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Abstract

In this paper we consider the asymptotic distributions of functionals of the sam-

ple covariance matrix and the sample mean vector obtained under the assumption

that the matrix of observations has a matrix variate general skew normal distribu-

tion. The central limit theorem is derived for the product of the sample covariance

matrix and the sample mean vector. Moreover, we consider the product of an in-

verse covariance matrix and the mean vector for which the central limit theorem is

established as well. All results are obtained under the large dimensional asymptotic

regime where the dimension p and sample size n approach to infinity such that

p/n→ c ∈ (0, 1).
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1 Introduction

The functions of the sample covariance matrix and the sample mean vector appear in

various statistical applications. The classical improvement techniques for the mean es-

timation have already been discussed by Stein (1956) and Jorion (1986). In particular,

Efron (2006) constructed confidence regions of smaller volume than the standard spheres

for the mean vector of a multivariate normal distribution. Fan et al. (2008), Bai and

Shi (2011), Bodnar and Gupta (2011), Cai and Zhou (2012), Cai and Yuan (2012), Fan

et al. (2013), Bodnar et al. (2014a), Bodnar et al. (2016a), Wang et al. (2015) among oth-

ers suggested improved techniques for the estimation of covariance matrix and precision

matrix (the inverse of covariance matrix).

In our work we introduce the family of matrix variate general skew normal (MVGSN)

distributions which is a generalization of the models considered by Azzalini and Dalla-

Valle (1996), Azzalini and Capitanio (1999), Azzalini (2005), Liseo and Loperfido (2003,

2006), Bartoletti and Loperfido (2010), Loperfido (2010), Christiansen and Loperfido

(2014), Adcock et al. (2015), De Luca and Loperfido (2015) and among others. Under

the assumption of MVGSN we consider the expressions for the sample mean vector x

and the sample covariance matrix S. In particulary, we deal with two products lTSx

and lTS−1x where l is a non-zero vector of constants. It is noted that this kind of

expressions has not been intensively considered in the literature, although they are present

in numerous important applications. The first application of the products arises in the

portfolio theory, where the vector of optimal portfolio weights is proportional to S−1x. The

second application is in the discriminant analysis where the coefficients of the discriminant

function are expressed as a product of the inverse sample covariance matrix and the

difference of the sample mean vectors. In Bayesian context it is highly related to the

product Sx.

Bodnar and Okhrin (2011) derived the exact distribution of the product of the inverse

sample covariance matrix and the sample mean vector under the assumption of normal-

ity, while Kotsiuba and Mazur (2015) obtained its asymptotic distribution as well as its

approximate density based on the Gaussian integral and the third order Taylor series

expansion. Moreover, Bodnar et al. (2013, 2014b) analyzed the product of the sample

(singular) covariance matrix and the sample mean vector. In the present paper, we con-

tribute to the existing literature by deriving the central limit theorems (CLTs) under the

introduced class of matrix variate distribution, i.e., general matrix variate skew normality

in the case of the high-dimensional observation matrix. Under the considered family of

distributions, the columns of the observation matrix are not independent anymore and,

thus, the CLTs cover more general class of random matrices.

Nowadays, modern scientific data include large number of sample points which is often
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comparable to the number of features (dimension) and so the sample covariance matrix

and the sample mean vector are not the efficient estimators anymore. For example,

stock markets include a large number of companies which is often close to the number

of available time points. In order to understand better the statistical properties of the

traditional estimators and tests based on high-dimensional settings, it is of interest to

study the asymptotic distribution of the above mentioned bilinear forms involving the

sample covariance matrix and the sample mean vector.

The appropriate central limit theorems, which do not suffer from the “curse of dimen-

sionality” and do not reduce the number of dimensions, are of great interest for high-

dimensional statistics because more efficient estimators and tests may be constructed

and applied in practice. The classical multivariate procedures are based on the central

limit theorems assuming that the dimension p is fixed and the sample size n increases.

However, numerous authors provide quite reasonable proofs that this assumption does

not lead to precise distributional approximations for commonly used statistics, and that

under increasing dimension asymptotics the better approximations can be obtained [see,

e.g., Bai and Silverstein (2004) and references therein]. Technically speaking, under the

high-dimensional asymptotics we understand the case when the sample size n and the

dimension p tend to infinity, such that their ratio p/n converges to some positive constant

c (here we assume that c < 1). Under this condition the well-known Marchenko-Pastur

and Silverstein’s equations were derived [see, Marčenko and Pastur (1967), Silverstein

(1995)].

The rest of the paper is structured as follows. In Section 2 we introduce a semi-

parametric matrix-variate family of skewed distributions. Main results are given in Section

3, where we derive the central limit theorems under high-dimensional asymptotic regime

of the sample (inverse) covariance matrix and the sample mean vector under the MVGSN

distribution. Section 4 presents a short numerical study in order to verify the obtained

analytic results.

2 Semi-parametric matrix-variate family of skewed

distributions

In this section we introduce a family of matrix-variate skewed distributions which gener-

alizes the skew normal distribution.
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Let

X =


x11 . . . x1n
...

. . .
...

xp1 . . . xpn

 = (x1, ...,xn) ,

be the p× n observation matrix where xj is the jth observation vector. In the following,

we assume that the random matrix X possesses a stochastic representation given by

X
d
= Y + Bν1Tn , (1)

where Y ∼ Np,n(µ1Tn ,Σ⊗ In) (p×n-dimensional matrix-variate normal distribution with

mean matrix µ1Tn and covariance matrix Σ⊗In), ν is a q-dimensional random vector with

continuous density function fν(·), B is a p×q matrix of constants. Further, it is assumed

that Y and ν are independently distributed. If random matrix X follows model (1) then

we say that X is generalized matrix-variate skew-normal distributed with parameters

µ, Σ, B, and fν(·). The first three parameters are finite dimensional, while the third

parameter is infinite dimensional. This makes model (1) to be of a semi-parametric type.

The assertion we denote by X ∼ SN p,n;q(µ,Σ,B; fν). If fν can be parametrized by

finite dimensional parameter θ then model (1) reduces to a parametrical model which is

denoted by X ∼ SN p,n;q(µ,Σ,B;θ). If n = 1 then we use the notation SN p;q(·, ·, ·; ·)
instead of SN p,1;q(·, ·, ·; ·).

From (1) the density function of X is expressed as

fX(Z) =
∫
Rq
fNp,n(µ,Σ⊗In)(Z−Bν∗1Tn |ν = ν∗)fν(ν∗)dν∗. (2)

Let C = Φq(0;−ξ,Ω). In a special case when ν = |ψ| is the vector formed by the absolute

values of every element in ψ where ψ ∼ Nq(ξ,Ω), i.e. ν has a q-variate truncated normal

distribution, we get

Proposition 1. Assume model (1). Let ν = |ψ| with ψ ∼ Nq(ξ,Ω). Then the density

function of X is given by

fX(Z) = C̃−1Φq

(
0;−D[Evec(Z− µ1Tn ) + Ω−1ξ],D

)
φpn

(
vec(Z− µ1Tn ); FETDΩ−1ξ,F

)
(3)

where D = (nBTΣ−1B + Ω−1)−1, E = 1Tn ⊗BTΣ−1, F = (In ⊗Σ−1 − ETDE)−1, and

C̃−1 = C−1
|F|1/2|D|1/2

|Ω|1/2|Σ|n/2
exp

{
−1

2

[
ξTΩ−1(−D + Ω−DEFETD)Ω−1ξ

]}
.

The proof of Proposition 1 is presented in the Appendix.
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It is remarkable that model (1) includes several skew-normal distributions considered

by Azzalini and Dalla-Valle (1996), Azzalini and Capitanio (1999), Azzalini (2005). For

example, in case of n = 1, q = 1, µ = 0, B = ∆1p, and Σ = (Ip −∆2)1/2Ψ(Ip −∆2)1/2

we get

X
d
= (Ip −∆2)1/2v0 + ∆1p|v1|, (4)

where v0 ∼ Np(0,Ψ) and v1 ∼ N (0, 1) are independently distributed; Ψ is a correlation

matrix and ∆ = diag(δ1, ..., δp) with δj ∈ (−1, 1). Model (4) was previously introduced

by Azzalini (2005).

3 CLTs for expressions involving the sample covari-

ance matrix and the sample mean vector

The sample estimators for the mean vector and the covariance matrix are given by

x =
1

n

n∑
i=1

xi =
1

n
X1n and S =

1

n− 1

n∑
i=1

(xi − x)(xi − x)T = XVXT ,

where V = In − 1
n
1n1

T
n is a symmetric idempotent matrix, i.e., V = VT and V2 = V.

The following theorem shows that x and S are independently distributed and presents

their marginal distributions under model (1). The results of Theorem 1 show that the

independence of x and S could not be used as a characterization property of a multivariate

normal distribution if the observation vectors in data matrix are dependent.

Theorem 1. Let X ∼ SN p,n;q(µ,Σ,B; fν) with p < n− 1. Then

(a) (n− 1)S ∼ Wp(n− 1,Σ) (p-dimensional Wishart distribution with (n− 1) degrees of

freedom and covariance matrix Σ),

(b) x ∼ SN p;q

(
µ, 1

n
Σ,B; fν

)
,

(c) S and x are independently distributed.

Proof. Let X∗
d
= X|ν = ν∗, x∗

d
= x|ν = ν∗, and S∗

d
= S|ν = ν∗. Because Y and ν are

independent we get that

X∗
d
= X|ν = ν∗ ∼ Np,n((µ+ Bν∗)1Tn ,Σ⊗ In).
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From Theorem 3.1.2 of Muirhead (1982) we obtain that

x∗ ∼ Np
(
µ+ Bν∗,

1

n
Σ
)
,

S∗ ∼ Wp(n− 1,Σ),

and S∗ and x∗ are independent. Hence, it follows that

fx,S(x̃, S̃) =
∫
Rq
+

fS|ν=ν∗(S̃)fx|ν=ν∗(x̃)fν(ν∗)dν∗

= fS(S̃)
∫
Rq
+

fx|ν=ν∗(x̃)fν(ν∗)dν∗, (5)

where the last equality follows from the fact that the density of S∗ does not depend on

ν∗.

From (5) we directly get that x and S are independent; S is Wishart distributed

with (n − 1) degrees of freedom and covariance matrix Σ; x is generalized skew-normal

distributed with parameters µ, 1
n
Σ, B and fν . The theorem is proved.

For the validity of the asymptotic results presented in Sections 3.1 and 3.2 we need

the following two conditions

(A1) Let (λi,ui) denote the set of eigenvalues and eigenvectors of Σ. We assume that

there exist m1 and M1 such that

0 < m1 ≤ λ1 ≤ λ2 ≤ ... ≤ λp ≤M1 <∞

uniformly on p.

(A2) There exists M2 such that

|uTi µ| ≤M2 and |uTi bj| ≤M2 for all i = 1, ..., p and j = 1, ..., q

uniformly on p where bj, j = 1, ..., q, are the columns of B.

In more general terms, we say that an arbitrary p-dimensional vector l satisfies the con-

dition (A2) if |uTi l| ≤M2 for all i = 1, . . . , p.

Assumption (A1) is a classical condition in random matrix theory (see, Bai and Sil-

verstein (2004)), which bounds the spectrum of Σ from below as well as from above.

Assumption (A2) is a technical one. In combination with (A1) this condition ensures

that p−1µTΣµ, p−1µTΣ−1µ, p−1µTΣ3µ, p−1µTΣ−3µ, as well as that all the diagonal

elements of BTΣB, BTΣ3B, and BTΣ−1B are uniformly bounded. All these quadratic

forms are used in the statements and the proofs of our results. Note that the constants
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appearing in the inequalities will be denoted by M2 and may vary from one expression to

another.

3.1 CLT for the product of sample covariance matrix and sample

mean vector

In this section we present the central limit theorem for the product of the sample covari-

ance matrix and the sample mean vector.

Theorem 2. Assume X ∼ SN p,n;q(µ,Σ,B; fν), p < n− 1, with Σ positive definite and

let p/n = c+ o(n−1/2), c ∈ [0, 1) as n→∞. Let l be a p-dimensional vector of constants

that satisfies condition (A2). Then, under (A1) and (A2) it holds that

√
nσ−1ν

(
lTSx− lTΣµν

) D−→ N (0, 1) for p/n→ c ∈ [0, 1) as n→∞ , (6)

where
µν = µ+ Bν, (7)

σ2
ν =

[
µTνΣµν + c||Σ||2F

]
lTΣl + (lTΣµν)2 . (8)

Proof. Since S and x are independently distributed, the conditional distribution lTSx|(x =

x∗) equals to the distribution of lTSx∗. Let L∗ = (l,x∗)T and define S̃ = L∗SL∗T =

{S̃ij}i,j=1,2 with S̃11 = lTSl, S̃12 = lTSx∗, S̃21 = x∗TSl, and S̃22 = x∗TSx∗. Similarly,

let Σ̃ = L∗ΣL∗T = {Σ̃ij}i,j=1,2 with Σ̃11 = lTΣl, Σ̃12 = lTΣx∗, Σ̃21 = x∗TΣl, and

Σ̃22 = x∗TΣx∗.

Using S ∼ Wp

(
n− 1,

1

n− 1
Σ
)

and rank L∗ = 2 ≤ p we get from Theorem 3.2.5 of

Muirhead (1982) that S̃ ∼ W2

(
n− 1,

1

n− 1
Σ
)

. As a result, applying Theorem 3.2.10 of

Muirhead (1982) we obtain

S̃12|S̃22,x = x∗ ∼ Nk
(

Σ̃12Σ̃
−1
22 S̃22,

1

n− 1
Σ̃11·2S̃22

)
,

where Σ̃11·2 = Σ̃11 − Σ̃2
12/Σ̃22 is the Schur complement.

Let ξ = (n− 1)S̃22/Σ̃22, then

lTSx|ξ,x ∼ N
(

ξ

n− 1
lTΣx,

ξ

(n− 1)2
[xTΣxlTΣl− (xTΣl)2]

)
.

From Theorem 3.2.8 of Muirhead (1982) follows that ξ and x are independently dis-

7



tributed and ξ ∼ χ2
n−1. Hence, the stochastic representation of lTSx is given by

lTSx
d
=

ξ

n− 1
lTΣx +

√
ξ

n− 1
(xTΣxlTΣl− (lTΣx)2)1/2

z0√
n− 1

, (9)

where ξ ∼ χ2
n, z0 ∼ N (0, 1), x ∼ SN p;q

(
µ, 1

n
Σ,B; fν

)
; ξ, z0 and x are mutually inde-

pendent.

From the properties of χ2-distribution we immediately receive

√
n

(
ξ

n
− 1

)
D−→ N (0, 2) as n→∞ . (10)

We further get that
√
n(z0/

√
n) ∼ N (0, 1) for all n and, consequently, it is also its

asymptotic distribution.

Next, we show that lTΣx and xTΣx are jointly asymptotically normally distributed

given ν = ν∗. For any a1 and a2, we consider

a1x
TΣx + 2a2l

TΣx = a1

(
x +

a2
a1

l
)T

Σ
(
x +

a2
a1

l
)
− a22
a1

lTΣl = a1x̃
TΣx̃− a22

a1
lTΣl ,

where x̃|ν = ν∗ ∼ Np
(
µa,ν∗ , 1

n
Σ
)

with µa,ν∗ = µ+ Bν∗ +
a2
a1

l. By Provost and Rudiuk

(1996) the random variable x̃TΣx̃ can be expressed as

x̃TΣx̃
d
=

1

n

p∑
i=1

λ2i ξi ,

where

ξi
i.i.d.∼ χ2

1(δ
2
i ) with δi =

√
nλ
−1/2
i uTi µa,ν∗ .

The symbol χ2
d(δ

2
i ) denotes the chi-squared distribution with d degrees of freedom and

non-centrality parameter δ2i .

Now, we use the Lindeberg CLT to the i.i.d. random variables Vi = λ2i ξi/n. For that

reason, we need first to verify the Lindeberg’s condition. Denoting σ2
n = V(

∑p
i=1 Vi) we

get

σ2
n =

p∑
i=1

V

[
λ2i
n
ξi

]
=

p∑
i=1

λ4i
n2

2(1 + 2δ2i ) =
1

n2

(
2tr(Σ4) + 4nµ′a,ν∗Σ3µa,ν∗

)
(11)

We need to check if for any small ε > 0 it holds that

lim
n→∞

1

σ2
n

p∑
i=1

E

[
(Vi −E(Vi))

2
1{|Vi−E(Vi)|>εσn}

]
−→ 0 .
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First, we get

p∑
i=1

E

[
(Vi −E(Vi))

2
1{|Vi−E(Vi)|>εσn}

] Cauchy−Schwarz
≤

p∑
i=1

E
1/2
[
(Vi −E(Vi))

4
]
P

1/2{|Vi −E(Vi)| > εσn}

Chebyshev
≤

p∑
i=1

λ4i
n2

√
12(1 + 2δ2i )

2 + 48(1 + 4δ2i )
σi
εσn

with σi = V(Vi) and, thus,

1

σ2
n

p∑
i=1

E

[
(Vi −E(Vi))

2
1{|Vi−E(Vi)|>εσn}

]
≤ 1

ε

∑p
i=1 λ

4
i

√
12(1 + 2δ2i )

2 + 48(1 + 4δ2i )
σi
σn

2tr(Σ4) + 4nµTa,νΣ3µa,ν

=

√
3

ε

∑p
i=1 λ

4
i

√
(5 + 2δ2i )

2 − 20 σi
σn

tr(Σ4) + 2nµTa,ν∗Σ3µa,ν∗

≤
√

3

ε

∑p
i=1 λ

4
i (5 + 2δ2i )

σi
σn

tr(Σ4) + 2nµTa,ν∗Σ3µa,ν∗

=

√
3

ε

5tr(Σ4) + 2nµTa,ν∗Σ3µa,ν∗

tr(Σ4) + 2nµTa,ν∗Σ3µa,ν∗

σmax
σn

≤
√

3

ε

(
4

1 + 2nµTa,ν∗Σ3µa,ν∗/tr(Σ4)
+ 1

)
σmax
σn

≤ 5
√

3

ε

σmax
σn

.

Finally, Assumptions (A1) and (A2) yield

σ2
max

σ2
n

=
supi σ

2
i

σ2
n

=
supi λ

4
i (1 + 2δ2i )

tr(Σ4) + 2nµTa,ν∗Σ3µa,ν∗
=

supi λ
4
i + 2nλ3i (u

T
i µa,ν∗)2

tr(Σ4) + 2nµTa,ν∗Σ3µa,ν∗
−→ 0 , (12)

which verifies the Lindeberg condition since

(uTi µa,ν∗)2 =
(
uTi µ+ uTi Bν∗ + uTi l

a2
a1

)2

= (u′iµ)2 +
(
uTi l

a2
a1

)2

+ (uTi Bν∗)2 + 2uTi µ · uTi Bν∗ + 2
a2
a1

uTi l(uTi µ+ uTi Bν∗)

(A2)

≤ M2
2 + qM2

2ν
∗ ′ν∗ +M2

2

a22
a21

+ 2M2
2

√
qν∗ ′ν∗ + 2M2

2

a2
a1

(1 +
√
qν∗Tν∗)

= M2
2

(
1 +

√
qν∗ ′ν∗ +

a2
a1

)2

<∞. (13)

Thus, using (11) and

p∑
i=1

E(Vi) =
p∑
i=1

λ2i
n

(1 + δ2i ) = tr(Σ2)/n+ µTa,ν∗Σµa,ν∗ (14)
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we get the following CLT

√
n

x̃TΣx̃− tr(Σ2)/n− µTa,ν∗Σµa,ν∗√
tr(Σ4)/n+ 2µ′a,ν∗Σ3µa,ν∗

d−→ N (0, 2)

and for a1x
TΣx + 2a2l

TΣx we have

√
n
a1x

TΣx + 2a2l
TΣx− a1

(
tr(Σ2)/n+ µTa,ν∗Σµa,ν∗

)
+
a22
a1

lTΣl√
a21
(
tr(Σ4)/n+ 2µ′a,ν∗Σ3µa,ν∗

) d−→ N (0, 2) .

Denoting a = (a1, 2a2)
T and µν∗ = µ+ Bν∗ we can rewrite it as

√
n

[
aT

(
xTΣx

lTΣx

)
− aT

(
µTν∗Σµν∗ + c tr(Σ

2
)

p

lTΣµν∗

)]
d−→ N

(
0,aT

(
2c tr(Σ

4
)

p + 4µTν∗Σ3µν∗ 2lTΣ3µν∗

2lTΣ3µν∗ lTΣ3l

)
a

)
(15)

which implies that the vector
√
n
(
xTΣx− µTν∗Σµν∗ − c tr(Σ

2
)

p
, lTΣx− lTΣµν∗

)T
has

asymptotically multivariate normal distribution because the vector a is arbitrary.
Taking into account (15), (10) and the fact that ξ, z0 and x are mutually independent

we get the following CLT

√
n




ξ
n

xTΣx

lTΣx
z0√
n

−


1

µTν∗Σµν∗ + c tr(Σ
2
)

p

lTΣµν∗

0


 d−→ N

0,


2 0 0 0

0 2c tr(Σ
4
)

p + 4µTν∗Σ3µν∗ 2lTΣ3µν∗ 0

0 2lTΣ3µν∗ lTΣ3l 0

0 0 0 1


 .

The application of the multivariate delta method leads to

√
nσ−1ν∗

(
lTSx− lTΣµν∗

)
d−→ N (0, 1) (16)

where

σ2
ν∗ = (lTΣµν∗)2 + lTΣl

[
µTν∗Σµν∗ + c

tr(Σ2)

p

]

The asymptotic distribution does not depend on ν∗ and, thus, it is also the unconditional

asymptotic distribution.

Theorem 2 shows that properly normalized bilinear form lTSx itself can be accurately

approximated by a mixture of normal distributions with both mean and variance depend-

ing on ν. Moreover, this central limit theorem delivers the following approximation for
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the distribution of lTSx, namely for large n and p we have

p−1lTSx ≈ CN
(
p−1lTΣµν ,

p−2σ2
ν

n

)
, (17)

i.e., it has compound normal distribution with random mean and variance. The usual

asymptotic normality can be recovered as a special case of our result, i.e., taking ν as a

deterministic vector (e.g., zero).

The proof of Theorem 2 shows, in particular, that its key point is a stochastic rep-

resentation of the product lTSx which can be presented using a χ2 distributed random

variable, a standard normally distributed random variable, and the random vector which

follows the generalized skew normal distribution. Assumption (A1) ensures that the spec-

trum of matrix Σ is uniformly bounded away from zero, i.e., maximum eigenvalue is

bounded from above and minimum eigenvalue from below by positive constants. The

second assumption (A2) is a technical one, it stands, in particular, for boundedness of

normalized Frobenius norm of the population covariance matrix. Both (A1) and (A2)

guarantee that the asymptotic mean p−1lTΣµν and variance p−2σ2
ν stay bounded and

the covariance matrix Σ is invertible as the dimension p increases. Note that the case of

standard asymptotics can be easily recovered from our result if we set c→ 0.

3.2 CLT for the product of inverse sample covariance matrix

and sample mean vector

In this section we consider the distributional properties of the product of the inverse

sample covariance matrix S−1 and the sample mean vector x. Again we prove that proper

weighted bilinear forms involving S−1 and x have asymptotically a normal distribution.

This result is summarized in Theorem 3.

Theorem 3. Assume X ∼ SN p,n;q(µ,Σ,B; fν), p < n− 1, with Σ positive definite and

let p/n = c+ o(n−1/2), c ∈ [0, 1) as n→∞. Let l be a p-dimensional vector of constants

such that p−1lTΣ−1l ≤M2 <∞. Then, under (A1) and (A2) it holds that

√
nσ̃−1ν

(
lTS−1x− 1

1− c
lTΣ−1µν

)
D−→ N (0, 1) (18)

where µν = µ+ Bν and

σ̃2
ν =

1

(1− c)3
((

lTΣ−1µν
)2

+ lTΣ−1l(1 + µTνΣ−1µν)
)
.

Proof. From the properties of the Wishart distribution (see Muirhead (1982)) and Theo-

11



rem 1 it holds that

S−1 ∼ IWp

(
n+ p, (n− 1)Σ−1

)
.

Since S−1 and x are independently distributed we get that the conditional distribution

of lTS−1x|x = x∗ equals to the distribution of lTS−1x∗ with

lTS−1x∗ = (n− 1)x∗TΣ−1x∗
lTS−1x∗

x∗TS−1x∗
x∗TS−1x∗

(n− 1)x∗TΣ−1x∗
.

Using Theorem 3.2.12 of Muirhead (1982) we get that

(n− 1)
x∗TΣ−1x∗

x∗TS−1x∗
∼ χ2

n−p

and it is independent of x∗. Hence,

ξ̃ = (n− 1)
xTΣ−1x

xTS−1x
∼ χ2

n−p (19)

and it is independent of x.

Applying Theorem 3 of Bodnar and Okhrin (2008) it follows that x∗TS−1x∗ is inde-

pendent of lTS−1x∗/x∗TS−1x∗ for given x∗. Moreover, as a result, it is also independent

of x∗TΣ−1x∗ · lTS−1x∗/x∗TS−1x∗ and, respectively, of xTΣ−1x · lTS−1x/xTS−1x.

From the proof of Theorem 1 of Bodnar and Schmid (2008) we obtain

(n− 1)x∗TΣ−1x∗
lTS−1x∗

x∗TS−1x∗
∼ t

(
n− p+ 1; (n− 1)lTΣ−1x∗; (n− 1)2

x∗TΣ−1x∗

n− p+ 1
lTRx∗l

)
,(20)

where Ra = Σ−1 − Σ−1aaTΣ−1/aTΣ−1a, a ∈ IRp, and the symbol t(k, µ, σ2) denotes t

distribution with k degrees of freedom, mean µ and variance σ2.

Combining (19) and (20), we get that the stochastic representation of lTS−1x∗ is given

by

lTS−1x∗
d
= ξ̃−1(n− 1)

lTΣ−1x∗ + t0

√√√√x∗TΣ−1x∗

n− p+ 1
· lTRx∗l


= ξ̃−1(n− 1)

(
lTΣ−1x∗ +

t0√
n− p+ 1

√
lTΣ−1l

√
x∗TRlx∗

)
,

where x∗ ∼ Np
(
µ+ Bν∗, 1

n
Σ
)
, ξ̃ ∼ χ2

n−p, and t0 ∼ t(n − p + 1, 0, 1); ξ̃, x∗ and t0 are

mutually independent.

Since RlΣRl = Rl, tr(RlΣ) = p− 1, and RlΣΣ−1l = 0, the application of Corollary

12



5.1.3a and Theorem 5.5.1 in Mathai and Provost (1992) leads to

lTΣ−1x∗ ∼ N
(
lTΣ−1(µ+ Bν∗),

1

n
lTΣ−1l

)

and

x∗TRlx
∗ ∼ χ2

p−1(nδ
2(ν∗)) with δ2(ν∗) = (µ+ Bν∗)TRl(µ+ Bν∗)

as well as lTΣ−1x∗ and x∗TRlx
∗ are independent. Finally, using the stochastic represen-

tation of a t-distributed random variable, we get

lTS−1x∗
d
= ξ̃−1(n− 1)

(
lTΣ−1(µ+ Bν∗) +

√
lTΣ−1l

√
1 +

p− 1

n− p+ 1
η∗

z0√
n

)
, (21)

where ξ̃ ∼ χ2
n−p, z0 ∼ N (0, 1), and η∗ ∼ Fp−1,n−p+1(nδ

2(ν∗)) (non-central F -distribution

with p− 1 and n− p+ 1 degrees of freedom and non-centrality parameter nδ2(ν∗)); ξ̃, z0

and η∗ are mutually independent.

From Lemma 6.4.(b) in Bodnar et al. (2016b) we get

√
n



ξ̃/(n− p)

η∗

z0/
√
n

−


1

1 + δ2(ν∗)/c

0


 D−→ N

0,


2/(1− c) 0 0

0 σ2
η 0

0 0 1




for p/n = c+ o(n−1/2), c ∈ (0, 1) as n→∞ with

σ2
η =

2

c

(
1 + 2

δ2(ν∗)

c

)
+

2

1− c

(
1 +

δ2(ν∗)

c

)2

Consequently,

√
n




ξ̃/(n− 1)

(p− 1)η∗/(n− p+ 1)

z0/
√
n

−


(1− c)
(c+ δ2(ν∗))/(1− c)

0




D−→ N

0,


2(1− c) 0 0

0 c2σ2
η/(1− c)2 0

0 0 1




for p/n = c+ o(n−1/2), c ∈ (0, 1) as n→∞.

Finally, the application of the delta-method (c.f. DasGupta (2008, Theorem 3.7))

leads to
√
n
(
lTS−1x∗ − 1

1− c
lTΣ−1(µ+ Bν∗)

)
D−→ N (0, σ̃2

ν∗)

13



for p/n = c+ o(n−1/2), c ∈ (0, 1) as n→∞ with

σ̃2
ν∗ =

1

(1− c)3
(

2
(
lTΣ−1(µ+ Bν∗)

)2
+ lTΣ−1l(1 + δ2(ν∗))

)
.

Consequently,

√
nσ̃−1ν∗

(
lTS−1x∗ − 1

1− c
lTΣ−1(µ+ Bν∗)

)
D−→ N (0, 1) ,

where the asymptotic distribution does not depend on ν∗. Hence, it is also the uncondi-

tional asymptotic distribution.

Again, Theorem 3 shows that the distribution of lTS−1x can be approximated by a

mixture of normal distributions. Indeed,

p−1lTS−1x ≈ CN
(
p−1

1− c
lTΣ−1µν ,

p−2σ̃2
ν

n

)
. (22)

In the proof of Theorem 3 we can read out that the stochastic representation for the

product of the inverse sample covariance matrix and the sample mean vector is presented

by using a χ2 distributed random variable, a general skew normally distributed random

vector and a standard t-distributed random variable. This result is itself very useful and

allows to generate the values of lTS−1x by just generating three random variables from

the standard univariate distributions and a random vector ν which determines the family

of the skew normal matrix variate distribution. The assumptions about the boundedness

of the quadratic and bilinear forms involving Σ−1 plays here the same role as in Theorem

2. Note that in this case we need no assumption either on the Frobenius norm of the

covariance matrix or its inverse.

4 Numerical study

In this section we provide a Monte Carlo simulation study to investigate the performance

of the suggested CLTs for the products of the sample (inverse) covariance matrix and the

sample mean vector.

In our simulations we put l = 1p, each element of the vector µ is uniformly distributed

on [−1, 1] while each element of the matrix B is uniformly distributed on [0, 1]. Also,

we take Σ as a diagonal matrix where each diagonal element is uniformly distributed

on [0, 1]. It can be checked that in such a setting the assumptions (A1) and (A2) are

satisfied. Indeed, the population covariance matrix satisfies the condition (A1) because

the probability of getting exactly zero eigenvalue equals to zero. On the other hand,

14



the condition (A2) is obviously valid too because the ith eigenvector of Σ is ui = ei =

(0, . . . , 1
ith place

, 0, . . . , 0)′.

In order to define the distribution for the random vector ν, we consider two special

cases. In the first case we take ν = |ψ|, where ψ ∼ Nq(0, Iq), i.e. ν has a q-variate

truncated normal distribution. In the second case we put ν ∼ GALq(Iq,1q, 10), i.e. ν has

a q-variate generalized asymmetric Laplace distribution (c.f., Kozubowski et al. (2013)).

Also, we put q = 10.

We compare the results for several values of c ∈ {0.1, 0.5, 0.8, 0.95}. The simulated

data consists of N = 104 independent realizations which are used to fit the corresponding

kernel density estimators with Gaussian density. The bandwith parameters are deter-

mined via cross-validation for every sample. The asymptotic distributions are simulated

using the results of Theorems 2 and 3. The corresponding algorithm is given next:

a) generate ν = |ψ|, where ψ ∼ Nq(0q, Iq), or generate ν ∼ GALq(Iq,1q, 10);

b) generate lTSx by using the stochastic representation (9) obtained in the proof of

Theorem 2, namely

lTSx
d
=

ξ

n− 1
lTΣ(y + Bν) +

√
ξ

n− 1
((y + Bν)TΣ(y + Bν)lTΣl− (lTΣ(y + Bν))2)1/2z0,

where ξ ∼ χ2
n, z0 ∼ N (0, 1), y ∼ Np(µ, 1

n
Σ); ξ, z0, y, and ν are mutually indepen-

dent

b’) generate lTS−1x by using the stochastic representation (21) obtained in the proof

of Theorem 3, namely

lTS−1x
d
= ξ̃−1(n− 1)

(
lTΣ−1(µ+ Bν) +

√
lTΣ−1l

√
1 +

p− 1

n− p+ 1
η
z0√
n

)
,

where ξ̃ ∼ χ2
n−p, z0 ∼ N (0, 1), and η ∼ Fp−1,n−p+1(nδ

2(ν)) with δ2(ν) = (µ +

Bν)TRl(µ + Bν), Rl = Σ−1 − Σ−1llTΣ−1/lTΣ−1l; ξ̃, z0 and (η,ν) are mutually

independent.

c) compute
√
nσ−1ν

(
lTSx− lTΣµν

)
and

√
nσ̃−1ν

(
lTS−1x− 1

1− c
lTΣ−1µν

)

15



where

µν = µ+ Bν

σ2
ν =

[
µTνΣµν + c||Σ||2F

]
lTΣl + (lTΣµν)2

σ̃2
ν =

1

(1− c)3
(

2
(
lTΣ−1µν

)2
+ lTΣ−1l(1 + δ2(ν))

)

with δ2(ν) = µTνRlµν , Rl = Σ−1 −Σ−1llTΣ−1/lTΣ−1l.

d) repeat a)-c) N times.

It is remarkable that for generating lTSx and lTS−1x only random variables from the

standard distributions are need. Neither the data matrix X nor the sample covariance

matrix S are used.

[ Figures 1− 8 ]

In Figures 1-4 we present the results of simulations for the asymptotic distribution

that is given in Theorem 2 while the asymptotic distribution as given in Theorem 3 is

presented in Figures 5-8 for different values of c = {0.1, 0.5, 0.8, 0.95}. The suggested

asymptotic distributions are shown as a a dashed black line, while the standard normal

distribution is a solid black line. All results demonstrate a good performance of both

asymptotic distributions for all considered values of c. Even in the extreme case c = 0.95

our asymptotic results seem to produce a quite reasonable approximation. Moreover, we

observe a good robustness of our theoretical results for different distributions of ν. Also,

we observe that all asymptotic distributions are slightly skewed to the right for the finite

dimensions. This effect is even more significant in the case of the generalized asymmetric

Laplace distribution. Nevertheless, the skewness disappears with growing dimension and

sample size, i.e., the distribution becomes symmetric one and converges to its asymptotic

counterpart.

5 Summary

In this paper we introduce the family of the matrix-variate generalized skew normal

(MVGSN) distribution that generalizes a large number of the existing skew normal mod-

els. Under the MVGSN distribution we derive the distributions of the sample mean vector

and the sample covariance matrix. Moreover, we show that they are independently dis-

tributed. Furthermore, we derive the CLTs under high-dimensional asymptotic regime for

the products of the sample (inverse) covariance matrix and the sample mean vector. In
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the numerical study, we document the good finite sample performance of both asymptotic

distributions.

6 Appendix

Proof of Proposition 1.

Proof. Straightforward but tedious calculations give

fX(Z) = C−1
∫
Rq
+

fNp,n(µ1T
n ,Σ⊗In)(Z−Bν∗|ν = ν∗)fNq(ξ,Ω)(ν

∗)dν∗

= C−1
(2π)−(np+q)/2

|Ω|1/2|Σ|n/2

∫
Rq
+

exp

{
−1

2
(ν∗ − ξ)TΩ−1(ν∗ − ξ)

}
× exp

{
−1

2
vec

(
Z− µ1Tn −Bν∗1Tn

)T
(In ⊗Σ)−1vec

(
Z− µ1Tn −Bν∗1Tn

)}
dν∗

= C−1
(2π)−(np+q)/2

|Ω|1/2|Σ|n/2
exp

{
−1

2

[
vec(Z− µ1Tn )T (In ⊗Σ)−1vec(Z− µ1Tn ) + ξTΩ−1ξ

]}
× exp

{
1

2

[(
Evec(Z− µ1Tn ) + Ω−1ξ

)T
D
(
Evec(Z− µ1Tn ) + Ω−1ξ

)]}
×

∫
Rq
+

exp

{
−1

2

[(
ν∗ −D

(
Evec(Z− µ1Tn ) + Ω−1ξ

))T
× D−1

(
ν∗ −D

(
Evec(Z− µ1Tn ) + Ω−1ξ

))]}
dν∗

= C−1
|F|1/2|D|1/2

|Ω|1/2|Σ|n/2
exp

{
−1

2

[
ξTΩ−1(−D + Ω−DEFETD)Ω−1ξ

]}
× Φq

(
0;−D[Evec(Z− µ1Tn ) + Ω−1ξ],D

)
× φpn

(
vec(Z− µ1Tn ); FETDΩ−1ξ,F

)
= C̃−1Φq

(
0;−D[Evec(Z− µ1Tn ) + Ω−1ξ],D

)
φpn

(
vec(Z− µ1Tn ); FETDΩ−1ξ,F

)
where D = (nBTΣ−1B + Ω−1)−1, E = 1Tn ⊗BTΣ−1, F = (In ⊗Σ−1 −ETDE)−1, and

C̃−1 = C−1
|F|1/2|D|1/2

|Ω|1/2|Σ|n/2
exp

{
−1

2

[
ξTΩ−1(−D + Ω−DEFETD)Ω−1ξ

]}
.
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(a) p = 50, n = 500, ν ∼ T N q(0, Iq). (b) p = 100, n = 1000, ν ∼ T N q(0, Iq).
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(c) p = 50, n = 500, ν ∼ GALq(1q, Iq, 10). (d) p = 100, n = 1000, ν ∼ GALq(1q, Iq, 10).

Figure 1: The kernel density estimator of the asymptotic distribution as given in Theorem
2 for c = 0.1.
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(a) p = 250, n = 500, ν ∼ T N q(0, Iq). (b) p = 500, n = 1000, ν ∼ T N q(0, Iq).
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(c) p = 250, n = 500, ν ∼ GALq(1q, Iq, 10). (d) p = 500, n = 1000, ν ∼ GALq(1q, Iq, 10).

Figure 2: The kernel density estimator of the asymptotic distribution as given in Theorem
2 for c = 0.5.
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(a) p = 400, n = 500, ν ∼ T N q(0, Iq). (b) p = 800, n = 1000, ν ∼ T N q(0, Iq).
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(c) p = 400, n = 500, ν ∼ GALq(1q, Iq, 10). (d) p = 800, n = 1000, ν ∼ GALq(1q, Iq, 10).

Figure 3: The kernel density estimator of the asymptotic distribution as given in Theorem
2 for c = 0.8.
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(a) p = 475, n = 500, ν ∼ T N q(0, Iq). (b) p = 950, n = 1000, ν ∼ T N q(0, Iq).
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(c) p = 475, n = 500, ν ∼ GALq(1q, Iq, 10). (d) p = 950, n = 1000, ν ∼ GALq(1q, Iq, 10).

Figure 4: The kernel density estimator of the asymptotic distribution as given in Theorem
2 for c = 0.95.

24



−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 Asymptotic

Standard Normal

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 Asymptotic

Standard Normal

(a) p = 50, n = 500, ν ∼ T N q(0, Iq). (b) p = 100, n = 1000, ν ∼ T N q(0, Iq).
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(c) p = 50, n = 500, ν ∼ GALq(1q, Iq, 10). (d) p = 100, n = 1000, ν ∼ GALq(1q, Iq, 10).

Figure 5: The kernel density estimator of the asymptotic distribution as given in Theorem
3 for c = 0.1.
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(a) p = 250, n = 500, ν ∼ T N q(0, Iq). (b) p = 500, n = 1000, ν ∼ T N q(0, Iq).
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(c) p = 250, n = 500, ν ∼ GALq(1q, Iq, 10). (d) p = 500, n = 1000, ν ∼ GALq(1q, Iq, 10).

Figure 6: The kernel density estimator of the asymptotic distribution as given in Theorem
3 for c = 0.5.
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(a) p = 400, n = 500, ν ∼ T N q(0, Iq). (b) p = 800, n = 1000, ν ∼ T N q(0, Iq).
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(c) p = 400, n = 500, ν ∼ GALq(1q, Iq, 10). (d) p = 800, n = 1000, ν ∼ GALq(1q, Iq, 10).

Figure 7: The kernel density estimator of the asymptotic distribution as given in Theorem
3 for c = 0.8.
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(a) p = 475, n = 500, ν ∼ T N q(0, Iq). (b) p = 950, n = 1000, ν ∼ T N q(0, Iq).
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(c) p = 475, n = 500, ν ∼ GALq(1q, Iq, 10). (d) p = 950, n = 1000, ν ∼ GALq(1q, Iq, 10).

Figure 8: The kernel density estimator of the asymptotic distribution as given in Theorem
3 for c = 0.95.
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