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Abstract

Evaluation of climate model simulations is a crucial task in climate research.
In a work consisting of three parts, we propose a new statistical framework for
evaluation of simulated responses to climate forcings, based on the concept of latent
(unobservable) factors. Here, in Part I, we suggest several latent factor models
of different complexity that can be used for evaluation of temperature data from
climate model simulations against climate proxy data from the last millennium.
Each factor model is developed for use with data from a single region, which can
be of any size. To be able to test the hypotheses of interest, we have applied the
technique of confirmatory factor analysis. We also elucidate the link between our
factor models and the statistical methods used in Detection and Attribution (D&A)
studies. In particular, we demonstrate that our factor models can be used as an
alternative approach to the methods used in D&A studies. An additional advantage
of their use is that they, in contrast to the commonly used D&A methods, make it, in
principle, possible to investigate whether the forcings of interest act additively or if
any interaction effects exist. In Part II we investigate and illustrate the expansion of
factor models to structural equation models, which permits the statistical modelling
of more complicated climatological relationships. The performance of some of our
statistical models suggested in Part I and Part II is evaluated and compared in a
numerical experiment, whose results are presented in Part III.
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1 Introduction

Substantial efforts have been made in the past decades to understand how different
climate factors contribute to climate variability, in particular regarding the roles of an-
thropogenic influences versus natural variability. The main findings and methods used
are discussed in assessment reports by the Intergovernmental Panel on Climate Change
(IPCC) ([33] - [37]). These reports review evidence for an increasing anthropogenic in-
fluence over time and also an increasing confidence in our understanding, with the latest
report concluding that: ”It is extremely likely that human influence has been the dominant
cause of the observed warming since the mid-20th century”. This conclusion is based on a
combination of various observational evidence, theoretical knowledge, modelling studies
and application of statistical analysis techniques. In the following paragraphs, we will
briefly mention and explain some important concepts in order to provide a motivation
for deeper discussion and continued development of some of the statistical techniques
that have been applied, in particular in the context of understanding causes for climate
variations in the last millennium.

Causes of climate variability can be separated into two main categories: internal
variations that occur within the climate system and variations that are caused by some
external factors residing outside the climate system. Both these main causes of variabil-
ity can act on a wide range of time scales from sub-daily to hundreds of million years [56].
Examples of internal variations are the various fast atmospheric dynamic processes that
cause the day-to-day weather variations and the somewhat slower ocean dynamic pro-
cesses that cause variations in the surface ocean currents. Examples of external causes of
climate variability are changes in the energy output from the Sun, changes in the Earth’s
orbit around the Sun and explosive volcanic eruptions that eject vast amounts of small
particles into the atmosphere and thereby partially block the incoming solar radiation.
The anthropogenic emissions of carbon dioxide and other greenhouse gases through the
combustion of fossil fuels and various industrial activites is another kind of external cause
of climate variation.

As climate scientists cannot make controlled and repeated experiments with the real
climate system to increase understanding, they need computer-based models that are
able to simulate the climate system ([46], [66]) in order to test different hypotheses
about causes for climate variability. By making systematic experiments with such models
(which can range from very simple to very complex ones), they can compare model output
from different experiments made with different climate models and they can compare
these results with observed climate records ([10], [18]). Moreover, to assess the results
from such model experiments and model–data comparisons, they also need appropriate
statistical methods to make inferences about their hypotheses. Depending on the actual
climatological problem that a scientist encounters, an array of statistical methods have
been developed. These may differ depending on whether a scientist works with climates of
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the distant past, when only sparse paleoclimatic information is available, or with modern
climates when we have access both to space-borne observations with global coverage and
in-situ observations that cover most parts of the world.

Radiative forcing is an important term in this context, which climate scientists have
been using for several decades (see overview by [44] and the glossary in [37], p.1460).
This concept is based on a physical framework, where a radiative energy imbalance in
the atmosphere (which can be quantified in W/m2), inflicted by a perturbation in the
climate system for some reason, will cause a change in the state of the climate system
and can alter processes within the climate system, which in turn enhance or dampen the
initial effects and thus introduce positive or negative feedback loops. Sometimes scientists
use the term climate forcing instead of radiative forcing ([44]), and we will generally do so
in our discussion, or we simply write just forcing. This is motivated as we are not dealing
specifically with understanding radiative processes here. The above-mentioned external
causes of climate change, namely solar variations, orbital variations, volcanic eruptions
and anthropogenic emissions of greenhouse gases are examples of external forcings of
climate change. They occur in reality, their impact varies over time and space, and
scientists can implement representations 1 of them in simulation experiments with climate
models. Modellers can also choose to treat changes in internal processes as forcings in
their simulation experiments. One example is when the climate model used does not allow
interactions and feedbacks between vegetation and climate. In this case, the researcher
can instead implement a change in the vegetation in the experiment setup, and thus
regard this as a forcing instead of an internal cause of climate change.

The focus of our discussion concerns statistical methods applied to simulation and
observational data2 for climate variations that occurred within approximately the last
millennium, in particular within the pre-industrial epoch. This is a period for which sev-
eral so-called climate proxy data (i.e. indirect climate information from various natural
archives such as tree-rings, lake sediments, cave speleothems, etc.) are available and can
be used to estimate climate variations with a yearly resolution from parts of all conti-
nents [38], [52]. These data can be calibrated directly against the available instrumental
records that reach back about 100-150 years in many places. Also, several simulation

1We need not go into detail here about how the knowledge of past climate forcings has been derived
or how they are implemented in climate model experiments. But, clearly, scientists need to use some
kind of indirect evidence to obtain estimations of their temporal evolution, their spatial influence, their
magnitude, etc. Many forcing histories are derived from some kind of forcing proxy data, whereas our
knowledge of the orbital forcing change has been derived from mathematical–astronomical calculations.
An overview of how important climate forcing histories have been obtained for the last millennium is
provided by [57, 58].

2Typically, observational data consist of instrumental measurements and proxy data. In our context,
the only essential difference between instrumental observations and climate reconstructions from proxy
data is that the latter data are less precise and need to be statistically calibrated against instrumental
data. Thus, we will often simply write ’observations’ to denote either type of observational evidence,
unless when we have reasons to specify which type we mean.
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experiments with sophisticated state-of-the-art climate models, so-called Global Climate
Models (GCMs) or Earth System Models (ESMs), have been performed for about the
last millennium and thus allow us to test hypotheses about causes for climate variability
in this period [53], [51]. The climate forcings that have been studied in these experiments
are primarily solar, volcanic, land cover/land use (i.e. essentially changes in the fraction
of crop and pasture areas), greenhouse gases, and orbital changes. Several investigations,
e.g. [23], [59], [60], have concluded that hemispheric-scale decadal-mean temperatures
in the last millennium show a significant influence from external forcings, particularly
in the later half of the millennium. Volcanic eruptions and changes in greenhouse gas
concentrations seem to be the most important factors in this period, although variations
in solar radiation can also be seen albeit they are more weakly detected. Evidently, the
statistical evaluation of the ability of forced climate models to simulate observed climate
change is a key issue within climate research. A central role in addressing this issue has
been played by the so-called Detection and Attribution (D&A) studies ([67], [47], [23],
[24]). Importantly, evaluating the ability of forced climate models to simulate observed
climate change is one of the goals of D&A studies. As pointed out by [25], the initial
focus was on determining whether the radiative forcing due to greenhouse gas increases
has indeed influenced climate ([21], [22]). Further, the studies aim at assessing and quan-
tifying how different external factors affect the observed climate changes, in particular,
applied to the near-surface air temperature, which has been a climatic variable of interest
for many D&A studies (see [26], [60]).

Statistical methods used in D&A studies performed to date have different repre-
sentations ([19], [20], [43]), and typically are referred to as an ’optimal fingerprinting’
technique. In the present paper, we confine our attention to the optimal fingerprinting
framework based on linear regression models of varying complexity, described by [1]. One
of the main assumptions made in [1] is that neither the real temperature responses to
particular forcings nor the simulated responses to imposed forcings obtained in experi-
ments with complex GCMs or ESMs are directly observable. This has motivated the use
of regression models allowing both explanatory and response variables be contaminated
with noise. However, as pointed out by some researchers, within some studies, optimal
fingerprinting is associated with some disadvantages, for example, the inability to take
into account the effects of possible interactions between forcings (see e.g. [45], [60]).

In the present paper, our aim is to suggest statistical models that allow us to overcome
this difficulty (among others). To achieve this, we use the fact that regression models
used in D&A studies can be viewed as factor models, where observable simulated and
reconstructed temperatures can also be represented as linear combinations of (scaled)
latent temperature responses to particular forcings plus the random internal tempera-
ture variability. Reasoning in the spirit of factor analysis has allowed us to formulate
various factor models for evaluation of both single forcing climate model simulations and
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multi-forcing climate model simulations. Note that each factor model is developed for
use with data from a single region, which can be of any size.

The definitions of the observed variables used in our factor models were taken from
the statistical framework developed by [64] (hereafter referred to as SUN12). The SUN12
framework was specifically developed to suit the comparison of climate model simulations
and proxy data for the relatively recent past of about one millennium. As a result, a
correlation and a distance test-statistic were developed. However, for the purpose of
motivating the sought-after factor models, the framework needs to be developed in more
detail.

Finally, let us describe the structure of the present paper. First, in Sec. 2, the statis-
tical method of optimal fingerprinting as used in many D&A studies will be presented,
with a focus on aspects that are important in our context. Further, in Sec. 3, we present
the modified definitions of the SUN12 framework. In Sec. 4, we will present our factor
models. The paper will be concluded by a discussion aiming to compare the key charac-
teristics of the statistical approach used in D&A studies with the properties of our factor
models (see Sec. 5).

2 Overview of the statistical approach used in detection and
attribution (D&A) studies

As indicated by the name, D&A analyses consist of two stages: detection and attribution.
Referring to [47], [23], the process of detection of change is described as a process of

investigating whether the effect of a certain single external forcing or a combination of
external forcings has a statistically significant influence on the observed climate or a sys-
tem affected by climate. Stated another way, the aim is to investigate whether observed
changes could be entirely caused by the internal climate variability, i.e. the variability
not forced by external agents, or if external forcings (natural and/or anthropogenic) are
needed to explain these changes. Most detection and attribution studies have used near-
surface air temperature data, which have been found to show significant forced climate
change signals relative to natural internal variability. This explains our choice to focus
on near-surface air temperature data in our discussion.

Attribution in turn aims ’to determine whether a specified set of external forcings are
the cause of the detected change’ ([24]). However, as noted by [47], the determination of
causes is not feasible in real-world data alone, because it requires controlled experimen-
tation with the climate system. Therefore, in practice, the attribution process consists
in demonstrating that ’the observed detected changes are consistent with the estimated
(simulated) responses to the given external forcings, and not consistent with alternative,
physically plausible explanations of recent climate change that exclude important ele-
ments of the given combination of forcings’ ([23] and references therein).
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As highlighted by [59], the main idea of the statistical approach used in D&A studies
consists in decomposing the climate variability into two components: the forced compo-
nent, representing the variability due to various forcings (both external and internal to
the climate system), and the random internal climate variability arising due to various
interactions within and between climate system components. The forced and unforced
components are assumed to be unrelated.

Applying this idea to the reconstructed/observed temperatures, driven by all possi-
ble forcings, and to simulated temperatures, generated by climate models driven by a
combination of reconstructed forcings 3 we could write:

Yg = ξTALL g + ν0 g, (2.1)

xg = ξSf g + νg,

where
Yg - the mean-centered reconstructed/observed temperature, where the index g

reflects the fact that the {Yg} -sequence is a temperature field, arrayed in
space and in time 4;

ξTALL g - the True latent overall temperature response to all forcings that occur in
reality (ξTALL is our own notation, where the superscript T stands for True,
not a transpose);

ν0 g - the real internal temperature variability;

xg - the mean-centered simulated temperature, corresponding to Yg;

ξSf g - the Simulated latent overall temperature response to the combination of recon-
structed forcings in question;

ν g - the simulated internal temperature variability.

One of the main assumptions of D&A studies is that climate models simulate the shape
(i.e. the spatio-temporal pattern but not necessarily the magnitude) of the latent tem-

3In a climate model simulation experiment, however, scientists may rather implement as many forcings
as considered being of importance or being known. This will unlikely include all possible forcings. For
example, [51] used the term ’FULL’ to denote simulations where they applied the full set of forcings
used in their experiment.

4Concerning the dimensionality of data, we first of all refer to [54] that provides a quite detailed
description of how data matrices can be formed. As we understand, the length of the {Yg}-sequence
can be very high because the sequence is initially formed by concatenating data sampled over the region
and time period of interest. Different approaches are used for reducing the length of the sequence
to make it possible to transform the noise sequence {ν0 g} into a white noise where all elements are
mutually uncorrelated and equally distributed. Often researchers use Empirical Orthogonal Functions
(EOFs), derived from principal component analysis of corresponding control climate model simulations
(for definition of EOFs see for example [9]). A typical final length of the pre-whitened {Yg}-sequence is
10-15 observations (see for example [65], [62], [15]). The same pre-whitening operator is applied to the
{xg}-sequence because it is assumed that model-simulated internal variability is consistent with that in
the real world ([1]).
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perature response correctly ([24]). In terms of ξTALL g and ξSf g, the assumption is reflected
by representing the former response as a linear function of the latter, that is,

ξTALL g = β · ξSf g = β · (xg − νg). (2.2)

Inserting Eq. (2.2) into Yg from (2.1) leads to a statistical model used in D&A studies
for analysing the overall response to all the forcings in question ([1]):

Yg = β · (xg − νg) + ν0 g. (2.3)

In statistical literature, model (2.3) is known as a measurement error (ME) model 5, and
typically is written as follows ([8], [14]): Yg = β · ξSf g+ ν0 g,

xg = ξSf g+ νg.
(2.4)

As mentioned earlier, ξSf g is assumed to be uncorrelated with the noise terms (ν0 g, νg)
′,

which in their turn are assumed to be normally distributed with zero means and a 2× 2
covariance matrix Σνν . The latent ξSf g:s can be treated either as random (typically,
normal) with zero mean and variance σ2ξ , or as fixed unknown constants. In the latter
case, the following restrictions are placed on the {ξSf g}-sequence:

lim
n→∞

1

n

n∑
g=1

ξSf g︸ ︷︷ ︸
≡µ

ξS
f

= 0 and lim
n→∞

1

n

n∑
g=1

(ξSf g)
2

︸ ︷︷ ︸
≡σ2

ξS
f

> 0. (2.5)

The detection and attribution questions are addressed by testing the hypotheses
that β = 0 and β = 1, respectively. If H0 : β = 0 is rejected, then it is said that the
temperature response to the combined effect of all external forcings is detected. Notice
that since Yg in (2.4) is represented as a function of a simulated forcing effect, conclusions
arrived at in the detection stage concern the simulated overall effect of reconstructed
forcings. To be able to attribute the observed change in observational data to the real-
world forcings, the simulated forcing effect should be transformed into the true one.
According to Eq. (2.2), this is possible if β = 1. Therefore, the detection stage is
followed by the attribution stage, where H0 : β = 1 is tested. Obviously, testing this
hypothesis implies that we, at the same time, evaluate the ability of the climate model

5More precisely, it is an ME model with no error in the equation, which refers to the fact that Eq.
(2.2) does not contain an error. In our opinion, this error could be motivated because ξTALL g represents
the latent true temperature response to all possible forcings acting in the real-world climate system, while
ξSf g is the latent simulated temperature response to a specific combination of (reconstructed) forcings in
question.
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under study to simulate the forcing effect correctly. If H0 : β = 1 is not rejected, then it
is said that the magnitude of the overall temperature response is found to be consistent in
reconstructions and in simulations. Notice that as follows from Eq. (2.2), this conclusion
is drawn under the assumption that the real-world climate system is forced by the same
forcings used to force the simulated climate system.

To interpret which individual forcings contribute to the detected overall forcing effect,
D&A studies use a multifingerprint analysis (see for example [22], [32], [60]). In the
statistical parlance, this approach corresponds to a ME model with a vector explanatory
variable:

Yg =
m∑
i=1

βi (xi g − νi g) + ν0 g, (2.6)

where
xi g - the simulated temperature, generated by the climate model forced

only by a reconstruction of forcing i,

xi g − νi g = ξSf i g - the simulated latent temperature response to forcing i, embedded
in xi g,

νi g - the simulated internal temperature variability associated with the
climate model driven by forcing i,

βi - a scaling factor associated with forcing i. The process of detection
and attribution is analogous to that of model (2.3).

In D&A studies, the estimation of the parameters of models (2.3) and (2.6) is based
on the approach of Total Least Squares (TLS). The approach requires the knowledge of
the ratios of the noise variances σ2νi/σ

2
ν0 for i = 1, 2, . . . ,m, where σ2ν0 can be regarded

either as unknown or known a priori. Commonly, in practice the whole noise variance-
covariance matrix Σνν is assumed to be known a priori, which permits checking for model
validity. Importantly, an estimate of Σνν should be obtained from a source independent
from the sample variance-covariance matrix of the observed variables.

In D&A studies, such a source is unforced (control) climate model simulations. As
a matter of fact, D&A studies assume that each σ2νi equals σ2ν0 , which is justified by
the assumption that the simulated internal climate variability is correctly simulated by
the climate model used to generate xi. Provided that all observed variables underwent
pre-whitening, Σνν used for estimating the parameters of (2.6) is a (m + 1) × (m + 1)

identity matrix ([1]).
In our turn, we would like to add a comment regarding the covariance matrix of la-

tent ξSi g:s, Σξξ. Unlike Σνν , Σξξ is unrestricted with the covariances as the off-diagonal
elements. For reliable conclusions concerning the model parameters, it is important to
check not only for consistency between the ME model and the data ([2]) but also whether

8



the estimate of Σξξ is positive definite, i.e. nonsingular (for model (2.3) the correspond-
ing requirement is σ2ξ > 0). If these requirements are not met, uncertainties in β̂i can be
very large (see [14] Sec. 1.3.3 and 2.3 for the appropriate tests for singularity).

Another possible cause of large uncertainties in β̂i can be small sample size. As men-
tioned earlier (in a footnote), after pre-whitening, the final sample size data analysed in
D&A studies is often 10-15 observations on each observed variable, which is considered
by many statisticians as extremely small. This is problematic because, under normality
assumption, the distribution of the estimator of a regression parameter in a ME model
is asymptotically normal, meaning that as a sample size increases the distribution con-
verges to a normal distribution with a finite mean equal to the true parameter and finite
variance. Thus a small sample size might lead to a poor approximation to the limiting
normal distribution, which can lead to incorrect inferences (see an example for a similar
discussion in [14], Sec. 2.5.1).

It is not uncommon for D&A studies that uncertainties in β̂i are determined from the
empirical distribution of the estimator, formed by applying Monte-Carlo methods. Ac-
cording to [60], the empirical distribution of the estimator is constructed by calculating a
very large number of estimates of βi on the basis of data sets obtained by ”superimposing
different random samples of the model-based internal variability onto both noise-reduced
Yg and xg”. In our opinion, this approach requires care and should be used judiciously,
because if the estimated internal temperature variability is substantially smaller than
the variability of the noise-reduced Yg and xg, the estimates of βi:s might be (highly)
correlated. Clearly, the correlatedeness distorts the real distribution of β̂i, which might
result in misleading conclusions about the significance of β̂:s.

We conclude this section by discussing desirable modifications of models (2.3) and
(2.6). To begin with, both models assume that the noise in the reconstructions or the
observations, ν0, does not include any non-climatic noise, or speaking in the terminology
of D&A studies, observation error. According to [1], the main reason for this is that
the autocorrelation structure of observation error is not assumed to be the same as that
associated with the internal variability. Nevertheless, as known, non-climatic noise can
constitute quite a large part of temperatures reconstructed from proxy data ([23]) and
may also exist in varying amounts in instrumental temperature observations ([7], [49]).
Therefore, it is of interest to relax the assumption of negligible non-climatic noise.

Further, one may wish to relax the assumption that the simulated internal climate
variability is correctly simulated by the model used to generate xi. Relaxing this assump-
tion means that Σνν remains a diagonal matrix but with different elements (variances)
on the diagonal.

Yet another desirable modification, probably the most important one, concerns the
inclusion of a term representing the temperature response to the possible interaction(-s)
between forcings. As seen in (2.6), the model assumes the additivity of forcing effects.

9



The issue of additivity has been recognised and discussed by many researchers within the
D&A field. Several analyses have been performed to investigate the significance of inter-
actions in simulated climate systems (see, for example, [45], [60], and [16]). The results
seem to support the assumption of additivity when it concerns temperature. Neverthe-
less, it would be beneficial to develop a statistical model allowing a simultaneous analysis
of temperature responses to individual forcings and to various interactions between them,
whether observed and/or reconstructed temperature is involved or not. Since such models
apparently have not yet been seriously considered with respect to different climate vari-
ables, a theoretical statistical discussion of interaction effects in temperature data may
pave the way for future studies focusing on, for example, precipitation or drought/wetness
indices.

3 Overview of SUN12

The framework in SUN12, which has so far only been used in very few studies ([27],
[48], [28], [53], [11]), is intended to be used with comprehensive climate models (GCMs,
ESMs) and involves several components. They are:

xu t - a simulated temperature generated by an unforced climate model for the region
and time period of interest, t = 1, 2, . . . , n. This region may be a single grid
box, or an average over several grid boxes 6. The time unit can be single years
or, say, nonoverlapping averages over a 10-yr or 30-yr period.

xf t - a simulated temperature generated by a climate model driven by a particular
forcing f for a region and time period of interest, t = 1, 2, . . . , n.

...τt - a true unobservable temperature corresponding to xf t.

...yt - a measured temperature, intended to represent τt.

...zt - a reconstructed temperature, derived from climate proxy data.

3.1 Unforced climate model

SUN12 used the term ’unforced climate model’ or just ’unforced model’ to denote a
simulation with a climate model where no external forcing is invoked. More precisely,
this means a simulation where the boundary conditions that are associated with the
forcing factors of interest are held constant throughout the entire simulation time, at
some level selected by the researcher. Climate modellers often refer to this kind of
simulation as a control simulation. In this situation, only internal factors influence the

6As we see, given a collection of data points sampled over the region and time period of interest,
D&A studies (see (2.1)) and SUN12 use different methods of summarising data information into a single
data set that is to be analysed statistically. The differences between the methods will not be discussed
further here.
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simulated temperature variations. In SUN12, their effect is characterised as a random
process varying around a time-constant mean value. That is, the simulated temperature,
xu, generated by the unforced climate model is given as:

xu t = µxu + δu t. (3.1)

where
µxu - the mean value around which the simulated temperatures, xu t, vary.
...δu t - the internal random variability of the unforced climate model.

3.2 Forced climate models

Next, assume that simulated temperatures generated in a forced climate model simula-
tion, xf, are obtained by running the same climate model again, but while replacing the
control boundary conditions with a reconstruction of temporal and spatial changes in
a particular forcing f. Climate modellers typically refer to this situation as a transient
model simulation, while SUN12 referred to it as a ’forced climate model’ or just ’forced
model’.

As noted in SUN12, the forcing can be either of a single type (e.g. only volcanic forc-
ing) or a combination of several forcings (e.g. volcanic and solar forcing). Nevertheless,
the SUN12 study did not explicitly address cases when the forcing applied to a climate
model is a single forcing or a combination of two forcings or more than two forcings. In
what follows, we extend the interpretation of their framework by separately considering
these three cases.

3.2.1 Case 1: The simulated forcing f is a single forcing.

Just as in D&A studies, the SUN12’s definition of the simulated temperature generated
by a forced climate model presupposes its decomposition into the forced and unforced
components. More precisely, the temperature generated by a climate model driven by a
single forcing is defined as follows:

xf t = µxf + ξSf t + δ̃f t, (3.2.1)

where
µxf - the average of all processes embedded in the simulated temperature.
...ξSf t - the fixed S imulated effect of a reconstructed forcing, and centered to have zero

mean.
...δ̃f t - the internal random temperature variability of the forced climate model, in-

cluding any random variability due to the presence of the forcing.
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SUN12 also assumes that {ξSf t}- and {δ̃f t}- processes are independent. Treating the
forcing effect as fixed and systematic to a specified forcing means that it is repeatable,
which justifies the assumption that it is the same for every member in a simulation
ensemble 7(if an ensemble is available). Hence, repeatedness motivates averaging over
members of a simulation ensemble. Averaging leads to a time series with a reduced effect
of the internal variability and an enhanced forced signal. In contrast to the fixed forcing
effect, the internal variability, characterised as random, is supposed to be different for
different members in a simulation ensemble.

3.2.2 Case 2: The simulated forcing f is a combination of two forcings.

Let xf in (3.2.1) represent a simulated temperature generated by a climate model driven
jointly by two reconstructed forcings, labelled f1 and f2. Consequently, the simulated
forcing effect ξSf is to be interpreted as the simulated overall effect of f1 and f2, arising
when both forcings act in the presence of each other. Being present simultaneously, the
forcings might interact with each other, leading to the following general representation
of ξSf :

ξSf = ξSf1 + ξSf2 + ξSf1×f2, (3.2.2)

where
ξSf1 - the temperature response to forcing f1 in the absence of forcing f2,

ξSf2 - the temperature response to forcing f2 in the absence of forcing f1, and

ξSf1×f2 - the temperature response to the interaction between f1 and f2.

Note that the general representation in (3.2.2) does not require specific assumptions
about how strong the individual effects and/or interaction effect are. Assuming that
one of them is negligible would of course change the representation of the overall forcing
effect. Table 1 gives an overview of the representations with the associated assumptions.

7Members in a simulation ensemble are simulations forced by identical reconstructed forcing under
different initial conditions. In the statistical context, members in a simulation ensemble are thought of
as replicates.
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Table 1. Representations of ξSf under different assumptions
Representation Assumption
see (3.2.2) No specific assumptions are made about the individual and interaction

effects.
ξSf = ξSf1 The individual effect of the second forcing and the interaction effect

are negligible.
ξSf = ξSf2 The individual effect of the first forcing and the interaction effect are

negligible;
ξSf = ξSf1 + ξSf2 The individual forcing effects are additive, i.e. the interaction effect is

negligible.

3.2.3 Case 3: The simulated forcing f is a combination of more than two
forcings.

Clearly, the above discussion can be applied even to climate models driven by more than
two forcings. For example, for three particular forcings, labelled f1, f2, and f3, their
overall effect can simply be described in accordance with (3.2.2) as follows:

ξSf =
3∑
j=1

ξSfj + ξSinteract, (3.2.3)

where ξSfj denotes the individual effect of forcing j in the absence of the other forcings,
and ξSinteract represents an overall interaction effect. In contrast to the interaction ef-
fect in (3.2.2), this overall interaction effect can have different structures/interpretations
depending on in what way and to what extent the forcings interact with each other. As-
suming, for example, that only forcings f1 and f2 considerably interact with one another,
ξSinteract represents then the corresponding two-forcing interaction effect, which we denote
here ξSf1×f2.

Assuming further that all three forcings interact with each other, the complete struc-
ture of ξSinteract becomes as follows:

ξSinteract =ξSf1×f2 + ξSf1× f3 + ξSf2×f3 + ξSf1×f2×f3. (3.2.4)

Only if all individual forcing effects are additive, may we neglect all interaction terms
in (3.2.4), and, consequently, the overall interaction effect in (3.2.3).

Expressions (3.2.3) and (3.2.4) are easily extended to climate models driven by more
than three external forcings. The more forcings involved, the more complicated becomes
the structure of the overall interaction term, since the number of possible ways to interact
will increase.

Provided that model simulations forced by different sets of forcings are available, we
can analyse the underlying structure of simulated temperature in forced climate models.
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By involving further observational data, we can explore whether this structure coincides
with the real-world structure associated with the true temperature.

3.3 The true temperature τ

Also the true temperature, influenced by all forcings simultaneously, can be decomposed
into the forced and unforced components, namely as follows:

τt = µτ + ξTALL t + η internal t, (3.3.1)

µτ - the mean value over time, around which the true temperature varies.
ξTALL t - the latent true overall temperature response to all forcings (the super-

script T stands for True, not a transpose),
ηInternal t - the internal random variability of the real-world climate system, including

any random variability due to the presence of the forcings.
Just as in the simulated climate system, the true overall forcing effect is regarded as

fixed, given the actual realisation of the real-world external forcings generated by ran-
dom processes in the real-world climate system. The internal variability is still treated
as random. Also, these two processes are still regarded as mutually independent.

4 Factor models

Prior to reading the following sections, we would like to recommend the readers unfamiliar
with factor analysis to read Appendix A where a brief account of a general factor model
and the associated definitions, used in the following sections, are given.

4.1 Case 1: The forcing f is a single forcing

Being inherent to factor analysis, the concept of common factors lends itself perfectly
to connecting simulated and observed climate data. In case of a single-forcing climate
model, this concept implies that ξSf , embedded in x f, and ξTALL, embedded in τ , have one
common factor. To avoid representing observational data as a function of simulated tem-
perature responses to reconstructed forcings, we suggest to consider their true real-world
counterparts as common factors for simulated and observed/reconstructed temperatures.
As a matter of fact, this was suggested in SUN12, but without explaining all its conse-
quences.

Viewing the true temperature response to forcing f, ξTf , as a common factor means
that ξSf and ξTALL are expressed as linear functions of ξTf , namely:

ξSf = α · ξTf + ζ̃
S

ξTALL = κ · ξTf + ζ̃
T
,

(4.1.1)

14



where ζ̃
S
and ζ̃

T
are assumed to be mutually independent residual terms which are inde-

pendent from ξTf . On comparison with (2.2), we see that introducing the residual terms
in (4.1.1) allows us to relax two assumptions: (i) the shape of the latent temperature
response is correctly simulated by the climate model under study, and that (ii) the real-
world climate system is driven by the same forcings as those used to drive the simulated
climate system.

Inserting (4.1.1) into the mean-centered xf t and τt from (3.2.1) and (3.3.1), respec-
tively, leads to the following system of two equations: xf t = α · ξTf t + δf t

τt = κ · ξTf t + ν̃t
(4.1.2)

where δf t = ζ̃St + δ̃f t, ν̃t = ζ̃Tt + ηinternal t, each of which is independent of ξTf t, and the
coefficients α and κ represent the influence of the common factor on xf and τ , respec-
tively. More precisely, they indicate the magnitude of the expected change in xf and τ ,
respectively, for a one unit change in the common factor. This means that the evalua-
tion of the climate model simulation can be addressed by testing whether α equals κ, or
equivalently whether α/κ = 1 or κ/α = 1. Throughout the whole work, we refer to this
hypothesis as the hypothesis of consistency between the climate model simulation under
consideration and the observational data, or for short, the hypothesis of consistency.

However, since τt is unobservable, it has to be replaced by the observed climate record,
which according to SUN12 includes the observed temperature yt when it is available and
a properly calibrated temperature proxy zt when yt is not available (see SUN12 for the
description of the calibration method). Combining yt and zt leads to a single climate
record, denoted {vt}:

vt =


zt ≈ τt + εt t ∈ the period when only z is available,

reconstruction period
yt = τt + θt t ∈ the period when both y and z are

available, calibration period,

(4.1.3)

where εt and θt represent the residual non-climatic variation in zt and yt, respectively.
Quantities εt and θt are regarded as mutually uncorrelated random variables, each with
zero mean and variances σ2ε and σ2θ . Moreover, εt and θt are assumed to be uncorrelated
with τt.

Replacing τt in (4.1.2) by vt leads to the following two-indicator one-factor model,
abbrv. FA(2,1): {

xf t = α · ξTf t + δf t

vt = κ · ξTf t + νt
(4.1.4)
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where

νt =

{
νz t = ν̃t + εt t ∈ the reconst. period

νy t = ν̃t + θt t ∈ the calibr. period.

Because the simulated forcing effects are treated as fixed, ξf t:s are consequently also
fixed, which requires imposing the restrictions on the {ξf t}-sequence analogous to those
in (2.5). It should be remarked that the estimates of the factor loadings α and κ are the
same regardless of whether ξf t:s are random or fixed.

Concerning the specific-factor variables, δf t and νt, each of them is assumed to be
identically and independently normally distributed for all t. The requirement of being
identically distributed presumes a time-constant variance. However, as follows from
(4.1.4), this assumption is clearly violated for νt. Indeed, its variance equals σ2η + σ2ε
within the reconstruction period, while within the calibration period it equals σ2η + σ2θ .
Moreover, the assumption may be violated even within the reconstruction period due to
a possible time-dependent variability of the non-climatic noise, i.e. σ2ε (t) ([52], [49]). A
discussion about how to take time-varying variances into account when estimating the
FA(2,1)-model can be found in [11] (see Sec. 2.4).

Further, even the independence assumption, applied to climate data, seems to be
inappropriate. As known, autocorrelation is an intrinsic feature of climate data. To
avoid the effect of autocorrelation on the estimation of the model parameters, it can be
recommended to analyse time aggregated data, for example, decadally resolved data (for
examples of analyses involving time aggregated data see [27], [48], [11]). In the present
paper, we assume homoscedasticity, i.e. σ2ν(t) = σ2ν for all t, and no autocorrelation in
{δt} and {νt}.

Having specified the model and the hypothesis of interest, i.e. the hypothesis of
consistency, the next step is to examine whether the model is identified, or stated another
way, whether the model parameters are estimable. We devote considerable space to the
discussion of identifiability of this factor model because it might substantially facilitate
the understanding the causes of underidentifiability of more complicated factor models,
discussed later.

To begin with, the covariance structure equations, Σ = Σ(θ), under the FA(2,1)-
model are given by the following 2(2 + 1)/2 = 3 nonduplicated (unique) equations:

σ2xf
= α2 · σ2ξf + σ2δf

σxfv = α · κ · σ2ξf
σ2v = κ2 · σ2ξf + σ2ν ,

(4.1.5)

It is clear that none of the five model parameters, α, κ, σ2ξf , σ
2
δf

and σ2ν , can be
determined (identified) from the three equations. However, imposing the restriction
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σ2ξf = 1 8, and assuming that σ2δf is known a priori 9, the remaining model parameters,
i.e. α, κ, and σ2ν , become identified. More precisely, each of them is just-identified
because only one distinct subset of equations can be found in (4.1.5) that is uniquely
solvable for α, κ, and σ2ν , respectively. The resulting solutions are:

α =
√
σ2xf
− σ2δf

κ = σxfv/
√
σ2xf
− σ2δf

σ2ν = σ2z − (σxfv)
2/(σ2xf

− σ2δf).

(4.1.6)

Replacing the population variances and covariance of the indicators by their unbiased
estimates, s2xf

, sxfz and s2z, the exact ML solution of the model parameters is obtained:

α̂ =
√
s2xf
− σ2δf

κ̂ = sxf v

/√
s2xf
− σ2δf

σ̂2ν = s2v − κ̂2,

(4.1.7)

provided s2xf
> σ2δf , and s

2
v − (sxfv)

2/(s2xf
− σ2δf) ≥ 0. As mentioned earlier, this solution

is unique, apart from a possible change of sign of the factor loadings, which merely
corresponds to changing the sign of the factor. Using (4.1.7), the estimator of the ratio
becomes

α̂

κ̂
=
s2xf
− σ2δ
sxfv

, (4.1.8)

provided sxfv 6= 0.
Although there are methods for constructing a confidence region for a ratio allowing us

to test the hypothesis that α/κ = 1 (see the Fieller method used in [11]), our intention in
the present work is to use the properties of confirmatory factor analysis to the full extent.
Here, we first and foremost mean the usage of equality-constraints that can be imposed in
accordance with hypotheses the researcher has. In our own analysis, introducing various
equality-constraints may simplify considerably both single and multiple tests concerning
different pairs of factor loadings.

Under the FA(2,1)-model, the hypothesis H0 : α/κ = 1 can be tested by estimating
the model under the restriction α = κ. Imposing this equality-constraint makes the
model overidentified with 1 degree of freedom because the two remaining free parameters,

8Standardising latent factors to have unit variance is a typical restriction in factor analysis used to
assign a scale to latent factors to fully interpret the factor loadings. As we see, it aids the identification
as well. Another way of establishing a scale for a latent factor is to fix a factor loading to unity with
respect to one of its indicators.

9By saying that σ2
δf

is known a priori, we mean that σ2
δf

is independently estimated. In Appendix B,
we suggest a possible independent estimator of σ2

δf
based on the assumption that an ensemble with at

least two simulations of xf is available.
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κ and σ2ν , become overidentified. This means, one can find more than one subset of the
equations in Σ = Σ(θ) by which one can solve uniquely for κ and σ2ν . Indeed, when
σ2ξf = 1 and σ2δf is known a priori, setting α = κ in (4.1.5) leads to two distinct solutions
for each parameter:

κ =
√
σ2xf
− σ2δf =

√
σxf v

σ2ν = σ2v − (σ2xf
− σ2δf) = σ2v − σxf v.

(4.1.9)

Obviously, for a given sample, the two estimates of each parameter will not be ex-
actly the same. Therefore, the ML-method seeks the optimal values for the parameters
by minimising numerically the discrepancy function defined in (A.2). Overidentifiabil-
ity means that Σ(θ̂) does not fit the data, i.e. the sample variance-covariance matrix
S, perfectly, permitting us to assess the overall model fit. Provided that the solution
obtained is admissible, which here means that σ̂2ν > 0 10, the model fit can be assessed
statistically by the χ2 test (see (A.3)) and heuristically by various goodness-of fit indexes
(e.g. (A.5)-(A.7)). If the model fits reasonably well, we may say that there is no reason
to reject the hypothesis that α = κ.

Discussing further the identifiability, it should be remarked that setting α in (4.1.5)
to zero makes the FA(2,1)-model underidentified because both κ and σ2ν become under-
identified (remember that σ2ξ f

is restricted to 1). Hypotheses that do not lead to the
underidentifiability of the FA(2,1)-model and therefore are testable are:
• H0 : α = κ = 0, under which the only parameter σ2ν is identified because it still can
be determined from σ2ν . The resulting model has 2 degrees of freedom;

• H0 : κ = 0, under which both remaining parameters, α and σ2ν , are identified. The
resulting model has 1 degree of freedom.

Under both hypotheses, the indicators are uncorrelated, i.e. σxf v = 0, because they
do not have any latent factor in common. Notice, however, that despite this similarity,
the hypothesised models may have different interpretations of the ability of the climate
model under study to represent the temperature response to forcing f correctly. The
difference arises when the estimate of the free parameter α in the model hypothesising
that κ = 0 significantly different from zero. If the resulting FA(2,1)-model is not rejected,
a natural conclusion is that the climate model has failed to represent the temperature
response to forcing f correctly because the influence of ξf on xf is exaggerated compared
to its influence on v. On the other hand, under the hypothesis H0 : α = κ = 0, it is
the other way round. Provided that the resulting 0-factor model is not rejected, we may
conclude that the climate model has succeeded to represent the simulated forcing effect
correctly because the influence is equally negligible, that is, it is the same.

Finally, we would like to discuss the appropriateness of the use of the independent
estimator of σ2δf from (B.1). As follows from (4.1.2), the specific factor δf includes not only

10In statistical litterature, a negative solution for a specific-factor variance is termed Heywood case.
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the internal variability of the corresponding climate model, represented by δ̃f, but also a
part of the forced variability that does not have a correspondence in the variability in the
observed climate, represented by ζ̃S . However, estimator (B.1) provides an independent
estimate of the variance of δ̃f only. In other words, we constrain the variance σ2δf to its
lower bound, which can lead to a serious bias for some of the parameters 11.

A possible way to investigate whether the variance of ζ̃S may be considered as neg-
ligible, or equivalently whether the shape of the latent temperature response is correctly
simulated by the climate model under consideration, is to use replicates of xf as indicators
of ξTf . To exemplify, let us assume that two replicates of the xf- climate model simulation
are available. Denoting them xf repl.1 and xf repl.2, respectively, the FA(2,1)-model from
(4.1.4) can be extended to the following three indicator model:

xf repl. 1 t = α · ξTf t + δ̃f repl.1 t

xf repl. 2 t = α · ξTf t + δ̃f repl.2 t

vt = κ · ξTf t + νt,

(4.1.10)

where σ2ξf = 1 and σ2
δ̃f repl. 1

= σ2
δ̃f repl. 2

= σ2
δ̃f
. As we see, model (4.1.10) assumes that (1)

the variance of ζ̃S is zero, and (2) the influence of the common factor on xf repl. 1 and on
xf repl. 2 is equal - both factor loadings are equal to α. This equality constraint is justified
by the fact that both replicates are forced by the same reconstruction of forcing f. Hence,
the model has four free parameters to be estimated: α, κ, σ2

δ̃f
and σ2ν . Provided that each

of them is identified, the model has 6− 4 = 2 degrees of freedom, where 6 is the number
of nonduplicated equations in the reproduced variance-covariance matrix Σ = Σ(θ). To
see that each parameter is indeed identified consider the equations in Σ = Σ(θ):

σ2
xf repl.1

= α2 + σ2
δ̃f

σ2
xf repl.1 xf repl.2

= α2 σxf repl.1v = α · κ

σ2
xf repl.2

= α2 + σ2
δ̃f

σxf repl.2v = α · κ (4.1.11)

σ2
v = κ2 + σ2

ν .

The estimator of the factor loading α can be obtained from σ2xf repl.1 xf repl.2
. Knowing the

estimator of α, we can derive the estimator of κ and of σ2δf , each of which is associated
with two equations, meaning that both parameters are overidentified. Finally, with the
estimator of κ in hand, the estimator of σ2ν is derived from the equation for σ2v . If, in
addition, α is set to κ, one more degree of freedom is obtained. If the resulting FA(3,1)-
model is not rejected, we may conclude that not only the shape but also the magnitude
of the latent temperature response is correctly simulated by the climate model under
consideration.

11This suggests that the issue of how serious the bias is and which parameters are substantially affected
by it is an appropriate topic for future studies.
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Importantly, freeing the variance of ζ̃S implies the correlatedeness between δf repl.1

and δf repl.2 , each of which contains ζ̃S . However, letting the covariance between δf repl.1

and δf repl.2 be a model parameter leads to underidentifiability.
If model (4.1.10) (whether the constraint α = κ is imposed or not) is not rejected, we

have no reason to reject the hypothesis that the variance of ζ̃S is zero. This increases our
confidence in the independent estimator (B.1). In addition, it gives us an opportunity
to explore the stability of the estimates of the factor loadings, in particular of α, in
comparison to those obtained when σ2

δ̃f
is treated as known a priori. It should also

be remarked that even if model (4.1.10) is not rejected, care is needed in interpreting
the results obtained, especially in the cases with temperature responses expected to be
correlated to other temperature responses, embedded in v, but not extracted as ξTf . This
may lead to ξTf not representing the effect of forcing f only. The same issue can arise
under the FA(2,1)-model.

Note, that in general the rejection of a hypothesised factor model does not unam-
biguosly point to any particular constraint as at fault ([50]). Other aspects such as small
sample size, nonnormality, or missing data can also cause lack of fit. Hence, rejecting
model (4.1.10) does not unambiguosly point to the constraint σ2

ζ̃S
= 0 as at fault, albeit

it decreases our confidence in the independent estimate of σ2δf .

4.2 Case 2: The simulated forcing f is a combination of two forcings

As follows from Table 1 (Sec. 2.2.2), one-, two- and even three-dimensional structures
of the simulated forcing effect, ξSf , can be justified for two-forcing climate model simula-
tions. Consequently, the underlying common-factor structure of ξSf and ξTALL can contain
one-, two- or three common factors. Without making specific assumptions about
the significance of the individual and interaction effects, the underlying common factor
structure of ξSf and ξTALL contain three common factors: ξTf1, ξ

T
f2 and ξTf1×f2. Extracting

them from ξSf and ξTALL leads to:

ξSf = α1 · ξTf1 + α2 · ξTf2 + α3 · ξTf1×f2 + ζ̃
S

ξTALL = κ1 · ξTf1 + κ2 · ξTf2 + κ3 · ξTf1×f2 + ζ̃
T
. (4.2.1)

where ζ̃
S
and ζ̃

T
are assumed to be mutually independent, and independent from each

common factor. Note that these residual ζ-terms differ from those in (4.1.1). To avoid
additional notations, we do not use new symbols to stand for different errors, and we
hope that the reader keeps in mind that as a new underlying structure of ξSf and ξTALL is
considered, the corresponding ζ̃:s change.

To make the estimation of the factor loadings in (4.2.1) feasible, we need to define
as many appropriate indicators of the latent common factors as possible. Suitable can-
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didates are:

• the observed/reconstructed temperature, v;

• the simulated temperature forced by both forcings, xf;

• the simulated temperatures generated by each of the two single-forcing climate
model, xf1 and xf2. Importantly, xf1 and xf2 should be forced by the same re-
construction of f1 and f2, respectively, used to force xf. Under this condition,
extracting the common factor ξTf i from ξSf i, embedded in the corresponding xf i,
leads to

x f i t = ξSf i t + δ̃ f i t = αi · ξTf i t + (ζSf i t + δ̃ f i t)︸ ︷︷ ︸
=δ f i t

, i = 1, 2. (4.2.2)

Invoking xf1, xf2, xf and v as indicators of ξTf 1, ξ
T
f 2, and ξTf 1×f 2, and extracting them

from ξSf 1, ξ
S
f 2, ξ

S
f and ξTALL, as shown in (4.2.2), leads to the following 4-indicator 3-factor

model, abbrv. FA(4,3):

x f 1 t = α1 · ξTf 1 t + −0 · ξTf 2 t + 0 · ξTf 1×f 2 t + δf 1 t

x f 2 t = −.0 · ξTf 1 t + α2 · ξTf 2 t + 0 · ξTf 1×f 2 t + δf 2 t

x f t = α1 · ξTf 1 t + α2 · ξf 2 t + α3 · ξTf 1×f 2 t + δf t

vt = κ1 · ξTf 1 t + κ2 · ξTf 2 t + κ3 · ξTf 1×f 2 t + νt.

(4.2.3)

Correlations among Common Factors

1 φ12 φ13
1 φ23

1

where each of the specific factors, δ f1 , δ f 2, δ f and ν, has its own variance, and are
assumed to be mutually independent and independent of all common factors. Note that
the zero factor loadings reflect our conviction that x f 1 and x f 2 do not depend on ξTf 2
or ξTf 1, respectively, or on ξTf 1×f 2. Note also that because ζ̃T in (4.2.1) differs from ζ̃T

in (4.1.1), the specific factor ν in FA(4,3)-model in (4.2.3) differs from ν in the FA(2,1)-
model in (4.1.4), albeit both ν:s contain the same ηinternal and the same non-climatic
noise.

Next, the identifiability of the model ought to be worked out. Here, we distinguish
between two main types of the model: oblique and orthogonal. Depending on the cli-
matological characteristics of the forcings under consideration, researchers might wish to
specify one of the models. A third conceivable type is a mixture of the orthogonal and
oblique model.
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Common to all three types is that (i) the latent factors are standardised to have
unit variances 12, (ii) the associated variance-covariance matrix of the indicators has 10
nonduplicated equations, meaning that at most 10 parameters can be estimated, and
finally (iii) the conditions for uniqueness under rotation, given in Appendix A, are met.

The oblique model
The model parameters are: six factor loadings (each distinct constrained loading is
counted only once), three correlation coefficients, and σ2ν . In total, 10 parameters have to
be estimated, which is possible if σ2δ f1

, σ2δ f2
and σ2δ f

are known a priori. It can be shown
that under this condition the model is just-identified, provided however that neither α1,
α2 nor α3 is equal to zero. The hypothesis of consistency between the climate model
simulations in question and the observed climate record is tested by setting αi = κi,
i = 1, 2, 3. It will give us three degrees of freedom.

The FA(4,3)-model remains identified with three degrees of freedom when the restric-
tions κi = 0, i = 1, 2, 3, are imposed.

To be able to test the hypothesis that the interation term is negligible, it is not suffi-
cient to set only α3 and κ3 to zero. The two associated correlations, φ13 and φ23, should
be also eliminated from the vector of the model parameters. The resulting model, the
FA(4,2)-model, is thus over-identified with four degrees of freedom, provided, of course,
that α1 and α2 differ from zero. Under the hypothesis of consistency, the model has six
degrees of freedom.

The simplest model, nested within model (4.2.3), is the so-called null model or base-
line model. A general baseline model supposes that only the specific-factor variances are
estimated. In our case, a more appropriate baseline model is a model where only σ2ν is
estimated. Consequently, this model has only 1 free parameter and 9 degrees of freedom,
and it hypothesises that the observed variables do not have anything in common, that
is, they are uncorrelated.

If the null model is rejected statistically and/or heuristically, researchers may test
whether one latent factor, representing one of the two individual forcing effects, ξTf1 or
ξTf2, is sufficient to account for the intercorrelations between the indicators. To exemplify,
we present a 1-factor model with ξTf2:

xf1 t = 0 · ξTf2 t + δf1 t

xf2 t = α2 · ξTf2 t + δf2 t

xf t = α2 · ξTf2 t + δf t

vt = κ2 · ξTf2 t + νt,

(4.2.4)

The model has three free parameters, α2, κ2 and σ2ν . Since each is identified, the
12Recall that the common factors are regarded as fixed unknown constants, meaning that their vari-

ances (and covariances) are interpreted in terms of limits analogous to the second limit in (2.5).

22



model has 10 − 3 = 7 degrees of freedom. Notice that the structure of the models
reproduced variance-covariance matrix, Σ(θ) (not shown here completely) includes the
following equations: σ2xf1 xf2

= σ2xf1 xf
= σ2xf1 v

= 0. This means that accepting this factor
model is equivalent to accepting the hypothesis that xf1 is uncorrelated with all other
observed variables.

Model (4.2.4) becomes theoretically underidentified if α2 is zero (both κ2 and σ2ν
become underidentified), whereas the identifiability is retained under the restrictions
α2 = κ2, α2 = κ2 = 0 and κ2 = 0, giving us 1, 2 and 1 additional degrees of freedom,
respectively.

In practice, nonsignificant estimates of a model parameter, whose population value
makes a factor model theoretically underidentified, may cause empirical underidenti-
fication ([55]). Undesirable results associated with this phenomenon include negative
specific-factor variances (Heywood case), parameters that are outside reasonable limits
(for example, correlations among latent factors exceeding 1), large standard errors of
parameter estimates, large correlations among parameter estimates, and even failure of
the estimation algorithm to converge to a solution. Therefore, it is important prior to
estimating a factor model to determine the causes of its theoretical underidentifiaction
to undertake justified empirical modifications of the model in case they are needed.

The orthogonal model
If the researcher is convinced that the latent temperature responses in (4.2.3) are uncorre-
lated, then he or she gets an opportunity to free up two specific-factor variances, namely
σ2δf1 and σ2δf2 , without assuming that σ2

ζ̃S
= 0 as under model (4.1.10). Together with

other model parameters, α1, κ1, α2, κ2, α3, κ3 and σ2ν , it gives 9 parameters in total. As
follows from the reproduced variance-covariance matrix of the orthogonal FA(4,3)-model,
given in (4.2.5), each of the 9 parameters is identified 13. Thus, the model is overiden-
tified with 1 degree of freedom. If σ2δf1 and σ2δf2 are still treated as known a priori, then
two additional degrees of freedom are gained.

σ2
1 = α2

1 + σ2
δf1

σ21 = 0 σ2
2 = α2

2 + σ2
δf2

σ31 = α2
1 σ32 = α2

2 σ2
3 = α2

1 + α2
2 + α2

3 + σ2
δf

σ41 = α1 κ1 σ2
42 = α2 κ2 σ43 = α1 κ1 + α2 κ2 + α3 κ3 σ2

4 = κ2
1 + κ2

2 + κ2
3 + σ2

ν

(4.2.5)

As follows from (4.2.5), the orthogonal FA(4,3)-model becomes underidentified if
either α1, α2 or α3 equals zero (the associated κ:s and σ2ν cannot be identified). At the
same time, the underidentification does not arise under the following restrictions: κi = 0

and αi = κi = 0 for each i. Most importantly, the orthogonal FA(4,3)-model is also
identified under the hypothesis of consistency, that is, if the equality constraints αi = κi,

13We also see that freeing up σ2
δf

makes the model underidentified, because σ2
δf

should then be deter-
mined from the same equation as α3.
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i = 1, 2, 3, are imposed.

The mixed model
The properties of this model is a mixture of the properties of the above-discussed oblique
and orthogonal models. Therefore, we refrain from repeating them.

4.3 Case 3: The forcing f is a combination of more than two forcings

Our aim in this section is to formulate factor models that can be applied for the evaluation
of climate model simulations driven by more than two external forcings. We start with
climate model simulations driven by three external forcings, i.e. f := (f1, f2, f3).

Let the simulated overall temperature response to f be decomposed as shown in
(3.2.3) and (3.2.4). This decomposition means that the general underlying common-
factor structure of ξSf and ξTALL comprises seven common factors, namely ξTf 1 , ξTf 2 , ξTf 3 ,
ξTf 1×f 2, ξ

T
f 1×f 3, ξ

T
f 2×f 3, and ξTf 1×f 2×f 3. Let them be extracted from ξSf and ξTALL in a

similar way as in (4.2.1). Using the same principles for choosing suitable indicators of
latent factors as in the case of the FA(4,3)-model, we could formulate a basic 8-indicator
7-factor model given in Table 3. Thanks to the equality constraints imposed on the factor
loadings 14, the model satisfies the sufficient conditions for uniqueness under rotation (see
Appendix A) regardless of whether the model is oblique or orthogonal.

Without imposing restrictions on the correlations among the common factors, the
FA(8,7)-model is oblique. Since the number of unique equations in Σ = Σ(θ) is 8 ·9/2 =

36, at most 36 parameters can be estimated. Without imposing restrictions on the factor
loadings in accordance with the hypothesis of consistency, we have to estimate 7×2 = 14

distinct factor loadings,
(7
2

)
= 7·6

2·1 = 21 correlations among the latent factors and σ2ν , that
is, 36 parameters. It can be shown that each of them is just-identified, implying that the
whole model is just-identified. Imposing the equality-constraints in accordance with the
hypothesis of consistency, i.e. αi = κi makes the model overidentified with seven degrees
of freedom.

The causes of underidentifiability of the oblique FA(8,7)-model are similar to those
associated with the oblique FA(4,3)-model. That is, underidentifiability arises when
αi = 0 or αi = κi = 0 for at least one i. Imposing these restrictions requires the
elimination of the factor ξ f i with all associated correlation coefficients.

14Just as in the FA(4,3)-model, the equality constraints in a given column in the FA(8,7)-model
are motivated by the fact that the same reconstruction of forcing i is identically implemented in the
associated single-, two- and three-forcing climate models.
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Table 3. Parameters of a basic 8-indicator 7-factor model, abbr. FA(8,7), where x f stands for
a simulated temperature forced by three forcings: f1, f2, and f3.

Indicator Common factors Specific-
factor 1 factor 2 factor 3 factor 4 factor 5 factor 6 factor 7 -factor

ξTf 1 ξTf 2 ξTf 3 ξTf 1×f 2 ξTf 1×f 3 ξTf 2×f 3 ξTf 1×f 2×f 3 variances
1. x f 1 α1 0 0 0 0 0 0 σ2 ∗

δf1

2. x f 2 0 α2 0 0 0 0 0 σ2 ∗
δf2

3. x f 3 0 0 α3 0 0 0 0 σ2 ∗
δf3

4. x f 1 f 2 α1 α2 0 α4 0 0 0 σ2 ∗
δf1 f2

5. x f 1 f 3 α1 0 α3 0 α5 0 0 σ2 ∗
δf1 f3

6. x f 2 f 3 0 α2 α3 0 0 α6 0 σ2 ∗
δf2 f3

7. x f α1 α2 α3 α4 α5 α6 α7 σ2 ∗
δf

8. v κ1 κ2 κ3 κ4 κ5 κ6 κ7 σ2
ν

———–Correlations among Common Factors
—ppp– ——-1 φ12 φ13 φ14 φ15 φ16 φ17

—ppp– ——-1 1 φ23 φ24 φ25 φ26 φ27

1 φ34 φ35 φ36 φ37

1 φ45 φ46 φ47

1 φ56 φ57

1 φ67

1
∗ the parameter assumed to be known a priori.

However, in contrast to the oblique FA(4,3)-model, the large number of common
factors in the oblique FA(8,7)-model provides an opportunity to free all specific-factor
variances associated with all climate model simulations. This can be done by eliminating
the factor representing the 3-forcing interaction effect, ξTf1×f2×f3. Since the individual
forcing effects and the interaction between forcings (in terms of pairwise interaction
effects) are still accounted for, the resulting FA(8,6)-model is still realistic and defensible
from the climatological standpoint even after this respecification.

Naturally, the elimination of ξTf1×f2×f3 entails that α7, κ7, and all associated corre-
lations, i.e. φ17, . . . , φ67, are eliminated as well. Since all remaining parameters can be
identified, the FA(8,6)-model with all specific-factor variances treated as free is overiden-
tified with 1 degree of freedom. If the model is not be rejected then it is possible to test
(1) the hypothesis of consistency by imposing αi = κi, i = 1, 2, . . . , 6, which results in
six additional degrees of freedom, and (2) other conceivable simplifications, e.g. setting
insignificant correlations (if such are observed) to zero.
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If the empirical underidentification occurs, the model can be simplified in the same
way as under the oblique FA(4,3)-model. That is, depending on which α̂i is insignificant,
we delete the corresponding common factors with all associated parameters.

Depending on the characteristics of the forcings involved, the approach of simplifica-
tion can be replaced by the approach of expansion. For example, one can start with a
model hypothesising that two of three individual forcing effects along with all interaction
effects are not needed to explain the intercorrelations between the observed variables, or
that the forcing effects in question are additive, meaning that only the interaction effects
are eliminated.

At this point, we would like to point out that the estimation of either the complete or
reduced 6-factor model is possible if and only if all observed data, i.e. all eight indicators,
are available. However, given the current common procedures in the climate modelling
community ([18], [39]), this assumption seems to be unrealistic. It is more realistic to as-
sume the availability of a multi-forcing simulation along with corresponding single-forcing
simulations. In other words, it is likely that 2-forcings climate model simulations are not
available, meaning that we have to eliminate all 2-forcing climate model simulations from
the set of indicators. This, however, inevitably leads to underidentifiability. The problem
can be circumvented to some extent by assuming that a complete underlying structure is
given by (3.2.3), where all interactions are summarised in the overall interaction effect,
ξTinteract. The resulting 5-indicator 4-factor model is given in Table 4.

Table 4. Parameters of a just-identified 5-indicator 4-factor model, abbr. FA(5,4), where x f

represents a simulated temperature forced jointly by f1, f2 and f3

Indi- Common factors Error
cator factor 1 factor 2 factor 3 factor 4 variances

ξTf1 ξTf2 ξTf3 ξTinteract

1. xf1 α1 0 0 0 σ2 ∗
δf1

2. xf2 0 α2 0 0 σ2 ∗
δf2

3. xf3 0 0 α3 0 σ2 ∗
δf3

4. xf α1 α2 α3 α4 σ2 ∗
δf

5. v κ1 κ2 κ3 κ4 σ2
ν

———–Correlations among Common Factors
———— 1 φ12 φ13 φ14

−−1 φ23 φ24
1 φ34

—p1
∗ the parameter assumed to be known a priori.
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Due to the difficulties with the interpretation of ξTinteract, it is reasonable to focus first
on estimating nested factor models not containing ξTinteract.

The orthogonal and mixed models
It cannot be emphasised enough that the orthogonal factor model should be applied only
if there is a strong climatological justification for the assumption that the latent factors
involved are uncorrelated. Provided that such a justification exists, orthogonality enables
freeing in both FA(8,7)- and FA(5,4)-models all specific-factor variances associated with
the climate model simulations except x f. That is, σ2δf should still be regarded as known
a priori.

Concerning a mixed model, where some (not all) latent factors are assumed to be
uncorrelated, we would like to say that this model seems to be the most appropiate
model within the climatological context because it offers the possibility of reflecting our
knowledge about climatological properties of forcings in question. This aspect is discussed
in greater depth in [12].

We conclude this section by pointing out that it is straightforward to generalise the
factor models discussed in this section to larger factor models that can be used for
evaluating climate model simulations driven by more than three forcings.

5 Concluding discussion: relation to detection and attribu-
tion (D&A) studies

In this section, we give an overview of the differences and similarities between the sta-
tistical method used in D&A studies and our latent factor models formulated in line
with the technique known as confirmatory factor analysis (CFA). As described in the
introduction and in Sec. 2, the statistical method used in D&A studies, often referred
to by climatologists as the method of ’optimal fingerprinting’, uses measurement error
(ME) models of varying complexity. Basically, ME models are linear regression models
where not only a response variable but also explanatory variables are contaminated with
noise. In D&A studies, an explanatory variable - fingerprint - represents the expected
temperature response to a given forcing, estimated from a climate model simulation en-
semble. A definition of a general ME model with m explanatory variables, used in D&A
studies, is presented in Sec. 2 (see Eq. (2.6)). To facilitate the comparison, set m = 3.
The resulting ME model is:

Yg = β1 (x1 g − ν1 g︸ ︷︷ ︸
=ξS1 g

) + β2 (x2 g − ν2 g︸ ︷︷ ︸
=ξS2 g

) + β3 (x3 g − ν3 g︸ ︷︷ ︸
=ξS3 g

) + ν0 g, (5.1)
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or equivalently: 

x 1 g = 1 · ξS1 g + 0 · ξS2 g + 0 · ξS3 g + ν1 g

x 2 g = 0 · ξS1 g + 1 · ξS2 g + 0 · ξS3 g + ν2 g

x 3 g = 0 · ξS1 g + 0 · ξS2 g + 1 · ξS3 g + ν3 g

Yg = β1 · ξS1 g + β2 · ξS2 g + β3 · ξS3 g + ν0 g

(5.2)

Variance-covariance matrix of the latent factors:

σ2
1 σ12 σ13

σ2
2 σ23

σ2
3

Obviously, the equivalent representation in (5.2) demonstrates that a ME model can
be viewed as a factor model with unstandardised latent factors. For such factor models,
a measurement scale of latent variables is set by fixing coefficients to non-zero constants
(typically to 1,00) in relation to one of the indicators, i.e. observed variables. However,
since in our factor models we have applied an alternative approach to fixing the scale of
latent factors, namely standardising their variances to one, let us standardise the latent
variables even in (5.2). As a result, we obtain the following representation of (5.1):

x 1 g = α1 · ξ̃S1 g + 0 · ξ̃S2 g + 0 · ξ̃S3 g + ν1 g

x 2 g = 0 · ξ̃S1 g + α2 · ξ̃S2 g + 0 · ξ̃S3 g + ν2 g

x 3 g = 0 · ξ̃S1 g + 0 · ξ̃S2 g + α3 · ξ̃S3 g + ν3 g

Yg = κ1 · ξ̃S1 g + κ2 · ξ̃S2 g + κ3 · ξ̃S3 g + ν0 g

(5.3)

Correlations among the latent factors:

1 φ12 φ13
1 φ23

1

where ξ̃Si g = ξSi g/
√
σ2i , α i =

√
σ2i , and κ i = βi ·

√
σ2i , i = 1, 2, 3. As one can see,

representation (5.3) much resembles our factor models, in particular, the oblique FA(5,4)-
model in Table 4, suggested for evaluating climate model simulations driven by three
forcings. It gives rise to a question as to whether the FA(5,4)-model (or, in generally, any
other of our factor models) can be employed in D&A studies as an alternative approach
to ME models. Our answer is yes because our factor models are also capable of addressing
the questions posed in D&A studies. To show it let us elucidate the link between two
specific models, namely (5.3) and (5.2).

To this end, we note first that the ratio κi/αi in (5.3) gives us back βi in (5.2)
for all i. Hence, the hypotheses concerning βi are applicable to the parameters κi and
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αi, and the other way round. In particular, the question whether the effect of forcing
i is detected in observational data can be addressed by testing H0 : κi = 0 which
corresponds to the hypothesis H0 : βi = 0 in (5.2). For attributing of climate change to
forcing i, or equivalently for testing whether the magnitude of the temperature response
to forcing i is consistent in observational data and in simulations, D&A researchers test
the hypothesis H0 : βi = 1, which obvisouly corresponds to testing H0 : κi/αi = 1 under
the representation in (5.3).

In our FA(5,4)-model, the latter hypothesis is tested by imposing the equality-constraint(-
s) κi = αi. But one can also test this hypothesis without imposing these equality-
constraints but by calculating instead a confidence region for the ratio κi/αi (an appro-
priate method for constructing such regions is known as the Fieller method, and it is
described and employed in the third part of our analysis ([13]; see also [11], Sec. 2.3.2).

The above discussion shows that after transforming the general ME model given in
(2.6) into a factor model with standardised latent variables, we can still achieve the goals
of D&A studies. In addition, comparing the FA(5,4)-model from Table 4 with model
(5.3) reveals that reasoning in the spirit of factor analysis offers additional advantages.

To begin with, inclusion of the xf-climate model simulation driven jointly by all
forcings in question makes it possible to model the overall temperature response to the
interaction between the forcings. At this point, let us remark that according to [4] (p.
405), it does not seem completely impossible to involve the interaction term(-s) within
ME models. But the methods suggested are definitely more complicated than our factor
models, and, what is more important, the xf-climate model simulation is necessary for
its evaluation.

Another advantage is that non-climatic noise, represented by the variables ε and θ

defined in Eq. (4.1.3), is included in observational data. As pointed out earlier, the
non-climatic noise, especially ε associated with proxy data, may constitute a large part
of observational (proxy) data. Neglecting noise with a substantial variability might cause
serious bias in parameter estimates. This might lead to incorrect conclusions within D&A
studies and in studies using optimal fingerprinting estimates. An example of such sub-
sequent studies is observationally-constrained future climate projections aiming to help
constrain the range of uncertainties in future warming rates (for examples of such studies
see [62], [17], [42], [63]).

It should be stressed that it is in effect possible to allow a non-climatic noise contri-
bution to the internal variability even under the ME model specification. But this would
make it difficult to apply the Total Least Squares estimation/identifiability approach
because it is definitely more difficult to assess a priori the ratios of the noise variances
σ2νi/σ

2
ν0 , and/or find independent sources for estimation of σ2ν0 when ν0 comprises both

internal variability and non-climatic noise. Another identifiability approach is called for.
One can use the approach suggested in the present work, according to which the variance
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of the noise term associated with observations is regarded as an unknown parameter to
be estimated, while the variances of the noise terms associated with climate model simu-
lations are regarded as known a priori. Applying this identifiability approach corresponds
to relaxing one of the main assumptions of D&A studies that climate models simulate the
internal temperature variability correctly. Note that our identifiability approach applied
to the ME model from (2.6) requires replacing of the TLS estimator by another one, also
given in a closed analytical form (an interested reader can consult [14], Ch. 2).

When formulating our factor models, we also refrain from assuming that the variance
of the simulated internal variability, represented in our framework by δ̃ (see Eq. (3.2.1),
is the same for all climate models under study. Recall also from Sec. 3 that our δ̃-terms
are allowed to include not only the internal random variability of the forced climate
model, but also any random variability due to the presence of the forcing(-s). The latter
amounts to trying to model possible interactions between the internal factors and the
forcings.

It should also be emphasised that the noise terms in our factor models, associated
with climate model simulations, i.e. the specific factors δ:s, have a more complicated
structure than their counterparts in the ME model from (2.6), i.e. νi:s, i 6= 0. This
is a consequence of applying the concept of common factors, not applied in the D&A
framework (compare Eq. (2.2) with Eq. (4.1.1)). Therefore, our δ-factors contain not
only the internal variability δ̃, but also a residual term arising after extracting a common
latent factor from ξSf i, ξ

S
f and from ξTALL (see, for example, Eq.(4.1.1)- (4.1.4)). At first

glance, the simplicity of νi:s is preferable, but the concept of common factors, on the
other hand, enables us to relax the assumption made in D&A studies that climate mod-
els simulate the shape of the latent temperature response correctly. In addition, since
common factors in our factor models are represented by the true forcing effects, it allows
statistical inferences about the magnitude of individual or overall influences of real-world
forcings on observed/reconstructed temperature even if the climate model fail to repre-
sent the forcing effect correctly, i.e. when the hypothesis of consistency is rejected. This
is, of course, provided that the solution obtained is admissible, and the factor model fits
reasonably well.

Since a common factor(-s) is also extracted from ξTALL, this entails the fact that
the structure of the noise term associated with observations, designated ν in our factor
models, is more complicated than the structure of ν0 even if the latter includes a non-
climatic noise. However, this does not pose any problem for estimating the variance of ν,
treated as an unknown model parameter, whereas for applying independent estimates of
σ2δ :s it does. This is because the estimator of σ2δ suggested in the present work (see (B.1))
provides only a lower bound of σ2δ , i.e. an estimate of the variance of δ̃. As discussed in
the previous sections, it might lead to biasedness of estimates of our factor models. As a
possible check of the appropriateness of using the estimator of σ2δ , it was suggested to use
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members of simulation ensembles as additional indicators (see, for example, (4.1.10)). For
sufficiently large factor models, it is possible to free up all σ2δ :s in the model by excluding
some latent factors, representing interaction effects, as exemplified in the FA(8,7)-model
from Table 3. Some of σ2δ :s, associated with single-forcing simulations, can also be freed
up within orthogonal or mixed factor models. Note that none of these approaches is
applicable within the ME model characterised (1) by the presence of one indicator of each
latent factor in addition to the complex indicator represented in the D&A’s framework
by Yg, (2) by the absence of interaction terms, and (3) by an oblique covariance matrix
of the latent variables.

Reasoning in the spirit of confirmatory factor analysis offers a possibility to test var-
ious hypotheses concerning the relationships between the latent temperature responses;
for example, testing whether two given temperature responses are uncorrelated, or to
model more complicated relationships than correlations (the latter will be investigated in
Part II ([12]) by introducing structural equation models). For regression models (whether
with error in variables or not) this is not typical and even not possible, at least without
abandoning associated explicit estimators of model parameters, e.g. the TLS estimator.

Here, it is crucial to stress that the whole discussion above is purely theoretical.
Prior to employing the factor models suggested here in analyses involving real-world
observational data, their performance needs to be evaluated in a controlled numerical
experiment, in which the true unobservable temperature series is replaced by an appro-
priate climate model simulation. This will be the purpose of the analysis presented in
Part III ([13]).

As a final remark, let us outline an interesting topic for future studies. To this end,
it is important to realise that neither the ME model in (2.6) nor our factor models
are capable of taking into account possible spatial variation in the influence of a given
forcing on the temperature within a region, which can be sufficiently large to comprise
several distinct subregions. A tacit assumption of both ME model and our factor models
is that the influence of this forcing is the same over the whole region. To be able to
address the question of spatial variation, a multi-regional analysis is needed. Expressed
in terms of the β-coefficients of the ME model, this would allow us to test the hypotheses
that βi, associated with forcing i, is the same for two, three and/or all subregions.
Such an analysis presupposes that data sets associated with the subregions are analysed
simultaneously. Since this increases the number of observed variables, the statistical
models discussed here need to be extended accordingly. Conceivable starting points for
formulating extended statistical models can be found in [14] (see pp.325-327) and [31],
Sec. 39.
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Appendix A: A general factor model

A general factor model with q observed mean-centered variables and p latent common
factors, abbrv. FA(q, p), can be summarised by the following equation ([4]):

xt = Λξt + δt, (A.1)

in which xt is a q × 1 vector of observed variables at time point t, ξt is a p × 1 vector
of latent common factors that are assumed to be responsible for the correlation among
the observed variables, Λ is a q × p matrix of coefficients connecting ξt to xt, and δt is
a q × 1 vector of errors.

In the terminology of factor analysis, the observed variables are called indicators or
manifest variables. The coefficients Λ are referred to as factor loadings. The δf t variables
are often called specific factors because they are specific to the particular indicator they
are associated with. They are assumed to be identically and independently distributed,
more precisely N(0, diagΣδf). In addition, they are assumed to be uncorrelated with ξt
which in its turn can be treated either as random (typically normally distributed with
zero mean) or fixed unknown constants. In contrast to the specific-factor variables, com-
mon factors can be either correlated or uncorrelated with each other. Factor models with
correlated common factors are referred to as oblique models, while factor models with
uncorrelated ξt as orthogonal.

In this work, the focus is on confirmatory factor analysis (CFA). The main charac-
teristic of CFA is that the researcher formulates a factor model, or a set of models, in
accordance with a substantive theory about the underlying common factor structure.
That is, the number of latent factors, their interpretation and the nature of the factor
loadings are specified a priori. In addition, researchers can have certain hypotheses,
which results in additional restrictions on the parameter space. A typical classification
of parameters within CFA is the following ([40], [41]):

• A free parameter is a parameter that is to be estimated. Since they are not as-
sociated with anything specific about them, free parameters are not a part of the
hypotheses associated with a factor model.

• A fixed parameter is a parameter whose value is prespecified by hypothesis and this
value remains unchanged during the iterative estimation process.

• A constrained-equal parameter is a parameter that is estimated but its value is
constrained to be equal to another free parameter (or parameters). Because only
one value must be determined for each group of constrained-equal parameters, only
one parameter from this group is counted when counting the number of distinct
estimated parameters.
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The estimation of parameters in factor analysis is based on the idea that the popu-
lation variance-covariance matrix of the indicators, Σ, can be represented as a function
of the model parameters θ, denoted Σ(θ). The matrix Σ(θ) is called the implied (or
model’s reproduced) variance-covariance matrix of the indicators. The objective of CFA
is to empirically confirm or disconfirm the hypothesised factor model structure, or equiv-
alently the hypothesised variance-covariance matrix of the indicators.

The parameters are estimated such that the discrepancy between the sample variance-
covariance matrix of the indicators, S, and the estimated model’s reproduced variance-
covariance matrix, Σ(θ̂), is as small as possible. In particular, under the assumption of
normality of the data, the estimates are obtained by minimising the following discrepancy
function with respect to the free parameters, conditional on the explicitly constrained
parameters ([40], [4], [50]):

F (θ) = log|Σ(θ)|+ tr(SΣ(θ)−1)− log|S| − q. (A.2)

As shown by [40], minimising (A.2) is equivalent to maximising the maximum likeli-
hood (ML) function, and it is related to the log-likelihood ratio χ2 of goodness of fit of
the model’s Σ(θ) to S in the following way:

χ2 = −2 · (logL(H0)− logL(HA)) = (n− 1) · F (θ̂), (A.3)

where logL(H0) = −1
2 · (n− 1) ·

{
log|Σ(θ)|+ tr(SΣ(θ)−1)

}
is a function of the observa-

tions the logarithm of the likelihood function under the null hypothesis H0 : Σ = Σ(θ),
while logL(HA) = −1

2 · (n− 1) ·
{
log|S|+ q

}
is the logarithm of the likelihood function

under the alternative hypothesis HA of unrestricted Σ, i.e. Σ = S. In large samples,
the χ2 test statistic is approximately distributed as chi-square with df = q(q+ 1)/2−m
degrees of freedom, where q(q + 1)/2 is the number of the unique (nonduplicated) equa-
tions in the variance-covariance matrix of the indicators, and m is the number of distinct
free parameters.

According to the general theory, the ML estimates are consistent, jointly asymptoti-
cally normally distributed with the asymptotic variance expressed as being the inverse of
the Fisher information. In confirmatory factor analysis, the information matrix is defined
as follows :

n− 1

2
· E

[
∂2F (θ)

∂θ∂θ′

]
. (A.4)

The inverse of (A.4), evaluated at the values for the parameters that minimise the F
function, gives an estimate of the variance of the asymptotic distribution of the model
estimates.

Applying the χ2 test statistic, it should be kept in mind that in large samples even
small differences between S and Σ(θ̂) can be statistically significant although the dif-
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ferences may not be practically meaningful. Consequently, a number of goodness-of-fit
indices, serving as heuristic measures of model fit, have been proposed in the factor anal-
ysis literature (see, for example, [29], [50], [61]). Some of them are: a goodness-of-fit index
(GFI ), GFI adjusted for degrees of freedom (AGFI ), and standardised root- mean-square
residual (SRMR). Their definitions are the following:

GFI = 1− tr(Σ̂
−1
S − I)2

tr(Σ̂
−1
S)2

, (A.5)

AGFI = 1− q(q + 1)

2 · df
(1−GFI) , (A.6)

where df are the degrees of freedom, q is the number of indicators, and

SRMR =

√√√√√√
q∑
i=1

i∑
j=1

[
(sij − σ̂ij)

/
(siisjj)

]2
q(q + 1)/2

, (A.7)

where sij := observed (co-)variances, σ̂ij := reproduced covariances, sii and sjj := ob-
served standard deviations.

Regarding the cutoff values of the indices, the following rules of thumb are recom-
mended. The GFI for good-fitting models should be greater than 0.90, while for the
AGFI the suggested cutoff value is 0.8 ([61]). In case with the SRMR, perfect model fit
is indicated by SRMR = 0. Consequently, the larger the SRMR, the less fit between the
model and the data. According to [30], a cutoff value close to 0.08 for SRMR indicates a
good fit. It is worth pointing out that it is recommended to use the goodness-of-fit indices
for assessing the fit of a number of competing models fitted to the same data set, rather
than the fit of a single model. Researches also should pay attention to other aspects
of model fit such as examining parameter estimates to ensure they have the anticipated
signs and magnitudes. Before considering some type of model modification, other reasons
why a model may not fit, such as small sample size, nonnormality, or missing data, need
to be ruled out first ([6]).

A key concept in confirmatory factor analysis is identifiability of parameters. Identi-
fiability is closely related to the ability to estimate the model parameters from a sample
generated by the model, given restrictions imposed on the parameters. The general iden-
tifiability rule states that if an unknown parameter θi can be written as a function of one
or more elements of Σ, that parameter is identified. If all unknown parameters in θ are
identified, then the model is identified (see [4], p.89).

Based on this definition of identifiability, a factor model can be classified as underi-
dentified, just-identified or overidentified. Obviously, free parameters cannot be estimated
if their number exceeds the number of the nonduplicated (unique) equations in Σ equal
to q(q + 1)/2. Therefore, such a factor model is called underidentified. Just-identified
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models have as many parameters as the number of the unique equations in Σ, and, most
importantly, each parameter can be explicitly solved in terms of the variances and co-
variances of the indicators.

For overidentified models, the number of free parameters is smaller than the number
of unique equations in σij = σij(θ), and more than one distinct equation are solvable for
θi. A consequence of overidentifiability is that an explicit expression of the estimators
does not exist, and the minimisation of the discrepancy function in question is performed
numerically. This entails that S does not fit Σ(θ̂) perfectly thus making assessing the
fit of the model to the data meaningful. For just-identified models, assessing the overall
fit and hypothesis testing are senseless because the fact that Σ(θ) = S is mathematical
necessity, not an empirical finding.

Finally, it deserves to mention the notion of uniqueness under rotation. According to
[40], ”a solution is unique if all linear transformations of the factors that leave the fixed
parameters unchanged also leave the free parameters unchanged”. Whether uniqueness
holds or not depends on the positions and values of fixed parameters in Λ and the
variance-covariance matrix for the latent factors, Σξξ. Two simple sufficient conditions
for uniqueness under rotation are given by [40] and references therein:
• For an orthogonal model : Σξξ is the identity matrix, I, and the columns in Λ are
arranged so that, column d, d = 1, 2, . . . , p, contains at least d− 1 fixed elements;
• For an oblique model : the diagonal elements of Σξξ are 1:s, while the diagonal-off
elements are free, and each column in Λ has at least p− 1 fixed elements.
Importantly, as highlighted by [5], uniqueness does not imply identification.

Appendix B

A possible independent estimator of σ2δf is

σ2δf =

∑n
t=1

∑k
i=1(xft repl.i − x̄ft)

2

n(k − 1)
, k 6= 1. (B.1)

If there are exactly two replicates, σ2δf is half the sample variance of the difference sequence
{xrepl. 1 t−xrepl. 2 t}. Note that the proposed estimators are unbiased even in the presence
of autocorrelation in {xrepl. i t}, which is due to the independence of residual {xft repl.i −
x̄ft}-sequences.
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