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1. Introduction

In this paper, we study recurrent relations for exponential moments of
hitting times and accumulated rewards of hitting type for semi-Markov pro-
cesses and present effective algorithms for computing these moments. These
algorithms are based on procedures of sequential of phase space reduction
for semi-Markov processes.

The results presented in this paper supplement results given in the paper
Silvestrov and Manca (2015), where analogous results have been obtained
for power moments of hitting times and accumulated rewards of hitting type
for semi-Markov process. In order to make the present paper self-readable,
we repeat some parts from the above paper, in particular, the definition of
semi-Markov process given in Subsection 2.1, the description of reduced semi-
Markov processes given in Subsection 3.1 and the slightly extended survey
of literature given below.
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Hitting times are often interpreted as transition times for different stochas-
tic systems describing by Markov-type processes, for example, occupation
times or waiting times in queuing systems, life times in reliability models,
extinction times in population dynamic models, etc. We refer to works by
Korolyuk, Brodi and Turbin (1974), Kovalenko (1975), Korolyuk and Turbin
(1976, 1978), Courtois (1977), Silvestrov (1980b), Anisimov, Zakusilo and
Donchenko (1987), Ciardo, Raymonf, Sericola and Trivedi (1990), Kovalenko,
Kuznetsov and Pegg (1997), Korolyuk, V.S. and Korolyuk, V.V. (1999),
Limnios and Oprişan (2001, 2003), Barbu, Boussemart and Limnios (2004),
Yin and Zhang (2005, 2013), Janssen and Manca (2006, 2007), Anisimov
(2008), Gyllenberg and Silvestrov (2008), D’Amico, Petroni and Prattico
(2013), and Papadopoulou (2013).

In financial and insurance applications, the hitting times for semi-Markov
processes can be also interpreted as rewards accumulated up to some hitting
terminating time for a financial or insurance contract. We refer here to
works by D’Amico, Janssen and Manca (2005), Janssen and Manca (2006,
2007), Stenberg, Manca and Silvestrov (2006, 2007), Biffi, D’Amigo, Di Biase,
Janssen, Manca and Silvestrov (2008), Silvestrov, Silvestrova and Manca
(2008), D’Amico and Petroni (2012), Papadopoulou, Tsaklidis, McClean and
Garg (2012), D’Amico, Guillen and Manca (2013), and D’Amico, Petroni and
Prattico (2015).

Moments of hitting times also play an important role in limit and er-
godic theorems for Markov type processes. As a rule, the first and second
order moments are used in conditions of limit theorems theorems, higher
order power and exponential moments in large deviation theorems, theo-
rems on rates of convergence and asymptotical expansions. We refer here to
works by Silvestrov (1974, 1980b, 1994, 1996), Korolyuk and Turbin (1976,
1978), Korolyuk, V. S. and Korolyuk, V. V. (1999), Hunter (2005), Koroliuk
and Limnios (2005), Yin and Zhang (2005, 2013), Silvestrov and Drozdenko
(2006), Anisimov (2008), Gyllenberg and Silvestrov (2008), and Silvestrov,
D. and Silvestrov, S. (2015).

Recurrent relations, which link power moments of hitting times for Markov
chains have been first obtained for Markov chains by Hodges and Rosenblatt
(1953) and Chung (1954, 1960). Further development have been achieved
by Kemeny and Snell (1961a, 1961b), Lamperty (1963), and Pitman (1974a,
1974b, 1977), Silvestrov (1980a, 1980b). Similar relations as well as descrip-
tion of these moments as minimal solutions of some algebraic or integral equa-
tions were considered for Markov chains and semi-Markov processes with dis-
crete and arbitrary phase spaces by Cogburg (1975), Silvestrov (1980b, 1983a,
1983b, 1996), Nummelin and Tuominen (1983), Tweedie (1983), Nummelin
(1984), and Silvestrov, Manca and Silvestrova (2014). Analogous results for
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exponential and mixed power exponential moments of first hitting times for
semi-Markov processes have been obtained in Silvestrov (2004) and Gyllen-
berg and Silvestrov (2008).

The paper includes five sections. In Section 2, we introduce Markov
renewal processes, semi-Markov processes and define hitting times and accu-
mulated rewards of hitting type. We also present basic stochastic relations
and systems of linear equations for exponential moments of these random
functionals. In Section 3, we describe a procedure of phase space reduction
for semi-Markov processes and formulas for computing transition character-
istics for reduced semi-Markov processes. We also prove invariance of hitting
times and their exponential moments with respect to the above procedure of
phase space reduction. In Section 4, we describe a procedure of sequential
phase space reduction for semi-Markov process and derive recurrent formu-
las for computing exponential moments of hitting times for semi-Markov
processes. In Section 5, we present useful generalizations of the above results
to real-valued and vector accumulated rewards of hitting type, general hit-
ting times with hitting state indicators, place-dependent and time-dependent
hitting times and accumulated rewards of hitting type and give a numerical
example for the corresponding recurrent algorithm for computing exponen-
tial moments of hitting times for semi-Markov processes.

2. Semi-Markov processes and hitting times

In this section, we introduce Markov renewal processes and semi-Markov
processes. We define also hitting times and accumulated rewards of hitting
times, and give basic recurrent system of linear equations for their exponen-
tial moments, which are the main objects of our studies.

2.1. Markov renewal processes and semi-Markov processes. Let
X = {0, . . . ,m} and (Jn, Xn), n = 0, 1, . . . be a Markov renewal process, i.e.,
a homogeneous Markov chain with the phase space X × [0,∞), an initial
distribution p̄ = 〈pi = P{J0 = i,X0 = 0} = P{J0 = i}, i ∈ X〉 and transition
probabilities,

Qij(t) = P{J1 = j,X1 ≤ t/J0 = i,X0 = s}, (i, s), (j, t) ∈ X× [0,∞). (1)

In this case, the random sequence ηn is also a homogeneous (embedded)
Markov chain with the phase space X and the transition probabilities,

pij = P{J1 = j/J0 = i} = Qij(∞), i, j ∈ X. (2)

As far as random variableXn is concerned, it can be interpreted as sojourn
time in state Jn−1 or as a transition time from state Jn−1 to state Jn, for
n = 1, 2, . . ..

3



We assume that the following communication conditions hold:

A: X is a communicative class of states for the embedded Markov chain Jn.

We also assume that the following condition excluding instant transitions
holds:

B: Qij(0) = 0, i, j ∈ X.

Let us now introduce a semi-Markov process,

J(t) = JN(t), t ≥ 0, (3)

where N(t) = max(n ≥ 0 : Tn ≤ t) is a number of jumps in the time interval
[0, t], for t ≥ 0, and Tn = X1 + · · ·+Xn, n = 0, 1, . . ., are sequential moments
of jumps, for the semi-Markov process J(t).

This process has the phase space X, the initial distribution p̄ = 〈pi =
P{J(0) = i}, i ∈ X〉 and semi-Markov transition probabilities Qij(t), t ≥ 0,
i, j ∈ X.

2.2. Hitting times and accumulated rewards of hitting type. Let
us also introduce moments of sojourn times, for ρ ≥ 0,

φij(ρ) = Eie
ρX1I(J1 = j) =

∫ ∞
0

eρtQ
(ε)
ij (dt), i, j ∈ X. (4)

Here and henceforth, notations Pi and Ei are used for conditional proba-
bilities and expectations under condition J(0) = i.

Note that, φij(0) = pij, i, j ∈ X.
We assume that the following condition holds, for some integer ρ > 0:

Cρ: φij(ρ) <∞, i, j ∈ X.

Note that conditions B imply that φij(ρ) > 0, if pij > 0, while φij(ρ) = 0,
if pij = 0.

The first hitting time to state 0 for the semi-Markov process J(t) can be
defined as,

W0 = inf(t ≥ X1 : J(t) = 0) =
U0∑
n=1

Xn, (5)

where U0 = min(n ≥ 1 : Jn = 0) is the first hitting time to state 0 for the
Markov chain Jn.

The random variable W0 can also be interpreted as a reward accumulated
on trajectories of Markov chain Jn up to its first hitting to state 0.
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The main object of our studies are power moments for the first hitting
times,

Φi0(ρ) = Eie
ρW0 , ρ ≥ 0, i ∈ X. (6)

Note that, Φi0(0) = 1, i ∈ X.
Conditions A and Cρ imply that there exists ρ0 ∈ (0, ρ] such that, for

ρ′ ∈ [0, ρ0] and i ∈ X,
Φi0(ρ′) <∞. (7)

Indeed, let us introduce conditional exponential moments, for i, j ∈ X,

ψij(ρ) =

{
φij(ρ)/pij if pij > 0,

1 if pij = 0.
(8)

and define, for ρ′ ∈ [0, ρ], the following function,

ψ(ρ′) = max
i,j∈X

φij(ρ
′) (9)

If conditions A and Cρ holds, then function ψ(ρ′) ∈ [1,∞), for ρ′ ∈ [0, ρ]
and it is continuous nondecreasing function in this interval such that ψ(ρ′)→
1 as ρ′ → 0.

The following relation takes place, for ρ′ ∈ [0, ρ] and i ∈ X,

Φi0(ρ′) =
∞∑
n=1

∑
i0=i,i1,...,in−1 6=0,in=0

n∏
k=1

ψik−1,ik(ρ
′)pik−1,ik

≤
∞∑
n=1

ψ(ρ′)n
∑

i0=i,i1,...,in−1 6=0,in=0

n∏
k=1

pik−1,ik

=
∞∑
n=0

ψ(ρ′)nPi{U0 = n}. (10)

Condition A implies that Pi{U0 ≥ n} → 0 as n → ∞, for i ∈ X. Thus,
for any 0 < θ < 1, there exist integer nθ ≥ 1 such that, for i ∈ X,

Pi{U0 ≥ nθ} ≤ θ. (11)

This inequality implies that, for every i ∈ X and k ≥ 1,

Pi{U0 ≥ knθ} =
∑
j 6=0

Pi{U0 ≥ (k − 1)nθ, J(k−1)nθ = j}Pj{U0 ≥ nθ}

≤ θPi{U0 ≥ (k − 1)nθ} ≤ · · · ≤ θk. (12)

Inequalities (13) imply in an obvious way that, for for every i ∈ X and
n ≥ 1,

Pi{U0 ≥ n} ≤ θ
[ n
nθ

] ≤ Lθθ
n
nθ (13)
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where Lθ = θ−nθ .
Finally, relations (10) and (13) imply that the following inequality holds,

for ρ0 ∈ [0, ρ] such that ψ(ρ0)θ
1
nθ < 1, and i ∈ X,

Φi0(ρ0) ≤
∞∑
n=0

Lθ(ψ(ρ0)θ
1
nθ )n <∞. (14)

However, it should be noted that conditions A and Cρ do not guarantee
that the exponential moments Φi0(ρ) < ∞. The corresponding example is
given below.

In what follows, symbol Y
d
= Z is used to denote that random variables

or vectors Y and Z have the same distribution.
The Markov property of the Markov renewal process (Jn, Xn) implies that

following system of stochastic equalities takes place for hitting times,{
Wi,0

d
= Xi,1I(Ji,1 = 0) +

∑
j 6=0(Xi,1 +Wj,0)I(Ji,1 = j),

i ∈ X,
(15)

where: (a) Wi,0 is a random variable which has distribution P{Wi,0 ≤ t} =
Pi{W0 ≤ t}, t ≥ 0, for every i ∈ X; (b) (Ji,1, Xi,1) is a random vector, which
takes values in space X × [0,∞) and has the distribution P{Ji,1 = j,Xi,1 ≤
t} = Qij(t), j ∈ X, t ≥ 0, for every i ∈ X; (c) the random variables Wi,0 and
the random vector (Ji,1, Xi,1) are independent, for every i ∈ X.

By computing exponential moments in stochastic relations (15) we get
the following system of linear equations for moments Φi0(ρ), i ∈ X,{

Φi0(ρ) = φi0(ρ) +
∑
j∈X,j 6=0 φij(ρ)Φj0(ρ),

i ∈ X. (16)

Note that it is possible that the moment φij(ρ) equals to 0, while the
moment Φj0(ρ) equal to +∞ in relation (16). In such cases, one should set
the product 0 · ∞ to be 0 when calculating the products at the right-hand
side of equality (16).

Let consider the simplest semi-Markov process with the two-point phase
space X = {0, 1} and, also, assume that all probabilities pij > 0, i, j = 0, 1,
and, the exponential moments φij(ρ) ∈ (0,∞), i, j = 0, 1.

In this case system of equations (16) takes the form,{
Φ00(ρ) = φ00(ρ) + φ01(ρ)Φ10(ρ),
Φ10(ρ) = φ10(ρ) + φ11(ρ)Φ10(ρ).

(17)

If φ11(ρ) ≥ 1, then Φ00(ρ),Φ10(ρ) =∞ as follows from relations (17).
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If φ11(ρ) < 1, then Φ00(ρ),Φ10(ρ) < ∞ and these moments are given by
formulas,

Φ10(ρ) =
φ10(ρ)

1− φ11(ρ)
, Φ00(ρ) = φ00(ρ) +

φ01(ρ)φ10(ρ)

1− φ11(ρ)
. (18)

It should be noted that the finiteness of the exponential moment for
return time Φ00(ρ) does not guarantee the finiteness of the exponential mo-
ment Φ11(ρ). Indeed, according the above remarks, the exponential moments
Φ11(ρ),Φ01(ρ) =∞ if φ00(ρ) ≥ 1.

Necessary and sufficient conditions of finiteness for exponential moments
of hitting times are given in terms of so-called test-functions in Silvestrov
(2004) and Gyllenberg and Silvestrov (2008).

We refer to functions v(i), i ∈ X defined on the space X and taking value
in the interval [0,∞) as test-functions.

Let us introduce condition:

Dρ: There exists a test-function vρ(i), i ∈ X such that the following test
inequalities hold,

vρ(i) ≥ φi0(ρ) +
∑

j∈X,j 6=0

φij(ρ)vρ(j), i ∈ X.

The following lemma gives the pointed above conditions finiteness for
exponential moments of hitting times.

Lemma 1. Let conditions A, B and Cρ, for some ρ > 0, hold. Then,
exponential moments Φi0(ρ) <∞, i ∈ X if and only if condition Dρ holds. In
this case, inequalities Φi0(ρ) ≤ vρ(i), i ∈ X hold and the exponential moments
Φi0(ρ), i ∈ X are the unique solution of the system of linear equations (16).

It is useful to note that, in the above example with two-state semi-Markov
process, this is impossible to find a test function vρ(i), i = 0, 1 such that the
test inequalities penetrating condition Dρ holds, if φ11(ρ) ≥ 1.

Indeed, the second test inequality, which takes the form, vρ(1) ≥ φ10(ρ)+
φ11(ρ)vρ(1), can not hold in this case, since φ10(ρ) > 0.

Condition Dρ, however, holds if φ11(ρ) < 1.
Indeed, the test inequality penetrating this condition holds for test-functions

vρ(1) = φ10(ρ)
1−φ11(ρ)

and vρ(0) = φ00(ρ) + φ01(ρ)vρ(1) in the form of equalities.

The system of linear equation given in (16) has the matrix of coefficients
I − 0P(ρ), where I = ‖I(i = j)‖ is the unit matrix and matrix 0P(ρ) =
‖φij(ρ)I(j 6= 0)‖. Under conditions of Lemma 1, there exists the inverse
matrix,

[I− 0P(ρ)]−1 = ‖gi0j(ρ)‖. (19)
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The elements of this matrix have the following probabilistic sense,

gi0j(ρ) =
∞∑
n=1

Eie
ρTn−1I(U0 > n− 1, Jn−1 = j), i, j ∈ X. (20)

Thus, the formula for moments Φi0(ρ), i ∈ X has the following form,

Φi0(ρ) =
∑
j∈X

gi0j(ρ)φj0(ρ), i ∈ X. (21)

This is useful to note that the above remarks imply that condition A can
be replaced by simpler hitting condition:

A0: Pi{U0 <∞} = 1, i ∈ X.

In this paper, we propose an alternative method, which can be considered
as a stochastic analogue of Gauss elimination method for finding exponential
moments Φi0(ρ), i ∈ X.

3. Semi-Markov processes with reduced phase spaces

In this section, we describe an one-step algorithm for reduction of a phase
space for a semi-Markov process. We also give recurrent systems of linear
equations for power moments of hitting times for a reduced semi-Markov
process.

3.1. Reduced semi-Markov processes. Let us choose some state
k ∈ X and consider the reduced phase space kX = X \ {k}, with the state k
excluded from the phase space X.

Let us define the sequential moments of hitting the reduced space kX by
the embedded Markov chain Jn,

kVn = min(r > kVn−1, Jr ∈ kX), n = 1, 2, . . . , kV0 = 0. (22)

Now, let us define the random sequence,

(kJn, kXn) =

 (J0, 0) for n = 0,

(J
kVn ,

∑
kVn
r= kVn−1+1Xr) for n = 1, 2, . . . .

(23)

This sequence is also a Markov renewal process with phase space X ×
[0,∞), the initial distribution p̄ = 〈pi = P{J0 = i,X0 = 0} = P{J0 = i}, i ∈
X〉 and transition probabilities,

kQij(t) = P{ kJ1 = j, kX1 ≤ t/ kJ0 = i, kX0 = s}

= Qij(t) +
∞∑
n=0

Qik(t) ∗Q(∗n)
kk (t) ∗Qkj(t), t ≥ 0, i, j ∈ X. (24)
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Here, symbol ∗ is used to denote the convolution of distribution functions
(possibly improper), and Q

(∗n)
kk (t) is the n times convolution of the distribu-

tion function Qkk(t).
In this case, the Markov chain kJn has the transition probabilities,

kpij = kQij(∞) = P{ kJ1 = j, / kJ0 = i}

= pij +
∞∑
n=0

pikp
n
kkpkj = pij + pik

pkj
1− pkk

, i, j ∈ X. (25)

Note that condition A implies that probabilities pkk ∈ [0, 1), k ∈ X.
The transition distributions for the Markov chain kJn are concentrated

on the reduced phase space kX, i.e., for every i ∈ X,∑
j∈ kX

kpij =
∑
j∈ kX

pij + pik
∑
j∈ kX

pkj
1− pkk

=
∑
j∈ kX

pij + pik = 1. (26)

If the initial distribution p̄ is concentrated on the phase space kX, i.e.,
pk = 0, then the random sequence (kJn, kXn), n = 0, 1, . . . can be considered
as a Markov renewal process with the reduced phase kX× [0,∞), the initial
distribution kp̄ = 〈 pi = P{kJ0 = i, kX0 = 0} = P{kJ0 = i}, i ∈ kX〉 and
transition probabilities kQij(t), t ≥ 0, i, j ∈ kX.

If the initial distribution p̄ is not concentrated on the phase space kX, i.e.,
pk > 0, then the random sequence (kJn, kXn), n = 0, 1, . . . can be interpreted
as a Markov renewal process with so-called transition period.

Let us now introduce the semi-Markov process,

kJ(t) = kJkN(t), t ≥ 0, (27)

where kN(t) = max(n ≥ 0 : kTn ≤ t) is a number of jumps at time interval
[0, t], for t ≥ 0, and kTn = kX1 + · · · + kXn, n = 0, 1, . . . are sequential
moments of jumps, for the semi-Markov process kJ(t).

As follows from the above remarks, the semi-Markov process kJ(t), t ≥
0 has transition probabilities kQij(t), t ≥ 0, i, j ∈ X concentrated on the
reduced phase space kX, which can be interpreted as the actual “reduced”
phase space of this semi-Markov process kJ(t).

If the initial distribution p̄ is concentrated on the phase space kX, then
process kJ(t), t ≥ 0 can be considered as the semi-Markov process with the
reduced phase kX, the initial distribution kp̄ = 〈 kpi = P{kJ1(0) = i}, i ∈ kX〉
and transition probabilities kQij(t), t ≥ 0, i, j ∈ kX.

According to the above remarks, we can refer to the process kJ(t) as a
reduced semi-Markov process.
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If the initial distribution p̄ is not concentrated on the phase space kX,
then the process kJ(t), t ≥ 0 can be interpreted as a reduced semi-Markov
process with transition period.

3.2. Transition characteristics for reduced semi-Markov pro-
cesses. Relation (25) implies the following formulas, for probabilities kpkj
and kpij, i, j ∈ kX,{

kpkj =
pkj

1−pkk
,

kpij = pij + pik kpkj = pij +
pikpkj
1−pkk

.
(28)

It is useful to note that the second formula in relation (28) reduces to the
first one, if to assign i = k in this formula.

Taking into account that kV1 is Markov time for the Markov renewal pro-
cess (Jn, Xn), we can write down the following system of stochastic equalities,
for every i, j ∈ kX,

kXi,1I( kJi,1 = j)
d
= Xi,1I(Ji,1 = j)

+ (Xi,1 + kXk,1)I(Ji,1 = k)I( kJk,1 = j),

kXk,1I( kJk,1 = j)
d
= Xk,1I(Jk,1 = j)

+ (Xk,1 + kXk,1)I(Jk,1 = k)I( kJk,1 = j),

(29)

where: (a) (Ji,1, Xi,1) is a random vector, which takes values in space X ×
[0,∞) and has the distribution P{Ji,1 = j,Xi,1 ≤ t} = Qij(t), j ∈ X, t ≥ 0,
for every i ∈ X; (b) (kJi,1, kXi,1) is a random vector which takes values in the
space kX × [0,∞) and has distribution P{kJi,1 = j, kXi,1 ≤ t} = Pi{kJ1 =
j, kX1 ≤ t} = kQij(t), j ∈ kX, t ≥ 0, for every i ∈ X; (c) (Ji,1, Xi,1) and
(kJk,1, kXk,1) are independent random vectors, for every i ∈ X.

Let us denote,

kφij(ρ) = Ei e
ρ kX1I( kJ1 = j)

=
∫ ∞

0
eρt kQij(dt), ρ ≥ 0, i, j ∈ kX. (30)

Note that kφij(0) = kpij, i ∈ X, j ∈ kX.
By computing exponential moments in stochastic relations (29) we get,

for every i, j ∈ kX, the following system of linear equations for the moments

kφkj(ρ), kφij(ρ),  kφkj(ρ) = φkj(ρ) + φkk(ρ) kφkj(ρ),

kφij(ρ) = φij(ρ) + φik(ρ) kφkj(ρ).
(31)
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Relation (31) yields the following formulas for moments kφkj(ρ) and kφij(ρ),
which should be used, for every i, j ∈ kX,

kφkj(ρ) =
φkj(ρ)

1−φkk(ρ)
,

kφij(ρ) = φij(ρ) +
φik(ρ)φkj(ρ)

1−φkk(ρ)
.

(32)

It is useful to note that the second formula in relation (32) reduces to the
first one, if to assign i = k in this formula.

Relation (32) imply that, under conditions A, B and Cρ, the following
condition is necessary and sufficient for finiteness of exponential moments

kφkj(ρ), kφij(ρ), i, j ∈ kX,

E
(1)
k,ρ: φkk(ρ) < 1.

3.3. Exponential moments for hitting times of reduced semi-
Markov processes. Let us assume that k 6= 0 and introduce the first
hitting time to state 0 for the reduced semi-Markov process kJ(t),

kW0 = inf(t ≥ kX1 : kJ(t) = 0) =
kU0∑
n=1

kXn, (33)

where kU0 = min(n ≥ 1 : kJn = 0) is the first hitting time to state 0 by the
reduced Markov chain kJn.

Let also introduce moments,

kΦi0(ρ) = Ei e
ρ kW0 , ρ ≥ 0, i ∈ X. (34)

Note that, kΦi0(0) = 1, i ∈ X.

The following theorem plays the key role in what follows.

Theorem 2. The hitting times W0 and kW0 to the state 0, respectively,
for semi-Markov processes J(t) and kJ(t), coincide, for every k 6= 0 and,
thus, for every i ∈ X, k 6= 0,

Φi0(ρ) = Eie
ρW0 = kΦi0(ρ) = Ei e

ρ kW0 . (35)

Proof. The first hitting times to a state 0 are connected for Markov
chains Jn and kJn by the following relation,

U0 = min(n ≥ 1 : Jn = 0) = min(kVn ≥ 1 : kJn = j) = kVkU0 , (36)

where kU0 = min(n ≥ 1 : kJn = 0).
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The above relations imply that the following relation holds for the first
hitting times to state 0, for the semi-Markov processes J(t) and kJ(t),

W0 =
U0∑
n=1

Xn =
kVkU0∑
n=1

Xn =
kU0∑
n=1

kXn = kW0. (37)

The equality for exponential moments of hitting times is an obvious corol-
lary of relation (37). �

Lemma 2. Let ρ ≥ 0 and conditions A, B, Cρ and Dρ hold for the
semi-Markov process J(t). Then, these conditions also hold for the reduced
semi-Markov process kJ(t), for any state k 6= 0.

Proof. Holding of conditions A and B for the semi-Markov process

kJ(t) is obvious. Holding of condition Cρ for the semi-Markov process kJ(t)
follows from relation (32). Holding of condition Dρ for the semi-Markov
process kJ(t) follows from Lemma 1. �

We can write down the recurrent systems of linear equations (16) for
moments kΦk0(ρ) and kΦi0(ρ), i ∈ kX of the reduced semi-Markov process

kJ(t), 
kΦk0(ρ) = kφk0(ρ) +

∑
j∈ kX,j 6=0 kφkj(ρ) kΦj0(ρ),

kΦi0(ρ) = kφi0(ρ) +
∑
j∈ kX,j 6=0 kφij(ρ) kΦj0(ρ),

i ∈ kX.
(38)

Theorem 1 makes it possible to compute exponential moments Φi0(ρ) =

kΦi0(ρ), i ∈ X in the way alternative to solving recurrent systems of linear
equations (16).

Instead of this, we can, first, compute exponential moments of transition
times for the reduced semi-Markov process kJ(t) using, respectively, relation
(32), and, then, by solving the systems of linear equations (38).

Note that the system of linear equations given in (16) has m equations
for exponential moments Φi0(ρ), i ∈ X, i 6= 0 plus the explicit formula for
computing exponential moment Φ00(ρ) as function of exponential moments
Φi0(ρ), i ∈ X, i 6= 0.

While, the system of linear equations given in (38) has, in fact, m − 1
equations for exponential moments kΦi0(ρ), i ∈ kX, i 6= 0, plus two explicit
formulas for computing exponential moment kΦ00(ρ) and kΦk0(ρ) as func-
tions of exponential moments kΦi0(ρ), i ∈ kX, i 6= 0.

4. Algorithms of sequential phase space reduction

In this section, we present a multi-step algorithm for sequential reduction
of phase space for semi-Markov processes. We also present the recurrent algo-

12



rithm for computing exponential moments of hitting times for semi-Markov
processes, which is based on the above algorithm of sequential reduction of
the phase space.

4.1. Sequential reduction of phases space for semi-Markov pro-
cesses. In what follows, let i ∈ {1, . . . ,m} and let k̄i,m = 〈ki,1, . . . , ki,m〉 =
〈ki,1, . . ., ki,m−1, i〉 be a permutation of the sequence 〈1, . . . ,m〉 such that
ki,m = i, and let k̄i,n = 〈ki,1, . . . , ki,n〉, n = 1, . . . ,m be the corresponding
chain of growing sequences of states from space X.

Let us assume that p0 +pi = 1. Denote as k̄i,0J(t) = J(t), the initial semi-
Markov process. Let us exclude state ki,1 from the phase space k̄i,0X = X
of semi-Markov process k̄i,0J(t) using the time-space screening procedure de-
scribed in Section 3. Let k̄i,1J(t) be the corresponding reduced semi-Markov
process. The above procedure can be repeated. The state ki,2 can be excluded
from the phase space of the semi-Markov process k̄i,1J(t). Let k̄i,2J(t) be the
corresponding reduced semi-Markov process. By continuing the above pro-
cedure for states ki,3, . . . , ki,n, we construct the reduced semi-Markov process

k̄i,nJ(t).
The process k̄i,nJ(t) has, for every n = 1, . . . ,m, the actual “reduced”

phase space,

k̄i,nX = k̄i,n−1
X \ {ki,n} = X \ {ki,1, ki,2, . . . , ki,n}. (39)

The transition probabilities k̄i,npki,n,j′ , k̄i,npi′j′ , i
′, j′ ∈ k̄nX, and the ex-

ponential moments k̄i,nφki,n,j′(ρ), k̄i,ne
(r)
i′j′ , i

′, j′ ∈ k̄i,nX, r = 1, . . . , d are de-
termined for the semi-Markov process k̄i,nJ(t) by the transition probabilities
and the expectations of sojourn times for the semi-Markov process k̄i,n−1

J(t),
respectively, via relations (28) and (32), which take the following recurrent
forms, for i′, j′ ∈ k̄i,nX and n = 1, . . . ,m,

k̄i,npki,n,j′ =
k̄i,n−1

pki,n,j′

1− k̄i,n−1
pki,n,ki,n

,

k̄i,npi′j′ = k̄i,n−1
pi′j′

+
k̄i,n−1

pi′ki,n k̄i,n−1
pki,n,j′

1− k̄i,n−1
pki,n,ki,n,

,

(40)

and 

k̄i,nφki,n,j′(ρ) =
k̄i,n−1

φki,n,j′
(ρ)

1− k̄i,n−1
φki,n,ki,n (ρ)

,

k̄i,nφi′j′(ρ) = k̄i,n−1
φi′j′(ρ)

+
k̄i,n−1

φi′ki,n
(ρ) k̄i,n−1

φki,n,j′
(ρ)

1− k̄i,n−1
φki,n,ki,n (ρ)

,

(41)
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Relation (41) imply that, under conditions A, B and Cρ, the following
condition is necessary and sufficient for finiteness of exponential moments

k̄i,n′
φki,n′ ,j′(ρ), k̄i,n′φi′j′(ρ), i′, j′ ∈ k̄i,n′

X, n′ = 1, . . . , n:

E
(n)

k̄i,n,ρ
: k̄i,n′−1

φki,n′ ,ki,n′ (ρ) < 1, n′ = 1, . . . , n.

4.2. Recurrent algorithms for computing of moments of hitting
times. Let us k̄i,nW0 be the first hitting time to state 0 for the reduced

semi-Markov process k̄i,nJ(t) and k̄i,nΦi′0(ρ) = Ei′e
ρ k̄i,n

W0 , i′ ∈ k̄i,nX be the
exponential moments for these random variables.

By Theorem 1, the above exponential moments of hitting time coincide for
the semi-Markov processes k̄i,0J(t), k̄i,1J(t), . . . , k̄i,nJ(t), i.e., for n′ = 0, . . . , n,

k̄j,n′
Φki,n′0

(ρ) = Φki,n′0
(ρ), k̄j,n′

Φi′0(ρ) = Φi′0(ρ), i′ ∈ k̄i,nX. (42)

Moreover, exponential moments of hitting times k̄j,nΦki,n0(ρ), k̄i,nΦi′0(ρ),
i′ ∈ k̄i,nX, resulted by the recurrent algorithm of sequential phase space
reduction described above, are invariant with respect to any permutation
k̄′i,n = 〈k′i,1, . . ., k′i,n〉 of sequence k̄i,n = 〈ki,1, . . . , ki,n〉.

Indeed, for every permutation k̄′i,n of sequence k̄i,n, the corresponding
reduced semi-Markov process k̄′i,n

J(t) is constructed as the sequence of states

for the initial semi-Markov process J(t) at sequential moment of its hitting
into the same reduced phase space k̄′i,n

X = X \ {k′i,1, . . . , k′i,n} = k̄i,nX =

X \ {ki,1, . . . , ki,n}. The times between sequential jumps of the reduced semi-
Markov process k̄′i,n

J(t) are the times between sequential hitting of the above

reduced phase space by the initial semi-Markov process J(t).
This implies that the transition probabilities k̄i,npki,nj′ , k̄i,npi′j′ , i

′, j′ ∈
k̄i,nX and the exponential moments k̄i,nφki,nj′(ρ), k̄i,nφi′j′(ρ), i′, j′ ∈ k̄i,nX and,
in sequel, exponential moments k̄i,nΦki,n0(ρ), k̄i,nΦi′0(ρ), i′ ∈ k̄i,nX are, for

every n = 1, . . . ,m, invariant with respect to any permutation k̄′i,n of the
sequence k̄i,n.

Let us now choose n = m. In this case, the reduced semi-Markov process

k̄i,mJ(t) has the one-state phase space k̄i,mX = {0} and state ki,m = i.
In this case, the reduced semi-Markov process k̄i,mJ(t) return to state 0

after every jump and hitting time to state 0 coincides with the sojourn time
in state k̄i,mJ(0).

Thus, the transition probabilities,

k̄i,mpi0 = k̄i,mp00 = 1. (43)

Also, by Theorem 1, moments,

Φi0(ρ) = k̄i,mΦi0(ρ) = k̄i,mφi0(ρ), (44)
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and
Φ00(ρ) = k̄i,mΦ00(ρ) = k̄i,mφ00(ρ). (45)

Relations (44) and (45) imply that, under conditions A, B and Cρ, the
following condition is necessary and sufficient for finiteness of exponential
moments Φi0(ρ), i 6= 0,Φ00(ρ):

E
(m)

k̄i,m,ρ
: k̄i,n−1

φki,n,ki,n(ρ) < 1, n = 1, . . . ,m.

In fact, if condition E
(m)

k̄i,m,ρ
holds for some permutation k̄i,m = 〈ki,1, . . .,

ki,m−1, i〉 of the sequence 〈1, . . . ,m〉, it also holds for any other permutation
k̄′i′,m = 〈k′i′,1, . . . , k′i′,m−1, i

′〉 of the sequence 〈1, . . . ,m〉.
Thus, condition E

(m)

k̄i,m,ρ
is an alternative to condition Dρ.

The above remarks can be summarized in the following theorem, which
presents the recurrent algorithm for computing of power moments for hitting
times.

Theorem 2. Let ρ ≥ 0 and conditions A, B, Cρ and Dρ hold for
the semi-Markov process J(t). Exponential moments Φi0(ρ) and Φ00(ρ) are
given, for every i = 1, . . . ,m, by formulas (44) and (45), where the expo-
nential moments k̄i,nφki,n,j′(ρ), k̄i,nφi′j′(ρ), i′, j′ ∈ k̄i,nX are determined, for
n = 1, . . . ,m, by recurrent formulas (41). The moments Φi0(ρ) and Φ00(ρ)
are invariant with respect to any permutation k̄i,m of sequence 〈1, . . . ,m〉 used
in the above recurrent algorithm.

5. Generalizations and examples

In this section, we describe several variants for generalization of the re-
sults concerned recurrent algorithms for computing exponential moments of
hitting times and accumulated rewards of hitting type.

5.1. Real-valued accumulated rewards of hitting type. First, we
would like to mention that Theorems 1 and 2 can be generalized on the
model, where of the Markov renewal process (Jn, Xn), n = 0, 1, . . . has the
phase space X × R1, an initial distribution p̄ = 〈pi = P{J0 = i,X0 = 0} =
P{J0 = i}, i ∈ X〉 and transition probabilities,

Qij(t) = P{J1 = j,X1 ≤ t/J0 = i,X0 = s}, (i, s), (j, t) ∈ X× R1. (46)

In this case, the random variable,

W0 =
U0∑
n=1

Xn (47)
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can be be interpreted as a reward accumulated on trajectories of Markov
chain Jn up to its first hitting time U0 = min(n ≥ 1, Jn = 0) of this Markov
chain to the state 0.

Conditions A, B, Cρ and Dρ do not change their formulations.
All recurrent relations for moments Ei0(ρ) = Eie

ρW0 , i ∈ X, given in Sec-
tions 3 – 4, as well as Theorems 1 and 2 take the same forms as in the case
of nonnegative rewards.

5.2. Vector accumulated rewards of hitting type. Second, we
would like to show, how the above results can be generalized on the case of
vector accumulated rewards.

Let us consider the model, where the Markov renewal process (Jn, X̄n) =
(Jn, (X1,n, . . . , Xl,n)) = 0, 1, . . . has the phase space X × Rk, an initial dis-

tribution p̄ = 〈pi = P{J0 = i, ~X0 = (0, . . . , 0)} = P{J0 = i}, i ∈ X〉 and
transition probabilities,

Qij(t̄) = P{J1 = j, X̄1 ≤ t̄/J0 = i, X̄0 = s}, (i, s̄), (j, t̄) ∈ X× Rl. (48)

Here and henceforth symbol ū ≤ v̄ for vectors ū = (u1, . . . , ul), v̄ =
(v1, . . . , vl) ∈ Rl means that u1 ≤ v1, . . . , ul ≤ vl.

The vector accumulated reward W̄0 = (W1,0, . . . ,Wl,0) is defined as a
l-dimensional random vector with components,

Wl′,0 =
U0∑
n=1

X,n, l
′ = 1, . . . , l. (49)

Let also ρ̄ = (ρ1, . . . , ρl) be a vector with non-negative components.
Condition Ċρ should be replaced by condition:

Ċρ̄: Eie
ρ1X1,1+···ρlXl,1 <∞, i ∈ X.

Let us define random variables W0(ρ̄) = ρ1W1,0 + · · ·+ ρlWl,0 and mixed
exponential moments Φi0(ρ̄) = Eie

W0(ρ̄) =
∏l
l′=1 e

ρl′Wl′,0 , i ∈ X.
By definition, W0(ρ̄) =

∑U0
n=1(ρ1X1,n+· · ·+ρlXl,n) is a scalar accumulated

reward for the corresponding local rewards Xn(ρ̄) = ρ1X1,n+ · · ·+ρlXl,n, n =
1, 2, . . ..

The exponential moments Φi0(ρ̄) = Eie
W0(ρ̄), i ∈ X are exponential mo-

ments for the above scalar accumulated reward, for parameter ρ = 1.
All recurrent relations for exponential moments of hotting times, given

in Sections 3 – 4, as well as Theorems 1 and 2 can be reformulated in an
obvious way for the above mixed exponential moments.
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5.3. General hitting times with hitting state indicators. Third,
the above results can be generalized on the case of more general hitting times,

WD =
UD∑
n=1

Xn, (50)

where UD = min(n ≥ 1, Jn ∈ D), for some nonempty set D ⊂ X.
In this case main object of studies are exponential moments for the hitting

times with hitting state indicators,

ΦD,ij(ρ) = Eie
ρWDI(JUD = j), ρ ≥ 0, j ∈ D, i ∈ X. (51)

Note that ΦD,ij(0) = Pi{JUD = j}, i ∈ X, j ∈ D.
Condition Dρ takes in this case the following form:

DD,ρ: There exists a test-function vρ(i), i ∈ X such that the following test
inequalities hold,

vρ(i) ≥ φi0(ρ) +
∑

j∈X, j /∈D
φij(ρ)vρ(j), i ∈ X.

Note also that condition A can, in fact, be replaced by a simpler condition:

AD: Pi{UD <∞} = 1, i ∈ X.

In this case, lemmas analogous to Lemma 1 and 2 and theorems analogous
to Theorems 1 and 2 take place, and recurrent systems of linear equations
and recurrent formulas analogous to those given in Sections 2 – 4 can be
written down.

For example, let kΦD,ij(ρ), i ∈ X, j ∈ D be the moments ΦD,ij(ρ) <
∞, i ∈ X, j ∈ D computed for the reduced semi-Markov process kJ(t), for
some k /∈ D.

The key recurrent systems of linear equations analogous to (38) take, for
every j ∈ D, nonempty set D ⊂ X and k /∈ D, the following form,

kΦD,k0(ρ) = kφk0(ρ) +
∑
j∈ kX, j /∈D kφkj(ρ) kΦD,j0(ρ),

kΦD,i0(ρ) = kφi0(ρ) +
∑
j∈ kX, j /∈D kφij(ρ) kΦD,j0(ρ),

i ∈ kX.
(52)

The corresponding changes caused by replacement of the hitting state 0
by state j ∈ D and set kX \ {0} by set kX \ D sould be taken into account
when writing down systems of linear equations (52) instead of systems of
linear equations (38).
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5.4. Place-dependent hitting times. Fourth, the above results can
be generalized on so-called place-dependent hitting times,

YG =
UG∑
n=1

Xn, (53)

where UG = min(n ≥ 1 : (Jn−1, Jn) ∈ G), for some nonempty set G ⊂ X×X.
Note that set G can be represented in the form G = ∪i∈X {i}×Gi, where

Gi = {j ∈ X : (i, j) ∈ G}. Respectively, the first hitting time UG can be
represented as UG = min(n ≥ 1 : Jn ∈ GJn−1). This representation explains
using of the term “place-dependent hitting time”.

In fact, the above model can be embedded in the previous one, if to
consider the new Markov renewal process (J̄n, Xn) = ((Jn−1, Jn), Xn), n =
0, 1, . . . constructed from the initial Markov renewal process (Jn, Xn), n =
0, 1, . . . by aggregating sequential states for the initial embedded Markov
chain Jn.

The Markov renewal process (J̄n, Xn) has the phase space (X×X)×[0,∞).
For simplicity, we can take the initial state J̄0 = (J−1, J0), where J−1 is a
random variable taking values in space X and independent on the Markov
renewal process (Jn, Xn).

Note that the simpler condition A can, in fact, be replaced by a simpler
condition:

A′G: Pi{UG <∞} = 1, i ∈ X.

The above assumption, that domain G is hittable, is implied by condition
A, for any domain G containing a pair of states (i, j) such that pij > 0.

The results concerned exponential moments of usual accumulated rewards
WD can be expanded to the place-depended accumulated rewards YG for
hittable domains, using the above embedding procedure.

5.5. Time-dependent hitting times. Let (Jn, Xn), n = 0, 1, . . . be an
inhomogeneous in time Markov renewal process, i.e., an inhomogeneous in
time Markov chain with phase space with the phase space X×[0,∞), an initial
distribution p̄ = 〈pi = P{J0 = i,X0 = 0} = P{J0 = i}, i ∈ X〉 and transition
probabilities, defined for (i, s), (j, t) ∈ X× [0,∞) and n = 0, 1, 2, . . .,

Q
(n+1)
ij (t) = P{Jn+1 = j,Xn+1 ≤ t/Jn = i,Xn = s}. (54)

As in homogeneous in time case, we exclude instant jumps and assume
that the following condition holds;

B′: Q
(n)
ij (0) = 0, i, j ∈ X, n ≥ 1.
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Process (Jn, Xn) can be transformed in a homogeneous in time Markov
renewal process by adding to this process an additional counting time com-
ponent J ′n = n, n = 0, 1, . . .. Indeed, process (J̄n, Xn) = ((J ′n, Jn), Xn), n =
0, 1, . . . is a homogeneous in time Markov renewal process. This process has
the phase space (N × X) × [0,∞), where N = {0, 1, . . .}. It has the initial
distribution p̄ = 〈pi = P{J ′0 = 0, J0 = i,X0 = 0} = P{J0 = i}, i ∈ X〉 and
transition probabilities,

Q(n,i),(k,j)(t) =

{
Q

(n+1)
ij (t) for t ≥ 0, k = n + 1, n = 0, 1, . . . , i, j ∈ X,

0 for t ≥ 0, k 6= n + 1, n = 0, 1, . . . , i, j ∈ X.
(55)

The phase space of the process (J̄n, Xn) is countable.
Let now define a time-truncated version of process (J̄n, Xn) as the process

(J̄ (h)
n , X(h)

n ) = ((J ′n∧h, Jn∧h), Xn∧h), n = 0, 1, . . ., for some integer h ≥ 1.
The process (J̄ (h)

n , X(h)
n ), n = 0, 1, . . . is also a homogeneous in time Markov

renewal process. It has the finite phase space (H × X) × [0,∞), where
H = {0, 1, . . . , h}.

Let 〈D1, . . . ,Dh〉 be some sequence of subsets of space X such that Dh = X
and let UD̃h = min(n ≥ 1 : J̄ (h)

n ∈ {n} × Dn) = min(n ≥ 1 : Jn ∈ Dn) is the

first hitting time to the domain D̃h = ∪hn=1{n} × Dn for the Markov chain
J̄ (h)
n .

Obviously, Pi{UD̃h ≤ h} = 1, i ∈ X, i.e., domain D̃ is hittable for the

Markov chain J̄ (h)
n .

Thus, all results presented in Sections 2 – 4 can be applied to the time-
dependent accumulated rewards of hitting type,

ZD̃h =

UD̃h∑
n=1

Xn. (56)

Note only hat condition Cρ should be, in this case, replaced by condition:

Ch,ρ: E{eρXnI(Jn = j)/Jn−1 = i} <∞, n = 1, . . . , h, i, j ∈ X.

In conclusion, we would like also to note that it is possible to combine
all five listed above generalization aspects in the frame of one semi-Markov
model.

5.6. An example. Let us consider a numerical example illustrating
the recurrent algorithm for computing power moment of hitting times and
accumulated rewards of hitting times for semi-Markov processes, based on
sequential reduction of their phase spaces.
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Let J(t) be a semi-Markov process with the phase space X = {0, 1, 2, 3},
and the 4 × 4 matrix of transition probabilities, ‖Qij(t)‖, which has the
following form, for t ≥ 0,∥∥∥∥∥∥∥∥∥∥∥

1
2
I(t ≥ ln 10

9
) 0 0 1

2
I(t ≥ ln 10

9
)

1
2
(1− e−9t) 1

6
(1− e−9t) 1

6
(1− e−9t) 1

6
(1− e−9t)

0 1
2
(1− e−10t) 1

4
(1− e−10t) 1

4
(1− e−10t)

0 1
2
I(t ≥ ln 9

8
) 1

4
I(t ≥ ln 9

8
) 1

4
I(t ≥ ln 9

8
)

∥∥∥∥∥∥∥∥∥∥∥
. (57)

Let us compute the exponential moments of hitting times Φ00(ρ) and
Φ10(ρ), for ρ = 1, using the recurrent algorithm described in Sections 3 – 5.

Note that we chosed parameters of semi-Markov transition probabilities
and the value of ρ in the way simplifying the corresponding numerical calcu-
lations.

The 4 × 4 matrices of transition probabilities ‖pij‖, for the embedded
Markov chain Jn and exponential moments ‖φij(1)‖ of transition times, for
the semi-Markov process J(t), have the following forms,∥∥∥∥∥∥∥∥∥∥∥∥

1
2

0 0 1
2

1
2

1
6

1
6

1
6

0 1
2

1
4

1
4

0 1
2

1
4

1
4

∥∥∥∥∥∥∥∥∥∥∥∥
and

∥∥∥∥∥∥∥∥∥∥∥∥

5
9

0 0 5
9

9
16

3
16

3
16

3
16

0 5
9

5
18

5
18

0 9
16

9
32

9
32

∥∥∥∥∥∥∥∥∥∥∥∥
. (58)

Let us first exclude state 3 from the phase space X = {0, 1, 2, 3} of the
semi-Markov process J(t). The corresponding reduced semi-Markov process

〈3〉J(t) has the phase space 〈3〉X = {0, 1, 2}.
The recurrent formulas (40), for transition probabilities of the embed-

ded Markov chain 〈3〉Jn, and (41), for exponential moments 〈3〉φij(1) of so-
journ times for the semi-Markov process 〈3〉J(t), have the following forms,

respectively, 〈3〉pij = pij + pi3p3j

1−p33
and 〈3〉φij(1) = φij(1) + φi3(1)φ3j(1)

1−φ33(1)
, for

i = 0, 1, 2, 3, j = 0, 1, 2.
The 4 × 3 matrices of transition probabilities ‖〈3〉pij‖ exponential mo-

ments ‖〈3〉φij(1)‖, computed according the above recurrent formulas, take
the following forms,∥∥∥∥∥∥∥∥∥∥∥∥

1
2

1
3

1
6

1
2

5
18

2
9

0 2
3

1
3

0 2
3

1
3

∥∥∥∥∥∥∥∥∥∥∥∥
and

∥∥∥∥∥∥∥∥∥∥∥∥

5
9

10
23

5
23

9
16

123
368

6
23

0 160
207

15
46

0 160
207

15
46

∥∥∥∥∥∥∥∥∥∥∥∥
. (59)
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Let us now exclude state 2 from the phase space 〈3〉X = {0, 1, 2} of the
semi-Markov process 〈3〉J(t). The corresponding reduced semi-Markov pro-
cess 〈3,2〉J(t) has the phase space 〈3,2〉X = {0, 1}.

The recurrent formulas (40), for transition probabilities 〈3,2〉pij of the em-
bedded Markov chain 〈3,2〉Jn, and (41), for exponential moments 〈3,2〉φij(1)
of sojourn times for the semi-Markov process 〈3,2〉J(t), have the following
forms, respectively, 〈3,2〉pij = 〈3〉pij + 〈3〉pi2 〈3〉p2j

1− 〈3〉p22
and 〈3,2〉φij(1) = 〈3〉φij(1) +

〈3〉φi2(1) 〈3〉φ2j(1)

1− 〈3〉φ22(1)
, for i = 0, 1, 2, j = 0, 1.

The 3 × 2 matrices of transition probabilities ‖〈3,2〉pij‖ and exponen-
tial moments ‖〈3,2〉φij(ρ)‖, computed according the above recurrent formulas,
take the following forms,∥∥∥∥∥∥∥∥∥

1
2

1
2

1
2

1
2

0 1

∥∥∥∥∥∥∥∥∥ and

∥∥∥∥∥∥∥∥∥
5
9

3490
4347

9
16

65037
102672

0 320
189

∥∥∥∥∥∥∥∥∥ . (60)

Finally, let us exclude state 1 from the phase space 〈3,2〉X = {0, 1} of
the semi-Markov process 〈3,2〉J(t). The corresponding reduced semi-Markov
process 〈3,2,1〉J(t) has the phase space 〈3,2,1〉X = {0}.

The recurrent formulas (40) and (41) for transition probabilities of the
embedded Markov chain 〈3,2,1〉Jn, expectations of sojourn times and sec-
ond moments of sojourn times for the semi-Markov process 〈3,2,1〉J(t) have
the following forms, respectively, 〈3,2,1〉pi0 = 〈3,2〉pi0 + 〈3,2〉pi1 〈3,2〉p10

1− 〈3,2〉p11
= 1 and

〈3,2,1〉φi0(1) = 〈3,2〉φi0(1) + 〈3,2〉φi1(1) 〈3,2〉φ10(1)

1− 〈3,2〉φ11(1)
, for i = 0, 1.

The 2× 1 matrix of exponential moments ‖Φi0(1)‖ = ‖〈3,2,1〉φi0(1)‖ com-
puted according the above recurrent formulas, take the following forms,

‖Φi0(1)‖ =

∥∥∥∥∥∥
282557
158067

57753
37635

∥∥∥∥∥∥ . (61)

In conclusion, we would like to note that recurrent algorithms presented
in the paper are subjects of effective program realization. These programs
let one compute power moments for hitting times and accumulated rewards
of hitting times for semi-Markov processes with very large numbers of states.
We are going to present such programs and results of large scale experimental
studies in future publications.
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