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Abstract

The optimal investment problem is one of the most important
problems in mathematical finance. The main contribution of the
present paper is an explicit formula for the optimal portfolio process.
Our optimal investment problem is that of maximizing the expected
value of a standard general utility function of terminal wealth in a
standard complete Wiener driven financial market. In order to derive
the formula for the optimal portfolio we use the recently developed
functional Itô calculus and more specifically an explicit martingale
representation theorem. A main component in the formula for the
optimal portfolio is a vertical derivative with respect to the driving
Wiener process. The vertical derivative is an important component of
functional Itô calculus.
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1 Introduction

Optimal investment and consumption problems are among the most impor-
tant problems in mathematical finance. Problems of this type were first stud-
ied using Itô calculus by Merton (1969) and Merton (1971), where standard
stochastic control methods were used (cf. dynamic programming and the
Hamilton-Jacobi-Bellman equation). These methods typically relies on asset
prices being Markovian. The martingale methodology was later developed by
e.g. Pliska (1986) and Karatzas, Lehoczky & Shreve (1987). The martingale
methodology typically relies on the financial market being complete, which
allows for the optimization to be performed trajectory by trajectory.

In the present paper we consider the optimal investment problem of max-
imizing the expected value of a standard general utility function of terminal
wealth. Our market is the standard complete Wiener driven financial market
found in e.g. Karatzas & Shreve (1998). Optimal investment problems in
this type of market have to a considerable extent been studied for several
decades. For a survey of the literature on optimal investment (and consump-
tion) problems and markets similar to that of the present paper see Karatzas
& Shreve (1998) Chapters 1 and 3.

The following explicit formula for the optimal wealth process X∗ is, in
the setting of the present paper, a standard result:

X∗(t) = EFt

[
H(T )

H(t)
I(Y(x0)H(T ))

]
, 0 ≤ t ≤ T,

where H is the state price density process, I(·) is the inverse of the derivative
of the utility function for terminal wealth U(·) and Y(x0) is a constant de-
pending on the initial wealth x0 (see Lemma 4.2 below). Using the standard
martingale representation theorem and that HX∗ is a martingale it is possi-
ble to implicitly characterize the optimal portfolio process π∗, and therefore
to ascertain its existence.1

However, in order to derive an explicit formula for the optimal portfo-
lio π∗ the literature has resorted to Malliavin calculus and in particular the
Clark-Ocone formula. One of the first papers in this direction was Ocone &
Karatzas (1991). The Malliavin approach to optimal investment and con-
sumption problems has since become popular, see e.g. Lakner (1998), Pham
& Quenez (2001), Benth, Di Nunno, Lökka, Øksendal & Proske (2003), De-
temple & Rindisbacher (2005), Lakner & Nygren (2006), Putschögl & Sass
(2008) and Di Nunno & Øksendal (2009).

1For details see Karatzas (1989) or Karatzas & Shreve (1998) Chapter 3.
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Functional Itô calculus was initially proposed by Dupire (2009). It has
since been developed into a rigorous and coherent theory, see e.g. Cont
& Fournié (2010a), Cont & Fournié (2010b), Cont & Fournié (2013) and
Bally, Caramellino, Cont, Utzet & Vives (2016) (the latter contains extensive
lecture notes covering most of the present theory).

In the present paper, we suggest a functional Itô calculus approach to
the optimal investment problem. Specifically, using an explicit martingale
representation result and the vertical derivative (see Section (2)) we derive
an explicit formula for the optimal portfolio π∗.

We remark that Pang & Hussain (2015) study optimal investment us-
ing functional Itô calculus, in a way substantially different from that of the
present paper: they study an optimal investment and consumption problem
in a particular financial model with bounded memory, in which the dynamics
of the delay variables are investigated by means of the functional Itô formula.

The main contribution of the present paper can be summarized as follows:
we derive an explicit formula for the optimal portfolio process π∗ for a stan-
dard general optimal investment problem, see Theorem 4.3. We remark that
our formula may be more suitable for numerical studies of optimal portfolios
compared to formulas based on the Malliavin approach, see Remark 5.2. We
illustrate our findings by studying two well-known examples, see Section 4.1.

2 Preliminaries - explicit martingale repre-

sentation

In order to prove our main result, Theorem 4.3, we need an explicit mar-
tingale representation result from functional Itô calculus. Functional Itô
calculus is still not very well known and we therefore present this result and
some of the related theory in this section (without proofs). For a compre-
hensive account we refer to Bally et al. (2016) (and also to Cont & Fournié
(2013)).

Let Ω = D([0, T ],Rn) be the space of càdlàg paths on [0, T ] , where
T < ∞. The value of a path ω ∈ Ω at a fixed time t ∈ [0, T ] is denoted by
ω(t). For a fixed t ∈ [0, T ], a stopped path ωt is obtained by fixing the value
of the path ω on (t, T ] at ω(t), i.e.

ωt(s) = ω(t ∧ s) =

{
ω(s) for s ∈ [0, t]
ω(t) for s ∈ (t, T ].

The space of stopped paths is defined as

ΛT = {(t, ωt) : (t, ω) ∈ [0, T ]×D([0, T ],Rn)} .
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A stopped path ωt can be identified with the pair (ω, t) and we therefore,
without any risk of confusion, from now on let (t, ω) and (t, ωt) denote the
same object and use them interchangeably. Define the distance between two
different paths, ω and ω̃, stopped at two different times, t and t̃, by

d∞((t, ω), (t̃, ω̃)) = sup
s∈[0,T ]

||ω(s ∧ t)− ω̃(s ∧ t̃)||+ |t− t̃|

= ||ω(s ∧ t)− ω̃(s ∧ t̃)||∞ + |t− t̃|.

It can be shown that (ΛT , d∞) is a complete metric space.
A non-anticipative functional is a real-valued measurable map from the

space of stopped paths F : (ΛT , d∞) → R. Since a stopped path ωt is
identified with (t, ω) we may write the value of a functional at time t as
either F (t, ω) or as F (t, ωt).

A non-anticipative functional F is said to be continuous at fixed times if,
for fixed t ∈ [0, T ), the functional F (t, ·) : D([0, T ],Rn) → R is continuous
(where the metric for the path is d∞).

A non-anticipative functional F is said to be horizontally differentiable
at (t, ω) ∈ ΛT if the following limit (called the horizontal derivative) exists

DF (t, ω) = lim
h↘0

F (t+ h, ωt)− F (t, ωt)

h
.

If F is horizontally differentiable at each (t, ω) ∈ ΛT then the map DF :
(t, ω)→ DF (t, ω) defines a non-anticipative functional, called the horizontal
derivative of F .

A non-anticipative functional F is vertically differentiable at (t, ω) ∈ ΛT

if the following limits exist

∂iF (t, ω) = lim
h→0

F (t, ωt + eih1[t,T ])− F (t, ωt)

h
, i = 1, ..., n.2

The vertical derivative at (t, ω) ∈ ΛT is then defined as

∇ωF (t, ω) = (∂iF (t, ω), i = 1, ..., n)′.3

If F is vertically differentiable at each (t, ω), then ∇ωF (t, ω) defines a non-
anticipative functional called the vertical derivative of F .4 Higher order ver-
tical derivatives are defined by vertically differentiating the vertical derivative

2e1 = (1, 0, ..., 0), e2 = (0, 1, ..., 0), ..., en = (0, ...0, 1) and 1· is the indicator function.
3′ denotes transposition.
4The vertical derivative is more precisely an Rn-valued non-anticipative functional (a

similar comment applies for higher order derivatives). The definition of such a functional is
the natural extension of the R-valued non-anticipative functional. All functionals which are
not derivatives should be understood to be R-valued unless other information is provided.
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(whenever such derivatives exist). We then, for example, write

∇2
ωF (t, ω) = (∂j(∂iF (t, ω)), i, j = 1, ..., n).

Let C0,0
l (ΛT ) be the set of left-continuous functionals, which are defined as

non-anticipative functionals that are continuous at fixed times and satisfy:
∀(t, ω) ∈ ΛT , ∀ε > 0,∃η such that ∀(t̃, ω̃) ∈ ΛT ,

t̃ < t and d∞((t, ω), (t̃, ω̃)) < η ⇒ |F (t, ω)− F (t̃, ω̃)| < ε.

Let B(ΛT ) be the set of boundedness preserving functionals, which are defined
as non-anticipative functionals satisfying: for any compact set K ⊂ Rn and
t0 ∈ [0, T ), ∃CK,t0 > 0 such that ∀t ≤ t0,∀ω ∈ D([0, T ],Rn),

ω([0, t]) ⊂ K ⇒ |F (t, ω)| ≤ CK,t0 .
5

Let C1,2
b (ΛT ) denote the set of left-continuous non-anticipative functionals

(i.e. in C0,0
l (ΛT )) which are also horizontally differentiable and twice verti-

cally differentiable such that

1. DF (t, ·) : D([0, T ],Rn)→ R is continuous for each t ∈ [0, T ),

2. ∇ωF (t, ω),∇2
ωF (t, ω) ∈ C0,0

l (ΛT ),

3. DF,∇ωF (t, ω),∇2
ωF (t, ω) ∈ B(ΛT ).

Remark 2.1. Let f be a real-valued function with f ∈ C1,2([0, T ]×Rn) and
F (t, ω) = f(t, ω(t)), then the horizontal and vertical derivatives reduce to the
standard partial derivatives.

Now consider a stochastic basis (Ω,F , P,F) where F = {Ft}0≤t≤T is the
P -augmented filtration generated by an n-dimensional Wiener process W
and T <∞. Using the functional Itô formula6 it is not difficult to prove the
following explicit martingale representation theorem.

Proposition 2.2. (Martingale representation I) If a martingale Y sat-
isfies

Y (t) = F (t,Wt) a.s. (1)

for some non-anticipative functional F ∈ C1,2
b (ΛT ), then, for any t ∈ [0, T ],

Y (t) = Y (0) +
∫ t

0
∇ωF (s,Ws)

′dW (s) a.s.7 (2)

5ω([0, t]) ⊂ K means that the path ω restricted to [0, t] takes its values in the compact
set K ⊂ Rn. CK,t0 is a constant which may depend on K and t0.

6See e.g. Cont & Fournié (2013) Theorem 4.1. or Bally et al. (2016) Theorem 6.2.3.
7This is a version of e.g. Bally et al. (2016) Proposition 7.1.3 or Cont & Fournié (2013)

Theorem 5.2. A more general setting where the second argument of F (see (1)) and the
integrator (see (2)) are both on the form X = X(0) +

∫ ·
0
σ(s)dW (s) is studied in Cont

& Fournié (2013) and Bally et al. (2016) (this last remark applies also to the rest of this
section).
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We now define the vertical derivative of the process Y (satisfying (1))
with respect to W as

∇WY (t) = ∇ωF (t,Wt). (3)

Using this definition and (2) we see that our martingale Y (which satisfies
(1)) can be written as

Y (t) = Y (0) +
∫ t

0
∇WY (s)′dW (s) a.s. (4)

We will now extend the definition of the vertical derivative ∇WY . Using
this extended definition we will see that the martingale representation in
(4) is valid for any square integrable martingale. First we need som more
definitions.

Let L2(W ) be the space of progressively measurable processes φ with
E[
∫ T
0 φ(s)′φ(s)ds] < ∞. Let M2(W ) be the space of square integrable

martingales starting at zero, with the norm
√
E(|Y (T )|2) (where in gen-

eral | · |2 =
∑
i,j(·)2). Let C1,2b (W ) be the set of adapted processes Y which

can be represented as Y (t) = F (t,Wt) a.s. with F ∈ C1,2
b (ΛT ). Now de-

note the set of ”smooth square integrable martingales starting at zero” by
D(W ) = C1,2b (W ) ∩M2(W ). The following result characterizes the vertical
derivative for martingales in D(W ).

Lemma 2.3. Let Y ∈ D(W ). The vertical derivative ∇WY (defined in (3)
as ∇WY (t) = ∇ωF (t,Wt) whenever Y (t) = F (t,Wt) a.s. with F ∈ C1,2

b (ΛT ))
is then the unique element of L2(W ) satisfying

E[Y (T )Z(T )] = E

[∫ T

0
∇WY (t)′∇WZ(t)dt

]

for every Z ∈ D(W ).8

We will now use this lemma to extend the current definition of the vertical
derivative ∇WY in (3) to a weak derivative which can be applied to any
process in M2(W ).

Theorem 2.4 (The vertical derivative). ∇W : D(W ) → L2(W ) has a con-
tinuous extension ∇W :M2(W )→ L2(W ) satisfying

∇W

[∫ ·
0
φ(s)′dW (s)

]
= φ.

8This is a simplified version of e.g. Bally et al. (2016) Lemma 7.3.2, see also Cont &
Fournié (2013) Proposition 5.5.
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Let Y ∈ M2(W ), the (weak) vertical derivative ∇WY is then the unique
element in L2(W ) satisfying

E[Y (T )Z(T )] = E

[∫ T

0
∇WY (t)′∇WZ(t)dt

]

for every Z ∈ D(W ).9

We further extend the definition of the vertical derivative ∇WY to the
space of square integrable martingales by noting that if Y is a square inte-
grable martingale then Y − Y (0) ∈ M2(W ) and defining ∇WY = ∇W (Y −
Y (0)). We are now ready to present the main result of this section.

Theorem 2.5 (Martingale representation II). Let Y be a square integrable
martingale. Then, for any t ∈ [0, T ],

Y (t) = Y (0) +
∫ t

0
∇WY (s)′dW (s) a.s.10

3 A standard complete financial market and

the optimal investment problem

This section describes our optimization problem and our market, which is
the Wiener driven complete market of Karatzas & Shreve (1998).11

Consider a continuous time financial market corresponding to the stochas-
tic basis (Ω,F , P,F), where F = {Ft}0≤t≤T is the P -augmented filtration
generated by an n-dimensional Wiener process W . The time horizon is a
positive constant T <∞. The market is endowed with the following objects.

• A money market process B given by B(t) = e
∫ t
0
r(s)ds, 0 ≤ t ≤ T , where

r is a progressively measurable instantaneous risk-free rate process,
satisfying

∫ T
0 |r(t)|dt <∞ a.s.

• n stock price processes Si, i = 1, ..., n which are continuous, strictly
positive and satisfy the SDEs

dSi(t) = Si(t)αi(t)dt+ Si(t)σi(t)dW (t), Si(0) > 0, 0 ≤ t ≤ T,

9These are simplified versions of the results in e.g. Bally et al. (2016) Lemma 7.3.3,
see also Cont & Fournié (2013) Theorem 5.8.

10This is a simplified version of e.g. Bally et al. (2016) Lemma 7.3.4, see also Cont &
Fournié (2013) Proposition 5.9.

11We simplify the financial market of Karatzas & Shreve (1998) by considering an abso-
lutely continuous money market process B and a volatility process σ which is non-singular
(and not only non-singular almost everywhere dt× dP ), see Chapter 1 (ibid.).
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– αi is the i :th element of an n-dimensional progressively measurable
mean rate of return process α satisfying

∫ T
0 |α(t)|dt <∞ a.s.

– σi is the i :th row of an n×n-dimensional progressively measurable
volatility process σ, where σ(t) is non-singular for all t ∈ [0, T ] and
all ω ∈ Ω, and

∫ T
0 |σ(t)|2dt <∞ a.s.

Definition 3.1. A portfolio process (π, π0) consists of an n-dimensional
progressively measurable process π (corresponding to the amount of capital
invested in each stock Si) and a 1-dimensional progressively measurable pro-
cess π0 (corresponding to the amount of capital invested in the money market
B) for which

∫ T
0 |π0(t)+π(t)′1||r(t)|dt <∞,

∫ T
0 |π′t(α(t)−r(t)1)|dt <∞ and∫ T

0 |π(t)′σ(t)|2dt < ∞ a.s.12 The corresponding wealth process X is given
by

X(t) = x0 +
∫ t

0
(π0(s) + π(s)′1)r(s)ds+

∫ t

0
π(t)′(α(s)− r(s)1)ds

+
∫ t

0
π(s)′σ(s)dW (s), 0 ≤ t ≤ T (5)

where x0 is initial wealth. We call the portfolio process self-financing if
X(t) = π0(t) + π(t)′1, 0 ≤ t ≤ T , and tame if the process X(t)B(t)−1, 0 ≤
t ≤ T is a.s. bounded from below by a real constant which does not depend
on t.

Remark 3.2. All portfolio processes in the present paper are self-financing.
For any given portfolio process (π, π0) it is therefore enough to know π to find
X (use the self-financing condition and (5) to see this). We can then use
X and the self-financing condition to find π0. Therefore, we will from now
on refer to π alone as the portfolio process. We denote the wealth process
corresponding to π by Xπ.

Definition 3.3. For any given initial wealth x0 ≥ 0, we say that a portfolio
process π is admissible if the corresponding wealth process is self-financing
and satisfies Xπ(t) ≥ 0, 0 ≤ t ≤ T a.s.

We need the following objects and the related Assumption 3.5.

Definition 3.4. The market price of risk process θ is defined by

θ(t) = σ(t)−1(α(t)− r(t)1), 0 ≤ t ≤ T.

The likelihood process Z is defined by

Z(t) = e−
∫ t
0
θ(s)′dW (s)− 1

2

∫ t
0
|θ(s)|2ds, 0 ≤ t ≤ T.

121 is an n-dimensional vector with each element equal to 1.
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The state price density process H is defined by

H(t) = B(t)−1Z(t) = e−
∫ t
0
r(s)ds−

∫ t
0
θ(s)′dW (s)− 1

2

∫ t
0
|θ(s)|2ds, 0 ≤ t ≤ T. (6)

Assumption 3.5.
∫ T
0 |θ(t)|2dt <∞ a.s. The local martingale Z is in fact a

martingale. E[H(T )] <∞.13

Definition 3.6. The market is said to be complete if every FT -measurable
random variable ξ (called a contingent claim), with ξB(T )−1 bounded from
below and E0[B(T )−1ξ] < ∞, can be replicated by an admissible tame port-
folio process π in the sense that

ξ

B(T )
= x0 +

∫ T

0
B(t)−1π(t)′σ(t)dW0(t) a.s.

for some x0, where E0 is the expected value under the probability measure P0

induced by Z (so that e.g. E0[B(T )−1ξ] = E [Z(T )B(T )−1ξ]) and where W0 =
W +

∫ ·
0 θ(s)ds (so that W0 is a Wiener process under P0, by the Girsanov

theorem).

It is well-known that our market is arbitrage free and complete.14 Let us
now introduce a standard general terminal wealth utility function U and the
inverse of its derivative I.

Definition 3.7 (Terminal wealth utility function). U : R → [−∞,∞) is
concave, non-decreasing and upper semicontinuous. The half-line dom(U) =
{x ∈ R : U(x) > −∞} is a nonempty subset of [0,∞). The derivative U ′ is
continuous, positive and strictly decreasing on the interior of dom(U), and
limx→∞ U

′(x) = 0. Define x = inf {x ∈ R : U(x) > −∞} and the (general-
ized) inverse I : (0,∞]→ [x,∞) by

I(y) =

{
(U ′)−1(y), y ∈ (0, limx↘x U

′(x))
x, y ∈ [limx↘x U

′(x),∞].

The inverse I is finite, continuous and defined on (0,∞] and strictly de-
creasing for y ∈ (0, limx↘x U

′(x)). Moreover, I(U ′(x)) = x for x ∈ (x,∞).15

We are now ready to formulate our optimization problem.

13A sufficient condition for the first and second assumption is for example that θ is
bounded. A sufficient condition for the third assumption is that B is bounded away from
zero.

14See Karatzas & Shreve (1998) Chapter 1 Theorem 4.2 and Theorem 6.6.
15See Karatzas & Shreve (1998) Chapter 3. Our notation is that (f)−1 denotes the

standard inverse function of an invertible function f .
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Problem 1. (The optimal investment problem) Given a fixed initial
wealth x0 > 0 and a utility function U we consider the following maximization
problem

supπ∈A(x0)E [U(Xπ(T ))]

where A(x0) is the set of admissible portfolio processes satisfying

E[min[U(Xπ(T ), 0)]] > −∞.

Our main objective is now to find an explicit formula for the optimal portfolio
process, which we denote by π∗.

4 The optimal portfolio process π∗

This section contains our main result, Theorem 4.3. The results in this
section rely on the following integrability assumption (which therefore needs
to be verified for any particular problem that is studied).16

Assumption 4.1. E [(H(T )I(yH(T )))2] <∞, ∀y ∈ (0,∞).

We need the following well-known result.

Lemma 4.2. Consider initial wealth x0 ∈ (limy→∞E [H(T )I(yH(T ))] ,∞).
The optimal wealth process X∗ is then given by

X∗(t) = EFt

[
H(T )

H(t)
I(Y(x0)H(T ))

]
, 0 ≤ t ≤ T (7)

where Y(x0) > 0 is a constant determined by

E[H(T )I(Y(x0)H(T ))] = x0. (8)

Moreover, an optimal portfolio process π∗ exists uniquely, up to almost ev-
erywhere equivalence dt× dP .17

We are now ready to prove our main result, which is an explicit formula
for the optimal portfolio process.

16This assumption is stronger than the corresponding assumption in Karatzas & Shreve
(1998). We demand square integrability and not only integrability. See Section 3.6 and
3.7 (ibid.) for remarks concerning conditions implying the validity of this assumption.

17See Karatzas & Shreve (1998) Chapter 3, mainly Theorem 7.6 (where π∗ is also im-
plicitly characterized). See also Theorem 3.5, Corollary 6.5, Remark 6.4 and p. 102
(ibid.).
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Theorem 4.3 (The optimal portfolio process π∗). Consider initial wealth
x0 ∈ (limy→∞E [H(T )I(yH(T ))] ,∞). The optimal portfolio process π∗ can
then be represented as

π∗(t) = σ(t)′−1
∇WEFt [H(T )I(Y(x0)H(T ))] + θ(t)EFt [H(T )I(Y(x0)H(T ))]

H(t)
,

(9)
0 ≤ t ≤ T , where ∇W is the vertical derivative (operator) with respect to the
driving Wiener process W .

Remark 4.4. Use (7) and (9) to see that the optimal portfolio process π∗

can also be represented as

π∗(t) = σ(t)′−1
[
H(t)−1∇W [H(t)X∗(t)] + θ(t)X∗(t)

]
, 0 ≤ t ≤ T. (10)

Proof. Consider (7) and define the martingale M by

M(t) = H(t)X∗(t) = EFt [H(T )I(Y(x0)H(T ))]] . (11)

Now, use Jensen’s inequality, the tower property, Assumption 4.1 and Y(x0) >
0 (see Lemma 4.2) to see that, for any t,

E[M(t)2] = E
[
EFt [H(T )I(Y(x0)H(T ))]2

]
≤ E

[
EFt

[
(H(T )I(Y(x0)H(T )))2

]]
= E

[
(H(T )I(Y(x0)H(T )))2

]
<∞.

Thus, M is in fact a square integrable martingale.
Now use (5), (6), the standard Itô formula, the self-financing condition

(Definition 3.1) and the definition of θ (Definition 3.4) to see that

dM(t) = H(t)dX∗(t) +X∗(t)dH(t) + dX∗(t)dH(t)

= H(t)[X∗(t)r(t)dt+ π∗(t)′(α(t)− r(t)1)dt+ π∗(t)′σ(t)dW (t)]

+X∗(t)[−r(t)H(t)dt− θ(t)′H(t)dW (t)]

+π∗(t)′σ(t)(−θ(t)H(t))dt

= H(t)π∗(t)′σ(t)dW (t)−X∗(t)θ(t)′H(t)dW (t).

This implies that π∗ satisfies, for any t,

M(t) = M(0) +
∫ t

0
H(s)(π∗′(s)σ(s)−X∗(s)θ(s)′)dW (s).

11



Since M is a square integrable martingale we may now use the explicit mar-
tingale representation of Theorem 2.5 which says that, for any t,

M(t) = M(0) +
∫ t

0
∇WM(s)′dW (s) a.s.

where ∇WM is unique in L2(W ) (cf. Theorem (2.4)). Using the two last
equations we see that we may represent π∗ by

∇WM(t)′ = H(t)(π∗′(t)σ(t)−X∗(t)θ(t)′), 0 ≤ t ≤ T.

We recall that H given by (6) is an exponential process and we may therefore
write

π∗(t)′σ(t) =

[
∇WM(t)′

H(t)
+X∗(s)θ(t)′

]
, 0 ≤ t ≤ T

which implies that

π∗(t) = σ(t)′−1
[
∇WM(t)

H(t)
+X∗(t)θ(t)

]
, 0 ≤ t ≤ T.

Now substitute the right hand side of (7) for X∗(t) and the right hand side
of (11) for M(t). The result follows.

4.1 Examples

Let us use our explicit formula for the optimal portfolio π∗ in two well-known
examples.

4.1.1 Logarithmic utility

Let U(x) = ln(x) for x ∈ (0,∞), so that I(y) = 1
y

for y ∈ (0,∞). We easily

obtain that Assumption 4.1 is satisfied and that limy→∞E [H(T )I(yH(T ))] =
0 (use calculations similar to those in (12) below). We may therefore use
Lemma 4.2 and Theorem 4.3 for any initial wealth x0 > 0.

Let us start by studying the components in (9). Using I(y) = 1
y

we obtain
that, for all t,

EFt [H(T )I(Y(x0)H(T ))] = EFt

[
H(T )

1

Y(x0)H(T )

]
=

1

Y(x0)
. (12)

Lemma 4.2 says that Y(x0) is a positive constant and (12) therefore implies
that

∇WEFt [H(T )I(Y(x0)H(T ))] = ∇W

[
1

Y(x0)

]
= 0,

12



where we used that the vertical derivative reduces to the standard derivative
in this case. The above implies that the formula in (9) in Theorem 4.3 gives
us

π∗(t) = σ(t)′−1
0 + θ(t) 1

Y(x0)

H(t)
=

(σ(t)σ(t)′)−1(α(t)− r(t)1)

Y(x0)H(t)
.

Now use Lemma 4.2 and (12) to see that x0 = E [H(T )I(Y(x0)H(T ))] =
1

Y(x0) , which implies that the optimal portfolio can be expressed as

π∗(t) = (σ(t)σ(t)′)−1(α(t)− r(t)1)
x0
H(t)

.

For completeness sake let us also find an expression for the optimal wealth
process X∗. Use Lemma 4.2 and the above to see that

X∗(t) = EFt

[
H(T )

H(t)
I(Y(x0)H(T ))

]
=

1

Y(x0)H(t)
=

x0
H(t)

.

4.1.2 Power utility with deterministic coefficients

Let the coefficient processes r, α and σ be deterministic functions of time.
This implies that also θ is a deterministic function of time. Let U(x) = xγ

γ

for x ∈ (0,∞) with γ < 1, γ 6= 0. It follows that I(y) = y
1

γ−1 for y ∈ (0,∞).
This implies that

E [(H(T )I(yH(T )))] = y
1

γ−1E
[
H(T )H(T )

1
γ−1

]
= y

1
γ−1E [H(T )I(H(T ))]

(13)
which means that limy→∞E [H(T )I(yH(T ))] = 0 under Assumption 4.1 (to
see this use that Assumption 4.1 implies that E [H(T )I(H(T ))] < ∞). We
may therefore use Lemma 4.2 and Theorem 4.3 for any initial wealth x0 > 0,
under Assumption 4.1. A sufficient condition for Assumption 4.1 is in this
case that θ and r are bounded.

Recall from the proof of Theorem 4.3 that the process HX∗ given by

H(t)X∗(t) = EFt [H(T )I(Y(x0)H(T ))]

is a square integrable martingale under Assumption 4.1. Now use I(y) =

13



y
1

γ−1 , (6) and (7) to perform the following calculations.18

H(t)X∗(t) = Y(x0)
1

γ−1EFt
[
H(T )

γ
γ−1

]
(14)

= Y(x0)
1

γ−1EFt

[
e−
∫ T
0

γ
γ−1

θ(s)′dW (s)+
∫ T
0
(...)ds

]
= Y(x0)

1
γ−1 e

∫ T
0
(...)dsEFt

[
e
∫ T
0

−γ
γ−1

θ(s)′dW (s)
]

= Y(x0)
1

γ−1 e
∫ T
0
(...)dse

∫ t
0

−γ
γ−1

θ(s)′dW (s)EFt

[
e
∫ T
t

−γ
γ−1

θ(s)′dW (s)
]

= Y(x0)
1

γ−1 e
∫ T
0
(...)dse

∫ t
0

−γ
γ−1

θ(s)′dW (s)e
1
2

∫ T
t
| γθ(s)
γ−1
|2ds

= Y(x0)
1

γ−1 e
∫ T
0
(...)dse

∫ t
0

−γ
γ−1

θ(s)′dW (s)e
1
2

∫ T
0
| γθ(s)
γ−1
|2ds− 1

2

∫ t
0
| γθ(s)
γ−1
|2ds

= Y(x0)
1

γ−1 e
∫ T
0
(...)dse

∫ t
0

−γ
γ−1

θ(s)′dW (s)e−
1
2

∫ t
0
| γθ(s)
γ−1
|2ds.

Thus, HX∗ is in fact a square integrable exponential martingale. Using Itô’s
formula we may therefore write

H(t)X∗(t) = H(0)X∗(0) +
∫ t

0
H(s)X∗(s)

−γ
γ − 1

θ(s)′dW (s)

which together with Theorem 2.5 implies that we may represent the vertical
derivative of HX∗ with respect to W as

∇W [H(t)X∗(t)]′ = H(t)X∗(t)
−γ
γ − 1

θ(t)′. (15)

Now use Theorem 4.3 (specifically (10)) and (15) to see that the optimal
portfolio can be represented as

π∗(t) = σ(t)′−1
[
H(t)−1∇W [H(t)X∗(t)] + θ(t)X∗(t)

]
= σ(t)′−1

[
X∗(t)

−γ
γ − 1

θ(t) + θ(t)X∗(t)

]

= σ(t)′−1
[

1

1− γ
θ(t)X∗(t)

]

= (σ(t)σ(t)′)−1(α(t)− r(t)1)
X∗(t)

1− γ
.

Let us also find an expression for the optimal wealth process X∗. Use Lemma

4.2 and I(y) = y
1

γ−1 to see that

x0 = E [H(T )I(Y(x0)H(T ))] = Y(x0)
1

γ−1E
[
H(T )

γ
γ−1

]
18(...) denotes a deterministic function of time which is comprised of r, θ and γ, and

which can easily be calculated at each instance this notation is used.
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which implies that

Y(x0)
1

γ−1 =
x0

E
[
H(T )

γ
γ−1

] .
Using this and (14) we see that optimal wealth process is given by

X∗(t) =
1

H(t)

x0

E
[
H(T )

γ
γ−1

]EFt [H(T )
γ
γ−1

]
.

5 Summary and remarks

We consider a standard complete Wiener driven market and a general optimal
investment problem for terminal wealth. It is well-known that the optimal
wealth process X∗ is then given by the formula

X∗(t) = EFt

[
H(T )

H(t)
I(Y(x0)H(T ))

]
,

where H is the state price density, I(·) is the inverse of the derivative of the
utility function and Y(x0) is a constant depending on the initial wealth x0.
It is also well-known that the optimal portfolio process π∗ can be implic-
itly characterized using standard martingale representation and that there,
moreover, exist explicit formulas for the optimal portfolio π∗ involving the
Malliavin derivative.

Using the recently developed functional Itô calculus we derived the fol-
lowing explicit formula for the optimal portfolio π∗

π∗(t) = σ(t)′−1
∇WEFt [H(T )I(Y(x0)H(T ))] + θ(t)EFt [H(T )I(Y(x0)H(T ))]

H(t)

where ∇W is the vertical derivative (operator) with respect to the driving
Wiener process, θ is the market price of risk and σ is the asset price volatility.
We showed that the formula can also be expressed as

π∗(t) = σ(t)′−1
[
H(t)−1∇W [H(t)X∗(t)] + θ(t)X∗(t)

]
.

We also used the formula to derive the optimal portfolio π∗ in two specific ex-
amples (logarithmic utility and power utility with deterministic coefficients).

Remark 5.1. The relationship between the vertical derivative and the Malli-
avin derivative is studied in Cont & Fournié (2013) and Bally et al. (2016).
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Remark 5.2. Our explicit formula for optimal portfolios may have com-
putational advantages compared to explicit formulas based on the Malliavin
approach: in the words of Bally et al. (2016) ”From a computational view-
point, unlike the Clark-Haussmann-Ocone representation, which requires to
simulate the anticipative process DtH [i.e. the Malliavin derivative] and
compute conditional expectations, ∇XY [i.e. the vertical derivative] only
involves non-anticipative quantities which can be computed path by path. It
is thus more amenable to numerical computations”.

We leave for future research how the functional Itô calculus approach to
optimal investment suggested in the present paper compares to the Malliavin
approach, and other approaches, when it comes to the performance in nu-
merical studies of particular optimal investment problems.

A method for the computation of explicit approximations to functional
Itô calculus martingale representation is presented in Cont & Lu (2016).
Numerical studies of optimal portfolios using the Malliavin approach can be
found in Detemple, Garcia & Rindisbacher (2003) and Takahashi & Yoshida
(2004). Short surveys of other numerical approaches to optimal portfolios
are included in Detemple et al. (2003) and Cvitanić, Goukasian & Zapatero
(2003).
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