ +µ)2(1−F)

(σ +2µ)D
,

(5)

where
D = β (σ(1−F)+µ)+µ(σ +µ +µF) .

In order to derive the offspring distribution of a newly infected individual, we
let Xφ , X− and X+ be the random variables denoting, respectively, the number of
infectious binding sites generated by an infected individual who starts in φ ,− and
+ state. We derive the following probability distributions for `= 0,1,2, · · · :

P(Xφ = 1+ `) = πφ π
`
+(1−π+),

P(X− = 1+ `) = π−π
`
+(1−π+),

P(X+ = `) = π
`
+(1−π+)

(6)

and P(Xφ = 0) = 1− πφ and P(X− = 0) = 1− π−. Thus, if n = 1, when every
individual is “born” in state + (because at the time of infection the individual’s
binding site is occupied by his or her infector), the offspring distribution in our
process is geometric with parameter 1−π+.

The independence of the number of children of individuals can be viewed as
the very defining property of branching processes. It is worth mentioning that
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the stochastic process leading to (6) is not a branching process as it violates the
independence criteria of reproducing individuals, already when n = 1. Indeed,
information about the state of the partners of one of the individuals provides some
information about the state of the partner of other individuals. To understand this,
consider what happens if an individual in state + dies. We know with certainty
that his or her partner gets a free binding site. While, if the partnership between
two infected individuals dissolves, then we know for sure that both the infected
individuals, that were in the partnership, gets a free binding site at the same time.
We further clarify the dependencies that violates the independence criteria of re-
producing individuals for n = 1 through the following example.

Example 1 Consider the case when an infector has exactly 1 “child”, the in-
fectee. We consider what happens from the moment of the first infection on.

P(infectee has 0 children | infector has 1 child) =

(1−πφ )P
(

first event after infection is separation | infector has 1 child
)

+(1−πφ )P
(

first event after infection is death of infector | infector has 1 child
)

+P
(

first event after infection is death of infectee | infector has 1 child
)

=
σ

σ +2µ

(1−πφ )
2

1−π+
+2

µ

σ +2µ

1−πφ

1−π+
=

1−2 σ+µ

σ+2µ
πφ +

σ

σ+2µ
π2

φ

1−π+

=
1−2π++ σ(σ+2µ)

(σ+µ)2 π2
+

1−π+
6= 1−π+ = P(infectee has 0 children).

This example shows that there is dependence between the states of the two events
even for n = 1.

3.1.1 R0

In both epidemiology and in branching process theory, the mean number of new
infections caused by one infected individual (the children in the branching pro-
cess) plays an important role. We focus on a newly infected individual and com-
pute the expected number of new infectious binding sites generated by this indi-
vidual. To this end, let R0 denote the expected number of new infectious binding
sites generated by one infectious individual in the early stages of an epidemic.
A newly infected individual in the early stages of an outbreak starts his or her
infectious period with one infected (the infector) and a random number of Ks
susceptible binding sites. Note that, by the dynamic network properties and the
assumption of the early stages of an outbreak, Ks is binomially distributed with
parameters n−1 and 1−F . Therefore, by this interpretation, R0 is given by:
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R0 = E(number of infections caused by one infectious individual),

= E
(
E(number of infections caused by one infectious individual | Ks)

)
,

= E
( π+

1−π+
+Ks

π−
1−π+

+(n−Ks−1)
πφ

1−π+

)
,

=
π+

1−π+
+

n−1
1−π+

(
π−(1−F)+πφ F

)
,

=
β (1−F)

µ(σ +µ +µF)(β +σ +2µ)

(
(σ +µ)2 +(n−1)(σ +2µ)(σ +µ +µF)

)
.

(7)
This result, giving the explicit expression for the reproduction number R0 for

the general n. The first, second and third term in (7), account respectively for
the expected number of new infectious binding sites generated by one infectious
individual who starts in the +, −, and φ state. Note that, in computing this ex-
pectation, we do not need independence of the number of children at different
binding sites (which indeed are not independent). Therefore, this analytic result
is exact. However, since we do not deal with a branching process in the above
derivation, we are not certain whether a single infectious individual can cause a
major outbreak with positive probability if and only if R0 > 1.

The number of partners in our model can have a great effect on R0. To see the
effect of n on R0, we assume that the average number of partners of an individual
be a constant C i.e n(1−F) = C. Using this in (7) and treating n as a positive
continuous variable, straightforward computation gives

∂R0

∂n
=

−βC(σ +µ)2(σ +2µ)

µ
(
n(σ +2µ)−µC

)2
(β +σ +2µ)

+
βC(σ +2µ)

n2µ(β +σ +2µ)
,

=
βC(σ +2µ)(n−C)

(
2n(σ +µ)+µ(n−C)

)
n2
(
n(σ +µ)+µ(n−C)

)2
(β +σ +2µ)

.

Since C is always less than n, thus ∂R0
∂n > 0, i.e R0 increases as n increases. Thus,

the higher number of partners increases the basic reproduction number R0.

3.1.2 Extinction probability under branching process assumption with n =
1.

Assume that n = 1 and recall that in this scenario F represents the fraction of
single individuals in the population. Although, we have seen that our model is
not well-approximated by a proper branching process, it is still possible to define
a branching process through the offspring distribution (6). Obviously, we cannot
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expect that this branching process approximates the epidemic spread well, but
we still want to compute the probability of extinction of this branching process
(Jagers, 1975) and compare this with the correct probability of a minor outbreak
obtained in Section 3.2.

Standard results from the theory on branching processes (Jagers, 1975) give
that the extinction probability q of a branching process originating from one case,
with offspring distribution (6), is the smallest non-negative fixed point of the off-
spring generating function G(s) = ∑

∞
i=0 pisi where pi = P(X+ = i) and 0≤ s≤ 1.

Recall that at the moment an individual gets infected, he or she has 1 infectious
partner (namely his or her parent). From (6), we know that an infected individual
has ` (`= 0,1,2, · · · ) children with probability P(X+ = `) = π`

+(1−π+). So, the
extinction probability, denoted here by q+, is given by the smallest root of

q+ =
∞

∑
`=0

π
`
+(1−π+)(q+)` =

1−π+

1−π+q+
.

We find that q+ = min(1, 1−π+
π+

).
In the following we write the extinction probability in terms of R0. For this,

noting that for n = 1, Equation (7) gives

β =
µ(σ +2µ)(σ +µ +µF)R0

(σ +µ)2(1−F)−µ(σ +µ +µF)R0
. (8)

Using this value of β in Equation (5), we can write πφ and π+ in terms of R0 as
follows:

πφ =
(σ +2µ)R0

(σ +µ)(R0 +1)
,

π+ =
R0

R0 +1
,

(9)

where, the first equation of (9) implies that we should take σ ≥ µ(R0−1) in order
for πφ ≤ 1. So, if R0 =

π+
1−π+

> 1, then q+ = 1/R0.
If we assume that the branching process starts with an individual with an

empty binding site, we can still compute the probability of extinction of the branch-
ing process by making use of the following observation. If the initial individual
has k children, then the offspring of this initial individual only goes extinct if the
offspring of the k children goes extinct. Those k children all correspond to infec-
tious individuals with an infectious binding site at the moment of infection. Recall
that

P(Xφ = k) =

{
1−πφ if k = 0,
πφ (1−π+)π

k−1
+ if k ≥ 1.
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So, we denote by qφ the probability that the offspring of an individual with an
empty binding site goes extinct. Then, qφ satisfies

qφ =
∞

∑
k=0

P(Xφ = k)qk
+= 1−πφ +

πφ (1−π+)q+
1−π+q+

= 1−πφ +πφ q2
+=

1
R0
− µ(R0−1)
(σ +µ)R0

.

where we have used (9) and q+ = 1/R0 in the last equality.
Similarly, we can compute q− the probability that the offspring of an individ-

ual with a susceptible binding site goes extinct, we have that

q− = 1−π−+
π−(1−π+)q+

1−π+q+
= 1−π−+π−q2

+.

It is not hard to see that if R0 is greater than 1, then the extinction probabilities
calculated above are less than 1, which is a minimal requirement for consistency.

3.2 Proper branching process approximation for epidemic spread
As stated earlier, we cannot expect that the branching process defined above ap-
proximates the epidemic well. Still, this branching process is used to compute
the above extinction probabilities. Therefore, the probability calculated above are
not necessarily the extinction probabilities of the epidemic process approximated
by the branching process. That motivates us for setting up a branching process,
which correctly approximates the epidemic process, so that we can get the true
extinction probability for the model when n = 1. Unfortunately, we do not know
how to extend this approach to n > 1.

For this branching process, we base our bookkeeping on the empty binding
sites. For the moment assume that we start the epidemic with one infectious in-
dividual with binding site in state φ . Now the individual can either die (in which
case no new empty binding sites are created), which occurs at rate µ or form a
partnership with a susceptible individual (recall that we are in the early stages of
an epidemic), which occur at rate ρF + µ(1−F)/F) = (σ + µ)(1−F)/F . In
case of a partnership between an infectious individual and a susceptible individ-
ual four things can happen: (i) a separation, in which case there is one infectious
individual with an empty binding site which occurs at rate σ , (ii) the susceptible
individual dies, in which case there is also one infectious individual with an empty
binding site; this occurs at rate µ (iii) the infectious individual dies, in which case
there is no infectious individual with an empty binding site; this occurs at rate µ

or (iv) the infectious individual infects the susceptible one (rate β ), in which case
there is a partnership between two infectious individuals. In creating the branch-
ing process approximation below, we consider the resulting infectious individual
with an empty binding site in case (i) and case (ii) as new individuals.

14



In case of a partnership between two infectious individuals two things can
happen: (i) a separation, in which case there are two infectious individuals with
an empty binding site, which occurs at rate σ (ii) one of the individual dies (rate
2µ), in which case there is one infectious individual with an empty binding site.
Again, in creating the branching process approximation below, we consider the
resulting infectious individuals with an empty binding site as new individuals.
The possible transitions and their rate are schematically depicted in Figure 2.

−

φ

φ

+

φ 2φ

µ
2µ+σ+β

(σ+µ)(1−F )
µ+σ(1−F )

β
2µ+σ+β

σ+µ
2µ+σ+β

2µ
2µ+σ

σ
2µ+σ

µF
µ+σ(1−F )

Figure 2: Flow chart describing the offsprings of binding site (φ ). The dotted
red lines represents producing 0 offspring, solid blue lines represent producing 1
offspring while the dash-dotted orange line represents producing 2 offspring.
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Observe that an empty binding site can generate, after possibly going through
some stages in which the binding site was occupied, zero, one or two “new” empty
binding sites. Here the “new” binding sites might actually be the old binding site,
which for modelling purposes is considered to be new. To clarify the idea behind
our branching process approximation, consider as an example a separation of two
infectious individuals. This can be seen as death of the free binding site leading to
birth of two free binding sites. The “newborn” free binding sites are independent
copies of the initial free binding site, which is why this description leads to a
proper branching process.

So, each free binding site generates a random number Y , Y ∈ {0,1,2}, of
free binding sites in the next generation, independently of other free biding sites.
The probabilities of having Y children in the approximating branching process are
given by

P(Y = 0) =
µ (σ +µ +(β +µ)F)

(σ(1−F)+µ)(β +σ +2µ)
,

P(Y = 1) =
(σ +µ)((σ +µ)(σ +2µ)+2µβ )(1−F)

(σ(1−F)+µ)(σ +2µ)(β +σ +2µ)
,

P(Y = 2) =
σβ (σ +µ)(1−F)

(σ(1−F)+µ)(σ +2µ)(β +σ +2µ)
.

(10)

This simple interpretation for the branching process is no longer valid if the num-
ber of binding sites of an individual exceeds 1, because death of an individual may
cause several pairs of infectious individuals to break at the same moment and in
that way cause dependencies, which violate the defining properties of branching
processes.

For the branching process with an offspring distribution given through the
random variable Y, we can compute the offspring mean (which corresponds to the
expected total number of new free binding sites generated by one free binding
site). We denote this offspring mean by R̂0, which is given by

R̂0 = E(Y ) =
(σ +µ)2(σ +2µ +2β )(1−F)

(σ(1−F)+µ)(σ +2µ)(β +σ +2µ)
. (11)

Note that, this R̂0 is not the basic reproduction number in the biological sense of
the word, but as written above, it is a threshold parameter. The result (11), giving
the explicit expression for the reproduction number R̂0 for the case in which every
individual has at most one partner.

For the branching process with offspring distribution Y, we can also calculate
the probability of extinction, which we denote by q̂φ . This probability should be
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the minimal solution of the following equation (see Jagers, 1975)

q̂φ = P(Y = 0)+P(Y = 1)q̂φ +P(Y = 2)q̂2
φ ,

which is given by

q̂φ = min
(

1,
µ(σ +2µ)(σ +µ +(β +µ)F)

σβ (σ +µ)(1−F)

)
,

Using Equations (7) and (8), we obtain

q̂φ = min
(

1,
1

R0
− µ(R0−1)

σR0

)
.

The R0 in this equation is the basic reproduction number obtained through the
original naive branching process approximation and does not correspond to the
offspring mean of the branching process used to derive q̂φ , still it is useful to use
this R0 to simplify the expression for q̂φ . Note that, the probability of extinction
for both approximating branching processes is not the same. In fact, if R0 > 1,
then qφ = q̂φ + µ2(R0−1)

σ(σ+µ)R0
. As written earlier, the reason for this is that the first

approximation is not a proper branching process approximation of the epidemic
process. In Fig. 3 we compare the two extinction probabilities qφ and q̂φ as func-
tions of σ , where σ ≥ µ(R0−1), while keeping R0 = 3 and µ = 1/30 fixed.

Remark: Of particular interest is the critical infection rate β , denoted by βc,
for which R0 = 1, i.e. the minimum of β which is necessary to possibly cause
an epidemic. Here, we show that our formal framework does indeed give the
same threshold for both the approximations when n = 1. For this, setting R0 = 1
(respectively R̂0 = 1), one obtains

βc =
µ(σ +2µ)(σ +µ +µF)

σ(σ +µ)(1−F)−µF(σ +2µ)
,

for both models. This observation makes us believe that also for n > 1 a single
infected individual can cause a major outbreak with positive probability if and
only if R0 > 1, but we did not find a proof for this.
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Figure 3: The two extinction probabilities qφ for the two branching process rep-
resentations of the epidemic process. The solid line is obtained using the naive
branching process approximation, while the dashed line gives the correct proba-
bility of a minor outbreak. The plots are for σ ≥ µ(R0− 1), where R0 = 3 and
µ = 1/30.
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4 Model without maximum partnership capacity
To circumvent the difficulty of dependencies that arises in the branching process
approximation for the epidemic process with n > 1 in the previous sections, we
consider the model with n = ∞. In this model, it is again assumed that the new
individuals enters the population with a random number of partners. Where those
random numbers are assumed to be independent and identically distributed and
chosen in such a way that the number of partners of an individual is stationary
during the whole “lifetime”.

In order to avoid that individuals accumulate new partners at infinite speed,
we set for n < ∞ the rate at which an individual enters a new partnership per free
binding site as ρ = ρ̄

n , where ρ̄ is a constant. Note that for n < ∞, an individual
with k partners enters a new partnership at rate ρF(n− k), which would go to
infinity if ρ > 0 and n→ ∞. Furthermore, assume that an individual enters the
population with an expected number µin of partners.

Arguing as for the finite n case. Individuals acquire new partners at rate ρ̄ +
µµin (note that this is independent of the number of partners the individual already
has) and lose partners at rate σ +µ . If the stationary distribution of the number of
partners is distributed as D, then for k = 0,1, · · · , the probabilities dk = P(D = k)
needs to satisfy the following balance equation

(ρ̄ +µµin)dk = (σ +µ)dk+1(k+1). (12)

Noting that ∑
∞
k=0 dk = 1, it follows from (12) that

dk =
( ρ̄+µµin

σ+µ
)ke−

ρ̄+µµin
σ+µ

k!
, (13)

i.e. D is Poisson distributed with expectation ρ̄+µµin
σ+µ

. In order to let the degree
of entering individuals be stationary from the start, we want µin to satisfy the
following equation:

µin = E(D) =
ρ̄ +µµin

σ +µ
,

which implies µin = ρ̄/σ . So, D is Poisson distributed with expectation ρ̄/σ .
Furthermore, newly arriving individuals also have this degree distribution.

Having determined the degree distribution, we can now compute the expected
number of partners infected by one infectious individual. We denote this expected
number by R0, which corresponds to R0 as defined for the finite n case.

First we compute the probability that the infectious individual (say v1) infects
a given other individual, say v2, who was already a partner of v1 at the moment v1
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got infected. This probability to infect susceptible partner is given by∫
∞

0
µe−µt

∫ t

0
βe−βue−µue−σududt =

β

β +σ +2µ
.

Here, 0 can be seen as the time when v1 got infected, t is the time when v1 dies
and u is the time when v1 infects v2. Since the expected number of susceptible
partners of an individual at the time of infection is ρ̄/σ , the expected number of
partners v1 infects, among those individuals who were already partners at the time
v1 was infected is

ρ̄

σ

∫
∞

0
µe−µt

∫ t

0
βe−βue−µue−σududt =

ρ̄β

σ(β +σ +2µ)
. (14)

Similarly, we can compute the probability that an individual v1 who dies at
time t after being infected, infects a partner v2 which it contacts at time s since v1
got infected (s < t). This probability is given by∫ t

s
βe−β (u−s)e−µ(u−s)e−σ(u−s)du.

So, using the fact that the total rate an individual acquires a new partners is (ρ̄ +

µ
ρ̄

σ
), the expected number of individuals v1 infects, among those individuals who

were not yet partners of v1 at the time v1 got infected is given by∫
∞

0
µe−µt

∫ t

0
(ρ̄+µ

ρ̄

σ
)
∫ t

s
βe−β (u−s)e−µ(u−s)e−σ(u−s)dudsdt=

ρ̄β (σ +µ)

σ µ(β +σ +2µ)
.

(15)
Combining the above two observations (14) and (15), we arrive at the following
expression for the basic reproduction number:

R0 =
ρ̄β

σ(β +σ +2µ)
+

ρ̄β (σ +µ)

σ µ(β +σ +2µ)
=

ρ̄β (σ +2µ)

σ µ(β +σ +2µ)
. (16)

Altmann (1995) considers a model very similar to ours but not exactly the
same. He considers an SIR epidemic in a population in which individuals do
not die but recover (and acquire eternal immunity) and no new individuals can
enter the population. It is easy to check that R0 in (16) obtained above is in
agreement with the result in equation (1) of Altmann (1995) after setting the death
rate of partners to 0, which leads to replacing β +σ + 2µ by β +σ + µ in the
denominators of both terms in the middle expression of (16) and dropping the
factor (σ +µ)/σ in the second term of the middle expression of (16).

In order to find the probability of a minor outbreak, we need the distribution
of the number of new infectious binding sites that are generated by each infected
individual. This then defines the offspring distribution for our branching process.
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Assume that individual v1 is infectious for t time units. We have already com-
puted the probability of infecting a given other individual who was already a part-
ner of v1 at the moment v1 got infected (see Equation (4)). Conditioned on t, this
probability is ∫ t

0
βe−βue−µue−σudu =

β

α
(1− e−αt),

where α = β + µ +σ . Furthermore, conditioned on t, whether a given partner
of v1 at the time v1 got infected (say time 0), will itself be infected by v1 is in-
dependent of which other individuals v1 infects. This implies that the probability
generating function of Z1(t), the number of partners of v1 at time 0, who are ulti-
mately infected by v1 for s ∈ [0,1] is given by

E(sZ1(t)) =
∞

∑
`=0

( ρ̄

σ
)`

`!
e−

ρ̄

σ

(
β

α
(1− e−αt)s+1− β

α
(1− e−αt)

)`

. (17)

Still assuming that v1 lives until time t since infection, v1 can also infect indi-
viduals that are not yet partners of v1 at time 0. As described above, an individual
acquires new partners according to a homogeneous Poisson process with inten-
sity ρ̄

σ+µ

σ
. Up to time t, the distribution of the number of acquired partners is

therefore Poisson distributed with expectation ρ̄
σ+µ

σ
. If we condition on v1 ac-

quiring m partners in the time interval (0, t), then, by standard properties of the
Poisson process (Resnick, 2013, Section 4.5), those m time points are distributed
as m independent uniformly distributed random variables on (0, t). Let Z′2(t,m)
be the random number of individuals v1 infects that were not partners yet at time
0, conditioned on v1 dying at time t and acquiring m partners in (0, t). The above
demonstration yields

E(sZ′2(t,m)) =

(
1
t

∫ t

0

(β

α
(1− e−α(t−u))s+1− β

α
(1− e−α(t−u)))du

)m

. (18)

Further, let Z2(t) be the random number of individuals v1 infects which were not
partners yet at time 0, conditioned on v1 dying at time t, not conditioned on the
number of partners acquired in (0, t). We obtain:

E(sZ2(t)) =
∞

∑
m=0

( ρ̄(σ+µ)t
σ

)m

m!
e−

ρ̄(σ+µ)t
σ E(sZ′2(t,m)),

=
∞

∑
m=0

( ρ̄(σ+µ)t
σ

)m

m!
e−

ρ̄(σ+µ)t
σ

(
1
t

∫ t

0

(β

α
(1− e−α(t−u))s+1− β

α
(1− e−α(t−u)))du

)m

.

(19)
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Note that because we assume n = ∞, conditioned on t, Z1(t) and Z2(t) are inde-
pendent of each other, which implies that E(sZ1(t)+Z2(t)) = E(sZ1(t))E(sZ2(t)). Let
Z be the random variable describing the total number of individuals infected by
v1. By integrating over time, we obtain by (17) and (19) that:

E(sZ) =
∫

∞

0
µe−µtE(sZ1(t))E(sZ2(t))dt,

=
∫

∞

0
µe−µt

(
∞

∑
l=0

( ρ̄

σ
)`

`!
e−

ρ̄

σ

(β

α
(1− e−αt)s+1− β

α
(1− e−αt)

)`)

×
(

∞

∑
m=0

( ρ̄(σ+µ)t
σ

)m

m!
e−

ρ̄(σ+µ)t
σ

(1
t

∫ t

0

(β

α
(1−e−α(t−u))s+1− β

α
(1−e−α(t−u)))du

)m
)

dt.

(20)

where E(sZ) is the probability generating function of Z, the total number of indi-
viduals infected by v1. Equation (20) can further be simplified as follows:

E(sZ) =
∫

∞

0
µe−µte−

ρ̄

σ

∞

∑
`=0

( ρ̄

σ
)`

`!

(
1− β

α
(1− e−αt)(1− s)

)`

× e−
ρ̄(σ+µ)t

σ

∞

∑
m=0

( ρ̄(σ+µ)
σ

t)m

m!

(
1− β

α
(1− s)+

β

α2t
(1− e−αt)(1− s)

)m

dt,

=
∫

∞

0
µe−µte−

ρ̄β

σα
(1−e−αt)(1−s)e−

ρ̄β

σσ
(σ+µ)(t− 1

α
(1−e−αt))(1−s)dt. (21)

To simplify notation, we write, recalling that α = β + µ +σ , that c = ρ̄β (σ+µ)
σα

and d = ρ̄β

σα
(1− σ+µ

α
) = ρ̄β 2

σα2 , After rearranging the terms in (21), a little algebra
yields:

E(sZ) = µe−d(1−s)
∫

∞

0
e−(µ+c(1−s))ted(1−s)e−αt

dt,

= µe−d(1−s)
∫

∞

0

∞

∑
`=0

(d(1− s))`

`!
e−(µ+c(1−s)+`α)tdt,

= µe−d(1−s)
∞

∑
`=0

(d(1− s))`

`!(µ + c(1− s)+ `α)
.

(22)

Thus, we have found an expression for the probability generating function for the
number of offspring generated by an infectious individual, involving an infinite
series with infinite radius of convergence. Note that, the probability P(Z = k) for
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a specific k can be determined from the probability generating function through

P(Z = k) =
1
k!

dk

dskE(s
Z)|s=0,

but explicit expressions for these probabilities are long and hardly insightful.
Furthermore, we can also find the probability of extinction of the branching

process as the smallest positive root of s = E(sZ). Again, there is no nice closed
form expression for this root, however it can be approximated numerically.

Finally, we explore the consistency in R0 and R0 when the number of binding
sites n tends to infinity. In the limit when n becomes large, the asymptotic fraction
of free binding sites as described in equation (2) becomes

F =
−σ +σ

√
1+4 ρ̄

nσ

2 ρ̄

n

≈ n
2ρ̄

(
−σ +σ

(
1+

2ρ̄

σn
− 2ρ̄2

σ2n2 +o(
1
n2 )

))
≈ 1− ρ̄

σn
+o(

1
n
),

where a function g(x) = o(x) if g(x)/x→ 0 for x→ 0. Therefore, F → 1− ρ̄

σn as
n→ ∞. Using F → 1− ρ̄

σn in (7), a little algebra confirms that

lim
n→∞

R0 =
ρ̄β (σ +2µ)

σ µ(β +σ +2µ)
,

which agrees with equation (16).

5 Conclusion
The reproductive number and the probability of extinction are among the most
fundamental concepts in the theory of mathematical modelling of the spread of
infectious diseases. These quantities have importance for health officials for plan-
ning and allocation of funds to control the spread of those diseases. We explored
different strategies to derive explicit expressions for these two important quantities
for a dynamic sexual network using branching processes. Although, it is diffi-
cult to derive analytical expressions for threshold conditions and the probability
of extinction for a disease spreading on a dynamic sexual network, the branch-
ing process approach provide insights for determining the analytical expressions
both for the threshold quantity and the probability of extinction. To derive these
quantities, we proposed two approaches.

In the first approach, we considered the case in which every individual has
n binding sites. This approach suffers from some undesired dependencies, as a
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result we ended up with an approximating branching process that in fact was not
a proper approximation of the original epidemic process. The dependencies are
demonstrated in detail and an example is provided to clarify the dependencies that
violates the (for branching processes) crucial independence criteria of reproducing
individuals. The obtained insights are a warning for dependencies which are easily
overseen.

By the simple modelling framework of this first approach, it is only possible
to derive the value of the basic reproduction number R0. However, the probability
of extinction of this approximate branching process is also computed to compare
it with the true probability of extinction for the special case in which an individual
has at most one partner at a time. Interestingly, starting from one infectious in-
dividual, the derivation of R0 does not depend on the fundamental independence
criteria of the number of children at different binding sites. This suggests that
the corresponding explicitly derived value of R0 is exact. However, this does not
guarantee the occurrence of a major outbreak with positive probability even if
the basic reproduction number R0 > 1. This finding is in contrast to classical epi-
demic models where a major outbreak has strictly positive probability if and only
if R0 > 1.

In the second approach, we demonstrated a simple version of the model in
which every individual can have at most one partner at a time. For this model, we
managed to establish a proper branching process approximation and derived the
offspring distribution of this branching process, which allows us to easily compute
the probability of extinction for the branching process (and thus for the epidemic).
The expectation of the offspring distribution is a threshold parameter. Finally, for
n = 1, it is verified that the epidemic threshold parameters obtained by the two
different schemes are the same.

In deriving our models and sticking to branching process approximation as
a tool for the analysis, we find that the dependencies has a subtle influence on
the formulation of branching process. These dependencies disappear if n = ∞.
In that case we can compute the basic reproduction number R0 and the degree
distribution of the number of partners of an individual. The probability generating
function of the distribution of the number of offspring produced by an infectious
individual, that involve a convergent infinite series, is also calculated. This helps
us derive an implicit expression of extinction probability. Moreover, we show that
our computations are consistent in the sense that for n→ ∞, R0→ R0.

The current study is only a first step in studying the spread of the disease on
a dynamic network using a branching process approach. In future work, we hope
to further investigate the disease dynamics by dropping the stationary distribution
assumption of the number of partners at debut.
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Appendix
In this appendix, we prove that the fraction of free binding sites in a population
with size parameter N, say FN(t), indeed (under certain conditions) converges to
a constant F with probability tending to 1 as N → ∞. To do this we consider a
sequence of the epidemic processes indexed by the expected population size N.
We often write that an event occurs w.h.p. (with high probability), which means
that the probability of the event converges to 1 as N→ ∞ and t→ ∞.

Since, for finite N the number of edges in the graph will within finite (but
exponentially large) time have been both 0 and nN, we cannot obtain that FN(t)→
F as t→∞ with high probability. So, we settle for proving that for s large enough
and every ε > 0 and t > 0 we have that sups≤u≤s+t |FN(u)−F | < ε , with high
probability. To do this, we prove that for all ε > 0 and all t > 0, supu≤t |FN(u)−
F(u)|< ε w.h.p., where F(t) satisfies

F(t)=F(0)−
∫ t

0
2µ (pin− (1−F(s)))−σ(1−F(s))+ρ(F(s))2ds for t ≥ 0.

(23)
Here and throughout this appendix we assume that FN(0)→ F(0) as N→ ∞. The
proof we provide is inspired by the proof of (Ethier and Kurtz, 2009, Thm 2.1,
page 456).

Let N∗N(t) be the actual population size at time t and recall that the stationary
distribution of N∗N(t) is Poisson distributed with expectation N. Throughout we
assume that

|N∗N(0)−N| ≤ N2/3. (24)

From (Ethier and Kurtz, 2009, Thm 11.2.3) we then deduce that for all t > 0,

|N∗N(s)−N| ≤ 2N2/3 for all s ∈ [0, t] w.h.p. (25)

Note that (25) implies that,

|N
∗
N(s1)

N∗N(s2)
−1| ≤ 5N−1/3 for all s1,s2 ∈ [0, t] w.h.p. (26)

Let MN(t) be the number of partnerships in the population at time t. Because
each partnership involves two individuals, the sum of the number of partners over
all individuals is therefore 2MN(t). Furthermore FN(t) = 1− 2MN(t)

nN∗N(t)
.

25



There are four events which change the number of partnerships in the popula-
tion.

(i) A new individual entering the population, which leads to an expected in-
crease of npin of the number of partnerships and occurs at intensity µN.

(ii) An individual dies, which leads to an expected decrease of 2MN(t)
N∗N(t)

of the
number of partnerships and occurs at (time dependent) intensity µN∗N(t).

(iii) Separation, which decreases the number of partnerships by 1 and occurs at
intensity σMN(t) and

(iv) Formation of a new pair, which increases the number of partnerships by 1
and occurs at intensity

ρ

2
(nN∗N(t)−2MN(t))

nN∗N(t)−2MN(t)
nN∗N(t)

=
ρnN∗N(t)

2

(
1− 2MN(t)

nN∗N(t)

)2

.

Denote the times at which one of the above events occur by t1 < t2 < · · · and
set t0 = 0. Let ι(t) = max{i ≥ 0; ti ≤ t}, be the number of events up to time t.
Define

λ (t) =
nN∗N(t)

2

(
2µ

N
nN∗N(t)

+
2µ

n
+σ

2MN(t)
nN∗N(t)

+ρ

(
1− 2MN(t)

nN∗N(t)

)2
)
. (27)

That is, λ (t) is the rate at which the first event after time t occurs. By (25) we
have

0 <
2µ

n
≤ 2

nN∗N(s)
λ (s)≤ 5µ

n
+σ +ρ < ∞ for all s ∈ [0, t] w.h.p. (28)

Let Fi be the σ -algebra generated by the whole dynamic random graph pro-
cess up to time ti. So {(MN(t),N∗N(t))}t∈[0,ti] is measurable with respect to Fi.
For i ≥ 0, the interarrival time ti+1− ti is exponentially distributed with parame-
ter λ (ti). Conditioned on {λ (ti)}i≥0, the interarrival times are independent. For
i ≥ 1, let Ji = MN(ti)−MN(ti−1) and note that Ji ∈ [−n,n] (i.e. the maximal in-
stantaneous change in MN(t) is n) and that

Ĵi =E[Ji|Fi−1] =
2µ

N
N∗N(ti−1)

pin−2µ
2MN(ti−1)
nN∗N(ti−1)

−σ
2MN(ti−1)
nN∗N(ti−1)

+ρ

(
1− 2MN(ti−1)

nN∗N(ti−1)

)2

2µ
N

nN∗N(ti−1)
+ 2µ

n +σ
2MN(ti−1)
nN∗N(ti−1)

+ρ

(
1− 2MN(ti−1)

nN∗N(ti−1)

)2

=
µnN pin−2µMN(ti−1)−σMN(ti−1)+ρ

nN∗N(t)
2

(
1− 2MN(ti−1)

nN∗N(ti−1)

)2

λ (ti−1)
.
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Define
M̂i = Ji− (ti− ti−1)λ (ti−1)Ĵi, for i≥ 1

and note that E[M̂i+1|Fi] = 0 and

E[(M̂i+1)
2|Fi] = E[(Ji+1)

2|Fi]≤ 4n2. (29)

Because Ji = 1 with probability at least

µN
λ (ti)

≥ 2µN
nN∗N(t)

1
5µ

n +σ +ρ
≥ 2µN

N +2N2/3
1

5µ +σn+ρn
≥ µ

5µ +σn+ρn
,

we obtain that with high probability (here we used (28) and (25)),

0 <
µ

5µ +σn+ρn
≤ E[(M̂i+1)

2|Fi]≤ 4n2 < ∞. (30)

Furthermore,

MN(t) = MN(0)+
ι(t)

∑
i=1

M̂i +
∫

ι(t)

0
λ (s)Ĵι(s)ds

=MN(0)+
ι(t)

∑
i=1

M̂i+
∫

ι(t)

0
µnN pin−(2µ+σ)MN(s)+ρ

nN∗N(s)
2

(
1− 2MN(s)

nN∗N(s)

)2

ds

Writing FN(t) = 1− 2MN(t)
nN∗N(t)

, this reads

FN(t) = FN(0)
N∗N(0)
N∗N(t)

− 2ι(t)
nN∗N(t)

1
ι(t)

ι(t)

∑
i=1

M̂i

−
∫

ι(t)

0
2µ

N
N∗N(t)

pin− (2µ +σ)
N∗N(s)
N∗N(t)

(1−FN(s))+ρ
N∗N(s)
N∗N(t)

(FN(s))
2 ds.

So using (23), we obtain

|FN(t)−F(t)| ≤ |FN(0)
N∗N(0)
N∗N(t)

−F(0)|+ | ι(t)
nN∗N(t)

1
ι(t)

ι(t)

∑
i=1

M̂i|

+ |
∫

ι(t)

0
2µ

N
N∗N(t)

pin− (2µ +σ)
N∗N(s)
N∗N(t)

(1−FN(s))+ρ
N∗N(s)
N∗N(t)

(FN(s))
2]ds

−
∫ t

0
(2µ pin− (2µ +σ)(1−F(s)+ρ(F(s))2ds|,
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which in turn provides us with the following upperbound

sup
0≤u≤t

|FN(u)−F(u)| ≤ sup
0≤u≤t

|FN(0)
N∗N(0)
N∗N(u)

−F(0)|

+ sup
0≤u≤t

| N
N∗N(u)

1
nN

ι(u)

∑
i=1

M̂i|

+ sup
0≤u≤t

|
∫ u

tι(u)
(2µ pin− (2µ +σ)(1−F(s)+ρ(F(s))2ds|

+ sup
0≤u≤t

∫ tι(u)

0
2µ pin|

N
N∗N(u)

−1|ds

+ sup
0≤u≤t

∫ tι(u)

0
(2µ +σ)|N

∗
N(s)

N∗N(u)
(1−FN(s))− (1−F(s))|ds

+ sup
0≤u≤t

∫ tι(u)

0
ρ|N

∗
N(s)

N∗N(u)
(FN(s))

2− (F(s))2|ds.

We can now analyse the six terms on the right hand side separately.

•
|FN(0)

N∗N(0)
N∗N(u)

−F(0)| ≤ FN(0)|
N∗N(0)
N∗N(u)

−1|+ |FN(0)−F(0)|

For all 0 < u ≤ t the first term on the right hand side is w.h.p. bounded by
5N−1/3 by (26). The second term converges to 0 because FN(0)→ F(0) as
N→ ∞.

• For sup0≤u≤t | N
N∗N(u)

1
nN ∑

ι(u)
i=1 M̂i|, note that sup0≤u≤t | N

N∗N(u)
|< 2 w.h.p. by (25).

By Kolmogorov’s inequality (See (Durrett, 2010, Thm 2.5.2)) we obtain
that

P

(
max

i≤k≤ι(u)
|

k

∑
i=1

M̂i| ≥ nN2/3

)
≤ N−4/3

ι(u).

So, for u≤ t

P

(
max

i≤k≤ι(u)

1
nN
|

k

∑
i=1

M̂i| ≥ N−1/3

)
≤ N−4/3

ι(u)≤ N−4/3
ι(t).

Furthermore, ι(t) is the number of events up to time t, which, by N∗N(u) <
2N for all u ∈ [0, t] w.h.p. and by (25) and (28), is w.h.p. bounded above by
a Poisson distributed random variable with expectation nNt

(
5µ

n +σ +ρ

)
.

This bound is distributed as the sum of N i.i.d. Poisson distributed random

28



variables with mean nt
(

5µ

n +σ +ρ

)
. So, by the (weak) law of large num-

bers
ι(t)
N
≤ nt

(
5µ

n
+σ +ρ

)
+1 w.h.p. (31)

Combining the above, we obtain that there exists a positive constant C such
that

sup
0≤u≤t

| N
N∗N(u)

1
nN

ι(u)

∑
i=1

M̂i| ≤Cn−1/3 w.h.p.

•

|
∫ u

tι(u)
(2µ (pin− (1−F(s)))−σ(1−F(s)+ρ(F(s))2ds|

≤ (u− tι(u)) sup
tι(u)≤s≤u

|(2µ (pin− (1−F(s)))−σ(1−F(s)+ρ(F(s))2|

≤ (u− tι(u))(4µ +σ +ρ).

We are interested in

sup
0≤u≤t

|
∫ u

tι(u)
(2µ (pin− (1−F(s)))−σ(1−F(s)+ρ(F(s))2ds|

≤ sup
0≤u≤t

(u− tι(u))(4µ +σ +ρ).

Because u− tι(u) is exponentially distributed with parameter at least µN/2
all over the interval [0, t] by (30), sup0≤u≤t(u−tι(u)) is stochastically bounded
above by the maximum of ι(t) independent exponentially distributed ran-
dom variables with mean at least µN/2. Denote this maximum by X . Let
c(N) be a function depending on N, then

P(X > c(N)) = 1−
(

1− 1
eµNc(N)/2

)ι(t)

,

which converges to 0 as eµNc(N)/2/ι(t)→∞, which by (31) holds w.h.p. for
c(n) = N−1/2.

•
sup

0≤u≤t

∫ tι(u)

0
2µ pin|

N
N∗N(u)

−1|ds≤ 2µ pint(5N−1/3) w.h.p.

Here we have used (26) and that tι(u) ≤ t for u ∈ [0, t].
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•

sup
0≤u≤t

∫ tι(u)

0
(2µ +σ)|N

∗
N(s)

N∗N(u)
(1−FN(s))− (1−F(s))|ds

≤ (2µ +σ) sup
0≤u≤t

∫ tι(u)

0
|N
∗
N(s)

N∗N(u)
−1|(1−FN(s))+ |F(s)−FN(s))|ds

≤ (2µ +σ)t5N−1/3 +(2µ +σ) sup
0≤u≤t

∫ u

0
|F(s)−FN(s))|ds w.h.p.

Here we have used (26) and that tι(u) ≤ u≤ t for u ∈ [0, t].

•

sup
0≤u≤t

∫ tι(u)

0
ρ|N

∗
N(s)

N∗N(u)
(FN(s))

2− (F(s))2|ds

≤ ρ sup
0≤u≤t

∫ u

0
|
(

N∗N(s)
N∗N(u)

−1
)
(FN(s))

2 + |(FN(s))2− (F(s))2|ds

≤ ρ sup
0≤u≤t

∫ t

0
|
(

N∗N(s)
N∗N(u)

−1
)

ds+ρ sup
0≤u≤t

∫ u

0
|FN(s)−F(s)||FN(s)+F(s)|ds

≤ ρ5tN−1/3 +2ρ sup
0≤u≤t

∫ u

0
|FN(s)−F(s)|ds, w.h.p.

Here again we have used (26) and that tι(u) ≤ u≤ t for u ∈ [0, t].

Combining the above inequalities we obtain that

sup
0≤u≤t

|FN(u)−F(u)| ≤ ε(N)+(2µ+σ +2ρ) sup
0≤u≤t

∫ u

0
|FN(s))−F(s)|ds, w.h.p.

(32)
where ε(N)→ 0 as N→ ∞. It follows now by Gronwall’s inequality (see (Ethier
and Kurtz, 2009, Appendix)) that for all t > 0,

sup
0≤u≤t

|FN(u)−F(u)| → 0

in probability as N→∞. In particular, for all ε > 0, all t > 0 and all s large enough

sup
s≤u≤s+t

|FN(u)−F |< δ , w.h.p.

Here we have used that F(t)→ F as t→ ∞.

30



References
Altmann M (1995) Susceptible-infected-removed epidemic models with dynamic

partnerships. Journal of Mathematical Biology 33(6):661–675

Ball F, Donnelly P (1995) Strong approximations for epidemic models. Stochastic
processes and their applications 37(1):119–121

Ball F, Sirl D, Trapman P (2009) Threshold behaviour and final outcome of an
epidemic on a random network with household structure. Advances in Applied
Probability 41(3):765–796

Ball F, Sirl D, Trapman P (2010) Analysis of a stochastic sir epidemic on a
random network incorporating household structure. Mathematical Biosciences
224(2):53–73

Ball F, Sirl D, Trapman P (2014) Epidemics on random intersection graphs. The
Annals of Applied Probability 24(3):1081–1128

Britton T (2010) Stochastic epidemic models: a survey. Mathematical Biosciences
225(1):24–35

Cushing J, Diekmann O (2016) The many guises of r 0 (a didactic note). Journal
of Theoretical Biology 404:295–302

Diekmann O, Heesterbeek H, Britton T (2013) Mathematical tools for understand-
ing infectious disease dynamics. Princeton University Press

Durrett R (2010) Probability: theory and examples. Cambridge university press

Eaton JW, Hallett TB, Garnett GP (2011) Concurrent sexual partnerships and pri-
mary hiv infection: a critical interaction. AIDS and Behavior 15(4):687–692

Ethier SN, Kurtz TG (2009) Markov processes: characterization and convergence,
vol 282. John Wiley & Sons

Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C,
Eames KT, Edmunds WJ, Frost SD, Funk S, et al (2015) Modeling infec-
tious disease dynamics in the complex landscape of global health. Science
347(6227):aaa4339

Jagers P (1975) Branching processes with biological applications. Wiley

Kretzschmar M, Dietz K (1998) The effect of pair formation and variable infec-
tivity on the spread of an infection without recovery. Mathematical biosciences
148(1):83–113

31



Leung K (2016) Dangerous connections: the spread of infectious diseases on dy-
namic networks. PhD thesis, Utrecht University

Leung K, Kretzschmar M, Diekmann O (2012) Dynamic concurrent partner-
ship networks incorporating demography. Theoretical Population Biology
82(3):229–239

Leung KY, Kretzschmar M, Diekmann O (2015) {SI} infection on a dynamic
partnership network: characterization of R0. Journal of Mathematical Biology
71(1):1–56

Newman ME (2002) Spread of epidemic disease on networks. Physical review E
66(1):016,128

Resnick SI (2013) Adventures in stochastic processes. Springer Science & Busi-
ness Media

WHO (2015) Sexually transmitted infections (STIs) URL
http://www.who.int/mediacentre/factsheets/fs110/en/

32


