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Abstract

The constructive martingale representation theorem and the verti-
cal derivative of Functional Itô Calculus are extended, from the space
of square integrable martingales, to a space of local martingales. The
relevant filtration is the augmented filtration generated by a Wiener
process.
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1 Introduction

Consider a complete probability space (Ω,F ,P) on which there lives an n-
dimensional Wiener process W (t), 0 ≤ t ≤ T , where T < ∞. Let F =
{Ft}0≤t≤T denote the augmentation under P of the filtration generated by
W . We remark that it should be taken as implicitly understood that if a
process is a martingale, or has some other relevant property, then this is so
relative to (P,F). Moreover, all local martingales that we introduce below
are to be understood as having RCLL sample paths.

One of the main properties of the Itô integral is that it is a local martin-
gale. One of the main results of Itô calculus is that the reverse implication
is also true. This result is known as the martingale representation theorem
[11, p. 184] [20, p. 189]: Let M be a RCLL local martingale, then there exists
a progressively measurable n-dimensional process ϕ such that∫ T

0
|ϕ(t)|2dt <∞, M(t) = M(0) +

∫ t

0
ϕ(s)′dW (s), 0 ≤ t ≤ T a.s.

In particular, M has continuous sample paths a.s. | · | denotes the Euclidean
norm and ′ denotes transpose.

Considerable effort has been made in order to find explicit formulas for
the integrand ϕ, i.e. in order to find constructive representations of (local)
martingales. Most of the general research on constructive martingale repre-
sentation has been within Malliavin calculus [10, 12, 15, 16, 22]. Here the
constructive martingale representation is based on the Malliavin derivative
and is known as the Clark-Haussmann-Ocone formula. The class of mar-
tingales to which the Clark-Haussmann-Ocone formula can be applied is,
however, limited by the condition that the terminal value of the martin-
gale must be Malliavin differentiable. A constructive representation for the
class of square integrable martingales is however possible, when considering
a distribution-valued generalization of the Malliavin derivative [1, 18].

Recently a new type of constructive martingale representation has been
studied using the recently developed Functional Itô Calculus [2, 5, 6, 7].
In what follows we will give a brief account of the Functional Itô Calculus
relevant to martingale representation and the augmented Wiener generated
filtration F . The main references are [2, 6]. For related remarks see Remark
2.8.

Denote an n-dimensional sample path by ω (think of ω as e.g. a sample
path of the Wiener process W ). Denote a sample path stopped at t by wt,
i.e. let wt(s) = ω(t ∧ s), 0 ≤ s ≤ T . We consider real-valued functionals of
sample paths F (t, ω) which are a non-anticipative (essentially meaning that
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F (t, ω) = F (t, ωt)). The horizontal derivative at (t, ω) is defined by

DF (t, ω) = lim
h↘0

F (t+ h, ωt)− F (t, ωt)

h
.

The vertical derivative at (t, ω) is defined by ∇ωF (t, ω) = (∂iF (t, ω), i =
1, ..., n)′, where

∂iF (t, ω) = lim
h→0

F (t, ωt + heiI[t,T ])− F (t, ωt)

h
.

Higher order vertical derivatives are obtained by vertically differentiating
vertical derivatives. If the functional F is sufficiently regular (regarding e.g.
continuity and boundedness of its derivatives), which we write as F ∈ C1,2

b

[2, p. 131], then the functional Itô formula holds [2, ch. 6]. The functional
Itô formula is the standard Itô formula with the usual derivatives replaced
by the horizontal and vertical derivatives.

Using the functional Itô formula it easy to see that if Z is a martingale
satisfying

Z(t) = F (t,Wt) dt× dP-a.e., with F ∈ C1,2
b , (1)

then, for every t ∈ [0, T ],

Z(t) = Z(0) +
∫ t

0
∇ωF (s,Ws)

′dW (s) a.s.

We may therefore define the vertical derivative with respect to the process
W of a martingale Z satisfying (1) as the dt× dP-a.e. unique process ∇WZ
given by

∇WZ(t) = ∇ωF (t,Wt), 0 ≤ t ≤ T. (2)

Let C1,2b (W ) be the space of processes Z which allow the representation in
(1). Let L2(W ) be the space of progressively measurable processes ϕ with
E[
∫ T
0 ϕ(s)′ϕ(s)ds] <∞. Let M2(W ) be the space of square integrable mar-

tingales with initial value 0. Let D(W ) = C1,2b (W ) ∩M2(W ).
It turns out that {∇WZ : Z ∈ D(W )} is dense in L2(W ) and that D(W )

is dense in M2(W ). Using this it is possible to show that the vertical
derivative (operator) ∇W (·) admits a unique extension to M2(W ): For
Y ∈ M2(W ) the (weak) vertical derivative ∇WY is the unique element in
L2(W ) satisfying

E[Y (T )Z(T )] = E

[∫ T

0
∇WY (t)′∇WZ(t)dt

]
(3)

for every Z ∈ D(W ) (where ∇WZ is defined in (2)). Using the above it is
possible to prove the following general constructive martingale representation
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theorem [2, p. 171]: For any square integrable martingale Y relative to (P,F)
and every t ∈ [0, T ],

Y (t) = Y (0) +
∫ t

0
∇WY (s)′dW (s) a.s. (4)

The present paper contains:

• An extension of the vertical derivative ∇W (·) to local martingales, see
Theorem 2.2 and Definition 2.4.

• A constructive representation theorem for local martingales, see Theo-
rem 2.5.

Remark 1.1. Many of the applications using martingale representation are
in mathematical finance. A particular application that would benefit from the
constructive martingale representation in Theorem 2.5 is optimal investment
theory, in which the discounted (using the state price density) optimal wealth
process is a (not necessarily square integrable) martingale [12, ch. 3]. In
particular, using Theorem 2.5 it would, under certain general conditions, be
possible to derive an explicit formula for the optimal portfolio in terms of the
vertical derivative of the discounted optimal wealth process. Similar explicit
formulas for optimal portfolios based on the Malliavin calculus approach to
constructive martingale representation have, under more restrictive assump-
tions, been studied extensively, see e.g. [4, 8, 9, 13, 14, 17, 18, 19, 21].

2 A constructive representation of local mar-

tingales

The current definition of the vertical derivative ∇W (·), cf (3), relies crucially
on the square integrability of the process that is being differentiated. We will
start by extending the definition of the vertical derivative to local martingales
with initial value zero; by defining this vertical derivative as the limit of
the vertical derivatives (using the current definition) of the local martingale
suitable stopped. Let us first recall the following definition.

Definition 2.1. M is said to be a local martingale if there exists a sequence
of non-decreasing stopping times {θn} with limn→∞ θn = ∞ a.s., such that
the stopped local martingale M(· ∧ θn) is a martingale for each n ≥ 1 [11,
p. 36].1

1Note that infinite-valued stopping times are possible in the present setting since the
infimum of the empty set is infinity by convention, cf [23].
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LetMloc(W ) denote the space of local martingales relative to (P,F) with
initial value zero and RCLL sample paths.

Theorem 2.2 (Definition of ∇W (·) on Mloc(W )).

• There exists a progressively measurable dt × dP-a.e. unique extension
of the vertical derivative ∇W (·) from M2(W ) to Mloc(W ), such that,
for M ∈Mloc(W ),∫ T

0
|∇WM(t)|2dt <∞, M(t) =

∫ t

0
∇WM(s)′dW (s), 0 ≤ t ≤ T a.s.

(5)

• Specifically, for M ∈ Mloc(W ) the vertical derivative ∇WM is defined
as the progressively measurable dt× dP-a.e. unique process satisfying

∇WM(t) = lim
n→∞

∇WMn(t) dt× dP-a.e. (6)

where ∇WMn is the vertical derivative of Mn := M(· ∧ τn) ∈ M2(W )
and τn is given by

τn = θn ∧ inf {s ∈ [0, T ] : |M(s)| ≥ n} ∧ T (7)

where {θn} is an arbitrary sequence of stopping times of the kind de-
scribed in Definition 2.1.

Remark 2.3. If M in Theorem 2.2 satisfies M(t) =
∫ t
0 γ(s)′dW (s), 0 ≤ t ≤

T a.s. for some process γ, then γ = ∇WM dt × dP-a.e. [11, p. 182-184].
It follows that the extended vertical derivative ∇WM defined in Theorem 2.2
does not depend (modulo possibly on a null set dt× dP) on the particulars of
the chosen stopping time τn. All we need from τn is that Mn := M(· ∧ τn) is
a square integrable martingale, as the proof below reveals.

Proof. The martingale representation theorem implies that there, for M ∈
Mloc(W ), exists a progressively measurable process ϕ satisfying∫ T

0
|ϕ(t)|2dt <∞, M(t) =

∫ t

0
ϕ(s)′dW (s), 0 ≤ t ≤ T, a.s. (8)

Therefore, if we can prove that

lim
n→∞

∇WMn(t) = ϕ(t) dt× dP-a.e., (9)

then it follows that there exists a progressively measurable process, denote
it by ∇WM , which is dt × dP-a.e. uniquely defined by (6) and satisfies
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∇WM(t) = ϕ(t) dt × dP-a.e., which in turn implies that the integrals of
∇WM and ϕ coincide in the way that (8) implies (5). All we have to do is
therefore to prove that (9) holds.

Let us recall some results about stopping times and martingales. The
stopped local martingale M(· ∧ θn) is a martingale for each n, by Definition
2.1. The minimum of two stopping times is a stopping time and the hit-
ting time inf {s ∈ [0, T ] : |M(s)| ≥ n} is, for each n, a stopping time [3], [11,
p. 46,5]. Stopped RCLL martingales are martingales [11, p. 20]. Using this
it follows that

M(· ∧ θn ∧ inf {s ∈ [0, T ] : |M(s)| ≥ n} ∧ T ) = M(· ∧ τn)

is a martingale, for each n. Moreover, M is by the standard martingale
representation a.s. continuous. Hence, we may define a sequence of, a.s.
continuous, martingales {Mn} by

Mn = M(· ∧ τn) =
∫ ·∧τn
0

ϕ(s)′dW (s) a.s. (10)

where the last equality follows from (8). Now, use the definition of τn in (7)
to see that

|Mn(t)| =
∣∣∣∣∫ t∧τn

0
ϕ(s)′dW (s)

∣∣∣∣ ≤ n a.s.

for any t and n, and that in particular Mn is, for each n, a square integrable
martingale. Moreover, (10) implies [11, p. 140,147] that Mn satisfies

Mn(t) =
∫ t

0
I{s≤τn}ϕ(s)′dW (s), 0 ≤ t ≤ T a.s. (11)

We may now, since each Mn is a square integrable martingale, use the current
constructive martingale representation theorem of Functional Itô Calculus
(cf. (4)) on Mn, which together with (11) implies that

Mn(t) =
∫ t

0
∇WMn(s)′dW (s) =

∫ t

0
I{τn≤s}ϕ(s)′dW (s), 0 ≤ t ≤ T a.s.

(12)
where ∇WMn is the vertical derivative of Mn with respect to W (defined in
(3)) and where we also used the continuity of the Itô integrals. The equality
of the two Itô integrals in (12) implies [11, p. 182] that

∇WMn(t) = I{t≤τn}ϕ(t) dt× dP-a.e. (13)

The local martingale property of M implies that limn→∞ θn =∞ a.s. Using
this and the definition of τn in (7) we conclude that for almost every ω ∈ Ω
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and each t ∈ [0, T ] there exists an N(ω, t) such that

n ≥ N(ω, t)⇒ sup
0≤s≤t

|M(ω, s)| ≤ n and t ≤ θn(ω)⇒ t ≤ τn(ω)⇒ t ∧ τn = t.

(14)
Hence, it follows from (13) and (14) that there exists an N(ω, t) such that

n ≥ N(ω, t)⇒ ∇WMn(ω, t) = ϕ(ω, t) dt× dP-a.e.

which means that (9) holds.

Clearly, if M is a RCLL local martingale then M −M(0) ∈ Mloc(W ),
which implies that ∇W (M −M(0)) is defined in Theorem 2.2. Let us use
this observation to extend the definition of the vertical derivative to RCLL
local martingales not necessarily starting at zero.

Definition 2.4. The vertical derivative of a local martingale M relative to
(P,F) with RCLL sample paths is defined as the progressively measurable
dt× dP-a.e. unique process ∇WM satisfying

∇WM(t) = ∇W (M −M(0))(t), 0 ≤ t ≤ T, (15)

with ∇W (M −M(0)) defined in Theorem 2.2.

The following result is an immediate consequence of Theorem 2.2 and
Definition 2.4.

Theorem 2.5 (Main result). If M is a local martingale relative to (P,F)
with RCLL sample paths, then∫ T

0
|∇WM(t)|2dt <∞, M(t) = M(0)+

∫ t

0
∇WM(s)′dW (s), 0 ≤ t ≤ T, a.s.

Relationship with the Malliavin calculus approach to constructive
martingale representation
The following is a general version of the constructive martingale representa-
tion theorem of Malliavin calculus, known as the Clark-Haussmann-Ocone
formula [10, 12]: For every FT -measurable and once Malliavin differentiable
random variable F ∈ D1,1,

F = E[F ] +
∫ T

0
EFt [(DtF )′]dW (t) a.s.

The integrand EFt [(DtF )′], 0 ≤ t ≤ T is the predictable projection of the
Malliavin derivative of F . For a short description of the spaces Dp,k see [10].

7



Furthermore, the integrand process ϕ of the standard martingale represen-
tation of the martingale EFt [F ], 0 ≤ t ≤ T satisfies [10, p. 5]

ϕ(t) = EFt [DtF ] dt× dP-a.e. (16)

Theorem 2.5 and (16) (see also (6), (9) and (15)) imply the following rela-
tionship between the vertical derivative and the Malliavin derivative.

Corollary 2.6. If M is a martingale relative to (P,F) with RCLL sample
paths and M(T ) ∈ D1,1, then

∇WM(t) = ∇WEFt [M(T )] = EFt [DtM(T )], dt× dP-a.e.

Remark 2.7. A similar result was established for D2,1 ⊂ D1,1 in [2, 6]
(where D2,1 is denoted by D1,2).

Remark 2.8. Let us comment on some of the results of Functional Itô Calcu-
lus related to the present paper. The constructive martingale representation
result that we present in (4) is originally presented in a setting where our
Wiener process W is replaced by a Brownian martingale, see [2, ch. 7.2].
A constructive representation of ”smooth local martingales” is available in
[2, p. 167]; smooth local martingales are local martingales satisfying certain
restrictive regularity conditions, including a localized version of the represen-
tation in (1). The vertical derivative can be extended to square integrable
semimartingales [2, ch. 7.5].
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