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Abstract

In this article we introduce a dynamic Erdős-Rényi graph model, in
which, independently for each vertex pair, edges appear and disappear
according to a Markov on-off process.

In studying the dynamic graph we present two main results. The
first being on how long it takes for the graph to reach stationarity. We
give an explicit expression for this time, as well as proving that this
is the fastest time to reach stationarity among all strong stationary
times.

The second result concerns the time it takes for the dynamic graph
to reach a certain number of edges. We give an explicit expression for
the expected value of such a time, as well as study its asymptotic
behavior. This time is related to the first time the dynamic Erdős-
Rényi graph contains a cluster exceeding a certain size.

1 Introduction

The Erdős-Rényi graph, in this text called the static Erdős-Rényi graph,
is a well-studied model for random graphs, which is either (i) consisting of

n vertices and k edges, where the edges are assigned uniformly to the
(
n
2

)
vertex pairs—this graph model is denoted G(n,m); or (ii) consisting of n
vertices where edges are assigned independently between vertex pairs with
probability p—this graph model is denoted G(n, p), see [2] for more details
and many properties of the model. In this article we introduce a natural
dynamic version of such a model: the dynamic Erdős-Rényi graph.

Before moving on we set some notation: Throughout N =
(
n
2

)
. Further-

more. we use the asymptotic order notation: f(n) = O(g(n)) if and only if
|f(n)| ≤ M |g(n)| for large n and some M <∞; f(n) = Θ(g(n)) if and only
if both f(n) = O(g(n)) and g(n) = O(f(n)); finally, f(n) = o(g(n)) if and

only if lim
n→∞

|f(n)|
|g(n)| = 0. Throughout, all asymptotic’s are for the limit n→∞.



1.1 The dynamic Erdős-Rényi graph

For α, β > 0 and n a positive integer, the dynamic Erdős-Rényi graph
{G(t), t ≥ 0} is a stochastic process evolving according to the following
dynamics,

(i) The number of vertices is fixed at n.

(ii) Independently for each vertex pair, if no edge is present an edge is added
after an Exp( β

n−1
)-distributed time; if an edge is present, the edge is

removed after an Exp(α)-distributed time.

Note that (ii) can be replaced by,

(iia) independently for each vertex pair, the state of an edge (present or not
present) is updated at the points of a Poisson process with intensity
λ = α+ β

n−1
. Independently of the Poisson process and previous states

of the edges, with probability p = β
β+(n−1)α

an edge will be present after
the update, and with probability q = 1− p it will not be present.

The choice of birth rate β
n−1

and not β
n

is because if the birth rate equals
β
n−1

then if β = α, the dynamic graph converges to a critical Erdős-Rényi

graph (G(n, p) with p = 1
n
). However, for large n it makes no difference

which of the two birth rates is chosen.
Let {χu,v(t), t ≥ 0} denote the indicator process representing if an edge

is present between vertex u and v. We refer to this process as an edge
process. This is, by definition, a birth-death process on {0, 1} with birth-
rate λ = β

n−1
and death-rate µ = α, also known as an on-off process. We

think of the dynamic Erdős-Rényi graph {G(t), t ≥ 0} as being composed
of these i.i.d. processes, with G(t) = (χ1,2(t), . . . , χn−1,n(t)).

Throughout we assume that the underlying probability space has enough
structure so that (iia) holds, i.e. that the edge processes are generated ac-
cording to (iia). This means that the probability space has a filtration
{Ft, t ≥ 0}, where Ft is the information generated by the update times and
corresponding edge updates up to time t, and that {G(t), t ≥ 0} is adapted
to this filtration. We shall see that, for our purposes, this assumption can be
made without loss of generality.

1.2 The fastest time to stationarity.

Below, we see that the distribution of {G(t), t ≥ 0} converges to the distribu-
tion of a static Erdős-Rényi graph with edge probability p = β

β+(n−1)α
, which

is also the stationary distribution of the dynamic graph. In Section 2 we
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construct a time Ts, called the fastest time to stationarity for {G(t), t ≥ 0}
[5], with the following properties,

(i) G(Ts) is distributed according to the stationary distribution of
{G(t), t ≥ 0}, and is independent of Ts;

(ii) {G(Ts + s); s ≥ 0} is a stationary process, and is independent of Ts;

(iii) if T ′ is any other random variable satisfying (i) and (ii) then for all
t > 0,

P(T < t) ≥ P(T ′ < t)

i.e. T is the stochastically smallest time satisfying (i) and (ii).

A key part in constructing such a time to stationarity is noting that
when an edge process {χu,v(t), t ≥ 0} enters stationarity it stays there.
Since the dynamic graph, G(t) = (χ1,2(t), . . . , χn−1,n(t)) is composed of edge
processes and the processes are independent, the dynamic graph should be in
stationarity if all edge processes have entered stationarity. Hence we proceed
by finding the fastest times to stationarity for the underlying edge processes,
i.e. {Tu,v, ∀(u, v)}, and then show that the maximum of these is indeed the
fastest time to stationarity for the dynamic graph.

In order to derive the stationary distribution for the dynamic graph pro-
cess, we note that that following result for the underlying edge processes is
immediate from defining property (iia) of the dynamic Erdős-Rényi graph:

Lemma 1. For u, v ∈ V , the edge processes {χu,v(t), t ≥ 0} are independent
ergodic Markov processes on {0, 1}, with probability transition functions equal
to,

P(χu,v(t) = 1|χu,v(0) = 0) = p0,1(t) =
β

β + (n− 1)α

(
1− e−(α+ β

n−1
)t
)

P(χu,v(t) = 1|χu,v(0) = 1) = p1,1(t) = e−(α+ β
n−1

)t +
β

β + (n− 1)α

(
1− e−(α+ β

n−1
)t
)

and stationary distribution π equal to,

π(1) =
β

β + (n− 1)α

π(0) =
(n− 1)α

β + (n− 1)α
.

Because of the independence of the edge processes, we also have
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Proposition 1. The dynamic Erdős-Rényi graph {G(t), t ≥ 0} is an ergodic
Markov process with finite state space and with unique stationary and limiting
distribution equal to that of a static Erdős-Rényi graph G(n, p) with edge
probability p = β

β+(n−1)α
.

By (iia) in the definition of {G(t), t ≥ 0}, we immediately see that after
the first update, i.e. after an exponentially distributed time with parameter
α+ β

n−1
, an edge process is in stationarity. It will be proven in Section 2 that

this is also the fastest time to stationarity for an edge process given that it
starts in state 0 or 1. We deduce that the fastest time to stationarity Ts for
the dynamic graph is distributed as the maximum of N =

(
n
2

)
(the number

of edge processes) independent exponentially distributed random variables
with parameter α + β

n−1
. The following is our first main result:

Theorem 1. Let {G(t), t ≥ 0} be the dynamic Erdős-Rényi graph starting in
an arbitrary state. Let Tu,v be the fastest time to stationarity for {χu,v(t), t ≥
0}. Then,

Ts = max
u,v
{Tu,v}

is the fastest time to stationarity for the dynamic Erdős-Rényi graph. Fur-
thermore, its distribution function is given by,

P(Ts < t) =
(

1− e−(α+ β
n−1

)t
)N

. (1)

Concerning the asymptotic behavior of (1), we show that it is very likely

that the graph enters stationarity roughly at time 2 log(n)
α

. The following
result will be proven in Section 2:

Corollary 1. Let Ts be the fastest time to stationarity for the dynamic Erdős-
Rényi graph. Then for any function w(n) such that w(n) → ∞ as n → ∞
the following holds,

P(Ts < t(n))→ 1 as n→∞, if t(n) >
2 log(n)

α
+ w(n),

P(Ts < t(n))→ 0 as n→∞, if t(n) <
2 log(n)

α
− w(n).

Furthermore,

E(Ts) = O(log(n)).

Hence for large n and time t >> 2 log(n)
α

, we conclude that in the time
period [0, t] the process is in stationarity most of that time. So in studying
certain properties of the dynamic graph one may be able to reduce the prob-
lem to study properties of the graph when in stationarity—something that
is often more tractable, and is indeed exploited in Section 3.
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1.3 Hitting times.

In Section 3 we present a result on the expected time it takes for the graph,
starting with j edges, to reach a fixed number of i edges, where j < i. We
give an explicit expression for the expected value of this time, as well as
study its asymptotic properties. Special care is given to the case when j = 0,
i.e. when the dynamic graph starts without any edges.

Let η(t) denote the number of edges at time t in {G(t), t ≥ 0}. Then
{η(t), t ≥ 0} is a birth and death process on the integers {0, 1, . . . , N}, with
birth rates λk = (N − k)β/(n− 1) and death rates µk = kα.

For such processes it is well known that the hitting time of i is dis-
tributed as the sum of i independent exponentially distributed random vari-
ables, whose parameters are given by the nonzero eigenvalues of the matrix
−Q, where Q is the generator matrix of the process {η(t), t ≥ 0}, with i
turned into an absorbing state. So, Q is given through Q00 = −λ0, Q01 = λ0

and for k = 1, 2, . . . , i−1: Qkk = −(λk+µk), Qk,k+1 = λk for k = 0, 1, . . . , i−1
and Qk,k−1 = µk, while all other elements of Q are 0. (see e.g. [6, Thm. 1.1]).

Because the eigenvalues of a matrix are typically hard to find, we use
another approach in deriving the expected hitting time of i. The obtained
expression is difficult to compute for large n so we also give bounds on the
expected time it takes for the dynamic graph to go from 0 to i = [cn] edges,
where c is a constant and [x] denotes the closest integer to x. The main
reason this particular scaling is studied is its connection to the size of the
largest component. Namely, if G(n, i(n)) is a static Erdős-Rényi graph with
a prescribed number of edges and |C(n, i(n))| is the size of the largest com-
ponent of such a graph, it is possible to show that: for every 0 < ε < 1 there
exist a c > 1/2 such that if i(n) = [cn] then,

|C(n, i(n))|
n

p−→ ε as n→∞,

where
p−→ denotes convergence in probability. Furthermore,

c =
− log(1− ε)

2ε
.

Hence, for given ε ∈ (0, 1) we know how many edges are needed in the static
Erdős-Rényi graph for the fraction of vertices in the largest component to be
roughly equal to ε with high probability, namely i = [cn] where c = − log(1−ε)

2ε
.

This can be used for the dynamic graph. Since, if we wait until that many
edges are present it is very likely that the size of the largest component in
the dynamic graph has already exceeded εn. This will be discussed further
in Section 3.1.
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The expected time to go from 0 to i = [cn] exhibits three different behav-
iors depending on the value of c. For c < β

2α
the graph reaches i edges after a

constant time; for c = β
2α

the graph reaches i edges after an logarithmic time,

which follows from the time to stationarity being O(log(n)); while for c > β
2α

the graph reaches i edges after en exponentially large time. In Section 3 we
prove the following:

Theorem 2. Let τj(i) be the time it takes, starting with j edges, for the
dynamic Erdős-Rényi graph to reach i = [cn] edges, where c > 0. Then,

(a) If c < β
2α

then,

E(τ0(i))→
− log(1− 2α

β
c)

α
as n→∞.

(b) If c = β
2α

then,

E(τj(i)) = O(log(n)) ∀j.

(c) If c > β
2α

then,

Θ(n−1)en(c log( 2α
β
c)−c+ β

2α) ≤ E(τ0(i)) ≤ Θ(n−1/2)en(c log( 2α
β
c)−c+ β

2α)

where c log(2α
β
c)− c+ β

2α
> 0.

This theorem may be used to provide bounds for the expected time the
dynamic Erdős-Rényi graph needs to first contain a component of a desired
size. In particular, in the critical case (α = β)—for which the typical size
of the largest cluster is o(n)—we can find an upper bound for the expected
time until the fraction of vertices in the largest component exceeds ε > 0.

Corollary 2. Let τ̂(εn) be the first time the dynamic Erdős-Rényi graph,
starting with no edges, has a component of size at least εn. Then for all
ε̂ ∈ (ε, 0.7968),

E[τ̂(εn)] = O(n−1/2)en(ε̂2/16+Oε(ε̂3)).

2 The fastest time to stationarity

In constructing the fastest time to stationarity for {G(t), t ≥ 0} we shall
find the fastest times {Tu,v} to stationary for the underlying edge processes
{χu,v(t), t ≥ 0}, and taking Ts to be the maximum of these. Waiting until all
the edge processes have entered stationarity should ensure that the dynamic
graph is in stationarity, since G(t) = (χ1,2(t), . . . , χn−1,n(t)). In order to
show that this time to stationarity is indeed the fastest time to stationarity
we need the concepts of a strong stationary time and of separation, as defined
in [5].
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2.1 Separation and strong stationary times

Roughly speaking, a strong stationary time T for a stochastic process X is
a stopping time for X with some extra external randomness such that X(T )
has the stationary distribution and is independent of T . In order to define a
strong stationary time for a process X one needs the concept of a randomized
stopping time.

Definition 1. ([5]) Let (Ω,F , {Ft}, P ) be a filtered probability space. Let
F∞ be the smallest σ-algebra containing Ft for all t.
Furthermore, let G ⊂ F be a sub-σ-algebra of F independent of F∞. We say
that T : Ω→ [0,∞] is a randomized stopping time relative to {Ft, t ≥ 0} if
for each t ≥ 0,

{T ≤ t} ∈ σ(Ft,G),

where σ(Ft,G) is the smallest σ-algebra containing both Ft and G.
If the process X is adapted to {Ft, t ≥ 0} we say that T is a randomized
stopping time for X.

We are now ready to define the strong stationary time and the fastest
time to stationarity.

Definition 2. ([5]) Let X be a stochastic process, defined on a filtered prob-
ability space (Ω,F , {Ft, t ≥ 0}, P ) and adapted to {Ft, t ≥ 0}, taking
values in some state space S. Assume that X has a unique stationary dis-
tribution π. Furthermore let T be a randomized stopping time relative to
{Ft, t ≥ 0}. Then, T is said to be a strong stationary time for X if: X(T )
has the stationary distribution and is independent of T given that {T <∞},
i.e. if,

P(T ≤ t,X(T ) = y|T <∞) = P(T ≤ t|T <∞)P(X(T ) = y|T <∞)

= P(T ≤ t|T <∞)π(y)

for all 0 ≤ t <∞ and y ∈ S.
If, for any other strong stationary time T ′, we have P(T > t) ≤ P(T ′ > t)

then we say that T is the fastest time to stationarity.

Remark. We shall only be concerned with strong stationary times T such
that P(T < ∞) = 1, hence we can drop the conditioning on {T < ∞} in
Definition 2 above.

Fill [5] provides us with an important proposition regarding strong sta-
tionary times.
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Proposition 2 ([5, Prop. 2.4]). Let X be an ergodic Markov chain with
right-continuous paths on some finite or countable state space S. Then the
following are equivalent for a randomized stopping time relative to X.

(i) T is a strong stationary time;

(ii) P(T ≤ t,X(t) = y) = P(T ≤ t)π(y), for 0 ≤ t <∞;

(iii) P(T ≤ t,X(u) = y) = P(T ≤ t)π(y), for 0 ≤ t < u <∞.

Remark. We note that, if T is a strong stationary time then, by (iii), T + s
is also a strong stationary time. Hence X stays in stationarity upon entering
it.

The separation, s(t) = supy
(
1− P(X(t)=y)

π(y)

)
, for a stochastic process is a

function in time which measures the “distance” between the distribution at
time t and its stationary distribution, and has an intimate connection with
strong stationary times.

Strong stationary times are well-understood for ergodic Markov processes
on countable state spaces, see [5]. The main result of [5] is that for such
processes the following holds,

(I) If T is a strong stationary time, then for all 0 ≤ t <∞,

s(t) ≤ P(T > t) (2)

i.e. the separation at time t is a lower bound for the probability that
the process has not yet entered stationarity at time t.

(II) If the state space of the process is finite (and the underlying probability
space rich enough to support an uniformly distributed random variable
on (0, 1) independent of the process), there exist a strong stationary
time T such that (2) holds with equality. We call such a time the
fastest time to stationarity.

Remark. It follows that knowing the distribution of the fastest time to sta-
tionarity, equation (2) gives a way of quantifying the rate of convergence of
the dynamic graph to stationarity, since the separation measures the distance
between the distribution of a process at time t and its stationary distribu-
tion.
As stated before, we assume that the underlying probability space is rich
enough to support (iia) in the definition of {G(t), t ≥ 0}—for the purpose
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of finding the distribution of the fastest time to stationarity this assump-
tion can be made without loss of generality, since if such a time exists on a
probability space its distribution, is by (II), determined by s(t) (which is not
dependent on the probability space).

Fill also gives the algorithm for constructing the fastest time to station-
arity for an ergodic Markov chain on a finite state space. However, the proof
of this is technical and not very intuitive. Nevertheless, we can still use
the above mentioned results from [5] to show that our candidate time to
stationarity for {G(t), t ≥ 0} is indeed the stochastically smallest one.

2.2 The fastest time to stationarity

In order to construct the fastest time to stationarity for the dynamic graph
we proceed by constructing such times for the underlying edge processes.

Lemma 2. Let {χu,v(t), t ≥ 0} be an edge process starting with 0 or 1 edges.
Then the fastest time to stationarity Tu,v for {χu,v(t), t ≥ 0} is distributed
as,

Tu,v ∼ Exp

(
α +

β

n− 1

)
.

Proof. After the time to the first update Tu,v of an edge—which is an ex-
ponential distributed time with rate (α + β

n−1
)—the edge process is in sta-

tionarity, since P(χu,v(Tu,v + s) = 1) = P(edge added at last update) = p. It
is also clear that Tu,v is a (randomized) stopping time relative the filtration
which {χu,v(t), t ≥ 0} is adapted to (information generated by update times
and corresponding edge updates).

Also, Tu,v satisfies,

P(Tu,v ≤ t, χu,v(Tu,v) = 1) = P(Tu,v ≤ t, edge added last update)

= P(Tu,v ≤ t)P(edge added last update) = P(Tu,v ≤ t)p.

By Definition 2, Tu,v is a strong stationary time for {χu,v(t), t ≥ 0}.
Furthermore, it is easily shown that P(Tu,v > t) equals the separation

s(t) = sup
i∈{0,1}

(
1− P(χu,v(t) = i)

π(i)

)

of the process {χu,v(t), t ≥ 0} since,

χu,v(0) = 0 =⇒ s(t) = sup
i∈{0,1}

(
1− P(χu,v(t) = i)

π(i)

)
=

(
1− p0,1(t)

π(1)

)
= P(Tu,v > t),

χu,v(0) = 1 =⇒ s(t) = sup
i∈{0,1}

(1− P(χu,v(t) = i)

π(i)
) =

(
1− p1,0(t)

π(0)

)
= P(Tu,v > t).
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Hence, by (II), Tu,v is the fastest time to stationarity for {χu,v(t), t ≥ 0}, if
the process starts with 0 or 1 edges.

Remark. If the initial distribution of {χu,v(t), t ≥ 0} is arbitrary then the
time in Lemma 2 is still a strong stationary time for the process—however it
need not be the fastest one: clearly, if the initial distribution is the stationary
distribution then the fastest time to stationarity is T = 0.

By Proposition 2, an ergodic Markov process stays in stationarity after
entering it. Therefore we expect that a vector of i.i.d. ergodic Markov chains
for which all the components have entered stationarity, is also in stationarity,
and that the time at which all the components have entered stationarity is
also the fastest time to stationarity. The following lemma shows that this is
indeed the case.

Lemma 3. Let X1, X2, . . . Xn be independent ergodic Markov processes, each
process Xi taking values in a finite state spaces Si. Furthermore, assume that
Xi has stationary distribution πi. Let Ti be the fastest time to stationarity
for Xi. Assume that T1, T2, . . . , Tn are independent. Then T = maxi{Ti} is
the fastest time to stationarity for the process (X1, X2, . . . , Xn).

Proof. We prove the claim for n = 2 and then the lemma follows by induction.
Let X and Y be two processes satisfying the premises of the lemma. Note

that (X, Y ) is an ergodic Markov chain. Hence, the stationary distribution
of (X, Y ) exists and is given by,

lim
t→∞

P(X(t) = x, Y (t) = y) = πX(x)πY (y)

for all (x, y) ∈ Sx × Sy.
We have that TX is a stopping time relative {σ{FXt ,GX}, t ≥ 0}, where

{FXt , ≥ 0} is the filtration for which X is adapted and GX is a σ-algebra
independent of FX∞ = σ(

⋃
tFXt ). Analogously, TY is a stopping time relative

{σ{FYt ,GY }, t ≥ 0}. It then follows that T = max(TX , TY ) is a stopping
time relative σ{σ{FXt ,FYt }, σ{GX ,GY }, t ≥ 0}, and therefore a randomized
stopping time for (X, Y ).

Secondly we must prove that T is a strong stationary time for (X, Y )
which by Proposition 2 is equivalent to showing that,

P(T ≤ t,X(t) = x, Y (t) = y) = P(T ≤ t)πX(x)πY (y)

for all 0 ≤ t <∞, x ∈ Sx, y ∈ Sy.
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Since {max(Z1, . . . , Zn) ≤ t} = {Z1 ≤ t, . . . Zn ≤ t} and TX and TY are
strong stationary times we obtain,

P(T ≤ t,X(t) = x, Y (t) = y) = P(TX ≤ t, TY ≤ t,X(t) = x, Y (t) = y)

= P(TX ≤ t,X(t) = x)P(TY ≤ t, Y (t) = y)

= P(TX ≤ t)πX(x)P(TY ≤ t)πY (y) = P(T ≤ t)πX(x)πY (y)

where the third equality follows from Proposition 2.
It remains to show that, if T ′ is any other strong stationary time, we have

that P(T ′ ≤ t) ≤ P(T ≤ t). Now since TX and TY are the fastest times to
stationarity and since the state space is finite, see (II) in Section 2.1,

P(TX > t) = sX(t) ⇐⇒ P(TX ≤ t) = aX(t) = inf
x

P(X(t) = x)

πX(x)

P(TY > t) = sY (t) ⇐⇒ P(TY ≤ t) = aY (t) = inf
y

P(Y (t) = y)

πY (y)
.

Using this we conclude that,

P(T ≤ t) = P(TX ≤ t)P(TY ≤ t) = aX(t)aY (t)

= inf
x

P(X(t) = x)

πX(x)
inf
y

P(Y (t) = y)

πY (y)
= inf

(x,y)

P(X(t) = x)P(Y (t) = y)

πX(x)πY (y)
.

Now let T ′ be any other strong time to stationary. We have that ∀(x, y) ∈
Sx × Sy,

P(T ′ ≤ t) =
P(T ′ ≤ t,X(t) = x, Y (t) = y)

πX(x)πY (y)
≤ P(X(t) = x)P(Y (t) = y)

πX(x)πY (y)
.

Since this holds for all states (x, y) we can conclude that P(T ′ ≤ t) ≤ P(T ≤
t), and we see that T is stochastically smallest among all strong stationary
times.

The full lemma follows by induction.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Recall that G(t) = (χ1,2(t), . . . , χn−1,n(t)).
Assume {G(t), t ≥ 0} starts with an arbitrary number of edges—i.e. G(0) =
k. By Lemma 2, Tu,v ∼ Exp(α + β

n−1
) is the fastest time to stationary for

{χu,v, t ≥ 0} whether we start with or without an edge. Now apply Lemma
3 to conclude that Ts = maxu,v{Tu,v} is the fastest time to stationarity for
the dynamic Erdős-Rényi graph. Furthermore,

P(Ts < t) = P(max(T1,2, . . . , Tn−1,n) < t) = P(Tu,v < t)N =
(

1− e−(α+ β
n−1

)t
)N

.
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Remark. If the initial distribution of {G(t), t ≥ 0} is arbitrary then the time
in Lemma 1 is still a strong stationary time for the process, however it need
not be the fastest one (see Remark 2.2).

2.3 Asymptotics.

The distribution for the fastest time to stationarity in Theorem 1 is exact
but not very insightful. Here we provide the proof of Corollary 1, in which
we deal with the asymptotic of the distribution function.

Proof of Corollary 1. Let all limits be for n → ∞. Recall for a ∈ R, the
standard limit (1 − a/n)n → e−a. This implies that for positive functions
f(n), (1 − f(n)/n)n → 1 if f(n) → 0; and (1 − f(n)/n)n → 0 if both
f(n)→∞ and f(n)/n→ 0.

By Theorem 1 we know.

P(Ts < t) =
(

1− e−(α+ β
n−1

)t
)N

=

1− elog(N)−(α+ β
n−1

)t

N

N .
If t− 2(log(n))/α→∞, then

log(N)−
(
α +

β

n− 1

)
t = log(n)+log(n−1)−log 2−

(
α +

β

n− 1

)
t→ −∞,

and thus
elog(N)−(α+ β

n−1
)t → 0,

which in turn implies

P(Ts < t) =

1− elog(N)−(α+ β
n−1

)t

N

N → 1.

While if t− 2(log(n))/α→ −∞, then

log(N)−
(
α +

β

n− 1

)
t = log(n) + log(n− 1)− log 2−

(
α +

β

n− 1

)
t→∞.

and thus
elog(N)−(α+ β

n−1
)t →∞,

which in turn implies

P(Ts < t) =

1− elog(N)−(α+ β
n−1

)t

N

N → 0.

12



To prove that E(Ts) = O(log(n)) we note that,

1− (1− e−(α+ β
n−1

)t)N ≤ min{1, Ne−(α+ β
n−1

)t}
log(N) ≤ 2 log(n).

Hence,

E(Ts) =
∫ ∞

0
P(Ts > t)dt =

∫ ∞
0

(
1−

(
1− e−(α+ β

n−1
)t
)N)

dt

=
∫ log(N)/α

0

(
1−

(
1− e−(α+ β

n−1
)t
)N)

dt+
∫ ∞

log(N)/α

(
1−

(
1− e−(α+ β

n−1
)t
)N)

dt

≤ log(N)

α
+
∫ ∞

log(N)/α
Ne−(α+ β

n−1
)tdt ≤ 2

log(n)

α
+(α+

β

n− 1
)−1 = O(log(n)).

This completes the prove of the corollary.

3 Hitting times for a fixed number of edges

In this section we study E(τj(i)), where τj(i) is the time it takes for the
dynamic graph to reach i edges, given that it starts with j edges, i.e.

τj(i) = inf{t > 0; η(t) = i, η(0) = j}.

We derive an exact expression for E(τj(i)), (j < i), and give special attention
to the case E(τ0(i)), when i = [cn] and c > 0, where we provide (asymptotic)
bounds for E(τ0(i)).

As mentioned in the introduction, it is known (see e.g. [6]), that τ0(i) is
distributed as the sum of i independent exponentially distributed random
variables with as rate parameters, the nonzero eigenvalues of the negative
generator matrix of the variant of the process {η(t), t ≥ 0} restricted to
states {0, 1, . . . , i} in which i is turned into an absorbing state. However,
finding those eigenvalues is difficult, and therefore we put effort in finding
expressions for the expected hitting time of i and asymptotics for it.

In deriving an exact expression for E(τj(i)) we shall need to exploit the
strong Markov property of the dynamic graph. For our purposes we say that
a Markov process X has the strong Markov property if for any a.s. finite
stopping time τ for X we have that Xτ = {X(t+τ), t ≥ 0} is a probabilistic
copy of X starting in X(τ), as well as being independent of X up to time τ ,
given X(τ).

13



First we compute E(τk(k + 1)) for k < N . Then, by the strong Markov
property of {η(t), t ≥ 0},

E(τj(i)) =
i−1∑
k=j

E(τk(k + 1)). (3)

This leads us to the following proposition.

Proposition 3. Let τj(i) be the time it takes for the dynamic Erdős-Rényi
graph, starting with j edges, to reach i edges, where j < i. Then,

E(τi(i+ 1)) =
(n− 1)(N − i− 1)!i!

βN !

i∑
k=0

(
N

i− k

)(
α

β
(n− 1)

)k
(4)

and

E(τj(i)) =
i−1∑
m=j

(n− 1)(N −m− 1)!m!

βN !

m∑
k=0

(
N

m− k

)(
α

β
(n− 1)

)k
. (5)

Proof. Recall that {η(t), t ≥ 0} is an ergodic Markov chain on a finite state
space, this ensures that the process has the strong Markov property, see [3,
Thm. 4.1]. For notational convenience let λk = (N−k)β/(n−1) be the birth
rate and µk = αk be the death rate in state k of {η(t), t ≥ 0}.

We begin by deriving a recursive formula for E(τi(i+1)). Since {η(t), t ≥
0} is ergodic and therefore positively recurrent we have that E(τi(i+1)) <∞.
We derive a recursive formula for E(τi(i + 1)) by conditioning on the first
jump. Let p(i, i+ 1) = λi

λi+µi
be the probability that the process moves from

i edges to i + 1 edges, and let i → (i + 1) indicate such an event. Define
p(i, i − 1) = µi

λi+µi
and i → (i − 1) in an analogous way. Also let Hi ∼

Exp(λi + µi) be the holding time in state i. Then,

E(τi(i+ 1))

= p(i, i+ 1)E(τi(i+ 1)|i→ (i+ 1)) + p(i, i− 1)E(τi(i+ 1)|i→ (i− 1))

= p(i, i+ 1)E(Hi) + p(i, i− 1)E(τi(i+ 1)|i→ (i− 1))

(i)
= p(i, i+ 1)E(Hi) + p(i, i− 1)E(Hi) + p(i, i− 1)E(τi−1(i+ 1))

(ii)
= E(Hi) + p(i, i− 1)(E(τi−1(i)) + E(τi(i+ 1))).

For (i) we used that when entering state i − 1 the process probabilistically
restarts itself, this is by the strong Markov property as well as τi(i−1) being
a stopping time for {η(t), t ≥ 0} starting in i. Equality (ii) follows since,

τi−1(i+ 1) = τi−1(i) + τ ′i(i+ 1)

14



where τ ′i(i+ 1) is the time it takes for the process, starting with i− 1 edges,
to go from i edges (when it eventually reaches i edges) to i+ 1 edges. This is
then, again by the strong Markov property, distributed as τi(i+ 1). Hence,

E(τi−1(i+ 1)) = E(τi−1(i)) + E(τi(i+ 1)).

Solving the above equation for E(τi(i+ 1)) we obtain,

E(τi(i+ 1)) =
E(Hi) + p(i, i− 1)E(τi−1(i))

p(i, i+ 1)
, i ∈ {1, 2, . . . , N − 1}. (6)

For i = 0 we have E(τ0(1)) = E(H0).
To prove (4) we use (6) together with induction. The following holds for

the birth-death process, {η(t), t ≥ 0}.

E(Hi) =
1

λi + µi
=

n− 1

(N − i)β + (n− 1)iα

p(i, i− 1) =
µi

λi + µi
=

i(n− 1)α

(N − i)β + (n− 1)iα

p(i, i+ 1) =
λi

λi + µi
=

(N − i)β
(N − i)β + (n− 1)iα

Inserting this in (6), we obtain

E(τi(i+ 1)) =
n− 1

(N − i)β
+

(n− 1)i

N − i
α

β
E(τi−1(i)), i ∈ {1, 2, . . . , N − 1}.

For i = 0, we have by (4) that

E(τ0(1)) =
n− 1

βN
,

which is indeed equal to E(H0).
Assume that (4) holds for arbitrary i < N − 1. Then,

E(τi+1(i+ 2)) =
E(Hi+1) + p(i+ 1, i)E(τi(i+ 1))

p(i+ 1, i+ 2)

=
n− 1

(N − i− 1)β
+

(n− 1)(i+ 1)

N − i− 1

(n− 1)(N − i− 1)!i!

βN !

i∑
k=0

(
N

i− k

)(
(n− 1)

α

β

)k
which after standard, but tedious algebra, equals

(n− 1)(N − i− 2)!(i+ 1)!

βN !

i+1∑
k=0

(
N

i+ 1− k

)(
(n− 1)

α

β

)k
.

This proves equation (4), and (5) follows from (3).
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The expression (5) is exact but not very insightful. In order to get a better
understanding of how E(τ0(i)) behaves, we study how this expectation grows

when i = [cn]. To do this for the case c < β
2α

, consider η̄(t) = η(t)
n

and note
that η̄(t) increases by 1

n
at rate β n

2
− β n

n−1
η̄(t) and decreases by 1

n
at rate

αnη̄(t). This implies that a candidate for a deterministic approximation of
η̄(t) satisfies

dη̄(t)

dt
=
β

2
− βη̄(t)

n− 1
− αη̄(t) and η̄(0) = 0.

As n→∞ this reads

dη̄(t)

dt
=
β

2
− αη̄(t) and η̄(0) = 0.

This differential equation is solved by η̄(t) = β
2α

(1− e−αt).
We are now ready to formulate our next lemma.

Lemma 4. Let τ0(i) be the time it takes for the dynamic Erdős-Rényi graph,
starting with 0 edges, to reach i = [cn] edges, where c < β

2α
. Then,

τ0(i)→
− log

(
1− 2α

β
c
)

α
in probability as n→∞.

Proof. Let all limits be for n→∞. In this proof we use {η̄(n)(t), t ≥ 0} and
{η(n)(t), t ≥ 0} to denote the dependence on the number of vertices in the
graph.

We prove that {η̄(n)(t), t ≥ 0} converges pointwise in distribution to the
deterministic process { β

2α
(1− e−αt), t ≥ 0} as n→∞. That is, for given t,

η̄(n)(t)
d→ β

2α
(1− e−αt)

in distribution. Note that η(n)(t) is binomially distributed with parameters

N and p(n)(t) = β
β+(n−1)α

(1 − e−(α+ β
n−1

)t). So we obtain that the moment

generating function (MGF)

M (n)(σ) = E[eση̄
(n)(t)] = E[e

σ
n
η(n)(t)]

is given by
M (n)(σ) = (1− p(n)(t)(1− eσ/n))N .
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Noting that 1 − eσ/n = −σ/n + o(1/n) and p(n)(t) = β(1−e−αt)
α(n−1)

+ o(1/n), we
obtain that

M (n)(σ) =

(
1 +

σβ(1− e−αt)
αn(n− 1)

+ o(1/n2)

)N

=

(
1 +

σβ(1− e−αt)
2αN

+ o(1/n2)

)N
→ eσ

β(1−e−αt)
2α .

The latter expression is indeed the MGF of the constant β
2α

(1 − e−αt) and
since convergence of MGFs implies convergence in distribution, we obtain
pointwise convergence in distribution of the stochastic process to the deter-
ministic process.

In particular for tc =
− log(1− 2α

β
c)

α
, η̄(n)(tc)

d→ c. This implies that if
t > tc, then P(η(n)(t) ≥ cn) is arbitrary close to 1 for large enough n. By
η(n)(t) ≤ maxs≤t η

(n)(s), this immediately implies that P(maxs≤t η
(n)(s) ≥

cn) is arbitrary close to 1 for large enough n.
Similarly, for t < tc, P(η(n)(t) ≥ cn) is arbitrary close to 0 for large enough

n. Note that for c < β
2α

and as long as η(s) < β
2α
n, the process {η(n)(t), t ≥ 0}

has a upwards drift. Hence if s < t then P(η(t) ≥ cn|η(s) ≥ cn) ≥ 1/2. This
implies that

P(η(n)(t) ≥ cn|max
s≤t

η(n)(s) ≥ cn) ≥ P(η(t) ≥ cn|η(0) ≥ cn) ≥ 1/2,

which in turn implies that

P(max
s≤t

η(n)(s) ≥ cn) ≤ 2P(η(n)(t) ≥ cn),

which is arbitrary close to 0 for large enough n. This implies that for all
ε > 0, we have P(|τ0([cn]) − tc| > ε) → 0, which proves convergence in
probability.

Using Lemma 4 we can prove Theorem 2 (a).

Proof of Theorem 2 (a). Let i = [cn] where c < β
2α

.

By Lemma 4, τ0(i)
p→ tc =

− log(1− 2α
β
c)

α
as n→∞. Hence, for given ε > 0 and

large enough n, P(τ0(i) > tc + ε) < ε and P(τ0(i) < tc − ε) < ε. Combining
this with the fact that E(τj(i)) ≤ E(τ0(i)) for all j < i and using the strong
Markov property of {η(t), t ≥ 0}, we obtain that for given ε > 0 there exist
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n0 such that for all n > n0,

E(τ0(i))

= E(τ0(i)|τ0(i) ≤ tc+ε)P(τ0(i) ≤ tc+ε)+E(τ0(i)|τ0(i) > tc+ε)P(τ0(i) > tc+ε)

≤ (tc + ε) + ε(tc + ε+ E(τη(tc+ε)(i))) ≤ tc + ε+ ε(tc + ε+ E(τ0(i)))

This implies that,

E(τ0(i)) ≤ 1 + ε

1− ε
(tc + ε).

Using that for all ε > 0 and large enough n we have P(τ0(i) > tc−ε) > 1−ε
so we get,

E(τ0(i)) ≥ (tc − ε)(1− ε).

Together this implies that E(τ0(i))→ tc as n→∞.

Remark. It follows with a little extra work from E[τ0(i)] <∞ and τ0(i)
p→ tc

that τ0(i)→ tc in expectation (see e.g. [7, Problem 5.6.6]).

The hitting time results for c ≥ β
2α

, derived below provide us with bounds

that are not tight, but they establish logarithmic growth for c = β
2α

; and

exponential growth for c > β
2α

.

Proof of Theorem 2 (b). Let Ts be the strong stationary time for the process
{G(t), t ≥ 0} as defined in Theorem 1, and let i = [ β

2α
n]. We know that

E(Ts) = O(log(n)) and since η(Ts) is binomially distributed with parameters
N and β

β+α(n−1)
, with E(η(Ts)) = i + O(1). We know by the central limit

theorem that for large enough n, P(η(Ts) < i) ≤ 2/3. Again observing that
for all 0 ≤ j < i, we have E(τj(i)) ≤ E(τ0(i)). Conditioning on whether
{η(Ts) ≥ i} (equivalent to {τ0(i) ≤ Ts}) or not gives,

E(τ0(i)) = E(τ0(i)|η(Ts) ≥ i)P(η(Ts) ≥ i) + E(τ0(i)|η(Ts) < i)P(η(Ts) < i)

= E(Ts|η(Ts) ≥ i)P(η(Ts) ≥ i) + E(Ts + τη(Ts)(i)|η(Ts) < i)P(η(Ts) < i)

≤ E(Ts) +
2

3
(E(τη(Ts)(i)|η(Ts) < i))

≤ E(Ts) +
2

3
E(τ0(i)).

Which implies E(τ0(i)) ≤ 3E(Ts) = O(log(n)), as well as E(τj(i)) = O(log(n)),
for j < i = [ β

2α
n].

An analogous argument shows that E(τj(i)) = O(log(n)) for j > [ β
2α
n].
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Still remaining is the case when i = [cn] and c > β
2α

, which is dealt with
below. Before that, we need a series of lemmas.

Lemma 5. Let τ0(i) be as above, where i = [cn], c > β
2α

.
Let Ci→s→i = inf{t > 0; η(0) = i, η(t) = i, η(t) > τi(s)} be the time it takes
for the dynamic graph to go from i edges to s edges back to i edges, where
s = [ β

2α
n]. Then,

E(τ0(i)) = E(Ci→s→i) +O(log(n))

Proof. By the strong Markov property we have that E(Ci→s→i) = E(τi(s)) +
E(τs(i)) and E(τ0(i)) = E(τ0(s)) +E(τs(i)). By Theorem 2 both E(τi(s)) and
E(τ0(s)) are of order O(log(n)). We get,

E(τ0(i)) = E(τ0(s)) + E(τs(i))

= E(τ0(s)) + E(Ci→s→i)− E(τi(s)) = E(Ci→s→i) +O(log(n)).

Lemma 5 can be used to derive bounds for E(τ0(i)) as Ci→s→i is a cycle
time for the dynamic graph, and hence results from renewal theory can be
applied. Before doing so we shall need one more lemma.

Lemma 6. Let i = [cn], c > β
2α

and let pn = β
β+(n−1)α

be the edge probability
at stationarity. Then,

N ·D
(
i

N
||pn

)
= n

(
c log(

2α

β
c)− c+

β

2α

)
+O(1)

where D(a||p) = a log(a
p
) + (1 − a) log(1−a

1−p) is the relative entropy of a

Bernoulli(a) random variable with respect to a Bernoulli(p) random variable.

Proof. We have that,

N ·D
(
i

N
||pn

)
= i log

(
i/N

pn

)
+ (N − i) log

(
1− i/N
1− pn

)
. (7)

Since i/N
pn

= c
β/(2α)

+ O( 1
n
) and i = cn + O(1) we get that log

(
i/N
pn

)
=

log
(

c
β/(2α)

)
+O( 1

n
). Which implies,

i log

(
i/N

pn

)
= cn log

(
c

β/(2α)

)
+O(1). (8)
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We also have, again by Taylor approximation,

log (1− i/N) = − i

N
+O(n−2)

log(1− pn) = −pn +O(n−2).

Together with Npn = β
2α
n+O(1) this implies,

(N − i) log

(
1− i/N
1− pn

)
= Npn − i+O(1) = n

(
β

2α
− c

)
+O(1). (9)

Inserting (8) and (9) in (7) shows that,

N ·D
(
i

N
||pn

)
= n

(
c log(

2α

β
c)− c+

β

2α

)
+O(1).

Remark. For coming results note that, c log(2α
β
c)− c+ β

2α
> 0 if c > β

2α
.

We can now prove Theorem 2 (c).

Proof of Theorem 2 (c). Observe that {η(t), t ≥ 0} is a regenerative process.
Let T≥i =

∫ Ci→s→i
0 1{η(t) ≥ i}dt be the time {η(t), t ≥ 0} spends above state

i in a (i→ s→ i) cycle, where s = [ β
2α
n]. Since Ci→s→i is a renewal time for

{η(t), t ≥ 0} we have, by basic renewal theory,

lim
t→∞

P(η(t) ≥ i) =
E(T≥i)

E(Ci→s→i)
.

If Ts is a strong stationary time for the dynamic graph, then lim
t→∞

P(η(t) ≥
i) = P(η(Ts) ≥ i). Hence,

E(Ci→s→i) =
E(T≥i)

P(η(Ts) ≥ i)

Since η(Ts) ∼ Bin(N, pn = β
β+(n−1)α

) we can give upper and lower bounds for

P(η(Ts) ≥ i), see [1, p. 114].

(8i)−1/2 exp{−N ·D
(
i

N
||pn

)
} ≤ P(η(Ts) ≥ i) ≤ exp{−N ·D

(
i

N
||pn

)
}

where D(a||p) = a log(a
p
) + (1− a) log(1−a

1−p).
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Next we show that E(T≥i) = Θ(n−1). Let Hi be the holding time in state
i. Then,

E(T≥i) ≥ E(Hi) =
n− 1

(N − i)β + i(n− 1)α
= Kn−1, for some K ∈ R.

By the strong Markov property of the process {η(t), t ≥ 0} we have that,

E(T≥i) = p(i, i+ 1)(E(Hi) + E(τi+1(i)) + E(T≥i)) + p(i, i− 1)(E(Hi) + qi−1E(T≥i))

where qi−1 = P(τi−1(i) < τi−1(s)) is the probability of reaching state i before
state s, if {η(t), t ≥ 0} starts in state i− 1; i.e. qi−1 = P(τi−1(i) < τi−1(s)).
We get,

E(T≥i) =
E(Hi) + p(i, i+ 1)E(τi+1(i))

p(i, i− 1)(1− qi−1)

Now, E(Hi+k) = n−1
(N−i−k)β+(i+k)(n−1)α

= Θ(n−1), for fixed k and i = [cn].
Furthermore,

p(i+ k, i+ k + 1)→ β

β + 2cα
as n→∞

p(i+ k, i+ k − 1)→ 2cα

β + 2cα
as n→∞

again for fixed k and i = [cn].
Secondly, since E(τi+2(i+ 1)) < E(τi+1(i)) we get,

E(τi+1(i)) = E(Hi+1) + p(i+ 1, i+ 2)(E(τi+2(i+ 1)) + E(τi+1(i)))

≤ E(Hi+1) + 2p(i+ 1, i+ 2)E(τi+1(i))

Since 2p(i+ 1, i+ 2) < 1 we get,

E(τi+1(i)) ≤ E(Hi+1)

1− 2p(i+ 1, i+ 2)
= O(n−1).

It remains to show that 1 − qi−1 6→ 0 as n → ∞ and it follows that
E(T≥i) = Θ(n−1). Note that 1 − qi−1 is the probability of reaching state
s before state i when the process starts in state i − 1. This is the same
probability as first reaching state j ∈ [s, i] before reaching i, and then going
from j to s before going from j to i. By the strong Markov property we can
write this as,

1− qi−1 = P(τi−1(j) < τi−1(i))P(τj(s) < τj(i))
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where j is any state between s and i. We take j = [ i+s
2

] (round down
if i+s

2
− j = 0.5). The first probability P(τi−1(j) < τi−1(i)) can be bounded

below by a Gambler’s ruin approach. We have that p(k+1, k) ≥ p(j+1, j) >
1
2
, ∀k ≥ j. So P(τi−1(j) < τi−1(i)) is larger than the probability of non-

ruin for a Gambler starting in state 1 trying to reach state i − j − 1 with
p(win) = p(j + 1, j) > 1

2
. This non-ruin probability converges to a non-zero

number as n → ∞. By symmetry the second probability P(τj(s) < τj(i))
is at least 1/2, since from j it is either (i) equal distance to s and i; or (ii)
closer distance to s, and since p(k+1, k) > 1

2
, ∀k ≥ s the drift is downwards.

We conclude that,

E(T≥i) = Θ(n−1).

Combining all of the above we get,

Θ(n−1) exp
{
N ·D

(
i

N
||p
)}
≤ E(Ci→s→i) ≤ Θ(n−1/2) exp

{
N ·D

(
i

N
||p
)}

By Lemma 5,

E(Ci→s→i)−O(log(n)) ≤ E(τ0(i)) ≤ E(Ci→s→i) +O(log(n))

which together with Lemma 6 implies,

Θ(n−1)en(c log( 2α
β
c)−c+ β

2α) ≤ E(τ0(i)) ≤ Θ(n−1/2)en(c log( 2α
β
c)−c+ β

2α).

3.1 The size of the largest component.

When studying any type of random graph the size of the largest component
is often of interest. For instance, we might ask how long it will take for the
size of the largest component in the dynamic graph to exceed, say, εn? We
suggest that one way to approach this problem is through the edge process
{η(t), t ≥ 0}.

In a static Erdős-Rényi graph there is an intimate connection between
the number of edges in the graph and the size of the largest component.
Namely, if G(n,M(n)) is a static Erdős-Rényi graph with n vertices and
M(n) edges, where M(n) = [cn], then as n → ∞, the size of the largest
component exhibits three different behaviors depending on c. The following
holds with high probability: (i) if c < 1/2, called the subcritical case, then
the size of the largest component if of order log(n); (ii) if c > 1/2, called the
supercritical case, it is of order n; (iii) if c = 1/2, called the critical case,
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then the largest component is of order n2/3, see [2, p.130]. A modification
of a classical result from Erdős-Rényi [4] gives the following lemma for the
supercritical case:

Corollary 3. Let {G(n,M(n))} be a sequence of Erdős-Rényi graphs with n
vertices and M(n) edges. Let |C(n,M(n))| be the size of the largest compo-
nent of G(n,M(n)).
Then, for every 0 < ε < 1 there exist a c > 1

2
such that if M(n) = [cn] then,

|C(n,M(n))|
n

p−→ ε as n→∞.

Furthermore,

c =
− log(1− ε)

2ε
.

Hence, if c = − log(1−ε)
2ε

, then |C(n, [cn])| ≈ nε with high probability.

However, |C(n,[cn])|
n

p−→ ε does not imply P (|C(n, [cn])| ≥ nε) → 1. Hence, for
the latter to hold we need to choose M(n) = [c′n] where c′ > c.

This in combination with Theorem 2 can be used to provide a (asymp-
totic) bound on the expected time it takes for the size of the largest compo-
nent in the dynamic Erdős-Rényi graph to exceed εn, for given ε > 0. In a
static Erdős-Rényi we would need more than [cn] edges, say [c′n] edges, where

c′ > c = − log(1−ε)
2ε

for this to be very likely—e.g. we can take c′ = − log(1−(ε+η))
2(ε+η)

,

η ∈ (0, 1 − ε), so that the fraction of vertices in the largest component con-
verges in probability to ε + η. For the dynamic graph, we can instead wait
until that many edges has appeared, and be very certain that the size of the
largest component has exceeded εn no later than that time. This leads to
the following lemma:

Lemma 7. Let τ̂(εn) be the first time the dynamic Erdős-Rényi graph, start-
ing with no edges, has a component of size at least εn, ε ∈ (0, 1). Let τ0(i)
be the time it takes for the dynamic graph to reach, starting with no edges, i
edges. Then for all c′ > c = − log(1−ε)

2ε
,

E[τ̂(εn)] = O(E[τ0([c′n])])

Proof. Let A be the event that at time τ0([c′n]) the largest component of the
graph is at least size εn and let Ac be the complement of A. Observe that A
is independent of τ0([c′n]), since the edge processes are all independent and
therefore all edge configurations have the same probability at time τ0([c′n]).
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By Corollary 3 P (A)→ 1 as n→∞. We note that,

E[τ̂(εn)] = E[τ̂(εn)|A]P(A) + E[τ̂(εn)|Ac]P(Ac)

≤ E[τ0([c′n])]P(A) + (E[τ̂(εn)] + E[τ0([c′n])])P(Ac)

= E[τ0([c′n])] + E[τ̂(εn)]P(Ac).

Hence,

E[τ̂(εn)] ≤ E[τ0(c′n)]

1− P(Ac)
.

It follows that E[τ̂(εn)] = O(E[τ0([c′n])]).

We can now prove Corollary 2.

Proof of Corollary 2. In this proof order terms are for ε̂→ 0.
Let c′ = − log(1−ε̂)

2ε̂
, ε̂ > ε, so that c′ > c. Note, by Taylor approximation,

c′ = − log(1−ε̂)
2ε̂

= 1/2 + ε̂/4 + ε̂2/6 + O(ε̂3) > 1/2 = β
2α

. Hence, by Lemma 7
and Theorem 2 (c),

E[τ̂(εn)] = O(n−1/2)en(c′ log(2c′)+1/2−c′).

Recall, log(1 + x) =
∑∞
k=1(−1)n+1 xn

n
if |x| < 1. Hence,

log(2c′) = log(1 + (2c′ − 1)) = (2c′ − 1) + (2c′ − 1)2/2 +O(c′3)

= ε̂/2 + 5ε̂2/24 +O(ε̂3)

if |2c′−1| < 1 (which can be solved numerically and implies that ε < 0.7968).
Hence,

c′ log(2c′)− c′ + 1/2 = ε̂2/16 +O(ε̂3)

and the corollary follows.

4 Discussion

4.1 The distribution of hitting times

In this paper we have deduced results on the time to stationarity for a dy-
namic Erdős-Rényi graph and on the expected time needed for the graph to
contain a required number of edges.

Although we have deduced an expression for E[τ0([cn])], we have not
really touched upon the distribution of τ0([cn]) for c > β

2α
yet. However, the
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following heuristic argument suggests that for n→∞, τ0([cn])/E[τ0([cn])] is
expected to be exponential distributed with mean 1.

Let η(0) be binomially distributed with parameters N and p = β
β+α(n−1)

,
i.e. the graph process starts in stationarity. Let T0 = 0 and Ti+1 be the
smallest time after Ti, such that in the interval Ii+1 = (Ti, Ti+1] all edges are
updated in the sense of (iia) of the defining properties of the dynamic Erdős-
Rényi graph. The lengths of those intervals are trivially i.i.d. Furthermore,
let Ai be the event {maxt∈Ii η(t) > [cn]}. Note that Ai is dependent on
Ai−1 and Ai+1 but independent of all other Aj’s and independent of the Ti’s.
Furthermore, the Ai’s are identically distributed.

We proceed by assuming that we can ignore the dependencies altogether
and thus assume that the Ai’s are i.i.d. We justify this approximation by
observing that, using the proof of Theorem 2 (c), T≥[cn] is typically O(1/n),
while the length of intervals is typically θ(log(n)), which implies that typi-
cally, hitting times of [cn] are not near the boundaries of the Ii’s.

Let J = min{i : Ai occurs} and q = P(A1). Note that under our as-
sumption J is geometrically distributed with parameter q. Furthermore, by
the independence of J and the length of the intervals we obtain E(TJ) =
E(T1)E(J) = E(T1)/q. Since the expected interval lengths are O(log(n)), we
have E(TJ) = E[τ0([cn])] + O(log(n)) and E(T1) = O(log(n)), which implies
that q is exponentially small in n. By the strong law of large numbers and
J →∞ almost surely, also TJ/J → E(T1) almost surely as n→∞. Now,

τ0([cn])

E[τ0([cn])]
=

TJ +O(log(n))

E[TJ ] +O(log(n))
=

J · TJ/J +O(log(n))

E(T1)E(J) +O(log(n))
≈ J/E(J),

for large n. By standard results on geometric distributed random variables
J/E(J) converges to an exponential random variable with parameter 1, for
q → 0.

4.2 Configuration of the edges in the largest compo-
nent.

It may be interesting to know how the largest component reaches size εn.
Is it that many edges have occurred, and by the sheer number of edges the
largest component exceeds εn in size; or is it with fewer edges, but with a
very unlikely configuration of the edges.

If the time until the largest component exceeds εn in size is known, or
roughly known (we currently only have upper bounds on the expected time),
one can compare this with the bounds on E(τ0([cn])) in Theorem 2. If these
two times agree, then it is a strong indication that the largest component
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exceeds εn in size through many edges being present—and not through an
unlikely configuration of few edges. Of course, if they disagree, by the pre-
vious section the time until the largest component exceeds εn in size will
be smaller than E(τ0([cn]))—and this indicates that the largest component
reaches εn in size through an unlikely configuration of few edges.
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[3] P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation,
and Queues, Springer, New York, 1999.
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