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1. Introduction

In this paper, we present new algorithms for construction of asymptotic
expansions for stationary and conditional quasi-stationary distributions of
nonlinearly perturbed birth-death-type semi-Markov processes with a finite
phase space.

We consider models, where the phase space is one class of communica-
tive states, for embedded Markov chains of pre-limiting perturbed birth-
death-type semi-Markov processes, while it can consist of one closed class of
communicative states or consist of one class of communicative transient in-
ternal states and one or both absorbing end states, for the limiting embedded
Markov chain.

The initial perturbation conditions are formulated in the forms of Tay-
lor asymptotic expansions for transition probabilities (of embedded Markov
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chains) and expectations of transition times, for perturbed semi-Markov pro-
cesses.

The algorithms are based on special time-space screening procedures for
sequential phase space reduction and algorithms for re-calculation of asymp-
totic expansions, which constitute perturbation conditions for the semi-Mar-
kov processes with reduced phase spaces.

The final asymptotic expansions for stationary distributions of nonlin-
early perturbed semi-Markov processes are given in the form of Taylor asymp-
totic expansions.

Models of perturbed Markov chains and semi-Markov processes, in partic-
ular, for the most difficult cases of perturbed processes with absorption and
so-called singularly perturbed processes, attracted attention of researchers in
the mid of the 20th century.

An interest in these models has been stimulated by applications to control
and queuing systems, information networks, epidemic models and models of
mathematical genetics and population dynamics. As a rule, Markov-type
processes with singular perturbations appear as natural tools for mathemati-
cal analysis of multi-component systems with weakly interacting components.

We refer here to the latest books containing results on asymptotic ex-
pansions for perturbed Markov chains and semi-Markov processes, Stewart
(1998, 2001), Korolyuk, V. S. and Korolyuk, V. V. (1999), Konstantinov, Gu,
Mehrmann and Petkov (2003), Bini, Latouche and Meini (2005), Koroliuk
and Limnios (2005), Yin and Zhang (2005, 2013), Gyllenberg and Silvestrov
(2008) and Avrachenkov, Filar and Howlett (2013) and the research report
by Silvestrov, D. and Silvestrov, S. (2015), where readers can find compre-
hensive bibliographies of works in the area.

In this paper, we concentrate our attention on several perturbed birth-
death models of biological nature. The first application is population dynam-
ics in a constant environment, where one individual at a time is born or dies,
see for instance Lande et al., (2003). The second application is epidemic
spread of a disease, reviewed in Hethcote (2000) and N̊asell (2011). Here
one individual at a time gets infected or recovers, and recovered individuals
become susceptible for new infections. The third application is population
genetic models, treated extensively in Crow and Kimura (1970) and Ewens
(2004). We focus in particular on models with overlapping generations, in-
troduced by Moran (1958a). These Moran type models focus on the the
dynamics of the variants of a certain gene for a one-sex population, with an
assumption that a copy of the gene is replaced for one individual at a time.

The paper includes 8 sections. In Section 2, we introduce a model of
perturbed semi-Markov processes, including processes of birth-death type,
define conditional quasi-stationary distributions for such processes and for-
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mulate basic perturbation conditions. In Section 3, we describe examples
of perturbed population dynamics, epidemic and population genetic models,
which can be described in the framework of birth-death-type Markov chains
and semi-Markov processes. In Section 4, we present time-space screening
procedures of phase space reduction for perturbed semi-Markov processes
and recurrent algorithms for computing expectations of hitting times and sta-
tionary and conditional quasi-stationary distributions for birth-death semi-
Markov processes. In Section 5, we get the first and the second order asymp-
totic expansions for stationary and conditional quasi-stationary distributions
of perturbed semi-Markov processes and give explicit formulas for coefficients
in these expansions. In Section 6, we describe general recurrent algorithms
for construction of high order asymptotic expansions for stationary and con-
ditional quasi-stationary distributions of perturbed birth-death-type semi-
Markov processes. In Section 7, we apply the above asymptotic results to
the perturbed birth-death models of biological nature presented in Section 3
and present results of related numerical studies. In Section 8, we give con-
cluding remarks and comments.

2. Nonlinearly perturbed semi-Markov processes

In this section, we introduce a model of perturbed semi-Markov processes,
including processes of birth-death type, define conditional quasi-stationary
distributions for such processes and formulate basic perturbation conditions.

2.1. Perturbed semi-Markov processes.

Let X = {0, . . . , N} and (η(ε)n , κ(ε)n ), n = 0, 1, . . . be, for every value of
a perturbation parameter ε ∈ (0, ε0], where 0 < ε0 ≤ 1, a Markov renewal
process, i.e., a homogeneous Markov chain with the phase space X×[0,∞), an

initial distribution p̄(ε) = 〈p(ε)i = P{η(ε)0 = i, κ
(ε)
0 = 0} = P{η(ε)0 = i}, i ∈ X〉

and transition probabilities, defined for (i, s), (j, t) ∈ X× [0,∞),

Q
(ε)
ij (t) = P{η(ε)1 = j, κ

(ε)
1 ≤ t/η

(ε)
0 = i, κ

(ε)
0 = s}. (1)

In this case, the random sequence η(ε)n is also a homogeneous (embedded)
Markov chain with the phase space X and the transition probabilities, defined
for i, j ∈ X,

pij(ε) = P{η(ε)1 = j/η
(ε)
0 = i} = Q

(ε)
ij (∞). (2)

We assume that the following condition holds:

A: X is a communicative class of states for the embedded Markov chain
η(ε)n , for every ε ∈ (0, ε0].
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We exclude instant transitions and assume that the following condition
holds:

B: Q
(ε)
ij (0) = 0, i, j ∈ X, for every ε ∈ (0, ε0].

Let us now introduce a semi-Markov process,

η(ε)(t) = η
(ε)

ν(ε)(t)
, t ≥ 0, (3)

where ν(ε)(t) = max(n ≥ 0 : ζ(ε)n ≤ t) is a number of jumps in the time
interval [0, t], for t ≥ 0, and

ζ(ε)n = κ
(ε)
1 + · · ·+ κ(ε)n , (4)

n = 0, 1, . . ., are sequential moments of jumps, for the semi-Markov process
η(ε)(t).

This process has the phase space X, the initial distribution p̄ = 〈pi =

P{η(ε)(0) = i}, i ∈ X〉 and transition probabilities Q
(ε)
ij (t), t ≥ 0, i, j ∈ X.

If Q
(ε)
ij (t) = I(t ≥ 1)pij(ε), t ≥ 0, i, j ∈ X, then η(ε)(t) = η

(ε)
[t] , t ≥ 0 is a

discrete time homogeneous Markov chain embedded in continuous time.
If Q

(ε)
ij (t) = (1−e−λi(ε)t)pij(ε), t ≥ 0, i, j ∈ X (here, 0 < λi(ε) <∞, i ∈ X),

then η(ε)(t), t ≥ 0 is a continuous time homogeneous Markov chain.
Let us denote, for t ≥ 0, i ∈ X,

F
(ε)
i (t) = Pi{κ(ε)1 ≤ t} =

∑
j∈X

Q
(ε)
ij (t). (5)

and
ei(ε) = Eiκ

(ε)
1 =

∫ ∞
0

tF
(ε)
i (dt), (6)

Here and henceforth, notations Pi and Ei are used for conditional proba-
bilities and expectations under condition η(ε)(0) = i.

Let us also introduce the conditional distributions of transition times κ(ε)n ,
defined for t ≥ 0, i, j ∈ X,

F
(ε)
ij (t) = P{κ(ε)1 ≤ t/η

(ε)
0 = i, η

(ε)
1 = j}

=

{
Q

(ε)
ij (t)/pij(ε) if pij(ε) > 0,

F
(ε)
i (t) if pij(ε) = 0.

(7)

and also denote, for i, j ∈ X,

fij(ε) = Ei{κ(ε)1 /η
(ε)
1 = j} =

∫ ∞
0

tF
(ε)
ij (dt), (8)

and
eij(ε) = Ei{κ(ε)1 I(η

(ε)
1 = j)} =

∫ ∞
0

tQ
(ε)
ij (dt), (9)

We also assume that the following condition holds:
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C: eij(ε) <∞, i, j ∈ X, for ε ∈ (0, ε0].

Obviously, the above expectations are connected by the following rela-
tions, for i, j ∈ X,

eij(ε) = fij(ε)pij(ε), (10)

and
ei(ε) =

∑
j∈X

fij(ε)pij(ε) =
∑
j∈X

eij(ε). (11)

In the case of discrete time Markov chain fij(ε) = 1, i, j ∈ X.
In the case of continuous time Markov chain fij(ε) = λ−1i (ε), i, j ∈ X.
Conditions A – C imply that the semi-Markov process η(ε)(t) is, for every

ε ∈ (0, ε0], ergodic in the sense that the following asymptotic relation holds,

µ
(ε)
i (t) =

1

t

∫ t

0
I(η(ε)(s) = i)ds

P−→ πi(ε) as t→∞, i ∈ X. (12)

The ergodic relation (12) holds for any initial distribution p̄(ε), and the
stationary probabilities πi(ε), i ∈ X do not depend on the initial distribution.
Moreover, πi(ε) > 0, i ∈ X and

∑
i∈X πi(ε) = 1.

2.2. Perturbed semi-Markov processes of birth-death type

The semi-Markov process η(ε)(t) is of birth-death type if the following
relation holds, for t ≥ 0,

Q
(ε)
ij (t) =


F

(ε)
0,±(t)p0,±(ε) if j = 0 + 1±1

2
, for i = 0,

F
(ε)
i,±(t)pi,±(ε) if j = i± 1, for 0 < i < N,

F
(ε)
N,±(t)pN,±(ε) if j = N − 1∓1

2
, for i = N,

0 otherwise.

(13)

where: (a) F
(ε)
i,±(t), i ∈ X are, for every ε ∈ (0, ε0], distribution functions

concentrated on [0,∞) such that F
(ε)
i,±(0) = 0, i ∈ X; (b) pi,±(ε) ≥ 0, pi,−(ε) +

pi,+(ε) = 1, for every ε ∈ (0, ε0].
Let us also denote, for i, j ∈ X,

fi,±(ε) =
∫ ∞
0

tF
(ε)
i,±(dt), ei,±(ε) = fi,±(ε)pi,±(ε). (14)

The following relations take place;

pij(ε) =


p0,±(ε) if j = 0 + 1±1

2
, for i = 0,

pi,±(ε) if j = i± 1, for 0 < i < N,
pN,±(ε) if j = N − 1∓1

2
, for i = N,

0 otherwise,

(15)
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and

eij(ε) =


e0,±(ε) if j = 0 + 1±1

2
, for i = 0,

ei,±(ε) if j = i± 1, for 0 < i < N,
eN,±(ε) if j = N − 1∓1

2
, for i = N,

0 otherwise.

(16)

Let us assume that there exist some integer 0 ≤ L < ∞ such that the
following perturbation conditions hold:

DL: pi,±(ε) =
∑L+li,±
l=0 ai,±[l]εl + oi,±(εL+li,±), ε ∈ (0, ε0], for i ∈ X, where:

(a) |ai,±[l]| < ∞, for 0 ≤ l ≤ L + li,±, i ∈ X; (b) li,± = 0 and
ai,±[0] > 0, for 0 < i < N ; (c) li,± = 0 and ai,±[0] > 0 or li,± = 1 and
ai,±[0] = 0, ai,±[1] > 0, for i = 0, N ; (d) oi,±(εL+li,±)/εL+li,± → 0 as
ε→ 0, for i ∈ X.

and

EL: ei,±(ε) =
∑L+li,±
l=0 bi,±[l]εl + ȯi,±(εL+li,±), ε ∈ (0, ε0], for i ∈ X, where:

(a) |bi,±[l]| <∞, for 0 ≤ l ≤ L+ li,±, i ∈ X; (b) li,± = 0 and bi,±[0] > 0,
for 0 < i < N ; (c) li,± = 0 and bi,±[0] > 0 or li,± = 1 and bi,±[0] =
0, bi,±[1] > 0, for i = 0, N ; (d) ȯi(ε

L+li,±)/εL+li,± → 0 as ε → 0, for
i ∈ X.

It is useful to explain what role is played by parameter li in conditions
DL and EL. This parameter equalizes the so-called length of asymptotic
expansions penetrating these conditions, which is defined as number of coef-
ficients for powers of ε in the corresponding expansions, beginning from the
first non-zero coefficients and up to the coefficients for the largest powers of
ε in the corresponding asymptotic expansions. All expansions penetrating
conditions DL and EL have the length L.

Note that conditions DL and EL imply that there exist ε′0 ∈ (0, ε0] such
that probabilities pi,±(ε) > 0, i ∈ X and expectations ei,±(ε) > 0, i ∈ X for
ε ∈ (0, ε′0]. This let us just assume that ε′0 = ε0.

The model assumption, pi,−(ε) + pi,+(ε) = 1, ε ∈ (0, ε0], also implies that
the following condition should hold:

FL: ai,−[0] + ai,+[0] = 1, ai,−[l] + ai,+[l] = 0, 1 ≤ l ≤ L+ li,+ ∧ li,−, for i ∈ X.

We also assume that the following natural consistency condition for asymp-
totic expansions penetrating perturbation conditions D and E hold:

G: bi,±[0] > 0 if and only if ai,±[0] > 0, for i = 0, N .
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Condition DL implies that there exist limε→0 pi,±(ε) = pi,±(0), i ∈ X and,
thus, there also exist limε→0 pij(ε) = pij(0), i, j ∈ X.

Condition EL implies that there exist limε→0 ei,±(ε) = ei,±(0), i ∈ X and,
thus, there also exist limε→0 eij(ε) = eij(0), i, j ∈ X.

There are tree basic variants of the model, where one of the following
conditions hold:

H1: a0,+[0] > 0, aN,−[0] > 0.

H2: a0,+[0] = 0, aN,−[0] > 0.

H3: a0,+[0] = 0, aN,−[0] = 0.

The limiting birth-death type Markov chain η(0)n with the matrix of tran-
sition probabilities ‖pij(0)‖ has: (a) one class of communicative states X, if
condition H1 holds, (b) one communicative class of transient states 0X =
X\{0} and an absorbing state 0, if condition H2 holds, and (c) one commu-
nicative class of transient states 0,NX = X \ {0, N} and two absorbing states
0 and N , if condition H3 holds.

The case a0,+[0] > 0, aN,−[0] = 0 is analogous to the case where condition
H2 holds, and we omit its consideration.

In this paper, we get, under conditions A – G and Hi (for i = 1, 2, 3),
asymptotic expansions for stationary probabilities, as ε→ 0,

πi(ε) =
L∑
l=0

ci[l]ε
l + oi(ε

L), i ∈ X. (17)

Moreover, we shall show that the limiting stationary probabilities πi(0) >
0, i ∈ X, if condition H1 holds, π0(0) = 1, πi(0) = 0, i ∈ 0X, if condition
H2 holds, and π0(0), πN(0) > 0, π0(0) + πN(0) = 1, πi(0) = 0, i ∈ 0,NX, if
condition H3 holds.

This implies that there is sense to consider so-called conditional quasi-
stationary stationary probabilities, which are defined as,

π̃i(ε) =
πi(ε)

1− π0(ε)
=

πi(ε)∑
j∈ 0X πj(ε)

, i ∈ 0X, (18)

in the case where condition H2 holds, or as,

π̂i(ε) =
πi(ε)

1− π0(ε)− πN(ε)
=

πi(ε)∑
j∈ 0,NX πj(ε)

, i ∈ 0,NX, (19)

in the case where condition H3 holds.
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We also get, under conditions A – G and H2, asymptotic expansions for
conditional quasi-stationary probabilities,

π̃i(ε) =
L∑
l=0

c̃i[l]ε
l + õi(ε

L), i ∈ oX, (20)

and, under conditions A – G and H3, asymptotic expansions for conditional
quasi-stationary probabilities,

π̂i(ε) =
L∑
l=0

ĉi[l]ε
l + ôi(ε

L), i ∈ X. (21)

The coefficients in the above asymptotic expansions are given by explicit
recurrent formulas via coefficients in asymptotic expansions given in initial
perturbation conditions DL and EL.

The first coefficients πi(ε) = ci[0], π̃i(0) = c̃i[0] and π̂i(0) = ĉi[0] describe
the asymptotic behavior of stationary and quasi-stationary probabilities and
their continuity properties with respect to small perturbations of transition
characteristics of the corresponding semi-Markov processes.

The second coefficients ci[1], c̃i[1] and ĉi[1] determine sensitivity of station-
ary and quasi-stationary probabilities with respect to small perturbations of
transition characteristics.

The high order coefficients can be useful and improve accuracy of the cor-
responding numerical computations based on the corresponding asymptotic
expansions, especially, for the models, where actual values of perturbation
parameter ε are not small enough to neglect the high order terms in the
corresponding asymptotic expansions.

We also would like to comment the use of the term “conditional quasi-
stationary probability” for quantities defined in relations (18) and (19). As
a matter of fact, the term “quasi-stationary probability (distribution)” is
traditionally used for limits of probabilities,

qj(ε) = Pi{η(ε)(t) = j/η(ε)(s) /∈ A, 0 ≤ s ≤ t} (22)

as t → ∞, where A is some special subsets of X. We refer to the book
by Gyllenberg and Silvestrov (2008), where one can find results concerned
asymptotic expansions for such quasi-stationary distributions for perturbed
semi-Markov process. A detailed presentation of results concerned quasi-
stationary distributions and comprehensive bibliographies of works in this
are can be found in the above book as well as in the recent books by N̊asell
(2011) and Collet, Mart́ınez and San Mart́ın (2013).
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3. Examples of perturbed birth-death type models

In this section we consider a number of applications of perturbed semi-
Markov processes of birth-death type. We will assume that the conditional
distribution of the transition time κ(ε)n between two jumps only depends on
the state i before the jump, not the state j to which a jump occurs, i.e.
F

(ε)
ij (t) = F

(ε)
i (t). Formula (7) then simplifies to

Q
(ε)
ij (t) = F

(ε)
i (t)pij(ε), (23)

for t ≥ 0 and i, j ∈ X.
An important special case of (23) is a geometrically distributed transition

time
F

(ε)
i ∼ Ge [λi(ε)] =⇒ Q

(ε)
ij (t) =

{
1− [1− λi(ε)][t]

}
pij(ε) (24)

for 0 < λi(ε) ≤ 1, and with [t] the integer part of t. In particular, λi(ε) = 1

corresponds to η(ε)(t) = η
(ε)
[t] , t ≥ 0; a discrete time homogeneous Markov

chain embedded in continuous time.
A second special case of (23) is exponentially distributed transition times

F
(ε)
i ∼ Exp [λi(ε)] =⇒ Q

(ε)
ij (t) =

[
1− e−λi(ε)t

]
pij(ε) (25)

for 0 < λi(ε) < ∞. Then η(ε)(t), t ≥ 0 is a continuous time homogeneous
Markov chain.

For a semi-Markov process of birth-death type, we refer to l(i) = i− 1 +
I(i = 0) and u(i) = i + 1− I(i = N) as the lower and upper state to which
a transition from i is possible. In all the examples below the transition time
distribution is given by (24) or (25). For both of these models, it is convenient
to introduce

λi,+(ε) = λi,u(i)(ε),
λi,−(ε) = λi,l(i)(ε),
λi(ε) = λi,−(ε) + λi,+(ε),

(26)

so that the transition probabilities of the imbedded Markov chain satisfy

pi,+(ε) = 1− pi,−(ε) =
λi,+(ε)

λi(ε)
, (27)

in accordance with requirement b) below equation (16). Here λij(ε) is either
the probability by which a transition from i to j occurs for a discrete transi-
tion time (24), or the rate of transition from i to j, for a continuous transition
time (25). The stationary distribution (12) then has the exact expression

πi(ε) ∝
{

1, i = 0,
λ0,+(ε)·...·λi−1,+(ε)

λ1,−(ε)·...·λi,−(ε) , i = 1, . . . , N,
(28)
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for 0 < ε ≤ ε0, both in discrete and continuous time (24)-(25), with a
proportionality constant chosen so that

∑N
i=0 πi(ε) = 1.

Suppose λi,+(ε) and λi,+(ε) admit series

λi,±(ε) =
Li,±∑
l=0

gi,±[l]εl + oi,±(εL+li,±) (29)

for ε ∈ (0, ε0]. From equations (9)-(11), (24)-(25) and (27) we deduce that

ei,±(ε) =
1

λi(ε)
· λi,±(ε)

λi(ε)
. (30)

Inserting (29) into (30), we find that

gi,−[0] + gi,+[0] > 0 (31)

must hold for all i ∈ X in order for the series expansion of ei,±(ε) to sat-
isfy Condition EL. It therefore follows from (27) that pi,±(ε) will satisfy
perturbation condition DL, with L+ li = min(Li,−, Li,+), and

ai,±[0] =
gi,±[0]

gi,−[0] + gi,+[0]
. (32)

Because of (31) and (32), we can rephrase the three perturbation scenarios
H1-H3 of Subsection 2.2 as

H1 : g0,+[0] > 0, gN,−[0] > 0,
H2 : g0,+[0] = 0, gN,−[0] > 0,
H3 : g0,+[0] = 0, gN,−[0] = 0.

(33)

This will be utilized in Subsections 3.1-3.3 in order to characterize the various
perturbed models that we propose. Under H2, the exact expression for the
conditional quasi stationary distribution (18) is readily obtained from (28).
It equals

π̃i(ε) ∝
λ1,+(ε) · . . . · λi−1,+(ε)

λ1,−(ε) · . . . · λi,−(ε)
(34)

for i = 1, . . . , N and 0 < ε ≤ ε0, with the numerator equal to 1 when i = 1,
and a proportionality constant chosen so that

∑N
i=1 π̃i(ε) = 1. As ε→ 0, this

expression converges to

π̃i(0) ∝ λ1,+(0) · . . . · λi−1,+(0)

λ1,−(0) · . . . · λi,−(0)
. (35)
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If Scenario H3 holds, we find analogously that the conditional quasi station-
ary distribution (19) is given by

π̂i(ε) ∝
λ0,+(ε) · . . . · λi−1,+(ε)

λ1,−(ε) · . . . · λi,−(ε)
(36)

for i = 1, . . . , N − 1, with a limit

π̂i(0) ∝ λ1,+(0) · . . . · λi−1,+(0)

λ1,−(0) · . . . · λi,−(0)
. (37)

3.1. Perturbed population dynamics models

Let N denote the maximal size of a population, and let η(ε)(t) be its size at
time t. In order to model the dynamics of the population, we introduce births,
deaths and immigration from outside, according to a parametric model with

λi,+(ε) = λi

[
1− α1

(
i

N

)θ1]
+ ν

[
1−

(
i

N

)θ2]
(38)

and

λi,−(ε) = µi

[
1 + α2

(
i

N

)θ3]
. (39)

For a small population (i � N), we interpret the three parameters λ > 0,
µ > 0 and ν > 0 as a birth rate per individual, a death rate per individual
and an immigration rate, whereas αk, θk are density regulation parameters
that model decreased birth/immigration and increased death for a population
close to its maximal size. They satisfy θk > 0, α1 ≤ 1 and α1, α2 ≥ 0, where
the last inequality is strict for at least one of α1 and α2. A more general model
would allow birth, death and immigration rates to vary non-parametrically
with i.

The expected growth rate of the population, when 0 < i < N , is

E
[
η(ε)(t+ ∆t)− η(ε)(t)|η(ε)(t) = i

]
= ∆t [λi,+(ε)− λi,−(ε)]

= ∆t
{
λi
[
1− α1

(
i
N

)θ1]
+ ν

[
1−

(
i
N

)θ2]− µi [1 + α2

(
i
N

)θ3]}
,

where ∆t = 1 in discrete time (24), and ∆t > 0 is infinitesimal in continuous
time (25). When θ1 = θ2 = θ3 = θ, this expression simplifies to

E
[
η(ε)(t+ ∆t)− η(ε)(t)|η(ε)(t) = i

]
= ∆t

{
λi
[
1− α1

(
i
N

)θ]
− µi

[
1 + α2

(
i
N

)θ]}
+ ν

[
1−

(
i
N

)θ]
,

= ∆t ·


(λ− µ)i

[
1− α1λ+α2µ

λ−µ

(
i
N

)θ]
+ ν

[
1−

(
i
N

)θ]
, λ 6= µ

−µi(α1 + α2)
(
i
N

)θ
+ ν

[
1−

(
i
N

)θ]
, λ = µ.

(40)
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We will consider two perturbation scenarios. The first one has

ν = ν(ε) = ε, (41)

whereas all other parameters are kept fixed, not depending on ε. It is also pos-
sible to consider more general nonlinear functions ν(ε), but this will hardly
add more insight to how immigration affects population dynamics. The un-
perturbed ε = 0 model corresponds to an isolated population that only in-
creases through birth events. Since λ0,−(ε) = 0 and λ0,+(ε) = ε, it follows
that g0,−[0] = g0,+[0] = 0, and therefore formula (31) is violated for i = 0.
But the properties of η(ε) remain the same if we put λ0,−(ε) = 1 instead.
With this modification, formula (33) implies that Condition H2 of Subsec-
tion 2.2 holds, and hence the ε→ 0 limit of the stationary distribution in (12)
and (28) is concentrated at state 0 (π0(0) = 1). For small ε, we can think of
a population that resides on an island and faces subsequent extinction and
recolonization events. After the population temporarily dies out, the island
occasionally receives new immigrants at rate or probability ε. Let τ

(ε)
0 be the

time it takes for the population to get temporarily extinct again, after an
immigrant has entered and empty island. It then follows from a slight mod-
ificaton of equation (80) in Subsection 4.2 or Theorem 3 of Subsection 5.2
(which disregards transitions 0→ 0) and the relation λ0,+(ε) = ε, that a first
order expansion of the probability that the island is empty at stationarity, is

π0(ε) =
1/λ0,+(ε)

1/λ0,+(ε) + E1(τ
(ε)
0 )

=
1/ε

1/ε+ E10(ε)
= 1− E10(ε)ε+ o(ε). (42)

This expansion is accurate when the perturbation parameter is small (ε �
1/E10(ε)), otherwise higher order terms (118) are needed. The value of E10(ε)
will be highly dependent on the value of the basic reproduction number
R0 = λ/µ. When R0 > 1, the expected time to extinction will be very large,
and π0(ε) will be close to 0 for all but very small ε. On the other hand, (42)
is accurate for a larger range of ε when R0 < 1, since E10(ε) is then small.

In order to find useful approximations of the conditional quasi stationary
distribution π̃i(ε) in (34), we will distinguish between whether R0 is larger
than or smaller than 1. When R0 > 1, or equivalently λ > µ, we can rewrite
(40) as

E
[
η(ε)(t+ ∆t)− η(ε)(t)|η(ε)(t) = i

]
= ∆t ·Nm

(
i

N

)
, (43)

where

m(x) = rx+
ε

N
−
[
rx(0)−θ · x+

ε

N

]
xθ (44)
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is a rescaled mean function of the drift, r = µ(R0− 1) is the intrinsic growth
rate, or growth rate per capita, of a small population without immigration
(ε = 0), and

x(0) =
(

R0 − 1

α1R0 + α2

)1/θ

.

We assume that α1 and α2 are large enough so that x(0) < 1. A sufficient
condition for this is α1 +α2 = 1. The carrying capacity K(ε) = Nx(ε) of the
environment is the value of i such that the right hand side of (43) equals zero.
We can write x = x(ε) as the unique solution of m(x) = 0, or equivalently

xθ =
rx+ εN−1

rx(0)−θx+ εN−1
,

with x(ε) ↘ x(0) as ε → 0. The conditional quasi stationarity distribution
(34) will be centered around K(ε). In order to find a good approximation of
this distribution we look at the second moment

E
{[
η(ε)(t+ ∆t)− η(ε)(t)

]2
|η(ε)(t) = i

}
= ∆t [λi,+(ε) + λi,−(ε)]

= ∆t ·Nv
(
i
N

)
,

of the drift of η(ε), with

v(x) = λx(1− α1x
θ) +

ε

N
(1− xθ) + µx(1 + α2x

θ). (45)

When N is large we may approximate the conditional quasi stationary dis-
tribution

π̃i(ε) ≈
∫ i+
i− f

(ε)(k)dk

=
∫ i+
i− f

(0)(k)dk +
∫ i+
i−

df (ε)(k)
dε

∣∣∣
ε=0

dk · ε+ o(ε),
(46)

by integrating a density function f (ε) on [0, N ] between i− = max(0, i− 1/2)
and i+ = min(N, i + 1/2). This density function can be found through a
diffusion argument as the stationary density

f (ε)(k) ∝ 1
Nv( k

N
)
exp

(
2
∫ k
K(ε)

Nm( y
N
)

Nv( y
N
)
dy
)

∝ 1
v( k

N
)
exp

(
2
∫ k
K(ε)

m( y
N
)

v( y
N
)
dy
) (47)

of Kolmogorov’s forward equation, with a proportionality constant chosen
so that

∫N
0 f (ε)(k)dk = 1 (see for instance Chapter 9 of Crow and Kimura,

1970). A substitution of variables x = y/N in (47), and a Taylor expansion of

13



m(x) around x(ε) reveals that the diffusion density is approximately normally
distributed

f (ε) ∼ N

(
K(ε), N

v [x(ε)]

2|m′ [x(ε)] |

)
. (48)

Expansion (46) is valid for small migration rates ε, and its linear term quan-
tifies how sensitive the conditional quasi stationary distribution is to a small
amount of immigration.

It follows from (43) that the expected population size

E
[
η(0)(t+ ∆t)− η(0)(t)|η(0)(t) = i

]
= ∆t · ri

1−
(

i

K(0)

)θ
of the null model ε = 0 follows a so called theta logistic model (Gilpin and
Ayala, 1973), which is a special case of the generalized growth curve model
in Tsoularis and Wallace (2002). The theta logistic model has a carrying
capacity K(0) of the environment to accommodate new births. When θ = 1,
we obtain the logistic growth model of Verhulst (1838). Pearl (1920) used
such a curve to approximate population growth in the United States, and
Feller (1939) introduced a stochastic version of the logistic model in terms of
a Markov birth-death process (25) in continuous time. Feller’s approach has
been extended for instance by Kendall (1949), Whittle (1957), and N̊asell
(2001,2003). In particular, N̊asell studied the quasi stationary distribution
(22) of η(ε), with A = {1, . . . , N}. In this paper the previously studied
population growth models are generalized in two directions; we consider semi-
Markov processes and allow for theta logistic expected growth.

When 0 < R0 < 1, or equivalently 0 < λ < µ, we rewrite (40) as

E
[
η(ε)(t+ ∆t)− η(ε)(t)|η(ε)(t) = i

]
= ∆t ·

[
ν − ri− (ν + rix̃−θ)

(
i
N

)θ]
,

(49)

where r = (1 − R0)µ quantifies per capita decrease for a small population

without immigration, and x̃ = [(1−R0)/(α1R0 + α2)]
1/θ is the fraction of

the maximal population size at which the per capita decrease of an isolated
ε = 0 population has doubled to 2r. For large N , we can neglect all O(N−θ)
terms, and it follows from (35) that

π̃i(ε) ≈
1

log(1−R0)
· R

i
0

i
+ c̃i[1]ε+ o(ε),

for i = 1, . . . , N .

14



A second perturbation scenario has a birth rate

λ = λ(ε) = ε (50)

that equals ε, whereas all other parameters are kept fixed, not depending
on ε. Again, more general nonlinear functions λ(ε) can be studied, but for
simplicity assume that (50) holds. The unperturbed ε = 0 model corresponds
to a sink population that only increases through immigration. In view of (33),
it satisfies Condition H1 of Subsection 2.2. Suppose N is large. If ν = o(N),
it follows from (28) that the stationary distribution for small values of ε is
well approximated by

πi(ε) ≈
(ν/µ)i

i!
e−ν/µ + ci[1]ε+ o(ε)

for i = 0, . . . , N , a Poisson distribution with mean ν/µ, corrupted by a
sensitivity term ci[1]ε due to births. If ν = V N , the carrying capacity of
the environment is K(ε) = Nx(ε), where x = x(ε) is the value of i/N in
(49) such that the right hand side vanishes, i.e. the unique solution of the
equation

rx+ V xθ + rx̃−θxθ+1 = V,

with r = r(ε) = µ− ε. The stationary distribution (28) is well approximated
by a discretized normal distribution (46)-(48), but with a mean drift function
m(x) obtained from (49), and a variance function v(x) derived similarly.

3.2. Perturbed epidemic models

In order to model an epidemic in a population of size N , we let η(ε)(t)
refer to the number of infected individuals at time t, whereas the remaining
N − η(ε)(t) are susceptible. We assume that

λi,+(ε) = λi
(

1− i

N

)
+ ν(N − i), (51)

and
λi,−(ε) = µi, (52)

where λ(N − 1)/N is the contact rate between each individual and other
members of the population. This term may also be written as the product of
the force of infection λi/N caused by i infected individuals, and the number
of susceptibles N − i. The second parameter ν is the contact rate between
each individual and the group of infected ones outside of the population.
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The third parameter µ is the recovery rate per individual. It may also in-
clude a combined death and birth of an infected and susceptible individual.
The model in (51)-(52) is an SIS-epidemic, since infected individuals become
susceptible after recovery. It is essentially a special case of (38)-(39), with
θ1 = θ2 = θ3 = 1, α1 = 1 and α2 = 0, although immigration is parametrized
differently in (38) and (51).

Assume that the external contact rate

ν = ν(ε) = ε (53)

equals the perturbation parameter, whereas all other parameters are kept
fixed, not depending on ε. The unperturbed ε = 0 model refers to an isolated
population without external contagion. Sooner or later the epidemic will then
die out and reach the only absorbing state 0. This corresponds to Condition
H2 of Subsection 2.2.

Weiss and Dishon (1971) first formulated the SIS-model as a continuous
time birth-death Markov process (25) without immigration (ε = 0). It has
since then been extended in a number of directions, see for instance Cavender
(1978), Kryscio and Lefévre (1989), Jacquez and O’Neill (1991), Jacquez and
Simon (1993), N̊asell (1996,1999) and Allen and Burgin (2000). The quasi
stationary distribution (22) of η(ε) is studied in several of these papers.

In this work we generalize previously studied models of epidemic spread
by treating discrete and continuous time in a unified manner through semi
Markov processes.

The expected growth rate of the null model ε = 0 satisfies

E
[
η(ε)(t+ ∆t)− η(ε)(t)|η(ε)(t) = i

]
= ∆t · ri

(
1− i

K(0)

)
, (54)

if 0 < i < N , when the basic reproduction ratio R0 = λ/µ exceeds 1. This
implies that the expected number of infected individuals follows Verhult’s
logistic growth model, with intrinsic growth rate r = µ(R0−1), and a carrying
capacity K(0) = N(1 − R−10 ) of the environment. This is a special case of
the theta logistic mean growth curve model (43), with θ = 1.

When R0 < 1, we similarly write the expected population decline as in
(49), with θ = 1. Since the SIS model is a particular case of the popula-
tion dynamic models of Subsection 3.1, the stationary and conditional quasi
stationary distributions are obtained in the same way.
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3.3. Perturbed models of population genetics

Let N be a positive even integer, and consider a one-sex population with
N/2 individuals, each one of which carries two copies of a certain gene. This
gene exists in two variants (or alleles); A1 and A2. Let η(ε)(t) be the number of
gene copies with allele A1 at time t. Consequently, the remaining N − η(ε)(t)
gene copies have the other allele A2 at time t. At each moment ζ(ε)n of jump
in (4), a new gene copy replaces an existing one, so that

η(ε)(ζ(ε)n ) =


η(ε)(ζ(ε)n −) + 1, if A1 replaces A2,
η(ε)(ζ(ε)n −), if Ak replaces Ak,
η(ε)(ζ(ε)n −)− 1, if A2 replaces A1.

(55)

In discrete time (24) we define λij(ε) as the probability that the number of
A1 alleles changes from i to j when a gene copy is replaced, at each time
step. In continuous time (25) we let λij(ε) be the rate at which the number
of A1 alleles changes from i to j when a gene copy replacement occurs. Let
x∗∗ refer to the probability that the new gene copy has variant A1 when the
fraction of A1-alleles before replacement is x = i/N . We further assume that
the removed gene copy is chosen randomly among all N gene copies, with
equal probabilities 1/N , so that

λij(ε) =


x∗∗(1− x), j = i+ 1,
(1− x∗∗)x, j = i− 1,
1− x∗∗(1− x)− (1− x∗∗)x, j = i.

(56)

Notice that in order to make η(ε)(t) a semi-Markov process of birth-death
type that satisfies (26)-(27), we do not regard instances when the new gene
copy replaces a gene copy with the same allele as a moment of jump, if the
current number i of A1 alleles satisfies 0 < i < N . That is, the second line
on the right hand side of (55) is only possible in a homogeneous population
where all gene copies have the same allele A1 or A2, and therefore λii(ε) is
not included in the probability or rate λi(ε) to leave state i in (26), when
0 < i < N .

The choice of x∗∗ will determine the properties of the model. The new
gene copy is formed in two steps. In the first step a pair of genes is drawn
randomly with replacement, so that its genotype is A1A1, A1A2 and A2A2

with probabilities x2, 2x(1 − x) and (1 − x)2 respectively. Since the gene
pair is drawn with replacement, this corresponds to a probability 2/N that
the two genes originate from the same individual (self fertilization). A gene
pair survives with probabilities proportional to 1 + s1, 1 and 1 + s2 for these
three genotypes, where 1 + s1 ≥ 0 and 1 + s2 ≥ 0 determine the fitnesses
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of genotypes A1A1 and A2A2 relative to that of genotype A1A2. This is
repeated until a surviving gene pair appears, from which a gene copy is
picked randomly. Consequently, the probability is

x∗ =
1 · (1 + s1)x

2 + 1
2
· 2x(1− x)

(1 + s1)x2 + 2x(1− x) + (1 + s2)(1− x)2
(57)

that the chosen allele is A1. In the second step, before the newly formed
gene copy is put into the population, an A1 allele mutates with probability
u1 = P(A1 → A2), and an A2 allele with probability u2 = P(A2 → A1). This
implies that

x∗∗ = (1− u1)x∗ + u2(1− x∗). (58)

By inserting (58) into (56), and (56) into (26)-(27) we get a semi-Markov
process of Moran type that describes the time dynamics of two alleles in a
one-sex population in the presence of selection and mutation. A special case
of it was originally introduced by Moran (1958a), and some of its properties
can be found, for instance, in Karlin and McGregor (1962) and Durrett
(2008). The model incorporates a number of different selection scenarios.
A selectively neutral model corresponds to all three geneotypes having the
same fitness (s1 = s2 = 0), for directional selection, one of the two alleles is
more fit than the other (s1 < 0 < s2 or s1 > 0 > s2), an underdeominant
model has a heterozygous genotype A1A2 with smaller fitness than the two
homozygous genotypes A1A1 and A2A2 (s1, s2 > 0), whereas overdominance
or balancing selection means that the heterozygous genotype is the one with
highest fitness (s1, s2 < 0).

In continuous time (25), the expected value of the Moran model satisfies
a differential equation

E
[
η(ε)(t+ ∆t)− η(ε)(t)|η(ε)(t) = Nx

]
= ∆t [λi,+(ε)− λi,−(ε)]

= ∆t [x∗∗(1− x)− x(1− x∗∗)]
= ∆t(x∗∗ − x)
= ∆t [(1− u1 − u2)x∗ + u2 − x]

= ∆t
[
(1− u1 − u2) x+s1x2

1+s1x2+s2(1−x)2 + u2 − x
]

=: ∆t [N−1m(x) + o(N−1)] ,

(59)

whenever 0 < x < 1, with ∆t > 0 infinitesimal. The discrete time Moran
model (24) also satisfies (59), interpreted as a difference equation, with
∆t = 1. In the last step of (59) we assumed that all mutation and selec-
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tion parameters are inversely proportional to population size;

u1 = U1/N,
u2 = U2/N,
s1 = S1/N,
s2 = S2/N,

(60)

and introduced an infinitesimal drift function

m(x) = U2(1− x)− U1x+ [(S1 + S2)x− S2]x(1− x).

The corresponding infinitesimal variance function v(x) = 2x(1 − x) follows
similarly from (60), according to

V
[
η(ε)(t+ ∆t)|η(ε)(t) = Nx

]
= ∆t [λi,+(ε) + λi,−(ε) +O(N−1)]

= ∆t [x∗∗(1− x) + x(1− x∗∗) +O(N−1)]
= ∆t [2x(1− x) +O(u1 + u2 + |s1|+ |s2|) +O(N−1)]
=: ∆t [v(x) +O(N−1)] .

(61)

The stationary distribution is found by first inserting (56) into (26), and then
(26) into (28). However, for large N , it is often convenient to use a diffusion
approximation

πi(ε) ≈
∫ xi,+

xi,−
f (ε)(x)dx, (62)

by integrating the density function

f (ε)(x) ∝ 1
v(x)

exp
(
2
∫ x
1/2

m(y)
v(y)

dy
)

∝ (1− x)−1+U1x−1+U2 exp
[
1
2
(S1 + S2)x

2 − S2x
] (63)

between xi,− = max [0, (i− 1/2)/N ] and xi,+ = min [1, (i+ 1/2)/N ]. This
density function is defined terms of the infinitesimal drift and variance func-
tions m(x) and v(x) in (59)-(61), with a constant of proportionality chosen
so that

∫
f (ε)(x)dx = 1. See for instance Chapter 9 of Crow and Kimura

(1970) and Chapter 7 of Durrett (2008) for details.
Assume that N is fixed, whereas the perturbation parameter ε varies.

We let the two selection parameters s1 and s2, and hence also the rescaled
selection parameters S1 and S2, be independent of ε, whereas the rescaled
mutation parameters satisfy

U1 = U1(ε) = C1 +D1ε,
U2 = U2(ε) = C2 +D2ε,

(64)

for some non-negative constants C1, D1, C2, D2, where at least one of D1 and
D2 is strictly positive. It follows from (26), (33) and (56) that the values
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of 0 ≤ C1, C2 < 1 will determine the properties of the unperturbed ε = 0
model, according to the three distinct scenarios

H1 : C1 > 0, C2 > 0,
H2 : C1 > 0, C2 = 0,
H3 : C1 = 0, C2 = 0.

The null model ε = 0 incorporates two-way mutations A1 → A2 and A2 →
A1 for Perturbation scenario H1, with no absorbing state, it has one-way
mutations A1 → A2 for Perturbation scenario H2, with i = 0 as absorbing
state, and no mutations for Perturbation scenario H3, with i = 0 and i = N
as the two absorbing states.

For H1 we find an approximate first order series expansion

πi(ε) ≈
∫ xi,+

xi,−
f (0)(x)dx+

∫ xi,+

xi,−

df (ε)(x)

dε

∣∣∣∣∣
ε=0

dx · ε+ o(ε)

(118) of the stationary distribution by inserting (64) into (62)-(63). The null
density f (0)(x) is defined (63), with C1 and C2 instead of U1 and U2. For
a neutral model (S1 = S2 = 0), the stationary null distribution is approxi-
mately beta with parameters C1 and C2, and expected value C2/(C1 + C2).
A model with S1 > 0 > S2 corresponds to directional selection, with higher
fitness for A1 compared to A2. It can be seen from (63) that the stationary
null distribution is further skewed to the right compared that of a neutral
model. A model with balancing selection or overdominance has negative S1

and S2, so that the heterozygous genotype A1A2 has a selective advantage.
The stationary null distribution will then have a peak around S2/(S1 + S2).
On the other hand, for an underdominant model where S1 and S2 are both
positive, the heterozygous genotype will have a selective disadvantage. Then
S2/(S1 +S2) functions as a repelling point of the stationary null distribution.

For Scenario H2, the null model has one absorbing state 0. In analogy
with (42), we find that the series expansion (118) of the stationary probability
of no A1 alleles in the population, is

π0(ε) = 1− E1(τ
(ε)
0 ) · D2ε

N
+ o(ε),

for small values of the perturbation parameter, if D2 > 0. Here D2ε/N
is the probability that a mutation A2 → A1 occurs in a homogeneous A2

population, and τ
(ε)
0 is the time it takes for the A1 allele to disappear again.

The conditional quasi stationary distribution (18) is found by inserting
(56) into (26), and then (26) into (34)-(35). After some computations this
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leads to

π̃i(ε) ≈ c̃1[0]i−1
(
1− i−1

N

)C1−1
exp

[
1
2
(S1 + S2)

i−1
N

i
N
− S2

i−1
N

]
+ c̃1[1]ε+ o(ε)

(65)

for i = 1, . . . , N , where c̃1[0] is chosen so that
∑N
i=1 π̃i(0) = 1, and c̃1[1] will

additionally involve D1 and D2. If D2 = 0, we have that π0(ε) = 1 for all
0 < ε ≤ ε0, so that the conditional quasi stationary distribution (18) is not
well defined. However, the time to reach absorption is very large for small
U1 > 0. It is shown in Hössjer et al. (2016) that η(ε) may be quasi-fixed for
a long time at the other boundary point i = N , before eventual absorption
at i = 0 occurs.

For Scenario H3, the null model is mutation free, and the asymptotic
distribution

Pj(0) = lim
t→∞

Pi(η
(0)(t) = j)

is supported on the two absorbing states (j ∈ {0, N}). For a neutral model
(s1 = s2 = 0), we have that

PN(0) = 1− P0(0) =
i

N
. (66)

A particular case of directional selection is multiplicative fitness, with 1+s1 =
(1 + s2)

−1. It is mathematically simpler since selection operates directly on
alleles, not on genotypes, with selective advantages 1 and 1 + s2 for A1 and
A2. It follows for instance from Section 6.1 of Durrett (2008) that

PN(0) = 1− P0(0) =
1− (1 + s2)

i

1− (1 + s2)N
(67)

for multiplicative fitness. Notice that P0(0) and PN(0) will differ from πj(0) =
limε→0 π0(ε) at the two boundaries. Indeed, by ergodicity (12) for each ε > 0,
the latter two probabilities are not functions of i = η(0)(0). From (62)-(63)
we find that

πN(0) = 1− π0(0) ≈ D2

exp
[
−1

2
(S1 − S2)

]
D1 +D2

. (68)

Similarly as in (65), we find after some computations that the conditional
quasi stationary distribution (19) and (36) admits an approximate expansion

π̂i(ε) ≈ ĉ1[0]i−1
(
1− i−1

N

)−1
exp

[
1
2
(S1 + S2)

i−1
N

i
N
− S2

i−1
N

]
+ ĉ1[1]ε+ o(ε)

(69)
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for i = 1, . . . , N − 1, where ĉ1[0] is chosen so that
∑N−1
i=1 π̂i(0) = 1, and ĉ1[1]

will additionally involve D1 and D2. Notice that the limiting fixation proba-
bilities in (68) are functions of the mutation probability ratio D1/(D1 +D2),
but the limiting conditional quasi stationary distribution π̂i(0) in (69) does
not involve any of D1 or D2.

4. Reduced semi-Markov processes

In this section, we present an time-space screening procedures of phase
space reduction for perturbed semi-Markov processes and recurrent algo-
rithms for computing expectations of hitting times and stationary and con-
ditional quasi-stationary distributions for birth-death semi-Markov processes.

4.1. An algorithm of excluding one state

Let us assume that N ≥ 1. Let us choose some state r ∈ X. We can
consider the reduced phase space rX = X \ {r}, with the state r excluded
from the phase space X.

Let us define the sequential moments of hitting the reduced space rX, by
the embedded Markov chain η(ε)n ,

rξ
(ε)
n = min(k > rξ

(ε)
n−1, η

(ε)
k ∈ rX), n = 1, 2, . . . , rξ

(ε)
0 = 0. (70)

Now, let us define the random sequence,

(rη
(ε)
n , rκ

(ε)
n ) =


(η

(ε)
0 , 0) for n = 0,

(η
(ε)

rξ
(ε)
n

,
∑

rξ
(ε)
n

k= rξ
(ε)
n−1+1

κ
(ε)
k ) for n = 1, 2, . . . .

(71)

This sequence is also a Markov renewal process with a phase space X ×
[0,∞), the initial distribution with probability p̄(ε), and transition probabil-
ities defined for (i, s), (j, t) ∈ X× [0,∞),

rQ
(ε)
ij (t) = P{ rη(ε)1 = j, rκ

(ε)
1 ≤ t/ rη

(ε)
0 = i, rκ

(ε)
0 = s}. (72)

Respectively, one can define the transformed semi-Markov process,

rη
(ε)(t) = rη

(ε)

rν(ε)(t)
, t ≥ 0, (73)

where rν
(ε)(t) = max(n ≥ 0 : rζ

(ε)
n ≤ t) is a number of jumps at time interval

[0, t], for t ≥ 0, and rζ
(ε)
n = rκ

(ε)
1 + · · · + rκ

(ε)
n , n = 0, 1, . . . are sequential

moments of jumps, for the semi-Markov process rη
(ε)(t).
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The transition probabilities rQ
(ε)
ij (t) are expressed, for every ε ∈ (0, ε0],

via the transition probabilities Q
(ε)
ij (t) by the following formula, for t ≥

0, i, j ∈ X,

rQ
(ε)
ij (t) = Q

(ε)
ij (t) +

∞∑
n=0

Q
(ε)
ir (t) ∗Q(ε)∗n

rr (t) ∗Q(ε)
rj (t). (74)

Here, symbol ∗ is used to denote the convolution of distribution func-
tions (possibly improper), and Q(ε)∗n

rr (t) is the n times convolution of the
distribution function Q(ε)

rr (t).
Relation (74) directly implies, for every ε ∈ (0, ε0], the following formula

for transition probabilities of the reduced embedded Markov chain rη
(ε)
n , for

i, j ∈ X,

rpij(ε) = rQ
(ε)
ij (∞) = pij(ε) +

∞∑
n=0

pir(ε)prr(ε)
nprj(ε)

= pij(ε) + pir(ε)
prj(ε)

1− prr(ε)
. (75)

Note that condition A implies that probabilities prr(ε) ∈ [0, 1), r ∈ X, ε ∈
(0, ε0].

The transition distributions for the Markov chain rη
(ε)
n are concentrated,

for every ε ∈ (0, ε0], on the reduced phase space rX, i.e., for every i ∈ X,

∑
j∈ rX

rpij(ε) =
∑
j∈ rX

pij(ε) + pir(ε)
∑
j∈ rX

prj(ε)

1− prr(ε)

=
∑
j∈ rX

pij(ε) + pir(ε) = 1. (76)

If the initial distribution p̄(ε) is concentrated on the phase space rX, i.e.,
pr = 0, then the random sequence (rη

(ε)
n , rκ

(ε)
n ) can be considered as a Markov

renewal process with the reduced phase rX × [0,∞), the initial distribution

rp̄
(ε) = 〈 p(ε)i = P{rη(ε)0 = i, rκ

(ε)
0 = 0} = P{rη(ε)0 = i}, i ∈ rX〉 and transition

probabilities rQ
(ε)
ij (t), t ≥ 0, i, j ∈ rX.

If the initial distribution p̄(ε) is not concentrated on the phase space rX,
i.e., pr > 0, then the random sequence (rη

(ε)
n , rκ

(ε)
n ) can be interpreted as a

Markov renewal process with so-called transition period.
As follows from the above remarks, the semi-Markov process rη

(ε)(t) has

transition probabilities rQ
(ε)
ij (t), t ≥ 0, i, j ∈ X concentrated on the reduced

phase space rX, which can be interpreted as the “actual reduced” phase space
of this semi-Markov process rη

(ε)(t).
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If the initial distribution p̄(ε) is concentrated on the phase space rX, then
process rη

(ε)(t) can be considered as the semi-Markov process with the re-

duced phase rX, the initial distribution rp̄
(ε) = 〈 rp(ε)i = P{rη(ε)(0) = i}, i ∈

rX〉 and transition probabilities rQ
(ε)
ij (t), t ≥ 0, i, j ∈ rX.

According to the above remarks, we can refer to the process rη
(ε)(t) as a

reduced semi-Markov process.
If the initial distribution p̄(ε) is not concentrated on the phase space rX,

then the process rη
(ε)(t) can be interpreted as a reduced semi-Markov process

with transition period.

4.2. Expectations of hitting times for reduced semi-Markov
processes and stationary distributions

Let us now introduce hitting times for semi-Markov process η(ε)(t), Let
us define hitting times, which are random variables given by the following
relation, for j ∈ X,

τ
(ε)
j =

ν
(ε)
j∑
n=1

κ(ε)n , (77)

where ν
(ε)
j = min(n ≥ 1 : η(ε)n = j).

Let us denote,
Eij(ε) = Eiτ

(ε)
j , i, j ∈ X. (78)

As is known, conditions A – C imply that, for every ε ∈ (0, ε0], expecta-
tions of hitting times are finite, i.e,

0 < Eij(ε) <∞, i, j ∈ X. (79)

We also denote by rτ
(ε)
j the hitting time to the state j ∈ rX for the

reduced semi-Markov process rη
(ε)(t).

The following theorem, which proof can be found, for example, in Silve-
strov and Manca (2015), plays the key role in what follows.

Theorem 1. Let conditions A – C hold for semi-Markov processes η(ε)(t).

Then, for any state j ∈ rX, the first hitting times τ
(ε)
j and rτ

(ε)
j to the state

j, respectively, for semi-Markov processes η(ε)(t) and rη
(ε)(t), coincide, and,

thus, the expectations of hitting times Eij(ε) = Eiτ
(ε)
j = Ei rτ

(ε)
j , for any

i ∈ X, j ∈ rX and ε ∈ (0, ε0].

In what follows, we use the following well known formula for stationary
probabilities πi(ε), i ∈ X, which takes place, for every ε ∈ (0, ε0],

πi(ε) =
ei(ε)

Eii(ε)
, i ∈ X. (80)
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4.3. Reduced semi-Markov processes of birth-death type

Let the initial semi-Markov process η(ε)(t) has a birth-death type.
First, let consider the case, where the state 0 is excluded from the phase

space X. In this case, the reduced phase space 0X = {1, . . . , N}.
We assume that the initial distribution of the semi-Markov process η(ε)(t)

is concentrated on the reduced phase space 0X.
The transition probabilities of the reduced semi-Markov process 0η

(ε)(t)
has, for every ε ∈ (0, ε0], the following form, for t ≥ 0,

0Q
(ε)
ij (t) =



F
(ε)
1,+(t)p1,+(ε) if j = 2, i = 1,

0F
(ε)
1,−(t)p1,−(ε) if j = 1, i = 1,

F
(ε)
i,±(t)pi,±(ε) if j = i± 1, 1 < i < N,

F
(ε)
N,±(t)pN,±(ε) if j = N − 1∓1

2
, i = N,

0 otherwise,

(81)

where

0F
(ε)
1,−(t) =

∞∑
n=0

F
(ε)
1,−(t) ∗ F (ε)∗n

0,− (t) ∗ F (ε)
0,+(t) · p0,−(ε)np0,+(ε). (82)

This relation implies, for every ε ∈ (0, ε0], the following relation for tran-
sition probabilities of the reduced embedded Markov chain 0η

(ε)
n ,

0p
(ε)
ij =


0p1,±(ε) = p1,±(ε) if j = 1 + 1±1

2
, i = 1,

0pi,+(ε) = pi,±(ε) if j = i± 1, 1 < i < N,

0pN,+(ε) = pN,±(ε) if j = N − 1∓1
2
, i = N,

0 otherwise.

(83)

and the following relation for transition expectations of the reduced embed-
ded semi-Markov process 0η

(ε)(t),

0e
(ε)
ij =



0e1,+(ε) = e1,+(ε) if j = 2, i = 1,

0e1,−(ε) = e1,−(ε)

+ e0(ε) · p1,−(ε)p0,+(ε) if j = 1, i = 1,

0ei,±(ε) = ei,±(ε) if j = i± 1, 1 < i < N,

0eN,±(ε) = eN,±(ε) if j = N − 1∓1
2 , i = N,

0 otherwise.

(84)

Note that, by Theorem 1, the following relation takes place, for every
ε ∈ (0, ε0] and i, j ∈ 0X,

Eiτ
(ε)
j = Ei 0τ

(ε)
j . (85)
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Second, let us consider the case, where the state N is excluded from the
phase space X. In this case, the reduced phase space NX = {0, . . . , N − 1}.

The transition probabilities of the reduced semi-Markov process Nη
(ε)(t)

has, for every ε ∈ (0, ε0], the following form, for t ≥ 0,

NQ
(ε)
ij (t) =



F
(ε)
0,±(t)p0,±(ε) if j = 0 + 1±1

2
, i = 0,

F
(ε)
i,±(t)pi,±(ε) if j = i± 1, 1 < i < N − 1,

NF
(ε)
1,+(t)pN−1,+(ε) if j = N − 1, i = N − 1,

F
(ε)
N−1,−(t)pN−1,−(ε) if j = N − 2, i = N − 1,

0 otherwise,

(86)

where

NF
(ε)
N−1,+(t) =

∞∑
n=0

F
(ε)
N−1,+(t) ∗ F (ε)∗n

N,+ (t) ∗ F (ε)
N,−(t) · pN,+(ε)npN,−(ε). (87)

This relation implies, for every ε ∈ (0, ε0], the following relation for tran-
sition probabilities of the reduced embedded Markov chain Nη

(ε)
n ,

Np
(ε)
ij =


Np0,±(ε) = p0,±(ε) if j = 1 + 1±1

2
, i = 0,

Npi,+(ε) = pi,±(ε) if j = i± 1, 0 < i < N − 1,

NpN−1,±(ε) = pN−1,±(ε) if j = N − 1− 1∓1
2
, i = N − 1,

0 otherwise.

(88)

and the following relation for transition expectations of the reduced embed-
ded semi-Markov process 0η

(ε)(t),

Ne
(ε)
ij =



Ne1,±(ε) = e1,±(ε) if j = 0 + 1±1
2 , i = 0,

Nei,+(ε) = ei,±(ε) if j = i± 1, 0 < i < N − 1,

NeN−1,+(ε) = eN−1,+(ε)

+eN (ε) · pN−1,+(ε)
pN,−(ε)

if j = N − 1, i = N − 1,

NeN−1,−(ε) = eN−1,−(ε) if j = N − 2, i = N − 1,
0 otherwise.

(89)

It is readily seen that in both cases, where r = 0 or r = N , the reduced
semi-Markov process rη

(ε)(t) also has a birth-death type, with the phase
space, respectively 0X = {1, . . . , N} or NX = {0, . . . , N − 1} and transition
characteristics given, respectively, by relations (81) – (84) if r = 0, or by
relations (86) – (89) if r = N .
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4.4. Sequential reduction of states for birth-death type
semi-Markov processes.

Let us 0 ≤ k ≤ m ≤ r ≤ N . The states 0, . . . , k− 1 and N, . . . , r+ 1 can
be sequentially excluded from the phase space X of the semi-Markov process
η(ε)(t).

In order to describe this recurrent procedure, let us denote the resulted
reduced semi-Markov process as 〈k,r〉η

(ε)(t). This process has the reduced
phase space 〈k,r〉X = {k, . . . , r}.

In particular, the initial semi-Markov process η(ε)(t) = 〈0,N〉η
(ε)(t).

The reduced semi-Markov process 〈k,r〉η
(ε)(t) can be obtained by excluding

of the state k − 1 from the phase space 〈k−1,j〉X of the reduced semi-Markov
process 〈k−1,r〉η

(ε)(t) or by excluding state r+ 1 from the phase space 〈k,r+1〉X
of the reduced semi-Markov process 〈k,r+1〉η

(ε)(t).
The sequential excluding of the states 0, . . . , k − 1 and N, . . . , r + 1 can

be realized in an arbitrary order of choice one of these sequences and then
by excluding the corresponding next state from the chosen sequence.

The simplest variants for the sequences of excluded states are 0, . . . , k −
1, N, . . . , r + 1 and N, . . . , r + 1, 0, . . . , k − 1.

The resulted reduced semi-Markov process 〈k,r〉η
(ε)(t) will be the same

and it will have a birth-death type.
Here, we also accept the reduced semi-Markov process 〈m,m〉η

(ε)(t) with
one-state phase space 〈m,m〉X = {m} as a birth-death semi-Markov process.

This process has transition probability for the embedded Markov chain,

〈m,m〉p
(ε)
mm = 〈m,m〉pm,+(ε) + 〈m,m〉pm,−(ε) = 1, (90)

and the semi-Markov transition probabilities,

〈m,m〉Q
(ε)
mm(t) = 〈m,m〉F

(ε)
m,+(t) 〈m,m〉pm,+(ε) + 〈m,m〉F

(ε)
m,−(t) 〈m,m〉pm,−(ε)

= Pi{τ ε)i ≤ t}. (91)

The following relations, which are, in fact, variants of relations (83),

(88) and (84), (89), express transition probabilities 〈k,r〉p
(ε)
ij and expectations

of transition times 〈k,r〉e
(ε)
ij for the reduced embedded semi-Markov process

〈k,r〉η
(ε)(t), via the transition probabilities 〈k−1,r〉p

(ε)
ij and the expectations of

transition times 〈k−1,r〉e
(ε)
ij for the reduced embedded semi-Markov process
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〈k−1,r〉η
(ε)(t), for 1 ≤ k ≤ r ≤ N and, for every ε ∈ (0, ε0],

〈k,r〉p
(ε)
ij =



〈k,r〉pk,±(ε) = 〈k−1,r〉pk,±(ε)

if j = k + 1±1
2 , i = k,

〈k,r〉pi,±(ε) = 〈k−1,r〉pi,±(ε)

if j = i± 1, k < i < r,

〈k,r〉pr,±(ε) = 〈k−1,r〉pr,±(ε)

if j = r − 1∓1
2 , i = r,

0 otherwise,

(92)

and

〈k,r〉e
(ε)
ij =



〈k,r〉ek,+(ε) = 〈k−1,r〉ek,+(ε)

if j = k + 1, i = k,

〈k,r〉ek,−(ε) = 〈k−1,r〉ek,−(ε)

+ 〈k−1,r〉ek−1(ε) · 〈k−1,r〉pk,−(ε)

〈k−1,r〉pk−1,+(ε)

if j = k, i = k,

〈k,r〉ei,±(ε) = 〈k−1,r〉ei,±(ε)

if j = i± 1, k < i < r,

〈k,r〉er,±(ε) = 〈k−1,r〉er,±(ε)

if j = r − 1∓1
2 , i = r,

0 otherwise,

(93)

or, via transition probabilities 〈k,r+1〉p
(ε)
ij and expectations of transition times

〈k,r+1〉e
(ε)
ij for the reduced embedded semi-Markov process 〈k,r+1〉η

(ε)(t), for
0 ≤ k ≤ r ≤ N − 1, and, for every ε ∈ (0, ε0],

〈k,r〉p
(ε)
ij =



〈k,r〉pk,±(ε) = 〈k,r+1〉pk,±(ε)

if j = k + 1±1
2 , i = k,

〈k,r〉pi,±(ε) = 〈k,r+1〉pi,±(ε)

if j = i± 1, k < i < r,

〈k,r〉pr,±(ε) = 〈k,r+1〉pr,±(ε)

if j = r − 1∓1
2 , i = r,

0 otherwise.

(94)

28



and

〈k,r〉e
(ε)
ij =



〈k,r〉ek,±(ε) = 〈k,r+1〉ek,±(ε)

if j = k + 1+1
2 , i = k,

〈k,r〉ei,±(ε) = 〈k−1,r〉ei,±(ε)

if j = i± 1, k < i < r,

〈k,r〉er,+(ε) = 〈k,r+1〉er,+(ε)

+ 〈k,r+1〉er+1(ε) · 〈k,r+1〉pr,+(ε)

〈k,r+1〉pr+1,−(ε)

if j = r, i = r,

〈k,r〉er,−(ε) = 〈k,r+1〉er,−(ε)

if j = r − 1, i = r,

0 otherwise,

(95)

where

〈k,r〉ei(ε) = 〈k,r〉ei,+(ε) + 〈k,r〉ei,−(ε) (96)

4.5. Explicit formulas for expectations of hitting times for
birth-death type semi-Markov processes

As was mentioned above the process 〈0,N〉η
(ε)(t) = η(ε)(t). Also the process

〈1,N〉η
(ε)(t) = 0η

(ε)(t) and the process 〈0,N−1〉η
(ε)(t) = Nη

(ε)(t).
Thus, the relations (92) and (94) and relations (93) and (95) reduce to

relations (83) and (88), when computing, respectively, the transition proba-
bilities 〈1,N〉pk,±(ε) and 〈0,N−1〉pk,±(ε). Also, relation (101) reduces to relations
(84) and 89), when computing, respectively, expectation of transition times

〈1,N〉ek,±(ε) and 〈0,N−1〉ek,±(ε).
Let us get, for example, quantities 〈2,N〉pk,±(ε) and 〈2,N〉ek,±(ε) for the pro-

cess 〈2,N〉η
(ε)(t) expressed in terms of transition characteristic for the initial

semi-Markov process η(ε)(t). Using recurrent relations (92) and then (83),
we get the following relations, for every ε ∈ (0, ε0],

〈2,N〉p
(ε)
ij =



〈2,N〉p2,±(ε) = 〈1,N〉p2,±(ε) = p2,±(ε)

if j = 2 + 1±1
2
, i = 2,

〈2,N〉pi,±(ε) = 〈1,N〉pi,±(ε) = pi,±(ε)

if j = i± 1, 2 < i < N,

〈2,N〉pN,±(ε) = 〈1,N〉pN,±(ε) = pN,±(ε)

if j = N − 1∓1
2
, i = N,

0 sotherwise.

(97)
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and

〈2,N〉e
(ε)
ij =



〈2,N〉e2,+(ε) = 〈1,N〉e1,+(ε) = e1,+(ε)

if j = 2, i = 1,

〈2,N〉e1,−(ε) = 〈1,N〉e2,−(ε) + 〈1,N〉e1(ε) · 〈1,N〉
p2,−(ε)

〈1,N〉p1,+(ε)

= e2,−(ε) + e1(ε) · p2,−(ε)p1,+(ε) + e0(ε) · p1,−(ε)p2,−(ε)p0,+(ε)p1,+(ε)

if j = 1, i = 1,

〈2,N〉ei,±(ε) = 〈1,N〉ei,±(ε) = ei,±(ε)

if j = i± 1, 1 < i < N,

〈2,N〉eN,±(ε) = 〈1,N〉eN,±(ε) = eN,±(ε)

if j = N − 1∓1
2 , i = N,

0 otherwise,

(98)

since

〈2,N〉e2,+(ε) = 〈1,N〉e2,−(ε) + 〈1,N〉e1(ε) ·
〈1,N〉p2,−(ε)

〈1,N〉p1,+(ε)

= e2,−(ε) +
((
e1,−(ε) + e0(ε) ·

p1,−(ε)

p0,+(ε)

)
+ e1,+(ε)

)
· p2,−(ε)

p1,+(ε)

= e2,−(ε) + e1(ε) ·
p2,−(ε)

p1,+(ε)
+ e0(ε) ·

p1,−(ε)p2,−(ε)

p0,+(ε)p1,+(ε)
. (99)

By iterating recurrent formulas (92) – (93) and (94) – (95) in the way
shown in relations (97) – (98), we get the following explicit formulas for prob-

abilities transition probabilities 〈k,r〉p
(ε)
ij and expectations of transition times

〈k,r〉e
(ε)
ij for the reduced embedded semi-Markov process 〈k,r〉η

(ε)(t) expressed
in terms of the transition characteristic for the initial semi-Markov process
η(ε)(t), for 0 ≤ k ≤ r ≤ N and, for every ε ∈ (0, ε0],

〈k,r〉p
(ε)
ij =



〈k,r〉pk,±(ε) = pk,±(ε)

if j = k + 1±1
2
, i = k,

〈k,r〉pi,±(ε) = pi,±(ε)

if j = i± 1, k < i < r,

〈k,r〉pr,+(ε) = pr,±(ε)

if j = r − 1∓1
2
, i = r,

0 sotherwise.

(100)
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and

〈k,r〉e
(ε)
ij =



〈k,r〉ek,+(ε) = ek,+(ε)

if j = k + 1, i = k,

〈k,r〉ek,−(ε) = ek,−(ε) + ek−1(ε) ·
pk,−(ε)
pk−1,+(ε)

+ · · ·+ e0(ε) ·
p1,−(ε)···pk,−(ε)
p0,+(ε)···pk−1,+(ε)

if j = k, i = k,

〈k,r〉ei,+(ε) = ei,±(ε)

if j = i± 1, k < i < r,

〈k,r〉er,+(ε) = er,+(ε) + er+1(ε) · pr,+(ε)
pr+1,−(ε)

+ · · ·+ eN (ε) · pN−1,+(ε)···pr,+(ε)
pN,−(ε)···pr+1,−(ε)

if j = r, i = r,

〈k,r〉er,−(ε) = er,−(ε)

if j = r − 1, i = r,

0 otherwise.

(101)

Let us denote by 〈k,r〉τ
(ε)
j the hitting time for the state j ∈ 〈k,r〉X for the

reduced semi-Markov process 〈k,r〉η
(ε)(t).

By Theorem 1, the following relation takes place, for i, j ∈ 〈k,r〉X and, for
every ε ∈ (0, ε0],

Eiτ
(ε)
j = Ei 〈k,r〉τ

(ε)
j . (102)

Let us now choose k = r = m = i ∈ X. In this case the reduced phase
space 〈i,i〉X = {i} is o one-state set. In this case, the process 〈i,i〉η

(ε)(t) returns
to the state m after every jump. This implies that, in this case, for every
ε ∈ (0, ε0],

Eii(ε) = Eiτ
(ε)
i = Ei 〈i,i〉τ

(ε)
i = 〈i,i〉ei(ε). (103)

The following formulas takes place, for every i ∈ X an, for every ε ∈
(0, ε0],

Eii(ε) = ei(ε)

+ ei−1(ε)
pi,−(ε)

pi−1,+(ε)
+ ei−2(ε)

pi−1,−(ε)pi,−(ε)

pi−2,+(ε)pi−1,+(ε)

+ · · ·+ e0(ε)
p1,−(ε)p2,−(ε) · · · pi,−(ε)

p0,+(ε)p1,+(ε) · · · pi−1,+(ε)

+ ei+1(ε)
pi,+(ε)

pi+1,−(ε)
+ ei+2(ε)

pi+1,+(ε)pi,+(ε)

pi+2,−(ε)pi+1,−(ε)

31



+ · · ·+ eN(ε)
pN−1,+(ε)pN−2,+(ε) · · · pi,+(ε)

pN,−(ε)pN−1,−(ε) · · · pi+1,−(ε)
(104)

In particular,

E00(ε) = e0(ε) + e1(ε)
p0,+(ε)

p1,−(ε)
+ e2(ε)

p1,+(ε)p0,+(ε)

p2,−(ε)p1,−(ε)

+ · · ·+ eN(ε)
pN−1,+(ε)pN−2,+(ε) · · · p0,+(ε)

pN,−(ε)pN−1,−(ε) · · · p1,−(ε)
. (105)

Formulas (80), (104) and (18), (19) yield, in an obvious way, explicit for-
mulas for stationary and conditional quasi-stationary distributions for birth-
death-type semi-Markov processes.

It should be noted that such formulas for stationary distributions of birth-
death-type Markov chains are well known and can be found, for example, in
Feller (1968). In context of our studies, a special value has the presented
above recurrent algorithm for getting such formulas, based on sequential re-
duction of the phase space for birth-death-type semi-Markov processes.

5. First and second order asymptotic expansions for stationary
and conditional quasi-stationary distributions

In this section, we give explicit formulas for the coefficients in the first
and the second order asymptotic expansions for stationary and conditional
quasi-stationary distributions.

The results of the present section are based on the explicit formula (104)
for expected return times and the expressions which connect these quantities
with stationary and conditional quasi-stationary distributions. We obtain the
first and second order asymptotic expansions from these formulas by using
operational rules for Laurent asymptotic expansions presented in Silvestrov,
D. and Silvestrov, S. (2015, 2016). Some of these operational rules which are
relevant for this paper can be found in Subsection 6.1.

Let us here mention that recurrent algorithms for computation of the
corresponding higher order asymptotic expansions are given in Section 6. The
methods used in Section 6, which in particular give the first and the second
order asymptotic expansions, are more convenient and efficient for computer
programs. However, the method used in this section is interesting in its
own right since it gives a more explicit description which helps us to better
understand the asymptotic properties of our models. Moreover, having two
different ways of computing the first and the second order coefficients may
help us to detect possible errors or numerical instability in the corresponding
computer programs.
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In this section, it will be convenient to use the following notation,

Γi,j,±(ε) = pi,±(ε)pi+1,±(ε) · · · pj,±(ε), 0 ≤ i ≤ j ≤ N. (106)

Using (106), we can write formula (104) as

Eii(ε) = ei(ε) +
i−1∑
k=0

ek(ε)
Γk+1,i,−(ε)

Γk,i−1,+(ε)

+
N∑

k=i+1

ek(ε)
Γi,k−1,+(ε)

Γi+1,k,−(ε)
, i ∈ X. (107)

In particular, we have

E00(ε) = e0(ε) +
∑
k∈ 0X

ek(ε)
Γ0,k−1,+(ε)

Γ1,k,−(ε)
, (108)

and

ENN(ε) = eN(ε) +
∑
k∈NX

ek(ε)
Γk+1,N,−(ε)

Γk,N−1,+(ε)
. (109)

We will compute the desired asymptotic expansions by applying opera-
tional rules for Laurent asymptotic expansions in relations (107)–(109). In
order for the presentation to not be too repetitive, we will directly com-
pute the second order asymptotic expansions which contain the first order
asymptotic expansions as special cases. In particular, this gives us limits for
stationary and conditional quasi-stationary distributions.

The formulas for computing the asymptotic expansions are different de-
pending on whether condition H1, H2, or H3 holds. We consider these three
cases in Subsections 5.1, 5.2, and 5.3, respectively.

Each of these sections will have the same structure: First, we present a
lemma which successively constructs asymptotic expansions for the quantities
given in relations (107)–(109). Then, using these expansions, we construct
the first and the second order asymptotic expansions for stationary (Sub-
sections 5.1–5.3) and conditional quasi-stationary distributions (Subsections
5.2–5.3).

5.1. First and second order asymptotic expansions for
stationary distributions under condition H1

In the case where condition H1 holds, the semi-Markov process has no
asymptotically absorbing states. In this case, all quantities in relations (107)–
(109) are of order O(1) and the construction of asymptotic expansions are
rather straightforward.
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In the following lemma we successively construct asymptotic expansions
for the quantities given in relations (107)–(109).

Lemma 1. Assume that conditions A–C, D1–F1, G and H1 hold. Then:

(i) For i ∈ X, we have

ei(ε) = bi[0] + bi[1]ε+ ȯi(ε), ε ∈ (0, ε0],

where ȯi(ε)/ε→ 0 as ε→ 0 and

bi[0] = bi,−[0] + bi,+[0] > 0, bi[1] = bi,−[1] + bi,+[1].

(ii) For 0 ≤ i ≤ j ≤ N , we have

Γi,j,±(ε) = Ai,j,±[0] + Ai,j,±[1]ε+ oi,j,±(ε), ε ∈ (0, ε0],

where oi,j,±(ε)/ε→ 0 as ε→ 0 and

Ai,j,±[0] = ai,±[0]ai+1,±[0] · · · aj,±[0] > 0,

Ai,j,±[1] =
∑

ni+ni+1+···+nj=1

ai,±[ni]ai+1,±[ni+1] · · · aj,±[nj].

(iii) For 0 ≤ k ≤ i− 1, i ∈ 0X, we have

Γk+1,i,−(ε)

Γk,i−1,+(ε)
= A∗k,i[0] + A∗k,i[1]ε+ o∗k,i(ε), ε ∈ (0, ε0],

where o∗k,i(ε)/ε→ 0 as ε→ 0 and

A∗k,i[0] =
Ak+1,i,−[0]

Ak,i−1,+[0]
> 0,

A∗k,i[1] =
Ak+1,i,−[1]Ak,i−1,+[0]− Ak+1,i,−[0]Ak,i−1,+[1]

Ak,i−1,+[0]2
.

(iv) For i+ 1 ≤ k ≤ N, i ∈ NX, we have

Γi,k−1,+(ε)

Γi+1,k,−(ε)
= A∗k,i[0] + A∗k,i[1]ε+ o∗k,i(ε), ε ∈ (0, ε0],

where o∗k,i(ε)/ε→ 0 as ε→ 0 and

A∗k,i[0] =
Ai,k−1,+[0]

Ai+1,k,−[0]
> 0,

A∗k,i[1] =
Ai,k−1,+[1]Ai+1,k,−[0]− Ai,k−1,+[0]Ai+1,k,−[1]

Ai+1,k,−[0]2
.
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(v) For i ∈ X, we have

Eii(ε) = Bii[0] +Bii[1]ε+ ȯii(ε), ε ∈ (0, ε0],

where ȯii(ε)/ε→ 0 as ε→ 0 and

Bii[0] = bi[0] +
∑
k∈ iX

bk[0]A∗k,i[0] > 0,

Bii[1] = bi[1] +
∑
k∈ iX

(bk[0]A∗k,i[1] + bk[1]A∗k,i[0]).

Proof. Since ei(ε) = ei,−(ε) + ei,+(ε), i ∈ X, part (i) follows immediately
from condition E1.

For the proof of part (ii) we notice that it follows from the definition
(106) of Γi,j,±(ε) and condition D1 that

Γi,j,±(ε) =
j∏
k=i

(ak,±[0] + ak,±[1]ε+ ok,±(ε)), 0 ≤ i ≤ j ≤ N.

By applying the multiple product rule for asymptotic expansions, we ob-
tain the asymptotic relation given in part (ii) where the coefficients Ai,j,±[0],
0 ≤ i ≤ j ≤ n, are positive since condition H1 holds.

In order to prove parts (iii) and (iv) we use the result in part (ii). For
0 ≤ k ≤ i− 1, i ∈ 0X, this gives us

Γk+1,i,−(ε)

Γk,i−1,+(ε)
=
Ak+1,i,−[0] + Ak+1,i,−[1]ε+ ok+1,i,−(ε)

Ak,i−1,+[0] + Ak,i−1,+[1]ε+ ok,i−1,+(ε)
, (110)

and, for i+ 1 ≤ k ≤ N , i ∈ NX, we get

Γi,k−1,+(ε)

Γi+1,k,−(ε)
=
Ai,k−1,+[0] + Ai,k−1,+[1]ε+ oi,k−1,+(ε)

Ai+1,k,−[0] + Ai+1,k,−[1]ε+ oi+1,k,−(ε)
. (111)

Using the division rule for asymptotic expansions in relations (110) and
(111) we get the asymptotic expansions given in parts (iii) and (iv).

Finally, we can use relation (107) to prove part (v). This relation together
with the results in parts (i), (iii), and (iv) yield

Eii(ε) = bi[0] + bi[1]ε+ ȯi(ε)

+
∑
k∈ iX

(bk[0] + bk[1]ε+ ȯk(ε))

× (A∗k,i[0] + A∗k,i[1]ε+ o∗k,i(ε)), i ∈ X.

A combination of the product rule and the multiple summation rule for
asymptotic expansions gives the asymptotic relation in part (v).
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The following theorem gives second order asymptotic expansions for sta-
tionary probabilities. In particular, this theorem shows that there exist lim-
its for stationary probabilities, πi(0) = limε→0 πi(ε), i ∈ X, where πi(0) > 0,
i ∈ X.

The corresponding higher order asymptotic expansions are given in The-
orem 5.

Theorem 2. Assume that conditions A–C, D1–F1, G and H1 hold. Then,
we have the following asymptotic relation for the stationary probabilities
πi(ε), i ∈ X,

πi(ε) = ci[0] + ci[1]ε+ oi(ε), ε ∈ (0, ε0],

where oi(ε)/ε→ 0 as ε→ 0 and

ci[0] =
bi[0]

Bii[0]
> 0, ci[1] =

bi[1]Bii[0]− bi[0]Bii[1]

Bii[0]2
,

where the Bii[0], Bii[1], i ∈ X, can be computed from the formulas given in
Lemma 1.

Proof. It follows from condition E1 and part (v) of Lemma 1 that, for i ∈ X,

πi(ε) =
ei(ε)

Eii(ε)
=

bi[0] + bi[1]ε+ ȯi(ε)

Bii[0] +Bii[1]ε+ ȯii(ε)
.

The result now follows from the division rule for asymptotic expansions.

5.2. First and second order asymptotic expansions for
stationary and conditional quasi-stationary distributions
under condition H2

In the case where condition H2 holds, the semi-Markov process has one
asymptotically absorbing state, namely state 0. This means that p0,+(ε) ∼
O(ε) and since this quantity is involved in relations (107)–(109), the pivotal
properties of the expansions are less obvious. Furthermore, since some terms
now tends to infinity, we partly need to operate with Laurent asymptotic
expansions.

In order to separate cases where i = 0 or i ∈ 0X we will use the indicator
function γi = I(i = 0), that is, γ0 = 1 and γi = 0 for i ∈ 0X.

The following lemma gives asymptotic expansions for quantities in rela-
tions (107)–(109).
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Lemma 2. Assume that conditions A–C, D1–F1, G and H2 hold. Then:

(i) For i ∈ X, we have

ei(ε) = bi[0] + bi[1]ε+ ȯi(ε), ε ∈ (0, ε0],

where ȯi(ε)/ε→ 0 as ε→ 0 and

bi[0] = bi,−[0] + bi,+[0] > 0, bi[1] = bi,−[1] + bi,+[1].

(ii) For 0 ≤ i ≤ j ≤ N , we have,

Γi,j,+(ε) = Ai,j,+[γi]ε
γi + Ai,j,+[γi + 1]εγi+1 + oi,j,+(εγi+1), ε ∈ (0, ε0],

where oi,j,+(εγi+1)/εγi+1 → 0 as ε→ 0 and

Ai,j,+[γi] = ai,+[γi]ai+1,+[0] · · · aj,+[0] > 0,

Ai,j,+[γi + 1] =
∑

ni+ni+1+···+nj=1

ai,+[γi + ni]ai+1,+[ni+1] · · · aj,+[nj].

(iii) For 0 ≤ i ≤ j ≤ N , we have

Γi,j,−(ε) = Ai,j,−[0] + Ai,j,−[1]ε+ oi,j,−(ε), ε ∈ (0, ε0],

where oi,j,−(ε)/ε→ 0 as ε→ 0 and

Ai,j,−[0] = ai,−[0]ai+1,−[0] · · · aj,−[0] > 0,

Ai,j,−[1] =
∑

ni+ni+1+···+nj=1

ai,−[ni]ai+1,−[ni+1] · · · aj,−[nj].

(iv) For 0 ≤ k ≤ i− 1, i ∈ 0X, we have

Γk+1,i,−(ε)

Γk,i−1,+(ε)
= A∗k,i[−γk]ε−γk + A∗k,i[−γk + 1]ε−γk+1

+ o∗k,i(ε
−γk+1), ε ∈ (0, ε0],

where o∗k,i(ε
−γk+1)/ε−γk+1 → 0 as ε→ 0 and

A∗k,i[−γk] =
Ak+1,i,−[0]

Ak,i−1,+[γk]
> 0,

A∗k,i[−γk + 1] =
Ak+1,i,−[1]Ak,i−1,+[γk]− Ak+1,i,−[0]Ak,i−1,+[γk + 1]

Ak,i−1,+[γk]2
.
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(v) For i+ 1 ≤ k ≤ N, i ∈ NX, we have

Γi,k−1,+(ε)

Γi+1,k,−(ε)
= A∗k,i[γi]ε

γi + A∗k,i[γi + 1]εγi+1

+ o∗k,i(ε
γi+1), ε ∈ (0, ε0],

where o∗k,i(ε
γi+1)/εγi+1 → 0 as ε→ 0 and

A∗k,i[γi] =
Ai,k−1,+[γi]

Ai+1,k,−[0]
> 0,

A∗k,i[γi + 1] =
Ai,k−1,+[γi + 1]Ai+1,k,−[0]− Ai,k−1,+[γi]Ai+1,k,−[1]

Ai+1,k,−[0]2
.

(vi) For i ∈ X, we have

Eii(ε) = Bii[γi − 1]εγi−1 +Bii[γi]ε
γi + ȯii(ε

γi), ε ∈ (0, ε0],

where ȯii(ε
γi)/εγi → 0 as ε→ 0 and

B00[0] = b0[0] > 0, B00[1] = b0[1] +
∑
k∈ 0X

bk[0]A∗k,0[1],

Bii[−1] = b0[0]A∗0,i[−1] > 0, i ∈ 0X,

Bii[0] = b0[1]A∗0,i[−1] + bi[0] +
∑
k∈ iX

bk[0]A∗k,i[0], i ∈ 0X.

Proof. Let us first note that the quantities in parts (i) and (iii) do not depend
on p0,+(ε), so the proofs for these parts are the same as the proofs for parts
(i) and (ii) in Lemma 1, respectively.

We now prove part (ii). Notice that it follows from conditions D1 and
H2 that pi,+(ε) = ai,+[γi]ε

γi +ai,+[γi + 1]εγi+1 + oi,+(εγi+1), i ∈ X. Using this
and the definition (106) of Γi,j,+(ε) gives

Γi,j,+(ε) = (ai,+[γi]ε
γi + ai,+[γi + 1]εγi+1 + oi,+(εγi+1))

× (ai+1,+[0] + ai+1,+[1]ε+ oi+1,+(ε))

× · · ·×
× (aj,+[0] + aj,+[1]ε+ oj,+(ε)), 0 ≤ i ≤ j ≤ N.

An application of the multiple product rule for asymptotic expansions
shows that part (ii) holds.
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Now, using the results in parts (ii) and (iii) we get, for 0 ≤ k ≤ i − 1,
i ∈ 0X,

Γk+1,i,−(ε)

Γk,i−1,+(ε)
=

Ak+1,i,−[0] + Ak+1,i,−[1]ε+ ok+1,i,−(ε)

Ak,i−1,+[γk]εγk + Ak,i−1,+[γk + 1]εγk+1 + ok,i−1,+(εγk+1)
, (112)

and, for i+ 1 ≤ k ≤ N , i ∈ NX,

Γi,k−1,+(ε)

Γi+1,k,−(ε)
=
Ai,k−1,+[γi]ε

γi + Ai,k−1,+[γi + 1]εγi+1 + oi,k−1,+(εγi+1)

Ai+1,k,−[0] + Ai+1,k,−[1]ε+ oi+1,k,−(ε)
. (113)

Notice that it is possible that the quantity in equation (112) tends to
infinity as ε→ 0. Applying the division rule for Laurent asymptotic expan-
sions in relations (112) and (113) yields the asymptotic relations given in
parts (iv) and (v).

In order to prove part (vi), we consider the cases i = 0 and i ∈ 0X
separately. First note that it follows from relation (108) and the results in
parts (i) and (iv) that

E00(ε) = b0[0] + b0[1]ε+ ȯ0(ε)

+
∑
k∈ 0X

(bk[0] + bk[1]ε+ ȯk(ε))(A
∗
k,0[1]ε+ A∗k,0[2]ε2 + o∗k,0(ε

2)).

Using the product rule and the multiple summation rule for asymptotic
expansions we obtain the asymptotic relation in part (vi) for the case i = 0.

If i ∈ 0X, relation (107) implies together with parts (i), (iv), and (v)
that

Eii(ε) = bi[0] + bi[1]ε+ ȯi(ε)

+ (b0[0] + b0[1]ε+ ȯ0(ε))(A
∗
0,i[−1]ε−1 + A∗0,i[0] + o∗0,i(1))

+
∑

k∈ 0,iX
(bk[0] + bk[1]ε+ ȯk(ε))(A

∗
k,i[0] + A∗k,i[1]ε+ o∗k,i(ε)).

Notice that the term corresponding to k = 0 is of order O(ε−1) while all
other terms in the sum are of order O(1). We can again apply the product
rule and multiple summation rule for Laurent asymptotic expansions and in
this case, the asymptotic relation in part (vi) is obtained for i ∈ 0X.

The following theorem gives second order asymptotic expansions for sta-
tionary and conditional quasi-stationary probabilities. In particular, part
(i) of this theorem shows that there exist limits for stationary probabilities,
πi(0) = limε→0 πi(ε), i ∈ X, where π0(0) = 1 and πi(0) = 0 for i ∈ 0X.
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Furthermore, part (ii) of the theorem shows, in particular, that there ex-
ist limits for conditional quasi-stationary probabilities π̃i(0) = limε→0 π̃i(ε),
i ∈ 0X, where π̃i(0) > 0, i ∈ 0X. The corresponding higher order asymptotic
expansions are given in Theorem 5.

Theorem 3. Assume that conditions A–C, D1–F1, G and H2 hold. Then:

(i) We have the following asymptotic relation for the stationary probabili-
ties πi(ε), i ∈ X,

πi(ε) = ci[l̃i]ε
l̃i + ci[l̃i + 1]εl̃i+1 + oi(ε

l̃i+1), ε ∈ (0, ε0],

where l̃i = I(i 6= 0), oi(ε
l̃i+1)/εl̃i+1 → 0 as ε→ 0, and

ci[l̃i] =
bi[0]

Bii[−l̃i]
> 0, ci[l̃i + 1] =

bi[1]Bii[−l̃i]− bi[0]Bii[−l̃i + 1]

Bii[−l̃i]2
,

where Bii[−1], i ∈ 0X, Bii[0], i ∈ X, and B00[1], can be computed from
the formulas given in Lemma 2.

(ii) We have the following asymptotic relation for the conditional quasi-
stationary probabilities π̃i(ε), i ∈ 0X,

π̃i(ε) = c̃i[0] + c̃i[1]ε+ õi(ε), ε ∈ (0, ε0],

where õi(ε)/ε→ 0 as ε→ 0 and

c̃i[0] =
ci[1]

d[1]
> 0, c̃i[1] =

ci[2]d[1]− ci[1]d[2]

d[1]2
,

where d[l] =
∑
j∈ 0X ci[l], l = 1, 2.

Proof. It follows from parts (i) and (vi) in Lemma 2 that, for i ∈ X,

πi(ε) =
ei(ε)

Eii(ε)
=

bi[0] + bi[1]ε+ ȯi(ε)

Bii[γi − 1]εγi−1 +Bii[γi]εγi + ȯii(εγi)
. (114)

We also have γi = I(i = 0) = 1 − I(i 6= 0) = 1 − l̃i. By changing the
indicator function and then using the division rule for Laurent asymptotic
expansions in relation (114), we obtain the asymptotic expansion given in
part (i).

In order to prove part (ii) we first use part (i) for i ∈ 0X to get

π̃i(ε) =
πi(ε)∑

j∈ 0X πj(ε)
=

ci[1]ε+ ci[2]ε2 + oi(ε
2)∑

j∈ 0X(cj[1]ε+ cj[2]ε2 + oj(ε2))
,

and then we apply the multiple summation rule and the division rule for
asymptotic expansions in this relation.
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5.3. First and second order asymptotic expansions for
stationary and conditional quasi-stationary distributions
under condition H3

In the case where condition H3 holds, both state 0 and state N are
asymptotically absorbing for the semi-Markov process. This means that
p0,+(ε) ∼ O(ε) and pN,−(ε) ∼ O(ε) which makes the asymptotic analysis
of relations (107)–(109) even more involved.

The following lemma gives asymptotic expansions for quantities given in
relations (107)–(109).

Lemma 3. Assume that conditions A–C, D1–F1, G and H3 hold. Then:

(i) For i ∈ X, we have

ei(ε) = bi[0] + bi[1]ε+ ȯi(ε), ε ∈ (0, ε0],

where ȯi(ε)/ε→ 0 as ε→ 0 and

bi[0] = bi,−[0] + bi,+[0] > 0, bi[1] = bi,−[1] + bi,+[1].

(ii) For 0 ≤ i ≤ j ≤ N , we have

Γi,j,+(ε) = Ai,j,+[γi]ε
γi + Ai,j,+[γi + 1]εγi+1 + oi,j,+(εγi+1), ε ∈ (0, ε0],

where oi,j,+(εγi+1)/εγi+1 → 0 as ε→ 0 and

Ai,j,+[γi] = ai,+[γi]ai+1,+[0] · · · aj,+[0] > 0,

Ai,j,+[γi + 1] =
∑

ni+ni+1+···+nj=1

ai,+[γi + ni]ai+1,+[ni+1] · · · aj,+[nj].

(iii) For 0 ≤ i ≤ j ≤ N , we have

Γi,j,−(ε) = Ai,j,−[βj]ε
βj + Ai,j,−[βj + 1]εβj+1 + oi,j,−(εβj+1), ε ∈ (0, ε0],

where oi,j,−(εβj+1)/εβj+1 → 0 as ε→ 0 and

Ai,j,−[βj] = ai,−[0] · · · aj−1,−[0]aj,−[βj] > 0,

Ai,j,−[βj + 1] =
∑

ni+···+nj−1+nj=1

ai,−[ni] · · · aj−1,−[nj−1]aj,−[βj + nj].
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(iv) For 0 ≤ k ≤ i− 1, i ∈ 0X, we have

Γk+1,i,−(ε)

Γk,i−1,+(ε)
= A∗k,i[βi − γk]εβi−γk + A∗k,i[βi − γk + 1]εβi−γk+1

+ o∗k,i(ε
βi−γk+1), ε ∈ (0, ε0],

where o∗k,i(ε
βi−γk+1)/εβi−γk+1 → 0 as ε→ 0 and

A∗k,i[βi − γk] =
Ak+1,i,−[βi]

Ak,i−1,+[γk]
> 0,

A∗k,i[βi − γk + 1]

=
Ak+1,i,−[βi + 1]Ak,i−1,+[γk]− Ak+1,i,−[βi]Ak,i−1,+[γk + 1]

Ak,i−1,+[γk]2
.

(v) For i+ 1 ≤ k ≤ N, i ∈ NX, we have

Γi,k−1,+(ε)

Γi+1,k,−(ε)
= A∗k,i[γi − βk]εγi−βk + A∗k,i[γi − βk + 1]εγi−βk+1

+ o∗k,i(ε
γi−βk+1), ε ∈ (0, ε0],

where o∗k,i(ε
γi−βk+1)/εγi−βk+1 → 0 as ε→ 0 and

A∗k,i[γi − βk] =
Ai,k−1,+[γi]

Ai+1,k,−[βk]
> 0,

A∗k,i[γi − βk + 1]

=
Ai,k−1,+[γi + 1]Ai+1,k,−[βk]− Ai,k−1,+[γi]Ai+1,k,−[βk + 1]

Ai+1,k,−[βk]2
.

(vi) For i ∈ X, we have

Eii(ε) = Bii[γi+βi−1]εγi+βi−1+Bii[γi+βi]ε
γi+βi+ȯii(ε

γi+βi), ε ∈ (0, ε0],

where ȯii(ε
γi+βi)/εγi+βi → 0 as ε→ 0 and

Bii[0] = bi[0] + bN−i[0]A∗N−i,i[0] > 0, i = 0, N,

Bii[1] = bN−i[1]A∗N−i,i[0] + bi[1] +
∑
k∈ iX

bk[0]A∗k,i[1], i = 0, N,

Bii[−1] = b0[0]A∗0,i[−1] + bN [0]A∗N,i[−1] > 0, i ∈ 0,NX,

Bii[0] = b0[1]A∗0,i[−1]+bN [1]A∗N,i[−1]+bi[0]+
∑
k∈ iX

bk[0]A∗k,i[0], i ∈ 0,NX.
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Proof. We first note that the quantities in parts (i) and (ii) do not depend
on pN,−(ε), so the proofs for these parts are the same as the proofs for parts
(i) and (ii) in Lemma 2, respectively.

In order to prove part (iii) we notice that it follows from conditions D1

and H3 that pi,−(ε) = ai,−[βi]ε
βi + ai,−[βi + 1] + εβi+1 + oi,−(εβi+1), i ∈ X.

From this and the definition (106) of Γi,j,−(ε) we get, for 0 ≤ i ≤ j ≤ N ,

Γi,j,−(ε) = (ai,−[0] + ai,−[1]ε+ oi,−(ε))

× · · ·×
× (aj−1,−[0] + aj−1,−[1]ε+ oj−1,−(ε))

× (aj,−[βj]ε
βj + aj,−[βj + 1] + εβj+1 + oj,−(εβj+1)).

By applying the multiple product rule for asymptotic expansions we ob-
tain the asymptotic relation given in part (iii).

From parts (ii) and (iii) it follows that we have, for 0 ≤ k ≤ i−1, i ∈ 0X,

Γk+1,i,−(ε)

Γk,i−1,+(ε)
=

Ak+1,i,−[βi]ε
βi +Ak+1,i,−[βi + 1]εβi+1 + ok+1,i,−(εβi+1)

Ak,i−1,+[γk]εγk +Ak,i−1,+[γk + 1]εγk+1 + ok,i−1,+(εγk+1)
, (115)

and, for i+ 1 ≤ k ≤ N , i ∈ NX,

Γi,k−1,+(ε)

Γi+1,k,−(ε)
=

Ai,k−1,+[γi]ε
γi +Ai,k−1,+[γi + 1]εγi+1 + oi,k−1,+(εγi+1)

Ai+1,k,−[βk]εβk +Ai+1,k,−[βk + 1]εβk+1 + oi+1,k,−(εβk+1)
. (116)

Notice that both in relation (115) and (116) it is possible that the corre-
sponding quantity tends to infinity as ε→ 0. The asymptotic relations given
in parts (iv) and (v) are obtained by using the division rule for Laurent
asymptotic expansions in relations (115) and (116).

We finally give the proof of part (vi). For the case i = 0, it follows from
relation (108) and parts (i) and (v) that

E00(ε) = b0[0] + b0[1]ε+ ȯ0(ε)

+ (bN [0] + bN [1]ε+ ȯN(ε))(A∗N,0[0] + A∗N,0[1]ε+ o∗N,0(ε))

+
∑

k∈ 0,NX
(bk[0] + bk[1]ε+ ȯk(ε))(A

∗
k,0[1]ε+ A∗k,0[2]ε2 + o∗k,0(ε

2)).

The product rule and multiple summation rule for asymptotic expansions
now proves part (vi) for the case i = 0.

If i = N , it follows from relation (109) and parts (i) and (iv) that

ENN(ε) = bN [0] + bN [1]ε+ ȯN(ε)

+ (b0[0] + b0[1]ε+ ȯ0(ε))(A
∗
0,N [0] + A∗0,N [1]ε+ o∗0,N(ε))

+
∑

k∈ 0,NX
(bk[0] + bk[1]ε+ ȯk(ε))(A

∗
k,N [1]ε+ A∗k,N [2]ε2 + o∗k,N(ε2)).
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Again, we can use the product rule and multiple summation rule in order
to prove part (vi), in this case, for i = N .

For the case where i ∈ 0,NX, we use relation (107) and parts (i), (iv),
and (v) to get

Eii(ε) = bi[0] + bi[1]ε+ ȯi(ε)

+
∑

k∈{0,N}
(bk[0] + bk[1]ε+ ȯk(ε))(A

∗
k,i[−1]ε−1 + A∗k,i[0] + o∗k,i(1))

+
∑

k∈ 0,i,NX
(bk[0] + bk[1]ε+ ȯk(ε))(A

∗
k,i[0] + A∗k,i[1]ε+ o∗k,i(ε)).

Here we can note that the terms corresponding to k ∈ {0, N} are of order
O(ε−1) while all other terms are of order O(1). By using the product rule
and multiple summation rule for Laurent asymptotic expansions, we conclude
that the asymptotic relation given in part (vi) also holds for i ∈ 0,NX.

The following theorem gives second order asymptotic expansions for sta-
tionary and conditional quasi-stationary probabilities. In particular, part
(i) of this theorem shows that there exist limits for stationary probabilities,
πi(0) = limε→0 πi(ε), i ∈ X, where π0(0) > 0, πN(0) > 0, and πi(0) = 0
for i ∈ 0,NX. Furthermore, part (ii) of the theorem shows, in partic-
ular, that there exist limits for conditional quasi-stationary probabilities,
π̂i(0) = limε→0 π̂i(ε), i ∈ 0,NX, where π̂i(0) > 0, i ∈ 0,NX. The correspond-
ing higher order asymptotic expansions are given in Theorem 5.

Theorem 4. Assume that conditions A–C, D1–F1, G and H3 hold. Then:

(i) We have the following asymptotic relation for the stationary probabili-
ties πi(ε), i ∈ X,

πi(ε) = ci[l̂i]ε
l̂i + ci[l̂i + 1]εl̂i+1 + oi(ε

l̂i+1), ε ∈ (0, ε0],

where l̂i = I(i 6= 0, N), oi(ε
l̂i+1)/εl̂i+1 → 0 as ε→ 0, and

ci[l̂i] =
bi[0]

Bii[−l̂i]
> 0, ci[l̂i + 1] =

bi[1]Bii[−l̂i]− bi[0]Bii[−l̂i + 1]

Bii[−l̂i]2
,

where Bii[−1], i ∈ 0,NX, Bii[0], i ∈ X, and Bii[1], i = 0, N , can be
computed from the formulas given in Lemma 3.

(ii) We have the following asymptotic relation for the conditional quasi-
stationary probabilities, π̂i(ε), i ∈ 0,NX,

π̂i(ε) = ĉi[0] + ĉi[1]ε+ ôi(ε), ε ∈ (0, ε0],
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where ôi(ε)/ε→ 0 as ε→ 0 and

ĉi[0] =
ci[1]

d[1]
> 0, ĉi[1] =

ci[2]d[1]− ci[1]d[2]

d[1]2
,

where d[l] =
∑
j∈ 0,NX ci[l], l = 1, 2.

Proof. It follows from parts (i) and (vi) in Lemma 3 that, for i ∈ X,

πi(ε) =
bi[0] + bi[1]ε+ ȯi(ε)

Bii[γi + βi − 1]εγi+βi−1 +Bii[γi + βi]εγi+βi + ȯii(εγi+βi)
. (117)

We also have

γi + βi = I(i = 0) + I(i = N) = 1− I(i 6= 0, N) = 1− l̂i.

Using this relation for indicator functions and the division rule for Laurent
asymptotic expansions in relation (117) we obtain the asymptotic relation
given in part (i).

For the proof of part (ii), we first use part (i) for i ∈ 0,NX to get

π̂i(ε) =
πi(ε)∑

j∈ 0,NX πj(ε)
=

ci[1]ε+ ci[2]ε2 + oi(ε
2)∑

j∈ 0,NX(cj[1]ε+ cj[2]ε2 + oj(ε2))
,

and then we apply the multiple summation rule and the division rule for
asymptotic expansions in this relation.

6. Recurrent algorithms for asymptotic expansions for
stationary and conditional quasi-stationary distributions

In this section, we generalize results given in Section 5 and describe gen-
eral recurrent algorithms for construction of asymptotic expansions for sta-
tionary and conditional quasi-stationary distributions for perturbed birth-
death semi-Markov processes based on sequential reduction of phase spaces.

6.1 Laurent asymptotic expansions.

In this subsection, we present some operational rules for Laurent asymp-
totic expansions given in Silvestrov, D and Silvestrov S. (2015, 2016) and used
in the present paper for constructions of asymptotic expansions for station-
ary and conditional quasi-stationary distributions of perturbed semi-Markov
processes.
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A real-valued function A(ε), defined on an interval (0, ε0] for some 0 <
ε0 ≤ 1, is a Laurent asymptotic expansion if it can be represented in the
following form, A(ε) = ahAε

hA + · · · + akAε
kA + oA(εkA), ε ∈ (0, ε0], where

(a) −∞ < hA ≤ kA < ∞ are integers, (b) coefficients ahA , . . . , akA are real
numbers, (c) function oA(εkA)/εkA → 0 as ε→ 0. Such expansion ais pivotal
if it is known that ahA 6= 0.

The above paper presents operational rules for Laurent asymptotic expan-
sions. Let shortly formulate some of these rules, in particular, for summation,
multiplication, division of Laurent asymptotic expansions.

Lemma 4. Let A(ε) = ahAε
hA + · · ·+akAε

kA +oA(εkA) and B(ε) = bhBε
hB +

· · ·+ bkBε
kB + oB(εkB) be two pivotal Laurent asymptotic expansions. Then:

(i) C(ε) = cA(ε) = chCε
hC+· · ·+ckCεkC+oC(εkC ), where a constant c 6= 0,

is a pivotal Laurent asymptotic expansion and hC = hA, kC = kA, chC+r =
cahC+r, r = 0, . . . , kC − hC,

(ii) D(ε) = A(ε) + B(ε) = dhDε
hD + · · · + dkDε

kD + oD(εkD) is a pivotal
Laurent asymptotic expansion and hD = hA ∧ hB, kD = kA ∧ kB, dhD+r =
ahD+r + bhD+r, r = 0, . . . , kD − hD, where ahD+r = 0, r < hA − hD, bhD+r =
0, r < hB − hD,

(iii) E(ε) = A(ε) · B(ε) = ehEε
hE + · · · + ekEε

kE + oE(εkE) is a pivotal
Laurent asymptotic expansion and hE = hA + hB, kE = (kA + hB) ∧ (kB +
hA), ehE+r =

∑r
l=0 ahA+l · bhB+r−l, r = 0, . . . , kE − hE,

(iv) F (ε) = A(ε)/B(ε) = fhF ε
hF + · · · + fkF ε

kF + oF (εkF ) ia a pivotal
Laurent asymptotic expansion and hF = hA − hB, kF = (kA − hB) ∧ (kB −
2hB + hA), fhF+r = 1

bhB
(ahA+r +

∑r
l=1 bhB+l · fhF+r−l), r = 0, . . . , kF − hF .

The following lemma presents useful multiple generalizations of summa-
tion and multiplication rules given in Lemma 4.

Lemma 5. Let Ai(ε) = ai,hAi
εhA + · · · + ai,kAi

εkAi + oAi
(εkAi ), i = 1, . . . ,m

be pivotal Laurent asymptotic expansions. Then:

(i) D(ε) =
∑m
i=1Ai(ε) = dhDε

hD + · · · + dkDε
kD + oD(εkD) is a pivotal

Laurent asymptotic expansion and hD = min1≤l≤m hAl
, kD = min1≤l≤m kAl

,
dhD+l = a1,hD+l + · · · + am,hD+l, l = 0, . . . , kD − hD, where ai,hD+l = 0 for
0 ≤ l < hAi

− hD, i = 1, . . . ,m,

(ii) E(ε) =
∏m
i=1Ai(ε) = ehEε

hE + · · · + ekEε
kE + oE(εkE) is a pivotal

Laurent asymptotic expansion and hE =
∑m
l=1 hAl

, kE = min1≤l≤m(kAl
+∑

1≤r≤m,r 6=l hAr), ehE+l =
∑
l1+···+lm=l,0≤li≤kAi

−hAi
,i=1,...,m

∏
1≤i≤m ai,hAi

+li, l =
0, . . . , kE − hE.
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6.2. Laurent asymptotic expansions for transition characteristics
of perturbed birth-death semi-Markov processes based on
sequential reduction of phase spaces

In this subsection, we show how recurrent algorithms for constructions of
Laurent asymptotic expansions for stationary and conditional quasi-stationary
distributions of perturbed semi-Markov processes developed in Silvestrov, D
and Silvestrov S. (2015, 2016) and shortly presented in Lemmas 4 and 5 can
be applied to the model of perturbed birth-death semi-Markov processes,
which is studied in the present paper.

The operational rules for Laurent asymptotic expansions formulated in
Lemmas 4 and 5 can be applied to recurrent formulas for computing transi-
tion probabilities and expectations of transition times for reduced perturbed
birth-death semi-Markov processes (92) – (96).

In this context, it is convenient to re-write the asymptotic expansions
penetrating perturbation conditions DL and EL in the equivalent pivotal
form pi,±(ε) =

∑L+li,±
l=li,±

ai,±[l]εl + oi,±(εL+li,±) and ei,±(ε) =
∑L+li,±
l=li,±

bi,±[l]εl +

ȯi,±(εL+li,±), i ∈ X.
These asymptotic expansions play the role of boundary conditions, which

give explicit formulas for parameters and coefficients of the asymptotic ex-
pansions 〈0,N〉pi,±(ε) = pi,±(ε) =

∑L+li,±
l=li,± 〈0,N〉ai,±[l]εl + 〈0,N〉oi,±(εL+li,±) and

〈0,N〉ei,±(ε) = ei,±(ε) =
∑L+li,±
l=li,± 〈0,N〉bi,±[l]εl + 〈0,N〉ȯi,±(εL+li,±), for transi-

tion characteristics of the initial semi-Markov processes 〈0,N〉η
(ε)(t) = η(ε)(t),

namely, 〈0,N〉ai,±[l] = ai,±[l], 〈0,N〉bi,±[l] = bi,±[l], l = li,±, . . . , L+ li,±, i ∈ X.
All recurrent formulas in relations (92) – (96), except the formulas for

expectations 〈k,r〉ek,−(ε), 〈k,r〉er,+(ε), 1 ≤ k ≤ r ≤ N given, respectively, in the
third lines of relations (93) and (95), have the form of simple identities of the
type 〈k,r〉ei,±(ε) = 〈k−1,r〉ei,±(ε) and 〈k,r〉ei,±(ε) = 〈k,r+1〉ei,±(ε). This implies
equalities for the corresponding parameters and coefficients of asymptotic
expansions for transition characteristics on the left and right hand sides of
the corresponding identities.

As far as the identities for expectations 〈k,r〉ek,−(ε), 〈k,r〉er,+(ε), 1 ≤ k ≤
r ≤ N are concerned, the operational rules for Laurent asymptotic expan-
sions mentioned above should be applied to the expressions on the right
hand side of the corresponding identities. For example, let us describe the
recurrent algorithm for computing asymptotic expansions for expectations

〈k,r〉ek,−(ε), 1 ≤ k ≤ r ≤ N .
First, the division rule (iv) given in Lemma 4 should be applied to the

quotients 〈k−1,r〉pk,−(ε)

〈k−1,r〉pk−1,+(ε)
, 1 ≤ k ≤ r ≤ N . Second summation rule (ii) given

in Lemma 4 should be applied to sums 〈k−1,r〉ek−1(ε) = 〈k−1,r〉ek−1,+(ε) +
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〈k−1,r〉ek−1,−(ε), 1 ≤ k ≤ N . Third, the multiplication rule (iii) given in

Lemma 4 should be applied to the products 〈k−1,r〉ek−1(ε) · 〈k−1,r〉pk,−(ε)

〈k−1,r〉pk−1,+(ε)
, 1 ≤

k ≤ r ≤ N . Fourth, the summation rule (ii) given in Lemma 4 should be

applied to the sum 〈k,r〉ek,−(ε) = 〈k−1,r〉ek,−(ε) + 〈k−1,r〉ek−1(ε) · 〈k−1,r〉pk,−(ε)

〈k−1,r〉pk−1,+(ε)
,

1 ≤ k ≤ r ≤ N . This will yield the corresponding asymptotic expansion and
recurrent formulas for parameters and coefficients of the Laurent asymptotic
expansions for expectations 〈k,r〉ek,−(ε), 1 ≤ k ≤ r ≤ N .

The asymptotic expansions, which are based on the identities 〈k,r〉er,+(ε) =

〈k,r+1〉er,+(ε) + 〈k,r+1〉er+1(ε) · 〈k,r+1〉pr,+(ε)

〈k,r+1〉pr+1,−(ε)
, 0 ≤ k ≤ r ≤ N − 1, can be ob-

tained in analogous way.
The Laurent asymptotic expansion for the expectations of return times

Eii(ε) = 〈i,i〉ei(ε) = 〈i,i〉ei,+(ε) + 〈i,i〉ei,−(ε), i ∈ X can be obtained by ap-
plication of the summation rule (ii) given in Lemma 4 to the above sums

〈i,i〉ei,+(ε) + 〈i,i〉ei,−(ε).
Alternatively, the asymptotic expansions for the expectations of return

times Eii(ε) can be obtained, first, by application of the multiple multi-
plication rule given in Lemma 5 to the products representing numerators
and denominators in fractions penetrating expressions for these expectations
given in relation (104), second, the division rule given in Lemma 4 to these
fractions and, third, the multiple summation rule given in Lemma 5 to the
sums of the above fractions representing expectations Eii(ε) in relation (104).

Both algorithms give the same Laurent asymptotic expansions for ex-
pectations Eii(ε). The only difference is in forms of recurrent formulas for
coefficients in the corresponding expansions.

6.3. Laurent asymptotic expansions for stationary and
conditional quasi-stationary distributions of
perturbed birth-death semi-Markov processes

At the final step, the asymptotic expansion for stationary probabilities
πi(ε) = ei(ε)

Eii(ε)
, i ∈ X and then conditional quasi-stationary probabilities

π̃i(ε) = πi(ε)
1−π0(ε) , i ∈ 0X and π̂i(ε) = πi(ε)

1−π0(ε)−πN (ε)
, i ∈ 0,NX can be obtained

by application of the division rule (v) given in Lemma 4 to the quotients
defining these quantities.

Explicit expressions for coefficients of the Laurent asymptotic expansions
for the expectations of return times Eii(ε) and then for stationary and condi-
tional quasi-stationary distributions can be obtained using recurrent formulas
for coefficients of Laurent asymptotic expansions for transition characteris-
tics of perturbed reduced semi-Markov processes. This can be done in the
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same way, as the explicit expressions for expectations Eii(ε) itself have been
obtained with the use of recurrent formulas (97) – (105) for transition char-
acteristics of perturbed reduced semi-Markov processes.

The corresponding explicit recurrent formulas for coefficients of the corre-
sponding asymptotic expansions are different for the cases, where condition
H1, H2 or H3 hold. We omit the long technical calculations and just formu-
late the corresponding final result.

Theorem 5. Let conditions A – C, DL – FL and G hold. In this case:

(i) Condition H1 implies that the following asymptotic expansions for
stationary probabilities πi(ε), i ∈ X take place,

πi(ε) =
L∑
l=0

ci[l]ε
l + oi(ε

L), ε ∈ (0, ε0], (118)

where: (b) |ci[l]| < ∞, 0 ≤ l ≤ L, i ∈ X; (b) πi(0) = ci[0] > 0, i ∈ X and∑
i∈X πi(0) = 1; (c)

∑
i∈X ci[l] = 0, 1 ≤ l ≤ L; (e) oi(ε

L)/εL → 0 as ε → 0,
for i ∈ X.

(ii) Condition H2 implies that the following asymptotic expansions for
for stationary probabilities πi(ε), i ∈ X take place,

πi(ε) =
L+l̃i∑
l=l̃i

ci[l]ε
l + oi(ε

L+l̃i), ε ∈ (0, ε0], (119)

where: (a) l̃i = I(i 6= 0), i ∈ X; (b) |ci[l]| < ∞, l̃i ≤ l ≤ L + l̃i, i ∈ X; (c)
π0(0) = c0[0] = 1 and πi(0) = c0[0] = 0, c0[1] > 0, i ∈ 0X; (d)

∑
i∈X ci[l] =

0, 1 ≤ l ≤ L; (e) oi(ε
L+l̃i)/εL+l̃i → 0 as ε→ 0, for i ∈ X.

(iii) Condition H2 implies that the following asymptotic expansions for
conditional quasi-stationary probabilities π̃i(ε), i ∈ 0X takes place,

π̃i(ε) =
L∑
l=0

c̃i[l]ε
l + õi(ε

L), ε ∈ (0, ε0], (120)

where: (a) |c̃i[l]| < ∞, 0 ≤ l ≤ L, i ∈ 0X; (b) π̃i(0) = c̃i[0] > 0, i ∈ 0X and∑
i∈ 0X π̃i(0) = 1; (c)

∑
i∈ 0X c̃i[l] = 0, 1 ≤ l ≤ L; (d) õi(ε

L)/εL → 0 as ε→ 0,
for i ∈ 0X.

(iv) Condition H3 implies that the following asymptotic expansions for
for stationary probabilities πi(ε), i ∈ X take place,

πi(ε) =
L+l̂i∑
l=l̃i

ci[l]ε
l + oi(ε

L+l̃i), ε ∈ (0, ε0], (121)
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where: (a) l̂i = I(i 6= 0, N), i ∈ X; (b) |ci[l]| < ∞, l̂i ≤ l ≤ L + l̂i, i ∈ X;
(c) πi(0) = ci[0] > 0, i = 0, N , πi(0) = ci[0] = 0, ci[1] > 0, i ∈ 0,NX and

π0(0) + π1(0) = 1; (d)
∑
i∈X ci[l] = 0, 1 ≤ l ≤ L; (e) oi(ε

L+l̂i)/εL+l̂i → 0 as
ε→ 0, for i ∈ X.

(v) Condition H3 implies that the following asymptotic expansions for
conditional quasi-stationary probabilities π̂i(ε), i ∈ 0,NX,

π̂i(ε) =
L∑
l=0

ĉi[l]ε
l + ôi(ε

L), ε ∈ (0, ε0], (122)

where: (a) |ĉi[l]| < ∞, 0 ≤ l ≤ L, i ∈ 0,NX; (b) π̂i(0) = ĉi[0] > 0, i ∈ 0,NX
and

∑
i∈ 0,NX π̂i(0) = 1; (c)

∑
i∈ 0,NX ĉi[l] = 0, 1 ≤ l ≤ L; (d) ôi(ε

L)/εL → 0
as ε→ 0, for i ∈ 0,NX.

Asymptotic expansions (118) – (122) and explicit recurrent formulas for
coefficients in these expansions can be obtained by application of the recur-
rent algorithm presented in Subsection 6.1 and based on application opera-
tional rules for Laurent asymptotic expansions given in Lemmas 4 and 5 to
transition characteristics of reduced birth-death semi-Markov processes given
by recurrent formulas (92) – (96) and quotient formulas for stationary and
quasi-stationary probabilities given above.

We omit the corresponding long technical calculations and just mention
that the corresponding explicit expressions for the first and the second coef-
ficients in these expansions are given in Section 5.

7. Examples

In this section, the results of the present paper are illustrated by numerical
examples for some of the perturbed models of birth-death-type discussed in
Section 3.

Let us first note that each model presented in Section 3 is defined in
terms of intensities for a continuous time Markov chain and the perturba-
tion scenarios considered give intensities which are linear functions of the
perturbation parameter, that is,

λi,±(ε) = gi,±[0] + gi,±[1]ε, i ∈ X, (123)

where the coefficients gi,±[l] depend on the model under consideration. Con-
sequently, the higher order (l ≥ 2) terms in (29) all vanish.

In order to use the algorithm based on successive reduction of the phase
space, we first need to calculate the coefficients in perturbation conditions
DL and EL. This can be done from relations (26), (27), and (30) by applying
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the operational rules for Laurent asymptotic expansions given in Lemmas 4
and 5.

By relation (26), we have λi(ε) = λi,−(ε) + λi,+(ε), so it follows immedi-
ately from (123) that

λi(ε) = gi[0] + gi[1]ε, i ∈ X, (124)

where gi[l] = gi,−[l] + gi,+[l], l = 0, 1.
From (27), (123), (124), and Lemma 4 we deduce the following asymptotic

series expansions, for i ∈ X,

pi,±(ε) =
λi,±(ε)

λi(ε)
=
gi,±[0] + gi,±[1]ε

gi[0] + gi[1]ε
=

L+li,±∑
l=li,±

ai,±[l]εl + oi,±(εL+li,±). (125)

The expansion (125) exists for any integer L ≥ 0 and its coefficients can be
calculated from the division rule for asymptotic expansions.

Then, using (30), (124), (125), and Lemma 4, the following asymptotic
series expansions can be constructed, for i ∈ X,

ei,±(ε) =
pi,±(ε)

λi(ε)
=

L+li,±∑
l=li,±

bi,±[l]εl + ȯi,±(εL+li,±). (126)

Once the coefficients in the expansions (125) and (126) have been calcu-
lated for some integer L ≥ 0, we can use the algorithm described in Section
6 in order to construct asymptotic expansions for stationary and conditional
quasi-stationary probabilities.

The remainder of this section is organized as follows. In Section 7.1 we
illustrate our results with numerical calculations for the perturbed models of
population genetics discussed in Section 3.3. We first consider an example
where condition H1 holds and then an example where condition H3 is satis-
fied. Numerical illustrations for the perturbed model of epidemics presented
in Section 3.2 is given in Section 7.2. This provides an example where con-
dition H2 holds.

7.1. Numerical examples for perturbed models of
population genetics

Recall that the perturbation conditions for the model in Section 3.3 are
formulated in terms of the mutation parameters as

U1(ε) = C1 +D1ε, U2(ε) = C2 +D2ε. (127)
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Additionally, the model depends on the size N/2 of the population and
the selection parameters S1 and S2 which are assumed to be independent of
ε. Thus, there are in total seven parameters to choose.

In our first example, we choose the following values for the parameters:
N = 100, C1 = C2 = 5, D1 = 0, D2 = N , and S1 = S2 = 0. Recall that the
mutation probabilities are related to the mutation parameters by u1(ε) =
U1(ε)/N and u2(ε) = U2(ε)/N . It follows from (127) that u1(ε) = 0.05 and
u2(ε) = 0.05 + ε. Thus, in the limiting model, a chosen allele mutates with
probability 0.05 for both types A1 and A2. In this case, we have no absorbing
states which means that condition H1 holds.

Since we have no selection, the stationary distribution for the limiting
model will be symmetric around state 50. The perturbation parameter ε can
be interpreted as an increase in the probability that a chosen allele of type
A2 mutates to an allele of type A1. Increasing the perturbation parameter
will shift the mass of the stationary distribution to the right.

With model parameters given above, we first used relations (56), (57),
(58), (60), and (64) to calculate the coefficients in (123) for the intensities.
Then, these coefficients were used to compute the coefficients in the pertur-
bation conditions DL and EL as described above. After this, we used the
algorithm outlined in Section 6 to calculate the asymptotic expansions for
the stationary distribution given by (118) for L = 3. In particular, this also
gives the corresponding asymptotic expansions for L = 0, 1, 2. Approxima-
tions for the stationary distribution based on these expansions were obtained
by approximating the residual term by zero.

Let us first compare our approximations with the exact stationary distri-
bution for some particular values of the perturbation parameter. Figure 1
(a) shows the stationary distribution for the limiting model (ε = 0) and, as
already mentioned above, we see that it is symmetric around state 50. The
stationary distribution for the model with ε = 0.01 and the approximation
corresponding to L = 1 are shown in Figure 1 (b). Here, the approximation
seems the match the exact distribution very well. The approximation for
L = 2 is not included here since it will not show any visible difference from
the exact stationary distribution. In Figures 1 (c) and 1 (d), correspoding to
the models where ε = 0.02 and ε = 0.03, respectively, we also include the ap-
proximations for L = 2. As expected, the approximations for the stationary
distribution get worse as the perturbation parameter increases. However, it
seems that even for higher values of the perturbation parameter, some parts
of our approximations fit better to the exact stationary distribution. In this
example, it seems that the approximations are in general better for states
that belong to the right part of the distribution.

In order to illustrate that the quality of the approximations differ depend-
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(c)  ε = 0.02
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Figure 1: Comparison of the stationary distribution πi(ε) and some of its
approximations for the population genetic example of Section 3.3. The plots
are functions of the number of A1 alleles i, for different values of the per-
turbation parameter ε, with N = 100, C1 = C2 = 5, D1 = 0, D2 = N , and
S1 = S2 = 0.
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(b)  State 80
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Figure 2: Comparison of stationary probabilities πi(ε) for states i = 40
and i = 80 and some of its approximations considered as a function of the
perturbation parameter ε. The model is based on the population genetic
example of Section 3.3, with the same parameter values as in Figure 1.

ing on which states we consider, let us compare the stationary probabilities
for the states 40 and 80. The stationary probabilities of these two states
are approximately of the same magnitude and we can compare them in plots
with the same scale on both the horizontal and the vertical axes. Figure 2
(a) shows the stationary probability for state 40 as a function of the pertur-
bation parameter and its approximations for L = 1, 2, 3. The corresponding
quantities for state 80 are shown in Figure 2 (b) where we have omitted
the approximation for L = 3 since the approximation is very good already
for L = 2. When L = 2, the approximation for state 80 is clearly better
compared to the approximation for state 40.

Another point illustrated by Figures 1 and 2 is that for a fixed value of the
perturbation parameter, the quality of an approximation based on a higher
order asymptotic expansion is not necessarily better. For instance, in Figure
2 (a) we see that for ε ∈ [0.04, 0.05] the approximations for L = 1 is better
compared to both L = 2 and L = 3. However, asymptotically as ε→ 0, the
higher order approximations are better. For example, we see in Figure 2 (a)
that when ε ∈ [0, 0.02] the approximations for L = 3 are the best.

Let us now consider a second example for the perturbed model of pop-
ulation genetics. We now choose the parameters as follows: N = 100,
C1 = C2 = 0, D1 = D2 = N , and S1 = S2 = 0. In this case, both types
of mutations have the same probabilities and are equal to the perturbation
parameter, that is, u1(ε) = u2(ε) = ε. This means that both boundary states
will be asymptotically absorbing, so condition H3 holds.
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Figure 3: The conditional quasi-stationary distribution π̂i(ε) and some of its
approximations for the population genetic example of Section 3.3. The plots
are functions of the number of A1 alleles i, with the perturbation parameter
ε = 0005 fixed. Plot (a) shows the distribution for all states while plot (b) is
restricted to states 1–20. The parameter values of the model are N = 100,
C1 = C2 = 0, D1 = D2 = N , and S1 = S2 = 0.

In this case, we calculated the asymptotic expansions for the stationary
and conditional quasi-stationary stationary distribution, given by (121) and
(122), respectively.

Let us illustrate the numerical results obtained for conditional quasi-
stationary distributions. Figure 3 (a) shows the conditional quasi-stationary
distribution for ε = 0.005 and some of its approximations. Since it is quite
hard to see the details near the boundary states for this plot, we also show
the same curves restricted to the states 1–20 in Figure 3 (b). As in the pre-
vious example, it can be seen that the qualities of the approximations differ
between the states. In this case, we see that the approximations for states
close to the boundary are not as good as for interior states. Similar type of
behavior also appears for different choices of the selection parameters S1 and
S2. We omit the plots showing this since they do not contribute with more
understanding of the model.

Let us instead study the limiting conditional quasi-stationary distribu-
tions (37) for some different values of the selection parameters S1 and S2.
These types of distributions are interesting in their own right and are studied,
for instance, by Allen and Tarnita (2014) where they are called rare-mutation
dimorphic distributions. In our example, if mutations are rare (i.e., ε is very
small), the probabilities of such a distribution can be interpreted as the likeli-
hoods for different allele frequencies to appear during periods of competition
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which are separated by long periods of fixation.
Figure 4 (a) shows the limiting conditional quasi-stationary distribution

in the case S1 = S2 = 0, that is, for a selectively neutral model. Now, let the
selection parameters be given by S1 = 10 and S2 = −10. In this case, the
gene pairs with genotypes A1A1, A2A2, and A1A2 have survival probabilities
approximately equal to 0.37, 0.30, and 0.33, respectively. Thus, allele A1 has
a selective advantage and this is reflected in Figure 4 (b) where the limiting
conditional quasi-stationary distribution is shown in this case. The mass of
the distribution is now shifted to the right compared to a selectively neutral
model. Next, we take the selection parameters as S1 = S2 = 10 which implies
that gene pairs with genotypes A1A1, A2A2, and A1A2 have survival prob-
abilities approximately equal to 0.345, 0.345, and 0.31, respectively. This
means that we have a model with underdominance and we see in Figure 4
(c) that the limiting conditional quasi-stationary distribution then has more
of its mass near the boundary compared to a selectively neutral model. Fi-
nally, we set the selection parameters as S1 = S2 = −10. Then, gene pairs
with genotypes A1A1, A2A2, and A1A2 have survival probabilities approx-
imately equal to 0.32, 0.32, and 0.36, respectively. This gives us a model
with overdominace or balancing selection and in this case we see in Figure 4
(d) that the limiting conditional quasi-stationary distribution has more mass
concentrated to the interior states compared to a selectively neutral model.

7.2 Numerical examples for perturbed epidemic models

In our last numerical example, we consider the perturbed epidemic model
described in Section 3.2. Recall from (53) that the contact rate ν for each
individual and the group of infected individuals outside the population is
considered as a perturbation parameter, that is, ν = ν(ε) = ε. In this case,
state 0 is asymptotically absorbing which means that condition H2 holds.

It follows directly from (51) and (52) that the intensities of the Markov
chain describing the number of infected individuals are linear functions of ε
given by

λi,+(ε) = λi(1− i/N) + (N − i)ε, λi,−(ε) = µi, i ∈ X.

In this model, we only have three parameters to choose: N , λ, and µ. As
in the previous examples, let us take N = 100 which here corresponds to the
size of the population. Furthermore, we let µ = 1 so that the expected time
for an infected individual to be infectious is equal to one time unit. Numerical
illustrations will be given for the cases where λ = 0.5 and λ = 1.5. For the
limiting model, we have in the former case that the basic reproduction ratio
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Figure 4: Plots of the limiting conditional quasi-stationary distribution π̂i(0)
for the population genetic example of Section 3.3, as a function of the number
of A1-alleles i, for different values of the selection parameters. The model
parameters N , C1, C2, D1 and D2 are the same as in Figure 3. Note that
the scales of the vertical axes differ between the plots.
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Figure 5: Comparison of the limiting conditional quasi-stationary distribu-
tion π̃i(0) for the epidemic model of Section 3.2, as a function of the number
of infected individuals i, for a population of size N = 100 with recovery rate
µ = 1. The force of infection parameter is λ = 0.5 in a) and λ = 1.5 in b).
Note that the scales of the vertical axes differ between the two plots.

R0 = 0.5 and in the latter case R0 = 1.5. The properties of the model is
quite different depending on which of these two cases we consider.

For the two choices of model parameters given above we calculated asymp-
totic expansions for stationary and conditional quasi-stationary distributions
given by (119) and (120), respectively.

Let us first compare the limiting conditional quasi-stationary distribu-
tions (35). Figure 5 (a) shows this distribution for the case where λ = 0.5
and µ = 1 and in Figure 5 (b) it is shown for the case where λ = 1.5 and
µ = 1. In the former case, the limiting conditional quasi-stationary distri-
bution has most of its mass concentrated near zero and in the latter case
the distribution has a shape which resembles a normal curve and most of its
mass is distributed on the states between 0 and 60.

We can also study plots of the type given in Figures 1–3. Also in this
example, intervals for the perturbation parameter where the approximations
are good depend on which state is considered. In this case, states close to
zero are more sensitive to perturbations. Let us here just show two of the
plots for illustration. For the model with λ = 1.5 and µ = 1, Figure 6
(a) shows the conditional quasi-stationary distribution for ε = 0.02 and the
corresponding approximations for L = 1 and L = 2. For the same model
parameters, the quasi-stationary probability for state 10 is shown in Figure
6 (b) as a function of the perturbation parameter together with some of its
approximations.
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Figure 6: Conditional quasi-stationary probabilities π̃i(ε) and some approx-
imations for the epidemic model of Section 3.2, with N = 100, λ = 1.5 and
µ = 1. Note that the horizontal axes in the two plots represent different
quantities; the number of infected individuals i in a) and the perturbation
parameter ε in b).
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Figure 7: Comparison of the stationary probability πi(ε) of state i = 0 as a
function of the perturbation parameter ε for the epidemic model of Section
3.2 when N = 100, µ = 1, and the contact rate parameter equals a) λ = 0.5
and b) λ = 1.5. Note that the scales of the horizontal axes differ between
the two plots.
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Finally, let us compare the stationary probabilities for state 0. Note that,
despite that the limiting conditional quasi-stationary distribution is very dif-
ferent depending on whether R0 = 0.5 or R0 = 1.5 for the model with ε = 0,
the limiting stationary distribution is concentrated at state 0 in both these
cases. Figure 7 (a) shows the stationary probability of state 0 as a function
of the perturbation parameter and some of its approximations in the case
where λ = 0.5 and µ = 1. The corresponding quantities for the case where
λ = 1.5 and µ = 1 are shown in Figure 7 (b). Qualitatively the plots show
approximately the same behavior, but note that the scales on the horizontal
axes are very different. We see that the stationary probability of state 0 for
the limiting model is much more sensitive to perturbations in the case where
R0 = 1.5. It follows from (42) that this is due to fact that the expected
time E10(ε) for the infection to (temporarily) die out after one individual
gets infected, is much larger for the model with R0 = 1.5.

8. Discussion

The present paper is devoted to studies of asymptotic expansions for sta-
tionary and conditional quasi-stationary distributions for perturbed birth-
death-type semi-Markov processes. The algorithms of sequential phase space
reduction for perturbed semi-Markov processes combined with techniques
of Laurent asymptotic expansions developed in the recent papers by Sil-
vestrov, D. and Silvestrov, S. (2015, 2016) are applied to birth-death-type
semi-Markov processes. In this model, the proposed algorithms of phase
space reduction preserve the birth-death structure for reduced semi-Markov
processes. This made it possible to get, in the present paper, explicit formu-
las for coefficients of the corresponding asymptotic expansions for stationary
and quasi-stationary distributions. The asymptotic expansions may still be
preferable though when the state space is large and (quasi-)stationary distri-
butions are computed for several values of the perturbation parameter, since
only the coefficients of the appropriate Laurent expansions are needed. We
also apply the above results to perturbed models of population dynamics, epi-
demic models and models of population genetics and supplement theoretical
results by computations illustrating numerical accuracy of the correspond-
ing asymptotic expansions and diversity of shape forms for stationary and
quasi-stationary distributions in the above perturbed models.

Several extensions of our work are possible. We have considered semi-
Markov processes defined on a finite and linearly ordered state space X,
that is a subset of a one-dimensional lattice. We also confined ourselves to
processes of birth-death type, where only jumps to neighboring states are
possible.
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For population dynamics models, one needs to go beyond birth-death
processes though and incorporate larger jumps in order to account for a
changing environment, Lande et al. (2003). State spaces that are subsets
of higher-dimensional lattices are of interest in a number of applications, for
instance SIR-models of epidemic spread where some recovered individuals
get immune, N̊asell (2002), population genetic models with two sexes, Moran
(1958b), Hössjer and Tyvand (2016), and population dynamics or population
genetics models with several species or subpopulations, Lande et al. (2003),
Hössjer et al. (2014). It is an interesting topic of further research to apply
the methodology of this paper to such models.
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