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Abstract

We introduce a two-player game involving two tokens located at points of a fixed set. The
players take turns to move a token to an unoccupied point in such a way that the distance
between the two tokens is decreased. Optimal strategies for this game and its variants are
intimately tied to Gale-Shapley stable marriage. We focus particularly on the case of random
infinite sets, where we use invariance, ergodicity, mass transport, and deletion-tolerance to
determine game outcomes.
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1 Friendly Frogs

Here is a simple two-player game, which we call friendly frogs. A pond contains several lily
pads. (Their locations form a finite set L of points in Euclidean space Rd). There are two frogs.
The first player, Alice, chooses a lily pad and places a frog on it. The second player, Bob,
then places a second frog on a distinct lily pad. The players then take turns to move, starting
with Alice. A move consists of jumping either frog to another lily pad, in such a way that the
distance between the two frogs is strictly decreased, but they are not allowed to occupy the same
lily pad. (The frogs are friends, so do not like to be moved further apart, but a lily pad is not
large enough to support them both.) A player who cannot move loses the game (and the other
player wins). See Figure 1 for an example game.

We are interested in optimal play. A strategy for a player is a map that assigns a legal
move (if one exists) to each position, and a winning strategy is one that results in a win for
that player whatever strategy the other player uses. (In friendly frogs, a position consists of the
locations of 0, 1 or 2 frogs.) If there exists a winning strategy for a player, we say that the game
is a win for that player (and a loss for the other player).

Since there are only finitely many possible positions, and the distance between the frogs
decreases on each move, the game must end after a finite number of moves. Consequently, for
any set L, the game is a win for exactly one player. Is it Alice or Bob? Surprisingly, the answer
depends only on the size of L.
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Figure 1: A game of friendly frogs on a set L of size 5. Alice starts. Alice’s moves are shown in
amber, Bob’s in blue. After move 5, Bob has no legal move, so Alice wins.

Theorem 1. Consider friendly frogs played on a finite set L ⊂ Rd of size n in which all pairs
of points have distinct distances. The game is a win for Alice if n is odd, and a win for Bob is
n is even.

Proof. Let M be the set of all unordered pairs {x, y} in L such that the game started with
two frogs at x and y is a loss for the next player. The key ingredient is a simple algorithm
that identifies M . (We postpone consideration of the two opening moves, in which the frogs are
placed). In fact M will form a partial matching on L. We construct this matching iteratively
as follows. The idea is to work backwards from positions where the outcome is known. Order
the set of all

(n
2

)
pairs in L in increasing order of distance between the pair. Then for each

pair in turn, match the two points to each other if and only if neither is already matched. The
algorithm ends with at most one point not matched. See Figure 2 for an example.

To show that this M has the claimed property for the game, we need to check that from any
position in M , it is impossible to move to another position in M , while from a position not in
M , it is possible to move to a position in M . The former is immediate because M is a partial
matching (and a move consists of moving only one frog). For the latter, suppose the frogs are
located at x and y, and that x and y are not matched to each other. Since x and y were not
matched by the algorithm, at least one of them was matched to a closer point; without loss
of generality, x is matched to w, where |x − w| < |x − y|. (Here and subsequently, | · | is the
Euclidean norm on Rd.) Therefore we can move a frog from y to w.

If n is odd then there is exactly one point that is not matched, so Alice wins by placing the
first frog there; wherever Bob places the second frog, the two frog locations are not matched to
each other. If n is even then the matching M is perfect (i.e. every point is matched). Therefore,
wherever Alice places the first frog, Bob wins by placing the second on its partner in M .
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Figure 2: The matching M of the set L in Figure 1.

We will consider various extensions of the friendly frogs game, including versions where
frogs and/or points are player-specific (available only to one player), where certain moves are
forbidden, and where different winning criteria apply. Notwithstanding the humble beginning
of Theorem 1, we will be led into some very intriguing waters. For concreteness we will focus
throughout on points in Rd, although many arguments carry over to more general metric spaces
(and, for instance, the above proof extends even to any injective symmetric distance function
on L). We will continue to assume that all inter-point distances are distinct. (Relaxing this
assumption is also quite natural, but we choose instead to pursue other directions.)

Matters become particularly interesting when we allow the set of points (lily pads) L to
be infinite, and especially a random countable set. The “losing” two-frog positions will still
form a matching, and this matching is most naturally interpreted as a version of the celebrated
stable marriage of Gale and Shapley, the topic of the 2012 Nobel prize in economics (awarded
to Shapley and Roth). We will make crucial use of invariance of the probability distribution of
L under symmetries of Rd. This powerful tool permits remarkably simple and elegant proofs of
facts apparently not amenable to other arguments. In games involving points of several types,
we will see an example of a phase transition, as well as a situation in which existence of a phase
transition is an open question. We will also analyze play of simultaneous games by making a
connection to the remarkable theory of Sprague-Grundy values (or “nimbers”).

The article contains a mixture of original research and expository material. We use the
friendly frogs game partly as a vehicle to showcase some beautiful known ideas, and we assume
a minimum of technical background. The game and its analysis are novel, so far as we know.
Stable marriage [10] and its variants have been extensively studied, but the connection to games
appears to be new. Many of the results that we use on matchings of random point sets are
taken from [17]. We will review the necessary background and give proofs where appropriate.
The general theory of combinatorial games is highly developed (see e.g. [3]). We will explain
the relevant parts of the theory as they apply in our context. Other recent work on games in
random settings appears for example in [1, 14, 15] and the review [19]. In a different direction,
certain games in infinite spaces have intimate connections with general topology [21].

2 Infinite point sets

Theorem 1 shows that the outcome of friendly frogs on a finite set L is determined solely by
the parity of the number of points (lily pads). What happens when L is infinite? Is ∞ odd or
even? The answer now depends on the choice of set; we will focus especially on the behaviour
of typical (i.e. random) infinite sets.

Let L be an infinite subset of Rd. As before, we assume that all distances between pairs
of points in L are distinct. We call a sequence of points x1, x2, . . . a descending chain if3



Figure 3: Examples of infinite sets L ⊂ R. Top: play continues forever, owing to an infinite
descending chain. Middle: Bob wins. Bottom: Alice wins.

the distances (|xi − xi+1|)i≥1 form a strictly decreasing sequence. If there exists an infinite
descending chain x1, x2, · · · ∈ L, then it is possible for the game to last forever. See Figure 3.
Therefore we make the additional assumption that L has no infinite descending chains. This
implies in particular that L is discrete, i.e. any bounded set contains only finitely many points.

It is easy to construct examples of infinite L satisfying the above conditions for which either
player wins friendly frogs; see Figure 3. Firstly, in dimension 1, place exactly two points in each
of the intervals [3i, 3i + 1] for i ∈ Z. (A simple way to make all inter-point distances distinct
is to choose each point uniformly at random in the appropriate interval, independently of all
others.) Then Bob wins by placing a frog at the unique point in the same interval as Alice’s
initial frog. Secondly, suppose the points are as above except that the interval [0, 1] now contains
only one point. Then Alice wins by placing the first frog on this point; whichever point Bob
chooses for the second frog, Alice can then move the first frog to the “partner” of that point in
the appropriate unit interval.

As in the previous section, the key to analyzing the game for general L is to identify those
positions from which the game is a loss for the player whose turn it is to move. Following standard
conventions of combinatorial game theory (see e.g. [3]), such positions are called P-positions to
indicate that the [P]revious player wins, while all other positions are called N-positions, since
the [N]ext player wins. Since terminal positions are P-positions, the P- and N-positions satisfy
the following.

(N) From every N-position, there is at least one possible move to a P-position.

(P) From every P-position, every possible move is to an N-position.

Since the game terminates in a finite number of moves, it follows by induction that these
properties are sufficient to characterize the P- and N-positions. That is, to check that a claimed
partition of the positions into P- and N-positions is correct, it suffices to check that it satisfies
(N) and (P).

In many games, characterizing the set of P-positions is a difficult problem requiring exper-
imentation and insight. In contrast, checking via (N) and (P) that such a characterization is
correct may be essentially mechanical.

In friendly frogs, the two-frog P-positions are given by a matching. Here is some notation.
Let L ⊆ Rd. A matching of L is a set M of unordered pairs of distinct points in L such that
each point of L is included in at most one pair. The matching is perfect if each point is included
in exactly one pair. For x ∈ L, we write M(x) for the partner of x, i.e. the unique point y such
that {x, y} ∈ M , or, if there is no such y, we set M(x) := ∞ and say that x is unmatched.

As in the case of finite L in the last section, we will construct the relevant matching iteratively.
Now, however, there may be no closest pair of points, so we need a local version of the algorithm.
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The following abstraction will prove very useful. Imagine that each point of L “prefers” to
be matched to a partner that is as close as possible. Given a matching M of L, a pair of points
x, y ∈ L is called unstable if they both strictly prefer each other over their own partners, i.e. if
|x−M(x)| and |y−M(y)| both strictly greater than |x−y| (where |x−M(x)| := ∞ if M(x) = ∞,
so that any partner is preferable to being unmatched). A matching M is called stable if there
are no unstable pairs. Note that any stable matching of L has at most one unmatched point.

Stable matching can be applied to a wide variety of settings involving agents each of which
has preferences over the others. The concept was introduced in a celebrated paper of Gale and
Shapley [10], who considered the setting of n heterosexual marriages between n girls and n boys,
each of whom has an arbitrary preference order over those of the opposite sex. Gale and Shapley
gave a beautiful algorithm proving the existence of a stable matching in this case. (They showed
however that stable matchings are not necessarily unique, and may not exist in the same-sex
“room-mates” variant). As mentioned earlier, the 2012 Nobel prize in economics was awarded
on the basis of this and ensuing work, to Lloyd S. Shapley for theoretical advances, and to
Alvin E. Roth for practical applications. Our setting differs from the standard Gale-Shapley
same-sex matching problem in that the set L is infinite; on the other hand, our preferences are
very special, since they are based on distance. This case was studied in [17].

Proposition 2 ([17]). Suppose L ⊂ Rd has all pairwise distances distinct and has no infinite
descending chains. Then there exists a unique stable matching of L.

Proof. We will show that the following algorithm leads to a stable matching. First match all
mutually closest pairs of points. Then remove them and match all mutually closest pairs in the
remaining point set. Repeat indefinitely (i.e. for a countably infinite sequence of stages), and
take as the final matching the set of all pairs that are ever matched.

By induction over the stages in the algorithm, every pair that is matched by the algorithm
must be matched in any stable matching.

Furthermore, at most one point can be left unmatched by the algorithm. To see this, assume
that there are at least two unmatched points. Since there are no descending chains, the set of
unmatched points then contains at least one pair of points that are mutually closest in this set
and, since L is discrete, this pair must have been mutually closest at some finite stage of the
algorithm. However, then they should have been matched to each other, which is a contradiction.

Finally, we need to confirm that the resulting matching is in fact stable. To this end, assume
that there exist x, y ∈ L with |x − M(x)| and |y − M(y)| both strictly greater than |x − y|.
By the previous argument, at least one of x and y is matched, so consider the earliest stage at
which one of them was matched by the algorithm. Since both x and y were unmatched prior to
this stage, we obtain a contradiction.

Proposition 3. Suppose L ⊂ Rd has all pairwise distances distinct and has no infinite descend-
ing chains. Let M be the stable matching of L and consider friendly frogs on L. The position
with the two frogs at x and y is a P-position if and only if x is matched to y in M .

Proof. Since L has no infinite descending chains, the game terminates. Therefore, it suffices to
check the conditions (N) and (P) above. For (N), if {x, y} 6∈ M , then x (or y) must have a
partner that is closer than y (or respectively x), since otherwise x and y would constitute an
unstable pair. Without loss of generality, M(x) = w where |x− w| < |x− y|, and we can then
move a frog from y to w. The claim (P) is immediate, since M is a matching.

As before, if M has one unmatched point then Alice wins by placing the first frog at that
point. If the matching is perfect then Bob wins by placing the second frog at the partner of
Alice’s initial move. As we have seen, both situations are possible for suitable infinite sets L.
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Figure 4: The stable matching of random points on a two-dimensional torus.

2.1 Random infinite sets

It is natural to ask what happens for a typical infinite set of points. A natural and canonical way
to formalize this notion is the Poisson point process, which is defined as follows. Fix λ > 0. Let
any Borel set of finite volume contain a random number of points with a Poisson distribution
of mean equal to λ times its volume, and let disjoint sets contain independent numbers of
points. These conditions characterize the distribution of the set of points, and the resulting
random set is called a (homogeneous) Poisson (point) process with intensity λ on Rd. It is
a countable infinite set with probability 1. (The Poisson process has other equivalent definitions
– for instance it may be constructed as a limit as n → ∞ of n uniformly random points in a
ball of volume n/λ around the origin, or as a limit as ǫ → 0 of a grid of cubes of volume ǫ
each of which contains a point with probability ǫλ independently.) If L is a Poisson process of
intensity 1 then {λ1/dx : x ∈ L} is a Poisson process of intensity λ – the intensity parameter
will be unimportant for us until we consider several Poisson processes together. See e.g. [6]
for background. It is straightforward to check that with probability 1, all pairs of points have
distinct distances, and that there are no descending chains. See e.g. [13] or [5] for proofs. The
process is translation-invariant, which is to say, its distribution is invariant under the action
of any translation of Rd.

Theorem 4. Let L be a Poisson point process on Rd. With probability 1, friendly frogs on L is
a win for Bob.

Proof. By Proposition 2, there is a unique stable matching M of L. It suffices to check that
this matching is perfect with probability 1. The matching has at most one unmatched point.
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Figure 5: Three variant games: (a) colored friendly frogs, in which each player may only move
their own frog; (b) colored friendly frogs on colored points, where in addition a frog may only
occupy a point of its own color; (c) fussy frogs, in which the two frogs may not both occupy red
points.

But if there is an unmatched point then its location is a translation-invariant random variable
on Rd, which is impossible. More precisely, by translation-invariance of the Poisson process and
uniqueness of the stable matching, every unit cube in Rd has equal probability p of containing
an unmatched point. We can partition Rd into unit cubes indexed by Zd, so the probability that
there exists an unmatched point is

∑
z∈Zd p. Since this sum must be finite, p = 0, whence the

sum is 0.

Despite the simplicity of the above proof, there is something subtle and mysterious about the
argument. What probability-one property of the Poisson process does it use? In other words,
is there some easily described set A of subsets of Rd such that (a) the Poisson process lies in A
with probability 1, and (b) Bob wins on any L ∈ A? We do not know of such a set, except for
unsatisfying choices such as A = {L : L has a perfect stable matching} or A = {L : Bob wins}.
As we have seen, the set of L with distinct inter-point distances and no descending chains satisfies
(a) but not (b). The proof of Theorem 4 uses translation-invariance of the Poisson process in a
fundamental way that apparently cannot be easily reduced to such a probability-one property.
Many elegant arguments in probability theory involve an appeal to some symmetry or invariance
property of this kind. In the next section we will use stronger probabilistic properties of Poisson
processes – deletion-tolerance and ergodicity.

In fact, the algorithm in the proof of Proposition 2 leads to a perfect stable matching for a
large class of translation-invariant point processes on Rd – see [17, Proposition 9]. The conclusion
of Theorem 4 hence remains valid for this class of processes.

The article [17] is also concerned with the distribution of the distance from a point to its
partner in the stable matching. These distances are potentially relevant to issues of computa-
tional complexity and length of the game. For instance, if Alice is required to place her first frog
within distance r of the origin, how difficult can she make it for Bob to win? We leave these
interesting questions for future investigation.

3 Colored frogs, colored points

In this section we consider variants of friendly frogs in which frogs and/or lily pads have multiple
colors, and the allowed moves are correspondingly restricted. Throughout we take L to be an
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infinite set satisfying the assumptions of Proposition 2.

3.1 Colored frogs

First we introduce the colored friendly frogs game. Here, Alice starts by placing an amber
frog on some point of L, then Bob places a blue frog on a different point. Subsequently, the
game proceeds exactly as before, except that Alice may only move the amber frog, and Bob may
only move the blue frog. As before, a player who cannot move loses.

A two-frog position can now be specified by an ordered pair (x, y), where x is the location
of the frog of the previous player to move, and y the location of the frog of the next player.

Rather than requiring an entirely new analysis, it turns out that the P-positions can again
be described in terms of the stable matching M of L. If |x − y| ≤ |x − M(x)| then we say
that x desires y. (This terminology is natural given the interpretation of preferences described
earlier.) Note the use of the weak inequality ≤, so that a point desires its own partner. Here is
the analogue of Proposition 3 for colored friendly frogs.

Proposition 5. Suppose L ⊂ Rd has all pairwise distances distinct and has no infinite descend-
ing chains. Let M be the stable matching of L, and consider the colored friendly frogs game on
L. The position (x, y) is a P-position if and only if x desires y.

Proof. Again it suffices to check the conditions (N) and (P). For (N), if |x − y| > |x −M(x)|,
then the frog at y can be moved to M(x). On the other hand, for (P), if |x− y| ≤ |x−M(x)|,
then there cannot exist z ∈ L with |x− z| < |x− y| and |x− z| ≤ |z −M(z)|, since in that case
x and z would constitute an unstable pair. Hence moving the frog at y must result in a position
(z, x) with |x− z| > |z −M(z)|.

Note that an unmatched point in the stable matching is not desired by any other point,
since that pair would be unstable. Hence, if the stable matching of L has one unmatched point,
then Alice wins colored friendly frogs by placing her amber frog at the unmatched point. If the
matching is perfect, then Bob wins, e.g. by placing his blue frog at the partner of Alice’s initial
point. The outcome in hence the same as in the original friendly frogs game. In particular, we
have the following.

Corollary 6. Let L be a Poisson process on Rd. With probability 1, colored friendly frogs on L
is a win for Bob.

Indeed, Bob may use the same strategy in the colored and uncolored games, always moving
to a matched pair. Does this mean that the games are essentially identical? No. To highlight an
interesting difference, let us modify the rules in a way that favors Alice. In shy friendly frogs,
we fix a constant c > 0, and stipulate that Bob, on his opening move, cannot place the second
frog within distance c of the first frog. (But we place no such restriction on subsequent moves.)
Shy colored friendly frogs is defined analogously. Surprisingly, the outcome now differs between
the two variants; the proof will employ an interesting probabilistic argument.

Theorem 7. Let L be a Poisson process on Rd, and fix c > 0. With probability 1:

(i) shy friendly frogs is a win for Alice;

(ii) shy colored friendly frogs is a win for Bob.
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Proof. For (i), Alice places the first frog on any point x whose partner M(x) is at least distance
c away. Such a point exists, since the stable matching M is perfect, but the Poisson process has
points whose nearest neighbor is at least distance c away.

Turning to (ii), we claim that with probability 1, every point is desired by infinitely many
others. This implies in particular that whatever Alice’s opening move x, there exists a point y
with |x − y| > c that desires x, so Bob wins by placing his frog there, by Proposition 5. The
claim follows from [7, Theorem 1.3 (i)]. Since the proof in our case is short, we include it.

Let X be the (random) point of L closest to the origin. It suffices to show that infinitely
many points desire X. Let D be the set of points that desire X. Modify the set L as follows.
Whenever D is finite, delete all points of D and their partners, except for X itself (which is
the partner of a point in D). It is easy to check that the stable matching of the modified set is
simply the restriction of M to the points that remain. In particular, if D was finite then X is
now unmatched. However, the Poisson process is deletion-tolerant, which is to say: deleting
any finite set of points, even in a way that depends on the process, results in a point process
whose distribution is absolutely continuous with respect to the original distribution. (See e.g.
[17, Lemma 18] or [18].) That is, the deletion cannot cause any event of zero probability to have
positive probability. (Intuitively, the picture after deletion is still plausible.) Since the stable
matching of the Poisson process is perfect with probability 1, we deduce that D was infinite
with probability 1.

3.2 Colored points

There is a further natural variant of colored friendly frogs in which the two frogs are restricted
to different point sets. Let LA and LB be two disjoint subsets of Rd whose union satisfies the
assumptions of Proposition 2. We refer to points of LA and LB as amber and blue, respectively.
We stipulate that Alice’s amber frog can only occupy an amber point, and Bob’s blue frog can
only occupy a blue point. Otherwise the rules are as for colored friendly frogs. We call this
game colored friendly frogs on colored points. The P-positions in this case are given by a
two-color variant of stable matching.

A two-color matching of (LA, LB) is a set M of pairs of points (x, y) ∈ LA × LB such that
each point is contained in at most one pair. As in the one-color case, the matching is perfect if
each point of LA ∪ LB is included in a pair. A two-color matching M of (LA, LB) is stable if
and only if there do not exist x ∈ LA and y ∈ LB with |x−M(x)| and |y −M(y)| both strictly
greater than |x− y|.

Proposition 2 and Proposition 5 remain true for this game, with L replaced by (LA, LB),
“stable matching” replaced by “stable two-color matching”, and a revised definition of desire
under which a point can only desire a point of the opposite color (see [17] for more detail). The
same proofs apply with only minor adjustments. Specifically, in the algorithm described in the
proof of Proposition 2, points of the same color cannot be matched to each other. Therefore,
instead of leaving at most one point unmatched, it follows from the same arguments that all
unmatched points must be of the same color.

Note that an unmatched point desires all points of the other color, and an unmatched point
cannot be desired by any point of the other color, since they would be an unstable pair. If the
two-color stable matching has unmatched amber points, then Alice wins by placing her frog at
one of these points. If not, Bob wins by placing his frog on an unmatched blue point (if one
exists), or on the partner of Alice’s opening move.

Theorem 8. Let LA and LB be two independent Poisson processes on Rd, with respective
intensities α and β. Consider colored friendly frogs with colored points on (LA, LB). The game
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is a win for Bob if α ≤ β, and a win for Alice if α > β.

The probabilistic setup of Theorem 8 is equivalent to that of a single Poisson process of
intensity α + β in which each point is independently declared amber or blue with respective
probabilities α/(α + β) and β/(α + β). (See e.g. [6].) The conclusion of Theorem 8 is an
example of a phase transition: an abrupt qualitative change of behavior as a parameter crosses
a critical value.

To prove Theorem 8, we need a property that is stronger than translation invariance. A point
process is said to be ergodic if every event that is invariant under translations has probability
0 or 1. For example, the event that there is no point within distance 1 of the origin is not
translation-invariant, but the event that there are infinitely many disjoint balls of radius 1 that
contain no points is translation-invariant. A Poisson process is ergodic (and so is the two-
color process made up of two independent Poisson processes) – this can be deduced using the
independence of the process on disjoint subsets of the space. (See e.g. [6].)

Proof of Theorem 8. First let us consider the case α = β. The set of unmatched points in the
stable matching is either empty, or consists only of amber points or only of blue points. Applying
ergodicity, one of these three events must have probability 1, and the others probability 0. But
by symmetry the probabilities of unmatched amber points and of unmatched blue points must
be equal. Hence they are both 0, and with probability 1 the matching is perfect, giving a win
for Bob.

When the two intensities are different, it is natural to expect that we cannot match amber
points to blue points in a translation-invariant way without leaving some of the higher-intensity
set unmatched. Making this intuition rigorous may at first appear tricky. We might compare
the numbers of points in a large ball, but perhaps many points have their partners outside the
ball. And where should we use translation-invariance? Since LA and LB are countable infinite
sets, there certainly exists some perfect matching between them.

In fact, there is a clean solution, using a simple but powerful tool, the mass transport
principle. (See [2, 12] for background.) Consider any function f : Zd × Zd → [0,∞] that is
translation-invariant in the sense that f(s, t) = f(s+u, t+u) for all s, t, u ∈ Zd. Then note that∑

t∈Zd f(0, t) =
∑

t∈Zd f(−t, 0) =
∑

s∈Zd f(s, 0). It is sometimes helpful to think of f(s, t) as the
mass sent from s to t.

Now suppose α < β. For s ∈ Zd, let Qs be the unit cube s+ [0, 1)d in Rd. Define f(s, t) to
be the expected number of amber points in Qs that are matched to blue points in Qt. This f is
translation-invariant in the sense of the previous paragraph, because of translation-invariance of
the Poisson processes. Thus,

∑
s f(s, 0), which is the expected number of matched blue points

in Q0, is equal to
∑

t f(0, t), which is the expected number of matched amber points in Q0.
The latter is at most α, the expected total number of amber points in Q0. But the expected
number of blue points in Q0 is β, so the expected number of unmatched blue points in Q0 is at
least β −α. In particular, the probability that there exists an unmatched blue point is positive.
Applying ergodicity again shows that this probability is therefore 1. Thus Bob wins.

Similarly, if α > β then with probability 1 there are unmatched amber points, leading to a
win for Alice.

Once again, the above proof uses invariance and ergodicity in a subtle and fundamental way
that cannot easily be reduced to probability 1 properties of the point process. What property
of (LA, LB) guarantees Bob wins when α = β? It is not that LA and LB have equal asymptotic
density. Modifying the example in Figure 3, that holds if LA consists of one point in every
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interval [3i, 3i+1] for i ∈ Z while LB has one point in each such interval except [0, 1]. But here
Alice wins.

Again, the conclusion of Theorem 8 remains valid for a large class of translation-invariant
point processes; see [17] for details of the corresponding results for stable matchings.

3.3 Fussy Frogs

Despite the relatively complete analysis in the last two cases, we need not go far to reach an
unsolved problem. In fussy friendly frogs, the points again have two colors, now green and
red, denoted by sets L and LR respectively. The rules are as in the original friendly frogs game
(in particular, the two frogs are once again identical and can be moved by either player), except
that it is not permitted that both frogs simultaneously occupy red points.

Open Problem. Let L and LR be independent Poisson processes on Rd with respective inten-
sities 1 and ρ. Do there exist d ≥ 1 and ρ > 0 for which Bob wins fussy friendly frogs with
positive probability?

Fussy friendly frogs again has an associated matching, the analogue of stable matching
under the restriction that red points cannot be matched to each other. This matching can be
constructed iteratively as in the proof of Proposition 2, and Bob wins if and only if it is perfect.
Ergodicity shows that this has probability 0 or 1 for each ρ and d. When ρ > 1 (and even when
ρ > 1− ǫ for some ǫ = ǫ(d) > 0), it is not difficult to show that there are unmatched red points
(so Alice wins); the question is whether this holds for every positive ρ. This is not known for
any dimension d, although in [16] it is proved that for any fixed ρ > 0, there exists d0 = d0(ρ)
such that there are unmatched red points for all d ≥ d0.

4 Variations on a theme

In this section we consider some further variant games, in which the rules are modified in more
fundamental ways.

4.1 Playing to Lose

We consider a misère version of friendly frogs. In general, a game is said to be played under
misère rules if the legal moves are the same, but a player who cannot move now wins the game
instead of losing it. This means that a player tries to avoid moving to positions where the next
player cannot move. Specifically, in misère friendly frogs, a player wants to avoid having to move
to a mutually closest pair.

Let L satisfy the assumptions of Proposition 2. The P-positions in the misère game are given
by a variant of the stable matching of L with the added restriction that mutually closest points
cannot be matched. A matching M̃ of L is said to be stable subject to this restriction if there
do not exist x, y ∈ L that are not mutually closest and with |x − M̃(x)| and |y − M̃(y)| both
strictly greater than |x−y|. The unique matching with this property is obtained by the following
modification of the iterative procedure used to construct the unrestricted stable matching. Call
x and y potential partners of each other if they are both unmatched and they are not mutually
closest points of L; then match all pairs x and y that are each others’ mutually closest potential
partner. Repeat indefinitely. The resulting matching has at most two unmatched points (and if
there are two such points, they must be mutually closest points of L).
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Proposition 9. Let L ⊂ Rd have distinct distances and no infinite descending chains. Let
M̃ the stable matching of L subject to the restriction that mutually nearest neighbors cannot be
matched. In misère friendly frogs, the position with two frogs at x and y is a P-position if and
only if x is matched to y in M̃ .

Proof. With misère rules, all terminal positions are N-positions, and the characterization of
N-positions and P-positions is modified by replacing condition (N) with:

(N′) From every N-position that is not terminal, there is at least one move to a P-position.

Assume that x and y are not mutually closest and are not matched in M̃ (so that they hence
define an N-position that is not terminal). If both |x−M̃ (x)| > |x−y| and |y−M̃(y)| > |x−y|,
then x and y would constitute an unstable pair in M . Hence either the frog at x could be moved
to M̃(y), or the frog at y could be moved to M̃(x). The property (P) follows since M̃ is a
matching.

This argument shows that the misére friendly frogs is a win for Alice if and only if the
restricted stable matching has exactly one unmatched point.

Corollary 10. Let L be a Poisson process on Rd. Misère friendly frogs is a win for Bob with
probability 1.

Proof. The argument in the proof of Theorem 4 shows that the matching M̃ is perfect with
probability 1 – it is impossible for the unmatched points to form a non-empty finite translation-
invariant random set.

4.2 Blocking and multi-matching

The games can be modified by allowing moves to be blocked. Consider colored friendly frogs,
but suppose that in addition to the two frogs, there are k stones. After moving or placing
their frog, a player then places the stones on any k points (lily pads). The other player is then
forbidden from moving their frog to any of those k points on the next move. (Equivalently, we
can imagine that the next player tries to make a move, but the previous player can reject it and
request that they try a different move, up to k times. The chess variants compromise chess and
refusal chess are similar; see e.g. [22].) The rules are otherwise as in colored friendly frogs. A
player loses if they cannot move, perhaps because all possible moves are blocked by stones. We
call this game k-stone colored friendly frogs.

The P-positions are related to stable multi-matchings, which were introduced and studied
in [7, 8]. Let L be an infinite set satisfying the assumptions of Proposition 2. Let m ≥ 1. An
m-multi-matching or m-matching is defined analogously to a matching, except that each
point may be matched to up to m other points. The m-matching is perfect if each point is
matched to exactly m points. For an m-matching of L, let D(x) denote the distance to the most
distant partner of x, with D(x) = ∞ if x has strictly fewer than m partners. The matching is
stable if and only if there do not exist x, y ∈ L that are not matched to each other with D(x)
and D(y) both strictly greater than |x− y|. A pair of points violating this is called unstable. A
point x desires y if |x− y| ≤ D(x).

Proposition 2 extends to stable m-matchings. The following modification of the iterative
procedure in its proof leads to the unique stable m-matching of L. Call two points potential
partners if they are not already matched to each other and if neither is already matched to m
other points. Match all mutually closest potential partners. Repeat indefinitely. See Figure 6
(left) for an example.
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Figure 6: Left: the stable 3-multi-matching of random points in a torus. Right: pairs having
friendly frogs Sprague-Grundy values 0 (black), 1 (red), and 2 (blue), for the same points.

We remark that in the stable m-matching there may be more than one point that has strictly
fewer than m partners, but there cannot be more than m of them (otherwise there would be
two that are not matched to each other).

Proposition 11. Let L ⊂ Rd have distinct distances and no infinite descending chains, and
assume that the stable m-matching of L is perfect. Consider k-stone colored friendly frogs.
Suppose that the frogs are at x and y, with y being the frog of the next player. This position is a
P-position if and only if, in the stable (k + 1)-matching, x desires y, and all partners of x that
are closer than y are blocked by stones.

Proof. We check (N) and (P). For (P), suppose the given conditions hold. Since x desires y we
have D(x) ≥ |x− y|. Thus, if the next player moves their frog from y to z, then x also desires z.
But z is not a partner of x, because we assumed that all possible such z are blocked. Therefore
z does not desire x (otherwise they would be unstable), so the new position is an N-position
(regardless of where the player moves the stones). We now check (N). If x desires y but some
closer partner z of x is not blocked, then the next player can move to z. On the other hand, if
x does not desire y then all the partners of x are closer than y, and at least one of them, z say,
is not blocked, so the next player moves there. In either case, this player then blocks all k − 1
partners of z other than y.

Theorem 12. Let L be a Poisson process on Rd and let k ≥ 1. With probability 1, k-stone
colored friendly frogs on L is a win for Bob.

Proof. We claim that the stable (k+1)-matching is perfect with probability 1. Indeed, there are
at most k + 1 incompletely matched points. But the invariance argument of Theorem 4 shows
that a translation invariant random set of points cannot have a positive finite number of points
with positive probability.

By Proposition 11, Bob wins by placing his frog on an unblocked partner of Alice’s opening
frog.
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Previous works on stable multi-matching [7–9] have considered questions about connectivity
of the graph (many of which remain open). We do no know whether such questions have natural
game interpretations.

4.3 Multiple Ponds and Bitwise XOR

Finally we address how to play several games of friendly frogs simultaneously. Consider k sets
L1, . . . , Lk ⊂ Rd, each assumed to have no infinite descending chains and all distances distinct.
(We imagine k disjoint ponds, each with its own set of lily pads). In a position of k-pond
friendly frogs, each set Li has two frogs on two distinct points. (We discuss the opening
moves, in which the frogs are placed, below). Alice and Bob take turns, and a move consists
of jumping one frog in one set Li to a different point in the same set Li according to the usual
rules: the two frogs in Li must get strictly closer, but may not occupy the same point. A player
loses if they have no legal move in any of the sets Li.

The above game is an example of a general construction; it is known as the disjunctive
sum of k copies of friendly frogs. A remarkable theory of such sums of games was developed
independently by Sprague [20] and Grundy [11], building on Bouton’s analysis of the game of
Nim [4] (also see [3] for an exposition as well as many far-reaching extensions). It turns out that
this theory fits perfectly with friendly frogs, enabling us to show that Bob can win even with a
substantial handicap in the opening moves.

Theorem 13. Fix k ≥ 1 and let L1, . . . , Lk be independent Poisson processes on Rd. Consider
a game of k-pond friendly frogs, in which Alice first places two frogs in each of L1, . . . , Lk−1 and
one frog in Lk, then Bob places the final frog in Lk, and Alice moves next. With probability 1,
Bob wins.

In fact Bob has a unique good opening move that depends in an intricate way on Alice’s
2k − 1 initial frogs. The key to the proof is the following result extending stable matching
to an integer-valued labeling of all pairs of points. Write N := {0, 1, 2 . . .}. For S ( N, let
mexS := min(N \ S) be the minimum excluded value. For a set L ⊂ Rd and an unordered
pair of distinct points x, y of L, let F (x, y) be the set of positions to which one can legally move
in friendly frogs, i.e. pairs that are strictly closer to each other than x, y and share exactly one
point with x, y.

Proposition 14. Let L be a Poisson process on Rd. With probability 1, there exists a map G
assigning an element of N to each unordered pair of L, with the following properties.

(i) For every x ∈ L and k ∈ N there is a unique y 6= x such that G(x, y) = k.

(ii) For each pair x, y we have G(x, y) = mex{G(u, v) : {u, v} ∈ F (x, y)}.

Proof. As before, we construct the map via an iterative algorithm. Start with G(x, y) undefined
for all x, y. We say that each point of x ∈ L looks at the closest other point y for which G(x, y)
is currently undefined. For every pair x, y that are looking at each other, set G(x, y) to equal
the smallest non-negative integer that is not currently assigned to any pair containing x or y.
Now repeat indefinitely.

We first check that the resulting G assigns an integer to every pair of points. Indeed, if
G(x, y) is undefined then x, y never looked at each other, and so one of them, say y, must have
a closer point z for which G(y, z) is undefined. Passing to the closest such z and iterating gives
an infinite descending chain, a contradiction.
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We now check the claimed properties. For (i), it is immediate that no two pairs containing
x are assigned the same integer. It remains to check that some pair containing x has the label
k. Let Uk be the set of points x that are not contained in any pair with label G(x, y) = k. By
invariance, if Uk is non-empty then it is infinite. Let W ⊆ Uk be any set of size k + 2. By the
pigeon-hole principle there exist u, v ∈ W with G(u, v) > k. But this is a contradiction: the
algorithm should instead have assigned u, v a value ≤ k.

To check (ii), note that, during the stages of the algorithm, a given point looks at other points
of L in order of increasing distance (perhaps looking at the same point for multiple consecutive
stages). Therefore, when the algorithm assigns a value to the pair x, y, all pairs in F (x, y) have
been assigned values, while all other pairs that share a point with x, y have not. Therefore
G(x, y) is assigned the mex as claimed.

It is easy to see that the set of pairs {x, y} with G(x, y) = 0 is precisely the stable matching.
However, the set of pairs with G(x, y) ≤ m does not in general coincide with the m-matching
considered earlier. See Figure 6. It should also be noted that the analogue of property (i) in
Proposition 14 does not hold in general for finite sets L – it is possible that for some x the set
{G(x, y) : y ∈ L \ {x}} is not the interval {0, . . . , L− 2}.

Proof of Theorem 13. Let ⊕ denote bitwise XOR of binary expansions, so if a =
∑

j∈N αj2
j

and b =
∑

j∈N βj2
j with αj, βj ∈ {0, 1} then a ⊕ b :=

∑
j∈N σj2

i where σj ∈ {0, 1} satisfies
σj ≡ αj +βj (mod 2). Consider a position of k-pond friendly frogs with two frogs in each pond,
at locations xi, yi ∈ Li. We claim that it is a P-position if and only if

⊕k
i=1 Gi(xi, yi) = 0, where

Gi is the map given by Proposition 14 for Li. This remarkable fact follows immediately from
the general theory (see [3, 11, 20]), given condition Proposition 14 (ii) on G and the fact that
friendly frogs is an impartial game (i.e. the same moves are available to each player) and has no
infinite lines of play. Since the proof is quite simple (given the highly non-trivial insight of what
to prove), we will summarize it below.

Given this characterization of P-positions, Bob’s winning move is easy to describe. He
computes h :=

⊕k−1

i=1
Gi(xi, yi), and places the final frog on the unique point yk ∈ Lk for which

Gk(xk, yk) = h, which exists by Proposition 14 (i). Since h⊕ h = 0, this gives a P-position.
Finally, we explain how to prove the claim. As usual, this amounts to checking conditions (N)

and (P). Let gi = Gi(xi, yi) and g =
⊕k

i=1 gi. For (N), suppose that g 6= 0. Write g =
∑

j∈N γj2
j ,

and let k be maximal such that γk = 1 (the most significant bit of g). Choose i such that gi also
has kth bit equal to 1, and note that gi ⊕ g < gi. By Proposition 14 (ii), we can move a frog in
Li to reduce Gi(xi, yi) to gi ⊕ g, resulting in a P-position. On the other hand, for (P), if g = 0
then by Proposition 14 (ii), any move changes one of the Gi(xi, yi), giving an N-position.
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