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Abstract

Time-inconsistent stochastic control stochastic control is a game-
theoretic generalization of standard stochastic control. An important
result of standard stochastic control is the characterization of the op-
timal value function as the solution to the Hamilton-Jacobi-Bellman
equation. Time-inconsistent stochastic control offers a similar pos-
sibility: Björk, Khapko and Murgoci (2016) [2] introduce a system
of PDEs, the extended HJB system, and prove a verification theo-
rem saying that if the extended HJB system has a solution then it is
an equilibrium of a corresponding time-inconsistent stochastic control
problem. In the present paper we show that a regular equilibrium is
necessarily a solution to the extended HJB system.
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rium, Hamilton-Jacobi-Bellman, Time inconsistent preferences, Time-
inconsistent stochastic control.
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1 Introduction

Time-inconsistent stochastic control is a game theoretic generalization of
standard stochastic control, based on the notion of Nash equilibrium. Time-
inconsistent control problems are common in applications. They have, for
example, been a part of the finance and economics literature since at least
the 1950s. The general mathematical theory of time-inconsistent stochastic
control is, however, still highly incomplete, as Björk and Murgoci (2014)
[4] write ”What has been lacking in the literature...is a...general theory of
time-inconsistent stochastic control”.

We will now describe a simple standard (time-consistent) stochastic con-
trol problem in a somewhat unusual fashion and, as a contrast, introduce the
time-inconsistent stochastic control problem.

A simple but standard stochastic control problem amounts to choosing a
(deterministic) function u : [0, T ]×Rn → R (known as a Markovian feedback
control law) that maximizes

J̃(t, x,u) = Et,x[F̃ (Xu
T )] (1)

for each (t, x) in [0, T ]×Rn, where F̃ is some nice real-valued function, often
called terminal payoff (function), and Xu is a controlled Itô diffusion:

dXu
s = µ(s,Xu

s ,u(s,Xu
s ))ds+ σ(s,Xu

s )dWs

where W is a Wiener process and σ and µ are nice deterministic functions.
At first glance this optimization problem does not look well-posed since

the optimal control (function) would apparently depend on the particular
starting point (t, x). Fortunately, the problem turns out to be well-posed
due to the dynamic programming principle (DPP), which can be heuristically
formulated as follows: if an optimal control for (1) exists for every fixed (t, x)
then these controls do, in fact, coincide. Thus, the problem of choosing a
control (function) u such that (1) is maximal for each (t, x) turns out to be
well-posed.

The standard stochastic control theory cannot, however, satisfactorily
handle the problem of choosing a control u such that it maximizes

J(t, x,u) = Et,x[F (x,Xu
T )] (2)

for each (t, x) in [0, T ]×R, where F is a nice deterministic function which we
call a time-inconsistent terminal payoff (function). To see this, note that if t
is current time and Xt = x, and if a Markovian feedback control law u is opti-
mal at (t, x) then it will at any future point (s,Xu

s ) be optimal for the problem
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of maximizing Es,Xu
s
[F (x,Xu

T )], according to the DPP. However, it will not
generally be optimal for the problem of maximizing Es,Xu

s
[F (Xu

s , X
u
T )] which

is our task, cf. (2). This optimization problem is therefore equivalent to us
having to deal with different terminal payoff functions at different points in
time: at (t, x) we consider maximizing the conditional expected value (see
(2)) based on the function F (x, ·), but later, at for example (s,Xu

s ) we want
to maximize the conditional expected value based on the currently unknown
(random) function F (Xu

s , ·). In other words: the set of preferences we have
today are not the same as the set of preferences we have tomorrow. The
optimization problem is therefore time-inconsistent, and it is in fact unclear
what optimality for (2) even means (the problem is not well-posed).

In order to deal with the issue of time-inconsistency the literature has
(primarily) resorted to game theory and the notion of Nash equilibrium (not
only for the setting above, but also more generally). Heuristically, the game-
theoretic nature of the problem is due to the terminal payoff function chang-
ing over time, and we view the optimization problem as a game between
agents (one agent for each time t) who optimize their own value function
Et,Xu

t
[F (Xu

t , X
u
T )], by choosing the control’s (i.e. u:s) value only at the time

t. This idea is formalized by the introduction of an equilibrium control and
a corresponding equilibrium value function, see Definition 3.2.

One of the main results of standard (time-consistent) stochastic control
is the characterization of the optimal value function as the unique solution
to a certain non-linear partial differential equation known as the Hamilton-
Jacobi-Bellman equation (HJB). This type of characterization was originally
often performed under ad hoc assumptions regarding mainly sufficient differ-
entiability (see Remark 8.2 for further comments). Another approach, which
demands less regularity, is to consider viscosity solutions, see Remark 8.4.
The characterization is often presented as two companion theorems (see e.g.
[16, 18, 19, 23]) which in simplified versions can be phrased as follows: 1. A
necessary condition for two functions to be an optimal control and the opti-
mal value function is that they solve the HJB, and 2. Solving the HJB is a
sufficient condition for two functions to be an optimal control and the optimal
value function (this type of result is known as a verification theorem).

Naturally, we hope that time-inconsistent stochastic control problems of-
fer a similar possibility. Indeed, the extended HJB system was around 2010
proposed in the influential [2]1, where a time-inconsistent stochastic control
problem similar to the one in the present paper is studied. The main result
of [2] is a verification theorem which in a simplified version can be phrased as

1Different versions of this paper have been available as preprints since at least 2010.
The most cited version is the older [3].
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follows: Solving the extended HJB system is a sufficient condition for being
an equilibrium. The type of solutions considered are classical solutions (i.e.
sufficiently differentiable, in the usual sense).

The main contribution of the present paper can be summarized as follows.

• We show that solving the extended HJB system is a necessary condition
for being a regular equilibrium, see Theorem 5.5 and the more general
Theorem 6.3.

• As an example, we study a time-inconsistent version of the regulator
problem, see Section 7.

Remark 1.1. We consider only regular equilibria. This means that we im-
plicitly only consider models which satisfy certain conditions, mainly regard-
ing the existence of an equilibrium control and differentiability (see Assump-
tion 5.2 and Assumption 5.3). These assumptions, therefore, need to be ver-
ified for each particular model that is studied. We remark that the example
studied in Section 7 has a regular equilibrium.

1.1 Previous literature

The game-theoretic approach to time-inconsistency was first used by Strotz
(1955) [22] when studying utility maximization problems. Other influential
papers following a similar line in economics and finance are [14, 17, 21, 25].
These and other papers in mainly economics and finance have sparked a
recent interest in time-inconsistent stochastic control from a more mathe-
matical perspective. Early financial mathematics papers in time-inconsistent
stochastic control include Ekeland and Lazrak (2006) [10] and Ekeland and
Pirvu (2008) [11], who study a classic time-inconsistent finance problem (op-
timal consumption and investment under hyperbolic discounting). The ideas
developed in these papers served as an inspiration to the general framework
for time-inconsistent stochastic control proposed in [2, 4], which also in-
clude several interesting applications. A particular type of time-inconsistent
stochastic control problem is mean-variance optimization (studied in e.g. op-
timal investment theory). Different versions of this problem have recently
been studied by [5, 7, 20]. A numerical technique for mean-variance opti-
mization problems is studied in [8].

1.1.1 Alternative approaches to time-inconsistent stochastic con-
trol

Yong (2012) [28] (see also [27]) and Wang and Wu (2015) [26] study time-
inconsistent stochastic control, but they use a slightly different equilibrium
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construction than that of the present paper. They start with N agents each
controlling the state process on a small time interval and then solve the equi-
librium problem by using backward recursion, which is similar to how the
problem is solved in discrete time in [4]. N is then sent to infinity. Moreover,
in [26] the theory of FBSDEs is used to characterize the equilibrium (rather
than with a PDE system). Djehiche and Huang (2015) [9] study a problem
similar to that of the present paper, for which they characterize an equi-
librium control (if it exists) via a stochastic maximum principle for general
nonlinear diffusion models (i.e. as the solution to a particular SDE). Their
main focus is, however, an equilibrium approach to mean field games.

2 The model

Let there be a stochastic basis (Ω,F , P,F) with a fixed time horizon T <∞,
where F is the augmented filtration generated by a d-dimensional Wiener
process W . We consider n-dimensional controlled diffusion processes

dXu
s = µ(s,Xu

s ,u(s,Xu
s ))ds+ σ(s,Xu

s )dWs, t ≤ s ≤ T, Xu
t = x (3)

where,

• controls are measurable functions u : [0, T ]×Rn → U (known as Marko-
vian feedback control laws), where U ∈ Rk is compact. We denote the
set of such functions by U,

• µ : [0, T ] × Rn × U → Rn and σ : [0, T ] × Rn → M(n, d) are bounded
and continuous functions. Moreover, σ(t, x) is Lipschitz in x ∈ Rn and
σσT is uniformly elliptic.2

Definition 2.1 (Admissible control). A control u is admissible if for any
starting point (t, x) ∈ [0, T )×Rn there exists a unique strong solution Xu to
(3). Xu has continuous sample paths (by the definition of a strong solution).

From (2) in Section 1 we recall that the basis of our optimization problem
is a function F , which we call a time-inconsistent terminal payoff function.

Definition 2.2 (Time-inconsistent terminal payoff function).
F (x, y) : Rn × Rn → R is continuous and satisfies

|F (x, y)| ≤ C0(1 + |x|2) (4)

for some constant C0 (which may depend on y).

2M(n, d) denotes the set of real-valued matrices with dimension n× d. σσT uniformly
elliptic means that there exists a constant v > 0 such that λTσ(t, x)σT (t, x)λ ≥ v|λ|2, for
all for λ, x ∈ Rn and t ∈ [0, T ], where |v|2 =

∑
i v

2
i and σT is the transpose of σ.
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We will use of the following function indexed by a control.

Definition 2.3 (Auxiliary function). For a fixed u ∈ U we define the func-
tion fu : [0, T ]× Rn × Rn → R by

fu(t, x, y) = Et,x [F (Xu
T , y)] ,

where Et,x [·] denotes the expected value given the starting point (t, x) in (3).

Lemma 2.4.

1. Each control is an admissible control.

2. For any u ∈ U and any (t, x) ∈ [0, T ] × Rn, Et,x [(supt≤s≤T |Xu
s |)2] <

C1(1 + |x|2) for some constant C1 which is independent of t and u.

3. For any u ∈ U and any (t, x, y) ∈ [0, T ] × Rn × Rn, |fu(t, x, y)| ≤
Et,x[|F (Xu

T , y)|] ≤ C2(1 + |x|2) for some constant C2 which is indepen-
dent of t and u (but which may depend on y).

Note that item 1. above implies that the set of controls U is actually also
the set of admissible controls.

Proof. For each function u ∈ U and starting value (t, x) the SDE (3) has
a unique strong solution Xu, by a result found in e.g. [24] (and clarified in
[15]). Each control is therefore admissible.

The integrability condition for supt≤s≤T |Xu
s | is a consequence of µ and

σ being bounded (see e.g [16, ch. 5.3].). We remark that C1 can be taken
to depend only on n, T and the least upper bounds of |µ| and |σ| (where
| · |2 = Σi,j(·)2).

Using (4) and item 2. it is easy to see that

|fu(t, x, y)| ≤ Et,x [|F (Xu
T , y)|] ≤ Et,x

[
C0(1 + |Xu

T |2)
]

≤ C0 + C0Et,x
[
|Xu

T |2
]
≤ C0 + C0(C1 + |x|2) ≤ C2(1 + |x|2)

for some C2 depending only on n, T , the least upper bounds of |µ| and |σ|
and C0 (and therefore on y).

We need some more notation.

• Au denotes the following indexed (by a control u) differential operator

Au =
∂

∂t
+

n∑
i=1

µi(t, x,u(t, x))
∂

∂xi
+

1

2

n∑
i,j=1

σσTij(t, x)
∂2

∂xixj

which operates on sufficiently differentiable functions [0, T ]×Rn → R.
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• Au operates only on variables in parentheses. For any function g(t, x, y) :
[0, T ] × Rn × Rn → R we allow for the possibility of placing the third
variable as a superscript gy(t, x) = g(t, x, y). This implies, for example,
that Augy(t, x) involves only derivatives with respect to the first and
second variables t and x. Moreover, Aug(t, x, x) is equal to Auh(t, x),
with h(t, x) := g(t, x, x).

• Augy(t, x) and Au(t,x)gy(t, x) denote the same object.

Remark 2.5. The expected values found throughout this paper are finite (to
see this use arguments similar to those in the proof of Lemma 2.4).

3 The time-inconsistent stochastic control equi-

librium

Consider the time-inconsistent terminal payoff function F in (4) and define
the time-inconsistent value function as follows.

Definition 3.1 (Value function).

J(t, x,u) = fu(t, x, x) = Et,x [F (Xu
T , x)]

Now, we wish to choose the control u so that J(t, x,u) is as large as
possible for each (t, x). But, this is not (yet) a well-posed problem, as we
saw in the introduction. The first objective of our theory of time-inconsistent
stochastic control is to make this a well-posed problem.

To this end, we introduce a game-theoretic notion of equilibrium very
similar to that in [2], which was inspired by [10, 11]. The definition is a
continuous time version of a subgame perfect Nash equilibrium.

Definition 3.2 (Equilibrium).

• û is an equilibrium control if it is an admissible control such that

lim inf
h↘0

J(t, x, û)− J(t, x,ut+h)

h
≥ 0, ∀(t, x) ∈ [0, T )× Rn, (5)

for all ut+h =

{
u, on [t, t+ h]×B[x]
û, on {[t, t+ h]×B[x]}c, with h > 0, t+h ≤ T ,

where u ∈ U and B[x] is some arbitrary n-dimensional ball centered at
x.

7



• For a given equilibrium control û the corresponding equilibrium value
function is defined by V (t, x) = fû(t, x, x).

• An equilibrium is a triplet (û, V (t, x), fû(t, x, y)).

Remark 3.3. ut+h is bounded and measurable (cf. pasting of measurable
functions) and is therefore in U (this comment also applies to all controls
we introduce later). ut+h clearly depends on x and |B[x]|, and also on t and
h rather than t+ h. The fact that our notation does not indicate this should
not cause any confusion.

Definition 3.1 and Definition 3.2 imply the following identities

V (t, x) = fû(t, x, x) = J(t, x, û) = Et,x
[
F (X û

T , x)
]
. (6)

Remark 3.4 (Interpretation of ut+h). If we at (t, x) consider ut+h then we
consider an alternative control u (compared to û) which is to be used until
either 1. the short time period h > 0 has passed, or 2. the controlled process
Xu has left the ball B[x].

Remark 3.5 (Interpretation of equilibrium). We can think of the agents in
this game as future incarnations of the person that is doing the optimization.
The interpretation of an equilibrium control is that it is a control which every
agent wants to use if every agent after her (i.e. every future incarnation)
uses that control. Heuristically, we can for small h think of J(t, x, û) −
J(t, x,ut+h) as the expected payoff an agent at time t (the current ”self”)
obtains when choosing the equilibrium control û minus the expected payoff
she would obtain if she chose the alternative control u, provided that û is
used when she is no longer able to choose the control. Note that J(t, x, û)−
J(t, x,ut+h) would approach zero when sending h to zero, and we therefore
normalize this difference in (5).

4 The extended HJB system

Before we introduce the extended HJB system we remark that Auf yû(t, x)
involves, by definition, derivatives only with respect to the first and second
variables t and x in fû(t, x, y). Consequently, Aufxû(t, x) involves derivatives
only with respect to t and the first x in fû(t, x, x).
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Definition 4.1 (The extended HJB system). For (t, x, y) ∈ [0, T )×Rn×Rn,

Aûf yû(t, x) = 0

f yû(T, x) = F (x, y)

sup
u∈U
{AuV (t, x)−Aufû(t, x, x) +Aufxû(t, x)} = 0

V (T, x) = F (x, x) (7)

where û satisfies

û(t, x) ∈ arg supu∈U {AuV (t, x)−Aufû(t, x, x) +Aufxû(t, x)} (8)

and where any solution triplet (û, V (t, x), fû(t, x, y)) must satisfy

• û ∈ U (this requirement corresponds only to measurability, cf. the
definition of U),

• f yû(t, x) ∈ C1,2([0, T )× Rn) ∩ C([0, T ]× Rn) for any fixed y ∈ Rn,

• V (t, x) and fû(t, x, x) have existing derivatives to the extent that AuV (t, x)
and Aufû(t, x, x) exist, for any (t, x) ∈ [0, T ) × Rn. In other words,
∂V (t,x)
∂t

, ∂V (t,x)
∂xi

, ∂
2V (t,x)
∂xi∂xj

, ∂h(t,x)
∂t

, ∂h(t,x)
∂xi

, ∂
2h(t,x)
∂xi∂xj

exist for each (t, x) ∈ [0, T )×
Rn and i, j = 1, ..., n with h(t, x) := fû(t, x, x).

Remark 4.2 (The maximization in (8)). The maximization in (8) should
be construed as follows. For a fixed point (t, x) and any two fixed functions
V (t, x) and fû(t, x, y) (which are sufficiently differentiable for the derivatives
in (9) to exist) the maximization procedure regards

AuV (t, x)−Aufû(t, x, x) +Aufxû(t, x) (9)

with respect to u ∈ U .

Remark 4.3. The two first rows of the extended HJB system (7) correspond
to a parametrized (by y and û) Kolmogorov backward equation (we call these
two rows the Kolmogorov part). To be precise, the Kolmogorov part corre-
sponds to a family of Kolmogorov backward equations, one for each y ∈ Rn.
The third and fourth row (we call these two rows the HJB part) consist of
a standard HJB equation, but with the non-standard feature that it includes
derivatives of the solution to the Kolmogorov part.

Remark 4.4 (Interpretation of the extended HJB system). It may shed some
light on the extended HJB system to consider the following schedule. Start by
guessing a solution, i.e. any three fixed functions û, V (t, x) and fû(t, x, y),
and then

9



1. check that û, V (t, x) and fû(t, x, y) satisfy the regularity conditions pre-
sented after (8),

2. check that V (t, x) and fû(t, x, y) satisfy the two boundary conditions in
(7),

3. check that fû(t, x, y) satisfies the Kolmogorov part,

4. for each (t, x), check that at least one maximizer of (9) exists, produces
the maximal value 0, and is equal to the value û(t, x).

If the guessed three functions û, V (t, x) and fû(t, x, y) pass 1,2,3 and 4, then
they are a solution to the extended HJB system.

Remark 4.5. The extended HJB system in Definition 4.1 does not include a
component which is included in the extended HJB system in [2]. The reason
for this is that they include in their time-inconsistent optimization problem a
second payoff function, which is allowed to depend non-linearly on Et,x[X

u
T ].

5 A regular equilibrium necessarily solves the

extended HJB system

Let us first define what we mean by a regular equilibrium.

Definition 5.1 (Regular equilibrium). An equilibrium (û, V (t, x), fû(t, x, y))
(see Definition 3.2) is said to be regular if Assumption 5.2 and Assumption
5.3 below are satisfied.

Assumption 5.2 (Right-continuous equilibrium control). There exists a
right-continuous function û : [0, T ]× Rn → U such that (5) is satisfied.

Assumption 5.3 (Differentiability). The auxiliary function indexed with û
and the equilibrium value function satisfy the following conditions.

1. f yû(t, x) ∈ C1,2([0, T )× Rn) ∩ C([0, T ]× Rn) for each fixed y ∈ Rn.

2. Au can, for any (t, x, u) ∈ [0, T ) × Rn × U , operate on V (t, x), i.e.
∂V (t,x)
∂t

, ∂V (t,x)
∂xi

, ∂
2V (t,x)
∂xi∂xj

exist for each (t, x) ∈ [0, T ) × Rn and i, j =
1, ..., n.

Note that (6) implies that item 2. above is equivalent to assuming that
Au can, for any (t, x, u), operate on fû(t, x, x).
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Remark 5.4. We consider only regular equilibria. This means that we im-
plicitly only consider models (i.e. σ, µ, U and F ) which are such Assumption
5.2 and Assumption 5.3 are satisfied. Thus, these assumptions need to be ver-
ified for each particular model that is studied. See Section 7 for a concrete
example with a regular equilibrium.

We are now ready to present our main result.

Theorem 5.5 (Main result). A regular equilibrium (û, V (t, x), fû(t, x, y))
necessarily solves the extended HJB system (Definition 4.1). In particular,
if a regular equilibrium exists then the extended HJB system has a solution.

The following result follows directly from Theorem 5.5 and (6).

Corollary 5.6. An equilibrium control û and the corresponding auxiliary
function fû(t, x, y) necessarily solve the following simplified version of the
extended HJB system,

Aûf yû(t, x) = 0, f yû(T, x) = F (x, y)

sup
u∈U
{Aufxû(t, x)} = 0, û(t, x) ∈ arg supu∈U {Aufxû(t, x)} ,

under Assumption 5.2 and Assumption 5.3.

Remark 5.7. It can be argued that it would be more natural for the result in
Corollary 5.6 to be our main result. We have, however, chosen to formulate
our main result as in Theorem 5.5 in order for it to be in accordance with
the existing literature.

Proof of Theorem 5.5. The last assertion of the theorem follows directly
from the first. The regularity conditions of the extended HJB system (pre-
sented directly after (8)) are satisfied as a direct consequence of the equilib-
rium being regular. The proof comprises 4 parts.

Part 1. From Definition 2.3 and Definition 3.2 it directly follows that
fû(T, x, y) = F (x, y) and V (T, x) = F (x, x). The boundary conditions of the
extended HJB system are therefore satisfied.

Part 2 (this part corresponds to a version of the Feynman-Kac formula).
Here we will show that our auxiliary function

f yû(t, x) = Et,x[F (X û
T , y)] (10)

solves the Kolmogorov part of the extended HJB system. Let (t, x, y) be an
arbitrary point in [0, T )×Rn×Rn. Consider the sequence of stopping times
given by

τn = inf
{
s > t : (s,X û

s ) /∈ [t, t+ hn)×B[x]
}
∧ T (11)
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where B[x] is an arbitrary ball centered at x and {hn} is an arbitrary positive
and decreasing sequence satisfying limn→∞ hn = 0. To see that the hitting
time (11) is a stopping time, see e.g. [1] or [16, ch. 1.2,1.7,5.2]. It follows
directly from (11) that X û

s is bounded on the stochastic interval [t, τn]. Note
also that for almost all outcomes ω ∈ Ω there exists an N(ω) such that
τn = t + hn for n ≥ N(ω), so that τn → t in the same way as t + hn → t as
n→∞ a.s.

Now, view f yû(s,X û
s )s∈[t,T ] as a stochastic process, for which Itô’s formula

(the necessary differentiability is provided by Assumption 5.3) implies that

f yû(t, x) = Et,x

[
f yû(τn, X

û
τn)−

∫ τn

t
Aûf yû(s,X û

s )ds
]

−Et,x
[∫ τn

t

n∑
i=1

σi(s,X
û
s )
∂f yû(s,X û

s )

∂xi
dWs

]

= Et,x

[
f yû(τn, X

û
τn)−

∫ τn

t
Aûf yû(s,X û

s )ds
]

(12)

where σi is the i:th row of σ and where the expected value of the Itô integral
is zero since its integrand is bounded (which follows from the facts that X û

s

is, for each n, bounded on the stochastic interval [t, τn], σ is bounded, and

the derivatives
∂fy

û
(s,Xû

s )

∂xi
satisfy Assumption 5.3).

Now, use (10) and then the tower property (Lemma 2.4 ensures that
F (y,X û

T ) is integrable) to see that

Et,x
[
f yû(τn, X

û
τn)
]

= Et,x
[
Eτn,Xû

τn
[F (X û

T , y)]
]

= Et,x
[
F (X û

T , y)
]

= f yû(t, x),

which with (12) implies, for each n, that

Et,x

[∫ τn
t Aûf yû(s,X û

s )ds

hn

]
= 0 (13)

Consider now the (obviously related) sequence of random variables given by∫ τn
t Aûf yû(s,X û

s )ds

hn
. (14)

Note that the integrand in (14) is bounded and has right-continuous trajec-
tories on [t, τn], for each n.3 It follows that we may, for each fixed outcome

3To see this use that the integrand of (14) is

Aûf
y
û
(s,Xû

s )=
∂f
y
û
(s,Xû

s )

∂s
+

∑n
i=1 µi(s,X

û
s ,û(s,Xû

s ))
∂f
y
û
(s,Xû

s )

∂xi
+1

2

∑n
i,j=1 σσ

T
ij(s,X

û
s )
∂2f

y
û
(s,Xû

s )

∂xixj
,

where σ is bounded and continuous, µ(s, x, û(s, x)) is bounded and right-continuous (Sec-
tion 2 and Assumption 5.2), and the derivatives satisfy Assumption 5.3. Moreover, recall
that X û has continuous trajectories and that X û

s is bounded on [t, τn].
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ω ∈ Ω, view the numerator of (14) as a deterministic Lebesgue integral of a
one-dimensional right-continuous bounded deterministic function (in s).

Recall that τn → t in the same way as t + hn → t as n → ∞ a.s. It
follows from Lebesgue’s differentiation theorem that sending n→∞ in (14)
gives us

lim
n→∞

∫ τn
t Aûf yû(s,X û

s )ds

hn
= Aûf yû(t, x) a.s. (15)

The random variables in (14) are bounded by a constant (uniformly in n4)
and they correspond to an a.s. convergent sequence (cf. (15)) and we may
therefore use dominated (or bounded) convergence when sending n→∞ in
(13), which with (15) gives us

0 = lim
n→∞

Et,x

[∫ τn
t Aûf yû(s,X û

s )ds

hn

]
= Et,x

[
lim
n→∞

∫ τn
t Aûf yû(s,X û

s )ds

hn

]
= Et,x

[
Aûf yû(t, x)

]
= Aûf yû(t, x)

which, since (t, x, y) was arbitrary, means that fû(t, x, y) solves the Kol-
mogorov part of the extended HJB system.

Part 3. Using (6) we obtain AûV (t, x) = Aûfû(t, x, x), which with the
conclusion of Part 2 gives us

AûV (t, x)−Aûfû(t, x, x) +Aûfxû(t, x) = 0, (t, x) ∈ [0, T )× Rn. (16)

Part 4 : The conclusions of Part 1, Part 2 and Part 3 together with As-
sumption 5.3 imply that we may view our regular equilibrium (û, V (t, x), fû(t, x, y)
as a candidate solution of the extended HJB system in the sense that the
only thing we now have left to do is to show that our equilibrium control û
is maximal in (16), which we will now do.

Consider an arbitrary point (t, x, u) ∈ [0, T )× Rn × U and the sequence
of stopping times given by

τ̃n = inf {s > t : (s,Xu
s ) /∈ [t, t+ hn)×B[x]} ∧ T. (17)

4The boundedness for a specific n is obvious (since X û
s is bounded by a constant on

[t, τn], cf. (11), the derivatives of fyû(t, x) satisfy Assumption 5.3, and µ and σ are bounded
(Section 2)). The uniform boundedness can explained as follows: for (almost all) fixed ω
(and our fixed (t, x, y) and û), the integrals in (14) correspond to a convergent sequence
(in R, with index n) where each element is bounded by a constant Mn ∈ R which does
not depend on ω (cf. (11)), where the sequence {Mn} can be taken to converge (cf. the
right side of (15)). It is easy to see that there for such a sequence exists a constant M
dominating each element of the sequence (where M then also does not depend on ω),
which is what we claimed.

13



Let uτ̃n denote a control that is equal to the arbitrary constant u on [t, τ̃n]
and equal to the equilibrium control û outside of this interval. Using (17),
we note that uτ̃n is equal to u on [t, t + hn] × B[x] and equal to û on
{[t, t+ hn]×B[x]}c, and hence that uτ̃n is, for each n, a (deterministic) func-
tion of the type ut+h in Definition 3.2, specifically uτ̃n = ut+hn .

Note that

Eτ̃n,Xuτ̃n [F (X û
T , x)] = Eτ̃n,Xuτ̃n [F (X

uτ̃n
T , x)] a.s. (18)

since the starting values of the two expected values are both (τ̃n, X
uτ̃n ), and

since the controls (i.e. uτ̃n and û) are equal after the starting time, i.e. on
[τ̃n, T ] except at exactly the starting time τ̃n. The only difference between
the controls is thus on a set with Lebesgue measure zero, and the expected
values in (18) therefore coincide.

Now use Itô’s formula, in the same way as in Part 2, to see that

Et,x
[
fxû(τ̃n, X

uτ̃n
τ̃n )

]
= fxû(t, x) + Et,x

[∫ τ̃n

t
Auτ̃nfxû(s,Xuτ̃n

s )ds
]
. (19)

The integral limits in (19) are t and τ̃n and the control uτ̃n is equal to u
on [t, τ̃n]. It follows that Auτ̃n = Au and X

uτ̃n
s = Xu

s a.s. on [t, τ̃n]. We
may therefore replace the superscript in the differential operator and in the
controlled process in the integral in (19) with u. Using this replacement, the
identities f yû(t, x) = Et,x[F (X û

T , y)] and fxû(t, x) = V (t, x), and (18), we see
that (19) can be rewritten as

V (t, x) + Et,x

[∫ τ̃n

t
Aufxû(s,Xu

s )ds
]

= Et,x
[
fxû(τ̃n, X

uτ̃n
τ̃n )

]
= Et,x

[
Eτ̃n,Xuτ̃n [F (X û

T , x)]
]

= Et,x
[
Eτ̃n,Xuτ̃n [F (X

uτ̃n
T , x)]

]
= Et,x

[
F (X

uτ̃n
T , x)

]
= J(t, x, uτ̃n). (20)

The identity V (t, x) = J(t, x, û) and (20) imply that, for each n,

J(t, x, û)− J(t, x, uτ̃n) = −Et,x
[∫ τ̃n

t
Aufxû(s,Xu

s )ds
]
. (21)

Let us now verify the inequality and equalities of (22) below. The inequality
in (22) follows from the assumption that û is an equilibrium control (Def-
inition 3.2). The first equality follows the fact that uτ̃n = ut+hn (see the
arguments directly after (17)), which implies that we may replace ut+h with
uτ̃n , h with hn and h ↘ 0 with n → ∞ (since this implies that hn ↘ 0).
The three following equalities follow from (21), dominated convergence and
Lebesgue’s differentiation theorem (which we may use for reasons analogous
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to those in Part 2). The last equality follows the fact V (t, x) = fû(t, x, x) by
definition.

0 ≤ lim
h↘0

J(t, x, û)− J(t, x, ut+h)

h

= lim
n→∞

J(t, x, û)− J(t, x, uτ̃n)

hn

= lim
n→∞

−Et,x
[∫ τ̃n
t Aufxû(s,Xu

s )ds
]

hn

= Et,x

[
lim
n→∞

−
∫ τ̃n
t Aufxû(s,Xu

s )ds

hn

]
= −Aufxû(t, x)

= −(AuV (t, x)−Aufû(t, x, x) +Aufxû(t, x)). (22)

Recall that (t, x, u) was arbitrary. Therefore, (22) implies that û is maximal
in (16), which is all we had left to prove.

6 A more general case

In this section we let the time-inconsistency in the terminal payoff function
F depend not only on the current state of the controlled process x but also
on current time t. We also a add a time-inconsistent running payoff function
H. Specifically, we consider the following auxiliary and value functions.

Definition 6.1 (Auxiliary function II & Value function II ).

fu(t, x, s, y) = Et,x

[∫ T

t
H(r,Xu

r ,u(r,Xu
r ), s, y)dr + F (s,Xu

T , y)

]
,

J(t, x,u) = fu(t, x, t, x) = Et,x

[∫ T

t
H(r,Xu

r ,u(r,Xu
r ), t, x)dr + F (t,Xu

T , x)

]
,

where F : [0, T ]×Rn×Rn → R is continuous with |F (t, x, y)| ≤ C0(1 + |x|2)
for some constant C0 which is independent of t (but which may depend on y)
and H : [0, T ]× Rn × U × [0, T ]× Rn → R is continuous and bounded.

It is easy to see that an analogous version of Lemma 2.4 holds in this more
general case. Specifically, in this version of Lemma 2.4 we replace fu(t, x, y)
with fu(t, x, s, y) and note that C2 is independent also of s.
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The definition of equilibrium is analogous to Definition 3.2. The only
difference is that the equilibrium triplet is (û, V (t, x), fû(t, x, s, y)) with

V (t, x) = J(t, x, û) = fû(t, x, t, x).

The general case extended HJB system is the following natural extension
(where fû(t, x, s, y) = f s,yû (t, x) and Aû still operates only on variables in
parenthesis).

Definition 6.2 (The extended HJB system II). For (t, x, s, y) ∈ [0, T ) ×
Rn × [0, T )× Rn,

Aûf s,yû (t, x) +H(t, x, û(t, x), s, y) = 0

f s,yû (T, x) = F (s, x, y)

sup
u∈U

{
AuV (t, x)−Aufû(t, x, t, x) +Auf t,xû (t, x) +H(t, x, u, t, x)

}
= 0

V (T, x) = F (T, x, x)

where û satisfies

û(t, x) ∈ arg supu∈U
{
AuV (t, x)−Aufû(t, x, t, x) +Auf t,xû (t, x) +H(t, x, u, t, x)

}
and where any solution triplet (û, V (t, x), fû(t, x, s, y)) must satisfy

• û ∈ U,

• f s,yû (t, x) ∈ C1,2([0, T ) × Rn) ∩ C([0, T ] × Rn) for any fixed (s, y) ∈
[0, T ]× Rn,

• V (t, x) and fû(t, x, t, x) have existing derivatives to the extent that
AuV (t, x) and Aufû(t, x, t, x) exist, for any (t, x) ∈ [0, T )× Rn.

The definition of a regular equilibrium in the general case is almost the
same as in the less general case, the difference is that Assumption 5.3 here
regards the differentiability of f s,yû (t, x) for fixed (s, y).

We are now ready to present the main result in the general case. The
proof is very similar to the proof of Theorem 5.5 and is therefore omitted.

Theorem 6.3 (Main result II). A regular equilibrium (û, V (t, x), fû(t, x, s, y))
necessarily solves the extended HJB system (Definition 6.2). In particular,
if a regular equilibrium exists then the extended HJB system has a solution.
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7 Example: a time-inconsistent quadratic reg-

ulator

The linear-quadratic regulator is a classic problem in control theory. A typ-
ical stochastic linear-quadratic regulator problem in dimension n = 1 can
be described as follows. The drift of the controlled process is linear and the
volatility σ > 0 is a constant,

dXu
s = (c1X

u
s + c2u(s,Xu

s ))ds+ σdWs, Xu
t = x. (23)

The running and terminal payoffs are quadratic. Specifically, the value func-
tion is

Et,x

[∫ T

t
(c3u(s,Xu

s )2 + c4(X
u
s )2)ds+ c5(X

u
T )2

]
. (24)

All ci are constants and c3, c4, c5 > 0. The optimization problem is to mini-
mize the value function (24).

A time-inconsistent quadratic regulator
In this section we consider a time-inconsistent version of the regulator prob-
lem which we call a time-inconsistent quadratic regulator. Let n = 1 and
U = [−a, a] for some constant a > 0. Let the terminal payoff be F (x, y) =
(x− y)2 and let there be no running payoff, H(t, x, u, s, y) = 0. Let σ > 0 be
constant and µ(t, x, u) = −u2. It is easy to verify that this model satisfies
the general conditions of Section 2. The resulting value function that the
agents wish to maximize is

J(t, x,u) = Et,x
[
(Xu

T − x)2
]
,

the auxiliary function is

fu(t, x, y) = Et,x
[
(Xu

T − y)2
]
,

and the dynamics are

dXu
s = −u(s,Xu

s )2ds+ σdWs, Xu
t = x. (25)

Now, guess that û = 0 is an equilibrium control. This implies that µ(t, x, û(t, x)) =
−û(t, x)2 = 0 for each (t, x) and that

fû(t, x, y) = Et,x
[
(X û

T − y)2
]

= Et,x
[
(x+ σ(WT −Wt)− y)2

]
= Et,x

[
(x+ σ(WT −Wt))

2 − 2y(x+ σ(WT −Wt)) + y2
]

= Et,x
[
x2 + 2xσ(WT −Wt) + σ2(WT −Wt)

2
]
− 2xy + y2

= x2 + σ2(T − t)− 2xy + y2 = (x− y)2 + σ2(T − t).
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Moreover,

∂fû(t, x, y)

∂t
= −σ2,

∂fû(t, x, y)

∂x
= 2x− 2y,

∂2fû(t, x, y)

∂x2
= 2. (26)

Remark 7.1. We need the following general observation. Let (t, x) be an
arbitrary point and let u be an arbitrary control. Consider a control uθn
defined as being equal to u on the stochastic interval [t, θn] and equal to û
outside of this interval, where

θn = inf {s > t : (s,Xu
s ) /∈ [t, t+ hn)×B[x]} ∧ T.

In the same way as in the proof of Theorem 5.5 (where hn and B[x] are
defined) one can see that uθn is a control of the type defined in Definition
3.2, specifically uθn = ut+hn. Using the same arguments as in Part 4 of
the proof of Theorem 5.5 we can, for any sufficiently differentiable function
fû(t, x, y), show that

J(t, x, û)− J(t, x,uθn) = −Et,x
[∫ θn

t
Au(s,Xu

s )fxû(s,Xu
s )ds

]
(27)

(where (27) is analogues to (21)).

Let us return to our example and show that our guess, û = 0, is correct by
showing that our J(t, x, û) satisfies the equilibrium condition (5). Consider
an arbitrary point (t, x) and an arbitrary control u. Using that n = 1, σ is
a constant, µ(t, x, u) = −u2 and (26) we see that

Au(s,Xu
s )fxû(s,Xu

s )

=
∂fxû(s,Xu

s )

∂t
+ µ(s,Xu

s ,u(s,Xu
s ))

∂fxû(s,Xu
s )

∂x
+
σ2

2

∂2fxû(s,Xu
s )

∂x2

= −σ2 − u(s,Xu
s )2(2Xu

s − 2x) +
σ2

2
2. (28)

Now use (27), (28) and U = [−a, a] to obtain

J(t, x, û)− J(t, x,uθn)

= Et,x

[∫ θn

t
u(s,Xu

s )2(2Xu
s − 2x)ds

]

≥ −2a2Et,x

[∫ θn

t
|Xu

s − x|ds
]
. (29)

Arguments analogous to those in the proof of Theorem 5.5 imply that we
may now use Lebesgue’s differentiation theorem and dominated convergence
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as follows. Xu has continuous trajectories and Xu
t = x, using Lebesgue’s

differentiation theorem we therefore obtain: 1
hn

∫ θn
t |Xu

s −x|ds converges to 0
as n→∞ for a.e. ω ∈ Ω. Using this and dominated convergence (note that
Xu
s is bounded on [t, θn]) we obtain from (29) that

lim inf
n→∞

J(t, x, û)− J(t, x,uθn)

hn
≥ 0.

Since (t, x) and the alternative control u (and B[x]) were arbitrary it follows
that û is an equilibrium control (see Definition 3.2, and recall that uθn =
ut+hn and limn→∞ hn = 0). Our guess was therefore correct and

(û, V (t, x), fû(t, x, y)) = (0, σ2(T − t), (x− y)2 + σ2(T − t)) (30)

is an equilibrium for the time-inconsistent quadratic regulator.

The corresponding extended HJB system
It is easy to see that our equilibrium (30) is regular (Definition 5.1): the
equilibrium control û = 0 is right-continuous and the auxiliary function
fû(t, x, y) = (x−y)2 +σ2(T − t) and the equilibrium value function V (t, x) =
σ2(T−t) are clearly sufficiently differentiable. Since our equilibrium is regular
we may use Theorem 5.5 to draw the conclusion that it necessarily solves the
corresponding extended HJB system. Let us verify, however, that this is the
case.

Our equilibrium (30) satisfies the boundary conditions of the extended
HJB system (Definition 4.1), since V (T, x) = σ2(T − T ) = 0 = (x − x)2 =
F (x, x) and fû(T, x, y) = (x − y)2 + σ2(T − T ) = (x − y)2 = F (x, y). With
µ and σ defined as above, and using that the equilibrium value function and
the auxiliary function satisfy AuV (t, x) = Aufû(t, x, x) (which is always true,
cf. (6)), the rest of extended HJB system simplifies to

∂f yû(t, x)

∂t
− û(t, x)2

∂f yû(t, x)

∂x
+

1

2
σ2∂

2f yû(t, x)

∂x2
= 0 (31)

sup
u∈U

{
∂fxû(t, x)

∂t
− u2∂f

x
û(t, x)

∂x
+

1

2
σ2∂

2fxû(t, x)

∂x2

}
= 0 (32)

û(t, x) ∈ arg supu∈U

{
∂fxû(t, x)

∂t
− u2∂f

x
û(t, x)

∂x
+

1

2
σ2∂

2fxû(t, x)

∂x2

}
(33)

Remark 7.2. We remark that (31), (32) and (33) correspond to an example
of the simplified version of the extended HJB system in Corollary 5.6.
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The derivatives of the auxiliary function in the equilibrium fû(t, x, y) =
(x− y)2 + σ(T − t) are given in (26). Using these we write (31) as

−σ2 − û(t, x)2(2x− 2y) +
1

2
σ22 = 0

where the left side is equal to zero since our equilibrium control is û = 0.
This verifies that our equilibrium solves the Kolmogorov part (31). Similarly,
(32) can be written as

sup
u∈U

{
−σ2 − u2(2x− 2x) +

1

2
σ22

}
= 0

where u = 0 clearly attains the supremum 0 in the left side. This means that
(32) and (33) are satisfied by fû(t, x, y) = (x − y)2 + σ(T − t) and û = 0.
We have thus verified that our equilibrium solves the corresponding extended
HJB system.

A time-consistent version of the time-inconsistent regulator
The time-inconsistent quadratic regulator problem studied above is genuinely
time-inconsistent in the sense that the equilibrium control û = 0 is not an
optimal control in following time-consistent version of this problem: Consider
the time-inconsistent quadratic regulator problem, but now let the agent at
the initial point (0, x0) be able to dictate which control u should be used
until T . This is clearly a standard stochastic control problem with optimal
value function

sup
u∈U

Et,x[(X
u
T − x0)2]. (34)

Therefore, if u = 0 were an optimal control then the optimal value function
would be (cf. the calculations above (26))

G(t, x) = Et,x[(X
u
T − x0)2] = (x− x0)2 + σ2(T − t). (35)

Therefore, if u = 0 were an optimal control then we would be able to use the
standard (time-consistent) stochastic control version of Theorem 5.5 (see e.g.
[19, ch. 11]) to deduce that the function G in (35) would solve the standard
HJB corresponding to (34) (and (25)),

sup
u∈U

{
∂G(t, x)

∂t
− u2∂G(t, x)

∂x
+

1

2
σ2∂

2G(t, x)

∂x2

}
= 0, G(T, x) = (x− x0)2.

(36)
It is easy to verify that the function G in (35) does not solve (36) which
therefore implies that u = 0 cannot be an optimal control for this time-
consistent version of our problem.

Remark 7.3. Another time-inconsistent version of the regulator problem is
studied in [2].
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8 Conclusions and remarks

We study time-inconsistent stochastic control. Our model is that of a general
(Markovian) Itô diffusion and a general time-inconsistent terminal payoff
function, see Section 2. We also study a more general case including a time-
inconsistent running payoff function, see Section 6. The standard notion of
optimality is not suitable for time-inconsistent optimization and, in Section
3, we therefore define the time-inconsistent stochastic control equilibrium
(found also in [2, 10, 11]). In Section 4, we define a system of PDEs called
the extended HJB system (proposed in [2]). Our main result is Theorem 5.5
(and the more general Theorem 6.3), which says that a regular equilibrium (if
it exists) is necessarily a solution to the corresponding extended HJB system.
The proof is based on probabilistic methods.

Let us put our main result more in context. A verification theorem is
formulated and proved in [2]. In the setting of the present paper it can
be formulated as follows: if a (sufficiently regular) solution to the extended
HJB system exists, then this solution is in fact an equilibrium. Unfortunately,
there are no general results saying anything about the existence of solutions
to extended HJB systems, see Remark 8.1 below. However, our main result
implies that if a regular equilibrium exists, then the corresponding extended
HJB system has a solution. Thus, our main result adds knowledge to the
open problem of the existence of solutions to extended HJB systems, by
relating it to the question of the existence of regular equilibria.

The remarks below reveal a potential for future research in time-inconsistent
stochastic control.

Remark 8.1 (Existence of equilibrium controls, Assumption 5.2).
The problem of finding general model conditions (i.e. for σ, µ, U , F and H)
which guarantee the existence of an equilibrium control, and a solution to the
extended HJB system, is still open. For related remarks see [2, section 4.2]
and [4, section 6].

Remark 8.2 (Differentiability, Assumption 5.3). For any particular model
one should not a priori expect the differentiability in Assumption 5.3 to be
satisfied. It involves a lot of work to find useful model conditions such that
similar assumptions are satisfied for standard (time-consistent) stochastic
control (for such conditions see e.g. [12, 13, 18, 23]). Indeed, Fleming and
Rishel (2012) [12, p. 154] write the following about a similar differentiability
assumption: ”Substantial difficulties are encountered if one seeks to put all
of the above formal discussion on a precise basis. It has been implicitly
assumed that W 0(t, ·) [the optimal value function] is in the domain of Au(t)
[the differential operator], which is not always the case.”
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We also remark that we would clearly have to impose more regularity for
the variable y in the terminal payoff function F in (4) in order for Assump-
tion 5.3 to be reasonable.

Remark 8.3 (On the possibility of several equilibria). Generally, in game
theory there is no reason to expect anything else than that there may exist
several equilibria, or no equilibrium. Note, however, that the investigations in
the present paper regard any fixed equilibrium control û, and if, in a particular
case, there should be more than one equilibrium control, then our results are
true for any such fixed equilibrium control. Moreover, we do not expect that
different equilibrium controls necessarily correspond to different equilibrium
value functions, although they may do so in particular cases.

Remark 8.4 (Viscosity solutions). For the standard time-consistent stochas-
tic control theory, it is well-known that rather strong conditions for the model
are needed in order for the value function to be sufficiently differentiable to
be able to solve the HJB in the classical sense. This is true also when con-
sidering a.e. differentiability. Clearly, there is no reason to expect anything
else for time-inconsistent stochastic control. For the standard time-consistent
stochastic control theory, this problem was famously solved by the introduc-
tion of a type of weak solutions to PDEs known as viscosity solutions, see [6].
Viscosity solutions for extended HJB systems have so far not been studied.

Remark 8.5 (More examples). Several particular time-inconsistent stochas-
tic control problems studied in a mathematical way can be found in e.g.
[2, 4, 5, 7, 10, 20].
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