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Jóhanna Sigmundsdóttir
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Abstract

The present paper describe how one-year non-life insurance risks ac-
cording to the Solvency II directive may be calculated consistently for a
class of point process based micro reserving models introduced by Norberg
(1993). The suggested approach is based on nested simulations. Apart
from showing that the simulation based approach is practically feasible,
the underlying model is assessed both w.r.t. in-sample and out-of-sample
performance, together with an analysis of the simulation error. The meth-
ods are applied to real non-life insurance data and the results are put in
relation to Solvency II standard formula calculations.

Keywords: Claims reserving, point processes, nested simulations, claims devel-
opment result, one-year risks

1 Introduction

The current paper is concerned with the calculation of one-year non-life insur-
ance risks as defined by the Solvency II directive with a main focus on the claims
reserve risk. This will be done following the marked Poisson process approach
introduced in [32]. In [32] the focus is on the theoretical framework describing
how to model outstanding claims costs for Reported But Not Settled (RBNS)
claims, but also Incurred But Not Reported (IBNR) claims and Not Incurred
(NI) claims (actually ”covered” and not incurred). The latter claim type corre-
sponds to future not incurred claims stemming from covered contracts, which is
closely connected to the Solvency II premium risk which corresponds to future
claims from existing contracts as well as to contracts expected to be written
over the following 12 months, see [9, Article 105(2)]. The idea of [32] is to
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model the claims generating process at an individual claim level, and then by
conditioning on which information that is known the claims reserve, i.e. the
Solvency II Best Estimate (BE) reserve, corresponds to the expected value of
this future payment process. This modelling approach is what hence forth will
be referred to as the ”micro model”. Other early papers which treat construc-
tive modelling of the claims process are e.g. [3] using martingales and [20] using
renewal theory. The ideas laid out in [32] are analysed in e.g. [16, 33, 24, 2],
and a textbook treatment may be found in [30]. Another approach is to use
techniques closer to compound sums, see e.g. [31, 18, 17]. For more on renewal
theory, see e.g. [19, 4, 5] that focus on claim counts and [23] where moments for
the entire IBNR claim amount are derived. Other micro level approaches is to
use survival analysis techniques, see e.g. [22, 36] as well as more standard GLM
regression techniques without any connection to point processes, see e.g. [6, 15].

The focus of the present paper is to describe how to consistently calculate
the one-year Solvency II reserve and premium risk for non-life insurance for the
micro model as defined in [32, 16, 2]. The one-year reserve risk corresponds
to the risk that the claims reserve estimated today re-estimated one year from
today will prove insufficient to cover future costs. The forward looking claims
reserve loss-distribution calculated today is what is called the Claims Develop-
ment Result (CDR), and the 99.5% percentile of this loss distribution is what
is called the Solvency Capital Requirement (SCR) for non-life reserve risk in
the Solvency II directive. Similarly, the one-year Solvency II capital require-
ment for non-life premium risk is defined analogously to the reserve risk, but for
claims that have not yet incurred relating to either already existing contracts or
contracts expected to be written during the coming 12 months. Thus, the pre-
mium risk is tightly knit to the NI claims of [32]. Further, from a computational
perspective the one-year premium risk may be reduced to calculations close to
identical with the modelling of IBNR claims. Consequently most focus will be
on the one-year reserve risk. Note that this is a very desirable property: once
we know how to compute the one-year reserve risk, the one-year premium risk
will follow the same procedure, but given other information. This is typically
not the case for claims triangle methods such as chain-ladder, see [25], or more
recent versions of the chain-ladder such as the double chain-ladder, see [27]. For
more on one-year reserve risk and consistency problems with traditional claims
triangle methods, see e.g. [34].

The above approach of modelling one-year non-life insurance risks is not
standard. The one-year claims reserve risk in the Solvency II directive is based
on a version of chain-ladder laid described in [35], see also [14, 34, 7]. Regarding
the premium risk, there is no single standard technique, see e.g. [14, 34, 7] and
the references therein. As compared with standard claims triangle reserving
techniques where the micro model is believed to provide better (ultimo reserve)
accuracy, see e.g. [2], the ambition in the present paper is to show the usefulness
of the same type of model when calculating one-year re-estimation risks.

In order to be able to calculate one-year re-estimation risks according to the
Solvency II directive the model needs to be practically implementable. Param-
eter fitting will be based on maximum likelihood theory, and the likelihood may
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be derived following the steps of [16] and [2], based on [21]. This is described
in Section 3 and 4. Given fitted parameters, claims characteristics needs to be
added to partially known RBNS claims and unknown IBNR (and NI) claims
needs to be estimated, which is done using simulation. This procedure will gen-
erate future payment processes and the procedure for how this is done follows
that of [16] and [2] and is described in Section 5. Once the procedure for gener-
ating simulated future payments is available, the one-year reserve and premium
risk may be calculated. How this is done, including simulated data updates and
parameter re-estimation, is described in Section 6.

The paper ends with a case study based on real insurance data including
analysis of model fit as well as out-of-sample performance, see Section 8. More-
over, the one-year risk calculations are based on large scale simulations designed
to capture re-estimation risk. This is achieved by using nested simulations –
outer (first step BE estimation) and inner (second step BE re-estimation) simu-
lations. Due to this it is of interest to analyse how the so-called computational
budget should be used, i.e. to find the relation between number of inner and
outer simulations. Such an analysis is carried out in Section 8.5.

The main conclusions of the paper are that the micro model setup for one-
year risk calculations are computationally feasible and that the model perfor-
mance is easy to interpret. Further, compared with the chain-ladder method
the case study in Section 8 show that the micro model produces more stable
results w.r.t. CDR-distributions together with more accurate BE-reserves.

2 Model outline

As described in the introduction the idea is to focus the modelling on the claims
generating process using a marked Poisson process approach introduced by [32,
33] and used in e.g. [16, 2]. Given that such a model can be constructed the
claims reserve, i.e. the BE reserve, corresponds to the expected value of the
future claims costs produced by the claims generating process. Thus, the key
usage of the model is to predict remaining payments from outstanding claims
for historical occurrence years. The remaining payments are divided in two
parts depending on whether these are stemming from Reported But Not Settled
(RBNS) claims or Incurred But Not Reported claims (IBNR), i.e. claims that
have occurred, but are yet to be reported to the insurance company.

Every claim will experience the following:

(i) a claim event at some point in time,

(ii) a (possible) reporting delay describing the time between accident and that
the insurance company becomes aware of the claim,

(iii) once that the insurer becomes aware of the claim, the handling process
will start,

(iv) given that the claim is acknowledged by the insurer there will be a series
of payments distributed in time,
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(v) the claim is settled.

From a modelling perspective it is usually only interesting to analyse the
claims that result in at least one payment. In Section 8.1 we give some comments
regarding so-called ”zero claims” which are reported, but never will receive any
payments. In the present paper the evolution of an actual claim will be described
in terms of the following claims characteristics:

1. Reporting delay – claims are only known once the reporting delay has
been observed, which will separate claims between Reported But Not Settled
RBNS and IBNR.

2. Development process – after a claim has been reported it can experience
a number of different events distributed in time, here we will only consider
those relating to payments and/or settlement.

3. Payments – the claim events in the development process associated with
payments needs to be assigned a (random) payment.

Thus, the above information is all that is needed in order to determine the future
costs for already incurred claims. The current modelling approach is hence based
on adding the remaining information until settlement for each RBNS claim and
given an estimate of the number of IBNR claims add all information needed in
order to describe each of these IBNR claims until settlement. In the current
paper this will be done using a simulation approach.

Remark 2.1. Note that once the reporting delay has been added to an IBNR
claim the description for how an IBNR claim evolves is identical to that of a
RBNS claim.

In the next section the stochastic model used to describe the claims gener-
ating process is defined.

2.1 The claim process as a stochastic model

In the present paper the process according to which claims occurs is assumed to
follow a non-homogeneous Poisson process with independent marks. The marks
contains information on reporting delay, time points of payments, payment sizes
and settlement of claims according to Section 2. For further theoretical back-
ground on marked Poisson process, see e.g. [8, 30, 21] as well as [32, 33]. The
model presented in the current section is closely connected to the one described
in the case study of [2], see also [16].

Given the description of the claim process from Section 2 the correspond-
ing stochastic model that will be used throughout is defined as follows: the
claim occurrences of a total portfolio with exposure w(t) is described by a non-
homogeneous Poisson process with intensity λ(t)w(t) and the time points when
claims occur are denoted by Ti. Given that a claim occurs the claim is assigned
an independent reporting delay Ui. After that the time Ui has expired three mu-
tually independent (competing) non-homogeneous Poisson processes, that are
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independent of the occurrence process, are started: one process that generates
payments at rate hp(t), one process that generates settlements at rate hse(t)
and one that generates settlements with payments at rate hsep(t). All these
processes are stopped as soon as a settlement event has occured. Moreover, the
time points between these events for claim i will be denoted by Vij and each of
the events generating payments will be assigned a payment of size Pij(Ui+Vij),
i.e. the size of payments may depend on the time since reporting. To connect
this to [2], all information regarding the development process is contained in a
random vector of random length denoted by Xi, i.e. each claim is assigned an
independent mark (Ui,Xi).

Remark 2.2. Throughout we will use upper case letters to denote random vari-
ables and lower case letters to denote observations from random variables.

3 The Likelihood of (partially) observed claims

Regarding the data generating process it follows that observed not yet fully
developed claims are observed until some time-point τ , which corresponds to a
right censoring. Moreover, in order to observe a claim at all the reporting delay
must have been observed. This gives us that the data is also left truncated. For
more on censoring and truncation, see e.g. [1].

The full likelihood for the model described in Section 2.1 is a special case of
the likelihood given in [2, Eq. (5)], see also [16, Sec. 4.1]. In the current setting
we will also assume continuous distribution functions for the time distributions
as well as for the payment size distributions. Cumulative distribution functions
will be denoted by F•(·) and density functions as f•(·). Moreover, we have
the following parameters to estimate: λ, i.e. the underlying intensity of the
non-homogeneous Poisson process, θ which contains all parameters relating to
time distributions and payment distributions together with the hazard functions
h•(·). To stress the dependence on θ we will occasionally write F•(·; θ). In [16, 2]
the likelihood is described to allow for non-continuous distributions, but given
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a continuous setting the likelihood reduces to the following expression:

L(θ, λ, h•) =

{(
n∏
i=1

λ(ti)FU (τ − ti; θ)w(ti)

)

× exp

(
−
∫ τ

0

λ(s)FU (τ − s; θ)w(s)ds

)}
×

n∏
i=1

fU (ui; θ)

FU (τ − ti; θ)

×


n∏
i=1

∏
j

hδij1sep (vij)h
δij2
se (vij)h

δij3
p (vij)


× exp

(
−
∫ τi

0

(hsep(s) + hse(s) + hp(s))ds

)}
×

n∏
i=1

∏
j′

fP |Ui+Vij′=ui+vij′
(xij′ ; θ), (1)

where δijk denote the indicator function belonging to claim i defined by

δijk :=

{
1 if j = k,
0 j 6= k

where k = 1, 2, 3 corresponds to claim type sep, se and p, respectively, and
where τi = min(τ − ti − ui, vi).

Before proceeding further it is worth to comment on (1). The first two lines
in the likelihood relates to observed claim events, i.e. claims occur following
a non-homogeneous Poisson process with intensity λ(t) out of which we only
observe the claims for which Ti + Ui ≤ τ , which explains the thinning w.r.t.
FU (τ − ti; θ). That is, claim events are observed at rate λ(t)FU (τ − t; θ)w(t)
and the exponential expression corresponds to the probability that the claim
did not occur until time t given the rate function, i.e. the claim has ”survived”
up to the time immediately prior to t.

The third line of (1) relates to the estimation of the delay distribution gov-
erning Ui which is depending on that data is left-truncated. That is, we can
not observe Ui unless Ti + Ui ≤ τ , which gives us the conditional density of Ui
given ti + Ui ≤ τ , since Ti is observed. For more on this, see Section 5.2.

Lines four and five are analogous to lines one and two, but w.r.t. when pay-
ments, payments with settlements and settlements without payments occurs,
assuming that these three types of events are mutually independent and inde-
pendent of λ and the delay.

Finally, the last line corresponds to size of payments which may depend on
time since reporting.

Further, one can also note that (1) may be reduced further, since the first
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three lines contains factors FU (τ − ti; θ) that cancel:

L(θ, λ, h•) =

(
n∏
i=1

λ(ti)fU (ui; θ)w(ti)

)

× exp

(
−
∫ τ

0

λ(s)FU (τ − s; θ)w(s)ds

)

×
n∏
i=1

∏
j

hδij1sep (vij)h
δij2
se (vij)h

δij3
p (vij)


× exp

(
−
∫ τi

0

(hsep(s) + hse(s) + hp(s))ds

)
×

n∏
i=1

∏
j′

fP |Ui+Vij′=ui+vij′
(xij′ ; θ). (2)

Remark 3.1. Note that even though the claim occurrence process is independent
of its marks, we will still only observe partial information about the underlying
claim occurrence process due to right censoring and left-truncation. The effect of
this is that we will only be able to observe the thinned claim occurrence process.
An artefact of this observation is that we can not estimate the delay distribution
and λ(t) separately.

4 Estimation of model parameters and parame-
ter uncertainty

The likelihood from (2) is a rather general object. In the case study described
in Section 8 we need to make various assumptions regarding distributions and
functional forms of the intensity functions. Due to data disclosure and availabil-
ity of data we will in Section 8 limit the intensity functions to being piecewise
constant.

That is, let [dl−1, dl) where l = 1, ...,m be a partition of the time interval
[0, τ ] where λ(t) and w(t) are assumed to be piecewise constant and let [d̃l−1, d̃l)
where l = 1, ..., m̃ be a partition of the time interval [0, τ ] where the intensities
he(t), e ∈ {p, s, sep}, are assumed piecewise constant, where

λ(t) ≡ λl, t ∈ [dl−1, dl), l = 1, . . . ,m,

w(t) ≡ wl, t ∈ [dl−1, dl), l = 1, . . . ,m,

he(t) ≡ he,l, e ∈ {p, s, sep}, t ∈ [d̃l−1, d̃l), l = 1, . . . , m̃.

Further, let nocl denote the number of observed claims in interval l and let noce,l
denote the number of observed events of type e ∈ {p, s, sep} in interval l.

By using the above notation the likelihood from (2) may be re-written ac-
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cording to the following:

L(θ, λ, h•) =

(
m∏
i=1

(λiwi)
noc
i

)
exp

(
−

m∑
i=1

λiwi

∫ di

di−1

FU (τ − s; θ)ds

)

×
m̃∏
i=1

(
h
noc
sep,i

sep,i h
noc
se,i

se,i h
noc
p,i

p,i

)

× exp

− n∑
i=1

m̃∑
j=1

(hsep,j + hse,j + hp,j)

∫ d̃j

d̃j−1

1{s≥τi}ds


×

n∏
i=1

fU (τ − ti; θ)
∏
j′

fP |Ui+Vij′=ui+vij′
(xij′ ; θ). (3)

All parameters {λl}, {h•,l} and θ are then estimated using standard maximum
likelihood theory. In particular it is worth noting that the likelihood for {h•,l},
may be factored out and treated separately, resulting in the following ML-
estimator

ĥe,l =
noce,l∑n

i=1

∫ d̃l
d̃l−1

1{s≥τi}ds
, e ∈ {p, se, sep}. (4)

Note that payment size distributions are also independent of all other parame-
ters and may be analysed separately.

Regarding the reporting delay distributions and {λl}, these can not, as seen
above, be treated separately, see Remark 3.1. From [2] it is not entirely clear
how they address this topic, see the discussion concerning Eq. (8) in [2, Sec.
4.2]. It is however straightforward to maximise the parameters in θ that relates
to the reporting delay distribution simultaneously with the λls. This is what is
done in Section 8. Note that this dependence between the parameter estimators
will affect their joint parameter uncertainty.

Concerning parameter uncertainty and re-estimation risk, this will tend to
become computationally heavy. Following the lines of [2, Sec. 5.3] we make use
of that

({λ̂l}, {ĥe,l}, θ̂) ∼ asym. N(({λ̂l}, {ĥe,l}, θ), Ĉ),

where Ĉ = Ĉov({λ̂l}, {ĥe,l}, θ̂) = I−1({λ̂l}, {ĥe,l}, θ̂), where I−1(·) corresponds
to the inverse of the observed Fisher information obtained from the numerical
estimation procedure used to maximise the likelihood.

Remark 4.1. All hazard rates are mutually independent and independent of all
other model parameters. Thus, based on (3) and (4) it follows that

V̂ ar(ĥe,l) =
1

− ∂2

∂h2
e,l

logL(he,l)|he,l=ĥe,l

=
noce,l(∑n

i=1

∫ d̃l
d̃l−1

1{s≥τi}ds
)2 . (5)
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Remark 4.2. Since the hazard rates are assumed to be piecewise constant,
these are estimated independently of each other, making the covariance matrix
in the asymptotic normal distribution diagonal. This means that any pattern
seen in the point estimates of the hazard rates when looked upon jointly may
be destroyed when adding parameter uncertainty using the asymptotic normal
distribution assumption if (5) becomes too large.

5 Simulating claims characteristics

The stochastic model described in Section 2.1 define how we believe that claims
data is generated over time. When it comes to reserving we are interested in
the value of the future payments generated by already incurred claims. For
RBNS claims we already have observed partial information, in particular we
have T + U ≤ t, and it hence amounts to simulating the future evolution of
the development process. Regarding the IBNR claims we know that these must
satisfy T + U > t. The first step is hence to simulate the number of IBNR
claims, and given the number of IBNR claims these need to be distributed in
time in such a way that T + U > t. Once this is done the remaining unknown
information corresponds to that of a RBNS claim that has been observed exactly
at T +U . Given this, the simulation of the evolution of the development process
is identical for RBNS and IBNR claims.

In Section 5.1-5.3 we describe in detail how the simulation is carried out.
This closely follows the procedure from [2, Sec. 5], see also [16, Sec. 4.3].

5.1 Simulating number of IBNR claims

Based on the model from Section 2.1 together with the assumptions on piecewise
constant intensities from Section 4 it follows that the number of IBNR claims
stemming from the time interval [di−1, di), denoted by NIBNR,i, is given by

NIBNR,i ∼ Po

(
λ̂iwi

∫ di

di−1

(1− FU (τ − t; θ̂))dt

)
. (6)

This is reasonable, since the thinning 1−FU (τ−t; θ̂) is just another way of saying
that the claims have ”survived” detection during the time interval [di−1, di).

5.2 Simulating IBNR time of accident and reporting delay

For each simulated IBNR claim we know that the time of accident, Ti, and
reporting delay, Ui, must satisfy Ti + Ui > τ . Thus, we want to draw pairs
(Ti, Ui) from

P (T ≤ t, U ≤ u|T + U > τ) = P (U ≤ u|T + U > τ, T ≤ t)
× P (T ≤ t|T + U > τ).
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Further, since claims occur according to a Poisson process it follows that the
marginal distribution of accident time given that a claim has occurred within
a certain time interval is uniform, i.e. Ti ∼ Un(0, c), say, where c > 0 depends
on the time interval decomposition of the claim year w.r.t. λ. Moreover, by
definition T and U are independent. Hence, by combining these facts and using
standard conditioning it follows that

fT |T+U>τ (t) =
P (U > τ − t)∫ c

0
P (U > τ − s)ds

, (7)

and

fU |T+U>τ,T=t(u) = fU |U>τ−t(u) =
fU (u)

P (U > τ − t)
. (8)

Consequently, following the above, you start by drawing Ti|Ti + Ui > τ from
(7), and given Ti = ti, you draw a Ui from (8).

5.3 Simulating the development process for RBNS and
IBNR claims

We will now describe how the development process is simulated, but first let si
denote the time since reporting for claim i. Further, in order to simplify the
exposition below we return to using a continuous he(t) even though these rates
are assumed piecewise constant.

The development process for claim i is simulated according to the following:

(i) The time until the next event is drawn from

P (V ≤ v|V > si) =
exp

(
−
∫ si
0

∑
e he(s)ds

)
− exp

(
−
∫ v
0

∑
e he(s)ds

)
1− exp

(
−
∫ si
0

∑
e he(s)ds

) .

(ii) Given the next event time vi the probability that the next event is of type
e is given by

he(vi)∑
e he(vi)

due to the Poisson structure and where e ∈ {p, se, sep}.

(iii) Given that the event was of type {p, sep} a payment is drawn from FP (ui+
vi).

(iv) Set si = ui + vi.

(v) If e 6∈ {se, sep} go to Step (i) otherwise stop.
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5.4 Parameter uncertainty

In order to account for parameter uncertainty we start each simulation by draw-
ing parameters from the asymptotic normal distribution described at the end of
Section 4 in Remark 3.1.

6 Best estimate reserves for RBNS and IBNR
claims and one-year insurance risks

The procedure laid out in Section 5.1-5.3 defines how to simulate the necessary
claims characteristics needed in order for the evolution of all RBNS and IBNR
claims to become known until final settlement. From the result of each such
simulation carried out at time t it is straight forward to sum up all payments
stemming from RBNS and IBNR claims in (t,∞), which corresponds to one
simulated claims reserve. Thus, by repeating the steps from Section 5.1-5.3 κ
times we will obtain the empirical simulated distribution of the total outstanding
claims reserve. Let RRBNS,k(t) denote the sum of all RBNS related payments in
simulation k, k = 1, . . . ,K, that are generated by claims that have occurred up
to and including time t, and define RIBNR,k(t) analogously. The total reserve
in simulation k is then given by

Rk(t) = RRBNS,k +RIBNR,k, k = 1, . . . , κ. (9)

Let
R(t) := {Rk(t); k = 1, . . . , κ}.

The Best Estimate (BE) reserve according to the Solvency II-directive, see [9,
Article 77(2)], is then given by:

B̂E(t) := Ê[R(t)] =
1

κ

κ∑
k=1

Rk(t), (10)

i.e. B̂E(t) is an estimate of expected value of all outstanding payments in (t,∞).

Remark 6.1. Note that R(t) is defined w.r.t. all available information up to
and including time t. Consequently R(t) has an implicit dependence on the
natural filtration generated by the micro model generated up to time t. This fact
becomes important in the next sub-section when the one-year re-estimation risk
of reserves will be addressed.

Remark 6.2. The above BE reserve is un-discounted and does not account
for inflation. Further, the expense reserve is not included in the above reserve
estimate.

6.1 One-year reserve risk

The Solvency II-directive requires that the re-estimation risk shall be quanti-
fied, and in particular the one-year re-estimation risk. Ideally this is captured
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according to the following: let Ck(t + 1) denote the amount of payments that
are realised (paid out) in simulation k, k = 1, . . . , κ, during (t, t + 1]. Further,

let B̂E
ν

k(t + 1) denote the best estimate reserve for the outstanding claims in
(t + 1,∞) in simulation k given the additional information that has become
known in (t, t+ 1] when ν inner simulations are used. That is, simulated IBNR
claims become known according to the model, RBNS claims get updated claims
characteristics, parameters are re-estimated etc. The realised one-year reserve
result in simulation k is then given by

Dν
k(t+ 1) := B̂E

ν

k(t+ 1) + Ck(t+ 1)− B̂E(t),

where Dν
k(t+ 1) > 0 corresponds to a loss. Continuing, let

Dνκ(t+ 1) := {Dν
k(t+ 1); k = 1, . . . ,K}. (11)

The one-year Solvency Capital Requirement (SCR) for reserve risk according to
the Solvency II-directive is then given by

ŜCRR(t) := q̂0.995(Dνκ(t+ 1)), (12)

where q̂α(·) corresponds to the empirical α-quantile function, i.e. the 100α%
Value-at-Risk, see [9, Article 101(3)]. The above presentation is in alignment
with [34].

Remark 6.3. The quantity Dν
k(t+ 1) is, possibly up to a change of sign, what

is often referred to as the Claims Development Result (CDR).

Remark 6.4. Each B̂E
ν

k(t+1) is based on an additional ν inner simulations in
accordance with the procedure described in order to calculate (10). The question
of choosing a suitable ν (and κ) will be addressed in Section 8.5 below.

Remark 6.5. Note that the above procedure for calculating the SCR for reserve
risk is based on that the information that becomes realised during (t, t + 1] is
used to re-estimate parameters etc. In practice this becomes computationally
very heavy. As an approximation all simulated IBNR claims that become known
in (t, t + 1] are transferred to RBNS claims and updated accordingly. Further,
as described in Section 5, each outer simulation k has a collection of simulated
parameters assigned to it which are drawn from the asymptotic ML-error distri-
bution. These parameters are kept constant when estimating the corresponding

B̂E
ν

k(t+ 1) connected to the evolution of claims payments in (t+ 1,∞).

Remark 6.6. Given (11) it is straight forward to calculate other metrics of
one-year reserve risk such as Expected Shortfall.

6.2 Premium risk

The one-year premium risk according to the Solvency II-directive corresponds
to the risk that the cost from next years written polices (including renewals) and
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costs from unexpired contracts will be larger than expected. This is analogous
to the one-year reserve risk except that you at the end of year t set a reserve
for the claims that you expect to occur during year t + 1. Thereby, given an
estimate today, at t, of next years premium earnings in (t, t + 1], P̃ (t), the
one-year premium result in simulation k is given by

Gνk(t+ 1) :=
̂̃
BE

ν

k(t+ 1) + C̃k(t+ 1)− P̃ (t), (13)

where
̂̃
BE

ν

k(t+1) corresponds to the BE reserve for the claims that have occurred
during year t+ 1 and C̃k(t+ 1) denotes the corresponding payments in (t, t+ 1]
and ν denotes the number of inner simulations used. As for the one-year reserve
risk G(t + 1) > 0 corresponds to a loss. The premium risk defined by (13) is
again in line with [34]. Analogously to the one-year reserve risk we let

Gνκ(t+ 1) := {Gνk(t+ 1); k = 1, . . . , κ},

which gives us the one-year SCR for premium risk according to

ŜCRP (t) := q̂0.995(Gνκ(t+ 1)).

Remark 6.7. Again, in agreement with the one-year reserve risk, Remark 6.5
is valid for premium risk.

Remark 6.8. At the end of year t all claims that eventually will occur during
year t + 1 may from the above simulation procedure’s perspective be treated as
IBNR-claims. That is, for occurrence (accident) year t+ 1 we can again make
use of the simulation procedure from Section 5.1-5.3, but where there are only
IBNR claims which are given by

NIBNR(t+ 1) ∼ Po
(
wt+1λ̂t+1

)
, (14)

where wt+1 and λ̂t+1 are suitably chosen.
Again, note that this is in close connection to ”Not Incurred” (NI) claims

discussed in [32, 33].

Remark 6.9. Operating expenses are not included in the above definition of
premium risk unless these are non-random and may be included in P̃ .

7 The chain-ladder method

In Section 8 we want to analyse the performance of the micro-model in relation
to real data. Further, in order to set the performance of the micro-model in
perspective we will use a version of the classical chain-ladder method as refer-
ence. In particular an implementation of the chain-ladder with bootstrapping
is used to model one-year risks. The bootstrapping used is the one described in
[12]. For more on other stochastic versions of the chain-ladder method, see e.g.
[11, 12] and the references therein.
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7.1 One-year Reserve Risk

As in Section 6.1 we follow the definition of one-year reserve risk given by [34].
Again, we want to produce D(t + 1) from (11) in order to be able to calculate

ŜCRR(t) from (12).
In [34] several possibilities are suggested on how to simulate new chain-ladder

diagonals. One of the prosed methods is to simulate next years payment from
a log-normal distribution with a mean given by the chain-ladder estimate and
the variance given by Mack’s standard distribution free chain-ladder conditional
variance assumption.

Given this model diagonals are simulated where after the chain-ladder de-
velopment factors are re-estimated which are then used to produce new reserve
estimates.

7.2 One-year premium risk

Regarding premium risk for the chain-ladder method it is not directly appli-
cable in the same way as described in Section 6.2. This is a consequence of
that the chain-ladder method is based on that there are at least some partially
observed claims available. When it comes to premium risk there are not yet any
observed claims for next years claims. The classical chain-ladder method lacks
an initiation step for not yet incurred claims. Due to this we will not make any
chain-ladder comparison w.r.t. premium risk. For more on premium risk and
chain-ladder see e.g. [34].

8 Case study

The previous sections have been devoted to explaining the necessary background
theory needed to calculate one-year non-life insurance risks in accordance with
the Solvency II-directive. We now proceed with a case study based on real data.
For the purpose of this study it is not relevant to know more about the type of
business other than it is non-life insurance.

8.1 Data

The data consists of claim payments for 9 consecutive years containing approx-
imately 11 000 unique claims. The claims can be settled directly as well as
receive multiple payments before being settled. In total the dataset contains
approximately 22 000 events. In addition there are approximately 4 000 zero
claims, i.e. claims that never received any payments before settlement. These
zero claims need to be accounted for. This is done by adding an extra step in
the simulation which corresponds to a thinning of potential IBNR claims be-
fore initialising their development processes, where the thinning is done using a
logistic regression model.

Further, all results have been normalised due to reasons of confidentiality.
This is described in more detail below.
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8.2 Trends in the data

We will now analyse the underlying data in more detail and comment on trends.
As a first step we start by looking at patterns seen in total cumulative payments
and counts in terms of development factors per occurrence year. This is relevant,
since the chain-ladder method will be used as reference method below.

The development factors are summarised in Table 1.

Remark 8.1. In Table 1 as well as in the tables below, the exposure per occur-
rence year has been normalised against the outcome of development year 1. The
actual exposure during the analysed time period has, however, changed substan-
tially. Due to confidentiality we do not want to discuss this further, and for the
purpose of identifying other trends in data this information is not needed.

From Table 1 it is seen that there are indications of that more payments
are made during development year 1 for later occurrence years. This fact is a
consequence of an improved claims handling process which has decreased the
the claims handling times. This may also have a slight effect on the development
between year 2 and 3. Regarding the development of claim counts, see Table
2, the pattern is rather homogeneous, except for that there is an indication of
that claims are reported earlier for later occurrence years. This suggests that
there may be either a trend in the delay distribution or that the pattern for how
claims are reported during the claim year may have changed. Moreover, from
Table 2 it is evident that there is a non-negligible fraction of IBNR claims up
until at least development year 5.

Table 1: The development factors per occurrence year based on cumulative
payments.

Development year
Occur- 2 3 4 5 6 7 8 9
rence
year
x 2.82 1.70 1.28 1.06 1.08 1.00 1.06 1.02
x+ 1 2.62 1.86 1.23 1.16 1.07 1.04 1.02
x+ 2 2.89 1.76 1.19 1.10 1.06 1.02
x+ 3 2.35 1.66 1.21 1.13 1.04
x+ 4 1.89 1.50 1.31 1.08
x+ 5 2.26 1.57 1.17
x+ 6 2.43 1.47
x+ 7 1.91

Continuing, in Table 3 the empirical mean payments for each occurrence
year and reporting year are summarised. All mean payments are normalised
w.r.t. the mean from the first development year for each accident year. From
Table 3 we see indications of an increasing trend as a function of time since
reporting. Further, we see no indications of trends across occurrence years.
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Table 2: The development factors per occurrence year based on cumulative
claim counts.

Development year
Occur- 2 3 4 5 6 7 8 9
rence
year
x 1.51 1.10 1.05 1.03 1.01 1.00 1.01 1.00
x+ 1 1.45 1.13 1.04 1.02 1.01 1.00 1.00
x+ 2 1.51 1.12 1.06 1.02 1.02 1.01
x+ 3 1.43 1.12 1.06 1.02 1.01
x+ 4 1.43 1.10 1.07 1.02
x+ 5 1.40 1.11 1.05
x+ 6 1.41 1.10
x+ 7 1.38

Table 3: The mean of the payments depending on occurrence year and devel-
opment year. The payments have been normalised by the mean from the first
reporting year of occurrence year x.

Reporting year
Occur- 1 2 3 4 5 6 7 8 9
rence
year
x 1.00 1.76 3.4 3.55 1.76 6.54 1.17 6.96 2.56
x+ 1 0.92 2.05 3.49 3.57 5.52 4.37 5.43 2.69
x+ 2 1.22 2.35 3.7 3.1 4.7 4.02 3.12
x+ 3 1.32 2.06 3.29 2.81 4.47 3.07
x+ 4 1.61 1.96 2.72 3.58 3.59
x+ 5 1.16 2.19 3.1 2.85
x+ 6 1.09 2.06 2.74
x+ 7 1.6 2.34
x+ 8 1.25

Table 4 shows the relative changes in the hazard rates. The hazard rates
are estimated for each individual occurrence year, but we focus on the first 5
development periods, where the length of a development period is 60 days. The
actual hazard rates that will be used in the model will be sub-divided into 20
intervals of length 60 days, see Section 8.4. The hazard rates are normalised
by the corresponding hazard rates from occurrence year x and the first hazard
rate period. From Table 4 there is indication of that the hazard rates for settled
with a payment events have increased. This is in alignment with the decrease
in time for claims handling commented on above. For the other types of events
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no signs of trends are detected.
Another interesting characteristic of the dataset being analysed is the dy-

namics of number of open and closed claims as a function of occurrence and
development year. This is summarised in Table 5. From Table 5 we see signifi-
cant changes over occurence years. In particular, more claims are settled earlier,
which also is an artefact of the improved claims handling process.

8.3 Results

We start by stating specific considerations made in the modelling together with
a summary of fitted parameter values, see Section 8.4. Further, given model
assumptions and fitted parameters we analyse the number of simulations needed
in order for the BE reserve and SCR to converge, see Section 8.5. Given this
we proceed to verify the model fit by comparing in-sample performance of the
model w.r.t. RBNS and IBNR payments, see Section 8.6. In Section 8.7 the out-
of-sample performance of the model’s BE reserve and SCR are compared with
corresponding results for the chain-ladder implementation described in Section
7.

8.4 Model assumptions and estimation

We will now give a brief account of the results of the fitting procedures that
have been carried out together with essential model assumptions. The different
components of the stochastic model are treated as follows:

1. The delay distribution
Comparing standard continuous distributions using AIC suggests that the
delay distribution may be modelled using a log-normal distribution. Due
to the heavy tail of the log-normal distribution we apply a 30 year cap on
the reporting delay. Model parameters together with confidence intervals
are shown in Figure 1.

2. Intensities
The intensities λ are assumed piecewise constant on yearly intervals. The
ratio of the means λ̂i/λ̂1 are displayed in Figure 3a together with 95%
confidence intervals.

3. The payment distribution
An analysis based on standard continuous distributions together with AIC
suggests that the size of payments as a function of time since reporting
may be modelled using log-normal distributions. The payment size distri-
butions are assumed constant on intervals of 365 days, and they do not
change after year five since reporting. Fitted parameters together with
their respective estimation uncertainty is shown in Figure 2.

4. Hazard rates
The hazard rates are assumed to be constant on intervals of 60 days. After
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Table 4: Relative changes in the hazard rates. The hazard rates are estimated
with data from the different occurrence years and here we assume no further
changes in the hazard rates after 5 intervals. The hazard rates are normalised
with he,1 estimated on occurrence year x.

Hazard rate period
Type Occur- 1 2 3 4 5

rence year
Se x 1.00 2.04 1.94 1.41 4.98

x+ 1 1.18 1.95 1.19 1.92 5.14
x+ 2 1.38 1.51 2.05 3.15 5.06
x+ 3 1.50 1.69 0.83 1.57 4.65
x+ 4 1.08 1.32 1.15 1.19 4.18
x+ 5 0.61 1.89 2.87 1.54 4.54
x+ 6 0.89 2.55 3.34 1.37 4.28
x+ 7 1.95 6.56 5.04 3.49 2.93
x+ 8 4.00 16.89 14.06 4.38 6.54

Sep x 1.00 0.14 0.08 0.02 0.11
x+ 1 0.84 0.13 0.08 0.03 0.11
x+ 2 0.92 0.12 0.06 0.08 0.13
x+ 3 1.42 0.20 0.12 0.06 0.12
x+ 4 1.83 0.18 0.09 0.06 0.10
x+ 5 2.22 0.21 0.07 0.03 0.11
x+ 6 2.32 0.29 0.14 0.06 0.11
x+ 7 3.53 0.37 0.20 0.11 0.10
x+ 8 6.57 0.91 0.40 0.22 0.13

P x 1.00 0.41 0.19 0.09 0.13
x+ 1 1.06 0.36 0.16 0.11 0.12
x+ 2 0.96 0.37 0.15 0.08 0.12
x+ 3 1.00 0.41 0.18 0.13 0.14
x+ 4 0.99 0.38 0.18 0.09 0.11
x+ 5 0.98 0.35 0.19 0.11 0.10
x+ 6 0.84 0.47 0.22 0.12 0.10
x+ 7 0.95 0.39 0.17 0.09 0.10
x+ 8 0.83 0.57 0.30 0.10 0.10
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Table 5: The proportion of settled/open claims relative the number of set-
tled/open claims at the end of development year 1 for each occurrence year.

Development year
Occur- 2 3 4 5 6 7 8 9
rence
year

Settled claims
x 1.72 1.95 0.93 0.34 0.29 0.43 0.13 0.17
x+ 1 1.44 1.98 0.82 0.40 0.51 0.16 0.15
x+ 2 2.13 1.79 1.31 0.61 0.67 0.19
x+ 3 0.79 1.35 0.86 0.41 0.29
x+ 4 0.94 0.85 1.11 0.46
x+ 5 0.67 0.70 0.88
x+ 6 0.68 0.89
x+ 7 0.75

Open claims
x 0.65 0.34 0.19 0.15 0.11 0.04 0.03 0.01
x+ 1 0.71 0.33 0.22 0.17 0.06 0.03 0.02
x+ 2 0.66 0.38 0.22 0.14 0.03 0.02
x+ 3 0.83 0.43 0.21 0.12 0.04
x+ 4 0.82 0.58 0.25 0.12
x+ 5 0.82 0.54 0.16
x+ 6 0.80 0.34
x+ 7 0.60

20 intervals we assume no further changes in the hazard rates, i.e. after
roughly 3 years the hazard rates are constant. The fitted hazard rates
together with 95% confidence intervals are shown in Figure 3.

At this point we will not go further into details about fit, but will return
to this in Section 8.6 where we verify that the above proposed model capture
the in-sample dynamics of payments per occurrence year and development year
well. This is a deliberate choice in order to avoid overfitting, which is especially
important since the main application of the model is to perform out-of-sample
predictions, the latter being analysed in more detail in Section 8.7.

Remark 8.2. Note that in the simulation procedure described in Section 5 all
parameters are re-sampled from their asymptotic estimation error distributions,
i.e. according to the uncertainty shown in Figure 1-3. Further, again we stress
that the parameters are re-sampled with dependencies corresponding to the ones
implied by the fitting procedure, e.g. λ will depend on the parameters in the delay
distribution etc. For more on this we refer to Section 4.

Remark 8.3. By assuming that the hazard rates are constant beyond approxi-
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(b) Standard deviation parameter on log-scale

Figure 1: Figures 1a-1b show the parameter estimates for the log-normal dis-
tribution that describe the delay distribution. Note that the parameter values
are normalised against the mean of the mean parameter on log-scale
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Figure 2: Figures 2a-2b show the parameter estimates for the log-normal dis-
tribution describing the payment sizes as a function of years since reporting
together with 95% confidence intervals.

mately 3 years implies that the development process becomes homogeneous mak-
ing inter-event-times truly exponentially distributed after this point in time.
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Figure 3: Figure 3a displays the ratio of the intensities, λ̂i/λ̂1 together with 95%
confidence intervals. Figures 3b-3d display the estimated hazard rates together
with 95% confidence intervals. The hazard rates are assumed to be constant on
60 days. After 20 periods we assume no further changes in the hazard rates.

8.5 Determining the number of simulations

An important question when it comes to simulation based reserving is whether
or not the simulations have converged or not. Moreover, as implied by the
simulation procedures described in Section 5 and 6 it is not surprising that the
simulations tend to be computationally heavy. Due to this there is in practice
a computational budget w.r.t. time. Consequently it is of interest to analyse
how to make the most efficient use of the total number of simulations when split
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between number of outer, κ, and number of inner, ν, simulations.
In Figure 4 bootstrap error bounds expressed in terms of coefficients of

variation for the BE-reserve and the 95% reserve percentile are shown when the
number of (outer) simulations, κ, are varied. From Figure 4 it is seen that the
bootstrap error bounds decreases rapidly and are negligible for k larger than ca.
5 000, but are only 2-3% when κ ≈ 100.

Further, Figure 5 show bootstrap error bounds expressed in terms of coeffi-
cients of variation for the reserve risk SCR when varying both the number of
outer simulations, κ, as well as the number of inner simulations, ν. Based on
Figure 5 it is hence not recommended to use less than κ = 20 0000 outer and
ν = 10 inner simulations. It is also worth noting that it is more important to
have a large number of outer simulations. Note that this is reasonable, since
the number of outer simulations in effect will span the CDR-distribution, i.e.
Dνκ(t+ 1) from 11, whereas for each of the outer simulations there is only need
to simulate enough trajectories in order for the updated (point estimate) BE
reserve to become sufficiently accurate.

Based on the above, unless otherwise specified all SCR-calculations are based
on κ = 20 000 outer simulations and ν = 10 inner simulations.
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Figure 4: Both panels show bootstrap error bounds expressed as coefficients of
variation as a function of number of (outer) simulations. Panel (A): Bootstrap
error bound for the best estimate reserve as a function of number of (outer)
simulations. Panel (B): Bootstrap error bound for the 95% percentile of the
reserve distribution as a function of number of (outer) simulations.
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Figure 5: Bootstrap error bound expressed as coefficients of variation for

ŜCRR(t) from (12). Dash-dotted, dotted, dashed and solid lines corresponds to
κ = 5 000, 10 000, 20 000 and 30 000 outer simulations, respectively, and inner
simulations are displayed on the x-axis (corresponding to ν).

8.6 In-sample performance

Above we have discussed trends in data together with various modelling as-
sumptions. A natural question to address is the in-sample fit produced by the
micro model. One way of doing this is to consider the forecasting performance
of the model w.r.t. realised payments compared with one-year-ahead forecasted
payments. That is, for each occurrence year, based on the information that
successively becomes known a one-year-ahead forecast of payments is made.
Further, these payments may be categorised as belonging to either RBNS or
IBNR claims seen from the start of the year that is being forecasted. Figure
6 show the result of this comparison for a number of occurrence years. From
Figure 6 it is evident that that the above model, using piecewise constant in-
tensities together with standard distributions provide a remarkably good fit for
both RBNS and IBNR claims.

Figure 7 show a similar evaluation of the chain-ladder method, which also
provide a reasonable fit. Since the standard chain-ladder method is distribu-
tion free we also make scatter plots comparing the year-on-year development of
cumulative payments together with the standardised residuals

êCLi,k =
ci,k+1 − f̂kci,k√

ci,k
, (15)

where f̂k is the standard chain-ladder development factor for projecting pay-
ments from development year k to k + 1, and ci,k corresponds to the observed
cumulative payments for claims year i up to development year k. This is in
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line with [26] and one can note that the particular choice of residuals are in
line with the standard variance assumption of the distribution free chain-ladder
method. The results of this analysis is shown in Figure 8. From Figure 8 it is
seen that the linear year-on-year development pattern seems reasonable, since
the development factors are close to the theoretical regression line. Regarding
the chain-ladder variance assumption the residuals from Figure 8 may indicate
that the standard chain-ladder variance assumption is not suitable. We refrain
from further analysis of the suitability of the chain-ladder method for the par-
ticular data due to the small number of data points and refer the interested
reader to [26] where more test procedures are described in full detail.

Consequently, based on the above there is no further need to analyse the
specific building blocks of the model in more detail.

8.7 Out-of-sample performance

In Section 8.6 it is concluded that the model fit for the micro model seems to be
adequate and that the chain-ladder method should provide a reasonable model
for comparison. We will now proceed to analyse the out-of-sample performance
of the models.

Figure 9 summarises the out-of-sample performance for the micro model
w.r.t. performance of the claims reserve when split into RBNS and IBNR claims
for all accident years ≤ x + 6 and ≤ x + 7, out of a total of 9 accident years
(i.e. x, . . . , x+ 8). From Figure 9 it is seen that for the best estimate reserve for
accident years ≤ x+6 the performance is good for both RBNS and IBNR reserve
behaviour; the actual reserve is contained within the bulk of both the RBNS
and IBNR claims reserve distributions, as expected. Moreover, it is seen that
the CDR-distribution, i.e. Dνκ(t+ 1) from (11), is centred around zero, which is
an indication of that the micro model has not introduced any substantial reserve
bias.

Further, when inspecting the analogous results for accident years ≤ x+7 the
situation is different. The reserve behaviour is still good for the IBNR claims,
but the realised RBNS claims are very small in comparison with the predicted
distribution. Moreover, by inspecting the CDR-distribution it is seen that it is
still centred around zero, as it should, but that the true outcome corresponds
to a huge profit. Based on the CDR-distribution one may also deduce that
the IBNR part of the claims reserve is non-negligible. Regarding the extreme
outcome of the RBNS reserve, recall that in Section 8.2 it was stated that the
claims handling time had been shortened during the last accident years due to
changes in the claims handling process. Furthermore, one can note that even
though the claims handling times have been shortened, the IBNR reserve still
performs well. This type of information may be included into the micro model a
priori by using expert judgment in a way not possible for claims triangle based
macro models.

To summarise the above analysis, the out-of-sample performance of the micro
model is behaving as expected.

Turning to the comparison with chain-ladder. In Figure 10 the results for
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Figure 6: Columns: Yearly total payments, RBNS payments and IBNR pay-
ments, respectively, per development year. Rows: Occurrence year x, x+2, x+5,
respectively. In all figures circles corresponds to actual payments, dotted lines
corresponds to mean payments for next year according to the micro-model, and
solid lines corresponds to 95% confidence intervals. All results are normalised
against the mean for development year 2 for each occurrence year.

total reserves and payments for both the chain-ladder method and micro model
are summarised. All results are normalised with the corresponding total initial
micro model reserves. For accident years ≤ x+ 6 it is clear that the models are
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Figure 7: Yearly total payments for occurrence year x, x+2, x+5, respectively,
per development year for chain-ladder. In all figures circles corresponds to actual
payments, dotted lines corresponds to mean payments for next year according
to chain-ladder. All results are normalised against the chain-ladder mean for
development year 2 for each occurrence year.

comparable, but the micro model give slightly more conservative loss percentile
estimates, being somewhat more skewed towards higher loss percentiles. It can
also be added that the total initial micro reserve is slightly higher than the cor-
responding chain-ladder reserve. Moreover, as opposed to the micro model, the
chain-ladder method produces a CDR-distribution which is not centred around
zero, which indicates that the method is perhaps not fully aligned with data.
This even clearer for accident years ≤ x + 7, but here the CDR-distribution
for the chain-ladder method is also considerably wider than the corresponding
distribution for the micro model. Further, by analysing the payment distribu-
tion and reserve distribution for the chain-ladder method it is seen that both
miss the actual outcomes completely. This is, as noted above, a consequence
of the change in the claims handling process. One can also note that for the
micro model, even though it overestimates the reserve it is clear that the pay-
ment distribution still seems to capture the overall dynamics reasonably well. A
more detailed analysis of the sub-division between payments coming from IBNR
and RBNS claims shows that, in particular, the IBNR payment distribution is
working well, see Figure 11. A final remark concerning the reserve risk for ac-
cident years ≤ x + 7 is that the initial chain-ladder reserve is approximately
30% greater than the corresponding micro model reserve. In this situation the
micro model reserve is believed to be more accurate, since it still captures the
IBNR dynamics well. Moreover, when analysing the situation for accident years
≤ x + 8 the micro model produces a decrease in RBNS reserve, due to volume
changes in the number of open claims, which results in that the predicted dis-
tribution again performs well. This is not the case for the chain-ladder method
which continues to overshoot.
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Figure 8: First row: from left to right, scatter plot of normalised cumulative
yearly payments ci,k are plotted against ci,k+1 together with a line (without
intercept) with slope corresponding to the standard chain-ladder development

factor f̂k, k = 1, 3, 4. Second row: from left to right, standardised residuals êi,k
from (15) are plotted against ci,k for k = 1, 3, 4.

8.8 Some comments on the relation between the micro
model and standard formula calculations for Solvency
II non-life insurance risks

Under the Solvency II insurance regulation most non-life insurance companies
will use so-called ”standard formula” calculations of reserve- and premium risk.
These calculations are based on a (translated) log-normal assumption making
the 99.5% loss percentile easily calculated once you have decided on the stan-
dard deviation in your loss distribution. For non-life insurance the standard
deviations of reserve and premium loss distributions are in the range 10-20%,
where the standard deviation is expressed as a fraction of the BE reserve, see
[10, Annex II]. Thus, what is called a standard deviation under Solvency II is
in fact a coefficient of variation of a CDR-distribution.

For the above implementation of the micro model the coefficient of varia-
tion for the one-year reserve risk is ≈ 10%. Consequently, if one would allow
for a micro model calibration of Undertaking Specific Parameters (USP) the
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Figure 9: All figures are normalised with the total BE-reserve estimated at time
t. Columns: RBNS reserve distribution for time t+1 estimated at time t, IBNR
reserve distribution for time t+1 estimated at time t and CDR-distribution, i.e.
Dνκ(t + 1) from (11), respectively. Rows: Accident years ≤ x + 6 and ≤ x + 7,
respectively. All results are normalised with the corresponding total BE-reserve
estimated at time t. The vertical lines corresponds to true outcomes.

standard deviation (i.e. the coefficient of variation of the CDR-distribution for
the claims reserve) obtained is comparable with that of the standard formula
capital requirement calculations. Moreover, for more day-to-day fluctuations in
the BE-reserve, the micro model is believed to produce considerably less vari-
ation than corresponding claims triangle methods, see e.g. the changes in the
CDR-distributions for the chain-ladder method from the previous section.

Regarding the premium risk the micro model produces a coefficient of vari-
ation of the CDR which is ≈ 5%, which is below the corresponding standard
formula calibration. These calculations where made using a simple extrapola-
tion of the volume of contracts during the coming year, but we do not, however,
see that the effect of shifting the contract volume should have any considerable
impact on the coefficient of variation of the premium CDR-distribution. A more
important consideration concerning the premium risk calculations is to assess
the relevance of the historically fitted model w.r.t. pure out-of-sample forecasts.
As an example, recall that in Section 8.2 it was noted that the claims handling
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Figure 10: Columns: Total reserve distribution for time t+1 estimated at time t,
total payment distribution for payments in (t, t+ 1], CDR-distributions, i.e. the
distribution analogous to (11), for the chain-ladder method based on the model
in Section 7 for accident years ≤ x+ 6 and ≤ x+ 7, respectively. All results are
normalised with the corresponding total micro BE-reserve estimated at time t.
Solid lines corresponds to micro-model results and dashed lines corresponds to
chain-ladder results. The vertical lines corresponds to true outcomes.

times had decreased for the last year, something which was seen in Section 8.7
when assessing out-of-sample performance. Given that you are using a micro
model it is however possible to constructively argue for changing certain distri-
butions based on expert judgment.

9 Concluding remarks

The present paper describe how one-year non-life insurance risks according to
the Solvency II directive may be consistently calculated for a point process based
micro modelling framework as introduced by [32]. This is done continuing the
work of [16, 2]. In order for this type of model to be credible to use there is a
need for careful model assessment w.r.t. both in-sample and out-of-sample per-
formance, but also regarding robustness due to the number of simulations being
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Figure 11: Columns: RBNS and IBNR payment distributions from the micro
model for payments in (t, t + 1] for accident years ≤ x + 7, respectively. All
results are normalised with the corresponding total micro BE-reserve estimated
at time t. The vertical lines corresponds to true outcomes.

used. All of this has been addressed above. Further, regarding assessment of fit
in relation to model complexity more focus was put on actual model performance
rather than assessing various model parameters and distributional choices. This
is believed to be a reasonable procedure in order to avoid overfitting, since the
main objective is to perform out-of-sample predictions.

The main conclusion of the paper is that the micro model approach is fea-
sible to use for one-year Solvency II risk calculations and that the constructive
modelling approach will provide additional insights concerning model perfor-
mance as well as a more flexible modelling framework compared to traditional
claims triangle methods. Moreover, the case study in Section 8 suggests that
the micro-model’s CDR-results are more stable across calendar years compared
with the chain-ladder method and that the micro model is better at capturing
changes in the claims dynamics – here leading to a large reduction in the BE-
reserve, which is believed to be more accurate. Note that in Section 8 there was
a decrease in reserves due to that the number of open claims was lowered as a
consequence of an improved claims handling process. This could of course have
been modelled in more detail by e.g. separating the years before and after the
change in claims handling process.

Further, as noted above the presented brute force nested simulation approach
is computationally heavy. In Section 8.5 this question was discussed based on
how you should use your computational budget and it was found that it is more
important to have a large number of outer simulations in the nested simula-
tion procedure. This is reasonable, since the inner simulations are only used to
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obtain a point estimate of the future BE-reserve. Furthermore, given that one
is interested in calculating a consistent ”Risk Margin” following [28, 13], i.e. a
multi-period cost-of-capital valuation, it is not likely that the above procedure
will be computationally possible without carrying out model simplifications or
by using bespoke numerical techniques. Moreover, from a practical perspec-
tive there is still some skepticism concerning pure simulation based reserves,
as opposed to a deterministic reserve accompanied with simulation based risk
calculations. These comments also suggests the need for future research on an-
alytical (approximate) results concerning fundamental properties of this type of
models.
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