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Abstract

A key parameter in models for the spread of infectious diseases
is the basic reproduction number R0, which is the expected number
of secondary cases a typical infected primary case infects during its
infectious period in a large mostly susceptible population. In order
for this quantity to be meaningful, the initial expected growth of the
number of infectious individuals in the large-population limit should
be exponential.

We investigate to what extent this assumption is valid by perform-
ing repeated simulations of epidemics on selected empirical networks,
viewing each epidemic as a random process in discrete time. The initial
phase of each epidemic is analyzed by fitting the number of infected
people at each time step to a generalised growth model, allowing for
estimating the shape of the growth. For reference, similar investiga-
tions are done on some elementary graphs such as integer lattices in
different dimensions and configuration model graphs, for which the
early epidemic behaviour is known.

We find that for the empirical networks tested in this paper, expo-
nential growth characterizes the early stages of the epidemic, except
when the network is restricted by a strong low-dimensional spacial
constraint, such as is the case for the two-dimensional square lattice.
However, on finite integer lattices of sufficiently high dimension, the
early development of epidemics shows exponential growth.

Keywords - Epidemics, Exponential growth, Generalized growth model,
Reproduction number, Stochastic processes.
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1 Introduction

A key parameter in many mathematical models that describe the spread of
infectious diseases is the basic reproduction number R0. It may be under-
stood as the expected number of other individuals a typical infected indi-
vidual infects during his/her infectious period in a large mostly susceptible
population [4, page 4]. The basic reproduction number serves as a threshold
parameter, in the sense that in most standard models, if R0 ≤ 1 a large
outbreak is impossible, while if R0 > 1, a large outbreak occurs with positive
probability. Furthermore, in those models, preventing a fraction 1− 1/R0 of
the infections (e.g. through vaccination) is enough to stop a major outbreak
[4, page 209].

The above properties of R0 are strongly connected to the correspondence
of R0 with the offspring mean of a branching process approximation of the
epidemic. So for R0 to be meaningful, the initial expected growth of the
number of infectious individuals in the large-population limit should be ex-
ponential. This exponential growth is present in SIR epidemics (Susceptible
→ Infectious → Recovered; a definition is given in Section 2.3) in large
homogeneously mixing populations, in which all individuals have the same
characteristics and all pairs of individuals independently make contacts with
the same rate. This exponential growth is also present in many well-studied
generalizations of this SIR model in large homogeneously mixing populations.
Generalizations are possible by leaving the SIR framework and allow for SIS
(Susceptible→ Infectious→ Susceptible) or SIRS (Susceptible→ Infectious
→ Recovered → Susceptible) models, or models with demographic turnover
through births, deaths and migration. Other generalizations are allowing for
heterogeneity among the individuals and contact rates between pairs, e.g.
through allowing for household structures, multi-type structures and some
network structures in the population (see e.g. [4] for descriptions of these
models and population structures). Even with these generalizations, ma-
jor outbreaks of epidemics still show exponential growth in the initial phase
of the epidemic and therefore R0 is a meaningful parameter (see [23] and
references therein).

A trade off between realism and analytical tractability is often necessary
in developing a mathematical model. Because of the reasons stated above, in
many instances this tractability requires the possibility of exponential growth
in the model, either directly or as a byproduct of other assumptions. It is
not a-priori clear in which cases real-life spread of infectious diseases allows
for a meaningful definition of R0 and in which cases the use of R0 may be
misleading and other key parameters should be estimated. For example,
it is well known that SIR-epidemics on essentially 2-dimensional networks
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grow linearly whenever contacts between vertices are mostly local, i.e. if the
probability of long range contacts decays sufficiently fast. The epidemic then
spreads in the form of travelling waves on the plane (see e.g. [16, 25], but
also [7, 22] for models where long-range contacts change the behaviour of the
spread). Human physical activity is mostly restricted to the 2-dimensional
nature of the earth’s surface and a natural assumption is that graphs based
on human interactions (e.g. in social networks) may also show this restriction.

In the present paper we study (simulated) epidemics on several theo-
retical and empirical networks and investigate to what extent they exhibit
exponential growth and to what extent they exhibit subexponential growth.
All, but one, of the empirical networks we use are taken from [13] and we
are aware that those networks are at best a proxy for networks relevant for
the spread of infectious diseases. However, it is hard, if not impossible, to
obtain complete network data for more relevant networks. Although we fo-
cus on the possibility of exponential growth of epidemics on networks, our
interest goes beyond epidemics and epidemics on networks mainly serve as
an example of of a stochastic process, for which the analysis strongly de-
pends on implicit assumptions made on the network. We expect that our
discussion on the stochastic behaviour of epidemics on empirical networks
and on stochastically generated networks also apply to rumours, evolution
or games on the networks. Furthermore, quantities of interest such as the
diameter and typical distances in networks [10, Chapter 1] are related to the
possibility of exponential growth of an epidemic on the network, and in this
context the typical distances are also strongly related to the so-called “six
degrees of separation” and “small-world” phenomena [26].

We study the spread of SIR epidemics on graphs/networks in discrete
time (see Section 2.3 below). In the graphs vertices represent people and
edges represent relationships between people through which the infectious
disease may spread. For any given vertex the vertices that can be reached
directly through an edge are called the neighbours of the vertex. The number
of neighbours of a vertex is called the degree of the vertex. We assume that
the infection can spread in both directions on any edge, i.e. the graph is
not directed. Throughout, we assume that the epidemic starts with a single
infected vertex, the generation 0 vertex (called the index case), while all other
vertices are susceptible to the disease. In each time step the infected vertices
infect a subset of their susceptible neighbours, according to some probabilistic
law (discussed below), after which they recover and become immune forever.
In the next time step the newly infected vertices (the generation 1 vertices)
can infect their susceptible neighbours and so on. The epidemic ends when
there are no more infected vertices.

Several properties of the network can affect the basic reproduction num-
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ber, both local (such as the degree of a vertex) and global structural proper-
ties. As an example of the relevance of those structural properties, in Figure 1
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Figure 1: The number of infected vertices (left) and the instantaneous reproduction
number (right) as a function of the epidemic generation for three network models—
the square lattice (solid black line), the Erdős-Rényi model (dotted red line) and the
configuration model with a geometric degree distribution with weight on 0 (dashed
blue line)—all with mean degree 4. For each plot the size of the population is 106

vertices. In each generation infected vertices infect all of their susceptible neighbours.
With the chosen axes scaling in the left plot, the data points fall on a straight line if
the growth is exponential, corresponding to an approximately constant instantaneous
reproduction number in the right plot.

we have plotted a few SIR-epidemics that were simulated on three different
network types that all have the same mean degree 4. These networks are
described in more detail in Section 2.1. Here we have assumed that infected
vertices infect all of their susceptible neighbours. We observe, that although
the three graphs have the same mean degree, epidemics on the three graphs
develop differently. For the Erdős-Rényi model and the configuration model
early in the epidemic the growth is approximately exponential, while the
square lattice exhibits essentially linear growth. In the right figure for the
first two graphs this is illustrated by approximately constant instantaneous
reproduction numbers (the average number of new infections caused per in-
fected vertex in the current infection generation), well above 1 in the early
parts of the epidemic, after which the instantaneous reproduction number
drops to a value below 1. For the square lattice model the instantaneous re-
production number drops rapidly from the very start of the epidemic, asymp-
totically approaching 1. In the latter case the subexponential development
is an effect of the spatial structure of the network.

Before starting the formal introduction and analysis of our models, we
have to discuss some ideas behind stochastic models of real or simulated
epidemics. Much of the theory on epidemics on graphs is about obtaining
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results for epidemics on infinite graphs, such as Euclidean lattices [8], or
obtaining asymptotic results for a sequence of related epidemics on finite
graphs, when the graph size grows to infinity (e.g. [1]). For example, for a
configuration model graph (discussed more in Section 2.1) with n vertices,
the initial growth of an epidemic can be analyzed using a branching process
approximation [12, 1, 2], which can be shown to be exact (under some extra
conditions) until roughly

√
n vertices have been infected, with probability

tending to 1 if n→∞. This follows from a birthday problem type argument
(see e.g. [4, page 54]).

For branching processes it is known that, if the branching process survives,
the growth is almost surely asymptotically exponential (see [12]), and the
instantaneous reproduction number converges to its expectation, which is
the basic reproduction number R0. If a substantial fraction of the vertices
have been infected in an SIR epidemic on a finite graph, with high probability,
some neighbours of newly infected vertices have already been infected before,
thus reducing the instantaneous reproduction number. Exponential growth,
if it exists, is thus only visible in the early phases of the epidemic, when only
a small portion of the graph has been infected.

In our analysis, we treat the empirical networks as if they are realiza-
tions of some unspecified random graph model, which can be defined for an
arbitrary large number of nodes in the network. By studying epidemics on
these realizations we try to answer whether, in the large population limit of
the random graph, exponential growth is possible. However, we only have
access to a limited number of such realizations and we cannot freely control
the number of nodes in them. Also the real dynamics through which an em-
pirical network is created are probably too hard to describe and analyze and
possibly not even random. Therefore mathematical models and results based
on such empirical realizations should be interpreted with care. Because there
are infinitely many random graph models of which the empirical graphs may
be a realization, we need to make more assumptions on the models behind
the empirical graphs.

Our key assumption is that if the number of vertices in this random graph
goes to infinity and if exponential growth is possible, then at some level (see
[2]) a branching process approximation is possible and R0 is well defined.
This R0 should then be estimated from the initial phase of a (simulated)
epidemic on the finite empirical network. We analyze the development of the
epidemic during the first generations (with exception of the first generation)
to see if it is consistent with this assumption.

In most of the analyzed empirical networks the unrestricted epidemic,
where an infected vertex infects all susceptible neighbours, grows so fast
that the early phase of the epidemic is over in as few as 3-4 generations. To
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be able to study the epidemic for more generations, we restrict it by two
different methods described in Section 2.4. These restrictions reduce the
reproduction number so that it takes longer before a substantial portion of
the population has been infected. Since such restrictions could affect the
way in which the epidemic spreads in addition to just slowing it down, a
secondary objective is to study such effects.

The analysis of the graphs is performed by fitting the early portion of sim-
ulated individual epidemics to a generalized growth model (see Section 2.5).
From the fit the shape of the growth can be estimated and this gives infor-
mation on how well the growth conforms to exponential or to subexponential
growth. The process is repeated for many simulated epidemics on each graph
and the collective information from the analysis of these epidemics is used to
compare the initial growth of epidemics on different graphs (see Section 3).
A discussion can be found in Section 4.

2 Model

In this section we present the models for epidemic growth on graphs that
we exploit in the paper, expanding on some of the concepts introduced in
Section 1. We start with definitions and results concerning graphs in Sec-
tion 2.1. An overview of the specific graphs that we analyze in this paper is
given in Section 2.2. In Section 2.3 we give a brief account of the SIR-model
on graphs in discrete time (i.e. in a generation perspective) and discuss what
we mean by the growth of the epidemic, specifically by exponential growth.
We describe the two methods we use to “slow the epidemic down” in Sec-
tion 2.4. The method used to analyze the growth of the simulated epidemics
is presented in Section 2.5.

2.1 Graphs

A finite graph is a set of n vertices together with a set of edges that join
vertices pairwise. We consider simple and undirected graphs, i.e. there are
no self-loops (an edge connecting a vertex to itself) and no parallel edges
(several edges join the same pair of vertices) and all edges are undirected [10].
As already mentioned, the degree of vertex v is the number of neighbours of
v. We denote this degree by dv. For a given graph we talk about the degree
sequence d = (d1, d2, . . . , dn). Without loss of generality we restrict the
analysis to graphs where di ≥ 1 for all i = 1, 2, . . . , n, since vertices with
degree 0 cannot interact in an epidemic and are therefore not really part of
the network. Let Z be the degree of a vertex selected uniformly at random
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from the graph and define pk = P(Z=k). The distribution of Z is the degree
distribution of the graph and we define µ = E[Z] and σ2 = V ar(Z).

Some graphs are deterministic, e.g. the graph on the Euclidean integer
lattice Zη, where η is the dimension of the lattice. Here the integer points in
Zη are the vertices and edges exist between all pairs of vertices with Euclidean
distance 1. We consider finite subsets (tori) of the infinite graph Zη in order
to make comparisons with other finite graphs. Other graphs are random in
the sense that they are constructed probabilistically, e.g. the Erdős-Rényi
graph ([6, 5]) and configuration model graphs ([17, 5]). In both cases the
number of vertices is given and finite.

In the Erdős-Rényi graph there exists an edge between any two vertices
with probability λ

n−1 , where λ is a given constant equal to the expected de-
gree of a vertex selected uniformly at random, and the presence or absence
of possible edges are independent. This construction results in the degree
distribution of a vertex selected uniformly at random being the binomial dis-
tribution with parameters n−1 and λ

n−1 . For n→∞, the degree distribution
converges to a Poisson distribution with parameter λ.

In the configuration model graph, we either start with a given degree
sequence d (which may be taken from an empirical network) for the vertices,
or the degree sequence is independent and identically distributed (i.i.d.), with
given distribution D (which may also be taken from an empirical network).
We then create the graph as follows: To each (for the moment unconnected)
vertex we assign a number of “stubs” corresponding to its degree. The stubs
are paired uniformly at random to create edges. Any left over stub is deleted
and so are any self-loops, while parallel edges are merged to one edge. So,
the created graph is simple. If the degree sequence is an i.i.d. sequence with
distribution D, and if D has finite mean, then in the limit n → ∞ the
degree distribution of the obtained configuration model graph converges in
probability to the distribution D [3].

Empirical graphs are created from real world data, e.g. from observed so-
cial interactions within a group of people. These networks have a given finite
size, while we are interested in asymptotic results when the population size
n→∞. Therefore, as pointed out in Section 1, we analyze (processes on) the
empirical graph as if the empirical graph is a realization of a random graph,
which can be analyzed for n→∞. The exact mechanism of constructing the
random graph is typically unknown. The empirical graphs we have analyzed
in this paper are described in Section 2.2, below.

7



2.2 The studied networks

In this subsection we present the networks we use to generate the graphs
that are analyzed in this paper and we discuss some of their properties.

A summary of properties of the networks used in this paper can be found
in Table 1. The first three networks in the table are from the Stanford Large
Dataset Collection ([13]).

Data set # vertices # edges Type of graph

soc-LiveJournal1 3 823 816 25 624 154 online social network
ca-CondMat 23 133 93 439 scientific collaboration network
roadNet-PA 1 088 092 1 541 898 road network in Pennsylvania
Swedish population 7 616 569 18 139 894 workplace and family
D2 1 000 000 2 000 000 2-dimensional lattice
D6 1 000 000 6 000 000 6-dimensional lattice

Table 1: An overview of networks that are investigated in this paper. The number of
undirected edges and the number of vertices with at least one edge are indicated.

The graphs are discussed below.

• soc-LiveJournal1 is a large online social network that allows for the
formation of communities. On the network people state who their
“friends” are and although this does not have to be mutual, it often
is. In our model we only consider the mutual statements of friendship
and let these be represented by undirected edges, while people are
represented by vertices. In figures the graph is referred to as “LJ”.

• ca-CondMat is based on the arXiv condensed matter collaboration
network (COND-MAT). Authors are represented as vertices and undi-
rected edges are present between all authors that are listed as co-
authors of the same paper. In figures the graph is referred to as “CM”.

• roadNet-PA is based on the road network of Pennsylvania. Intersec-
tions between roads are represented by vertices and roads are repre-
sented by edges. Because of the spatial nature of a road network we
expect to see spatial restrictions in this network and this is why it was
included in the analysis. In figures the graph is referred to as “Rd”.

• Swedish population1 is a large network that is based on data con-
taining only the workplace and family affiliation of people in Sweden

1Data kindly supplied by Fredrik Liljeros, Department of Sociology, Stockholm Uni-
versity
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(see also [11]). Although the used dataset does not contain geographic
information, it may still be assumed that family location and workplace
location can be spatially correlated, thus imposing a spatial structure
on the entire graph.

Because some of the workplaces are large, we have assumed that people
interact with colleagues only in smaller working groups. We model this
by (randomly) dividing the workplaces into groups of 7 people (with at
most one group in each company having a size between 1 and 6 when
the company size is not divisible by 7).

A reference version of this dataset was also tested where company af-
filiation was assigned at random to each vertex, while keeping the dis-
tribution of workplace sizes fixed. If epidemics on this reference graph
differ from the original graph, this could be an indication of spatial
restrictions on the original graph. In figures the graphs are referred to
as “Sw” and “SR”, respectively.

• D2 is a finite regular square lattice (on Z2) in the shape of a torus
with sides of 103 vertices, thus in total 106 vertices. Because of the
torus shape there is no center in the graph and the development of the
epidemic does thus not depend on where the epidemic starts. In figures
the graph is referred to as “D2”.

• D6 is a finite regular lattice on Z6 in the shape of a torus with sides of
10 vertices, thus in total 106 vertices. As for the D2-graph there is no
center in the graph. In figures the graph is referred to as “D6”.

2.3 Epidemics on Graphs

In the context of epidemics on graphs we think of the vertices as people
and of the edges as relationships by which infected people can infect other
people. Because the graphs are undirected, the epidemic can spread in both
directions along any edge. We consider SIR-epidemics, where each vertex
is either susceptible, infected (and infectious) or recovered. A vertex that
is recovered is immune and can never be infected again. In this paper we
restrict the analysis to epidemics in discrete time and also assume that each
infected vertex stays infected for only one time unit before it recovers and
cannot spread the infection further. This model corresponds to the so-called
Reed-Frost model on graphs [4, p.48]. The above implies that, for any finite
graph, the epidemic must eventually end when there are no more infected
vertices left. The total number of vertices that have been infected during the
course of the epidemic is called the final size of the epidemic.
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The first vertex to be infected is called the index case. We assume that
the index case was infected at time i = 0, where time represents the gen-
eration number. The index case then spreads the infection to (a subset of)
its neighbours and they in turn spread it to (a subset of) their neighbours.
For each generation i, we keep track of Ii, the number of infected vertices in
generation i, and of Ji =

∑i
k=0 Ik, the total number of infected vertices up

to and including generation i. Note that, if the infection always spreads to
all neighbours, Ji is equal to the number of vertices within graph distance i
from the index case.

A measure of the rate at which the epidemic is growing is the instanta-
neous reproduction number at time (generation) i, which we define as the
average number of offspring of a vertex in generation i−1

mi =
Ii
Ii−1

, (1)

for i≥1 and conditioned on Ii−1>0. The instantaneous reproduction number
depends on how many neighbours an infected vertex has, on how many of
the neighbours that are still susceptible and on the mechanism by which
the vertex infects its neighbours. In the early phase of an epidemic mi may
be approximately constant as a function of i, but for a finite graph it must
eventually decrease as there are fewer and fewer susceptible vertices left. If
vertices have different degrees or if vertices have different local environments,
then the development of the epidemic also depends on which vertex is the
index case.

On the square lattice, Z2, the growth of an unrestricted epidemic (i.e.
when an infected vertex infects all susceptible friends) is initially linear with
Ii = 4i and mi = i

i−1 , i ≥ 1 (conditioned on I0 = 1).
On a configuration model graph the early part of the epidemic (if the first

generation is ignored) is well approximated by a Galton-Watson branching
process in discrete time, where all individuals reproduce independently with
offspring distribution X, with m = E[X]. For a Galton-Watson process

Ii =
Ii−1∑
j=1

Xi,j, (2)

where Xi,j are all independent and distributed as X. We see that

E [Ii | Ii−1] = Ii−1E[X] (3)

and that
Var [Ii | Ii−1] = Ii−1Var[X] (4)
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so that both the (conditional) expectation and the (conditional) variance
of Ii are proportional to the size of the previous generation. We use these
relationships in the analysis of the data, see Section 2.5.

In the large population limit the expected reproduction number

E[mi | Ii−1>0] = m (5)

does not depend on the epidemic generation. The expected size of the i-
th generation of the epidemic is E[Ii] = mi (given a single index case and
assuming the branching process is valid from the first generation) and we see
that the growth of the epidemic is exponential if m > 1.

As shown in [9, page 36]

m̂i =
Ji − 1

Ji−1
, (6)

(assuming that I0 = 1) is a better estimator for m than mi. If the branching
process approximation is valid first from generation 2 then we can modify
Eq. (6) slightly to obtain

m̂i =
Ji − J1
Ji−1 − J0

. (7)

This latter expression is most relevant in this paper, since we select the index
case uniformly at random among all vertices, while subsequent vertices are
infected by following edges from an infected vertex. This causes the degree
distribution of the index case to differ from that of vertices that are infected
later, as we explain now (see also [18]).

Before continuing, we remind the reader that µ = E[Z] and σ2 = Var(Z),
where Z is the degree of a vertex that is chosen uniformly at random among
all vertices in the graph (see also Section 2.1). Let Z̃ be the degree of a
vertex that is selected by first selecting an edge uniformly at random and
then selecting one of the two connected vertices at random. On the config-
uration model graph, again ignoring the first generation, initially and for as
long as the branching process approximation is valid, the epidemic growth is
governed by X ∼ Z̃−1, where

p̃k = P
(
Z̃=k

)
=
kpk
µ
. (8)

The “−1” is because the infection cannot spread back to “the infector” since
it is by definition not susceptible any more. The expected reproduction num-
ber in the early stages of the epidemic is thus m = µ̃−1, where

µ̃ = E
[
Z̃
]

=
E [Z2]

E[Z]
= µ+

σ2

µ
. (9)

Thus µ̃ can be much larger than µ if σ2 is much larger than µ.
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2.4 Restricting the Reproduction Number

Similar to the configuration model, some of the empirical graphs analyzed in
this paper early on in the epidemic have instantaneous reproduction numbers
that are much larger than the mean degree of the graph. An unrestricted
epidemic on such a graph grows very fast, infecting most of the population
in just a few generations. This makes it difficult to assess if the growth is
exponential or not. To work around this problem, we restrict the epidemic
so that it develops slower, giving more generations to analyze. This is rea-
sonable, since in real world epidemics we do not expect that each infected
vertex infects all of its neighbours.

We use two methods to restrict the instantaneous reproduction number:

1. Maximum bound, with replacement : Every infected vertex distributes
c infection attempts uniformly at random with replacement among all
neighbours (including the one who infected him). Here c is a constant.
Thus an infected vertex can infect 0 (if all attempts are with non-
susceptible neighbours) up to c of its neighbours (if all attempts are
with susceptible ones). If c is sufficiently large (often c = 2 is enough),
this method (typically) allows for large epidemics to develop since both
infected vertices with few and infected vertices with many neighbours
have a good chance of infecting other vertices. The method is similar
to, but not identical with the method used in [14].

Note that this method creates an asymmetry between vertices, in effect
turning the undirected graph into a directed graph: it may be that if
vertices v1 and v2 are neighbours then it is more likely that v1 infects v2
(should v1 become infected before v2), than that v2 infects v1 (should
v2 become infected first).

2. Bernoulli thinning : Each susceptible neighbour is infected with prob-
ability p. This method is equivalent to the discrete-time version of the
Reed-Frost model, where it is assumed that each infected vertex infects
each neighbour with probability p ([4, page 48]). This is closely related
to bond percolation on the graph [8].

A disadvantage of Bernoulli thinning is that, for the datasets that we
analyze, in order to significantly slow down the epidemic p has to be
so low that vertices with few neighbours have a high probability of
not infecting any other vertex. The epidemic is spread mainly through
high degree vertices, resulting in fewer infected vertices and a smaller
final size of the epidemic. Eventually this has a negative effect on the
number of generations that can be used to estimate the instantaneous
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reproduction number, counteracting the intention of the Bernoulli thin-
ning.

When one of the above mentioned restrictions is applied, an infected
vertex typically infects only a subset of its neighbours and the epidemic
develops differently on each realization, even if it starts with the same index
case. This introduces randomness even for epidemics on non-random graphs.

In this paper we have chosen to slow the epidemic down in such a way that
we obtain a sufficient number of generations to analyze, while still leaving
the possibility of having a large epidemic. For this purpose the maximum
bound restriction c = 3 worked on all graphs. We used this throughout the
analysis, unless explicitly stated otherwise. On each graph, for the Bernoulli
thinning we then select a value p such that the average reproduction number,
over many simulations, early on in the epidemic is close to that of epidemics
restricted using maximum bound.

We also restrict the epidemics on the reference graphs. For the configura-
tion model graphs we obtain exact expected reproduction numbers that are
valid for as long as the branching process approximation holds. For calculat-
ing these expected reproduction numbers using the two restriction methods,
we start with the offspring distribution X and derive the expectation of the
restricted distribution L.

We remind the reader that Z̃ is the degree distribution of vertices reached
early on in an epidemic on a configuration model graph, excluding the index
case itself (see Section 2.3). For Bernoulli thinning, remembering that X ∼
Z̃−1 in the configuration model, we then have that

L | Z̃ = k ∼ Bin(k − 1, p)

so that
E
[
L | Z̃ = k

]
= (k − 1)p

and
E
[
L | Z̃

]
=
(
Z̃ − 1

)
p.

Thus

E [L] = E
[
E
[
L | Z̃

]]
= E

[(
Z̃ − 1

)
p
]

= (µ̃− 1) p =

(
µ+

σ2

µ
− 1

)
p. (10)

For the maximum bound restriction, in Appendix 4 we derive that

E[L] = E
[
E
[
L | Z̃

]]
= E

[
(Z̃ − 1)

(
1−

(
1− 1

Z̃

)c)]
. (11)
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This expression can be simplified for the specific values of c that we focus on
in this paper:

E[L] =

2− 3E
[
1

Z̃

]
+ E

[
1

Z̃2

]
when c = 2,

3− 6E
[
1

Z̃

]
+ 4E

[
1

Z̃2

]
− E

[
1

Z̃3

]
when c = 3.

(12)

Using

E
[

1

Z̃n

]
=

1

µ
E
[

1

Zn−1

]
this can also be expressed as

E[L] =

2− 3
µ

+ 1
µ
E
[
1
Z

]
when c = 2,

3− 6
µ

+ 4
µ
E
[
1
Z

]
− 1

µ
E
[

1
Z2

]
when c = 3.

(13)

The branching process approximation of an epidemic on a configura-
tion model graph together with the expected reproduction number of the
restricted epidemic can be used as a reference for the empirical graphs.

2.5 Estimating the Shape of Growth

A direct method of analyzing the epidemic growth is to look at how Ii de-
velops over the epidemic generations i. From the discussion of the expected
growth shape for some graph types in Section 2.3 we conclude that we need
a method that is able to handle shapes from linear to exponential. One way
to do this is to use a function that models the highest polynomial degree of
the growth curve

Ii = α(i+ β)γ, (14)

where α, β and γ are parameters that we determine by fitting the function
to our data. In this paper γ is the parameter of interest. We expect it to
be close to 1 if the growth is linear (as for the square lattice) and it should
be substantially higher than 1 if the growth is exponential (as for the config-
uration model). The parameter β is introduced since we do not expect the
first generation to show the same expected growth as subsequent generations
(as discussed in Section 2.3). We thus ignore the first generation and allow
for some offset for the time i. Unfortunately, because the parameters are
highly dependent, the chosen parametrization in Eq. (14) does not give good
convergence when using standard methods of fitting the equation to data.

An alternative parametrization was originally suggested in [21] in the
context of superexponential growth and was used to study the impact of
superexponential population growth on genetic variations in [19]. The same
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method was used for subexponential growth in [24]. The parametrization
was developed for continuous time applications, but can be adapted to our
discrete time data.

The basic idea in [21] is to start with a differential equation with two
parameters

df(t)

dt
= rf(t)a, (15)

where f(t) can be viewed as modelling the total population size or the number
of infected (depending on application) at time t and r and a are parameters.
f(t) in continuous time corresponds to Ii in discrete time simply by setting
Ii = f(i). a defines the shape of the growth curve, while r is a proportionality
constant which we may interpret as a measure of the rate of growth. The
solution to Eq. (15) depends on the value of a:

f(t) =


bert if a=1 (16a)(
r(1− a)t+ b1−a

) 1
1−a otherwise, (16b)

where b = f(0) is given by the starting condition, the size of the population
at time 0. We note that Eq. (16a) is the limit of Eq. (16b) as a→ 1. When
a = 1 we recognize that r is the Malthusian parameter (see e.g. [4, page 10]).
We also note that Eq. (16b) is essentially a reparametrization of Eq. (14).

Taking Ii = f(i) in Eq. (16b) we obtain

Ii =
(
r(1− a)i+ b1−a

) 1
1−a . (17)

When performing the fit we take into account that the variance of Ii is
not constant. Rather, we can expect it to increase if the generation size is
larger and in our model we go further and assume that it is approximately
proportional to the generation size. This is reasonable considering that the
conditional variance and the conditional expectation of the generation size
are proportional to each other (as noted in Section 2.3). This lends itself
well to a log-transformation to obtain

log(Ii) =
1

1− a
log

(
r(1− a)i+ b1−a

)
. (18)

Although this model has a singular point when the growth is exactly
exponential (a = 0), this case is unlikely with empirical data and we choose
to ignore the singular point and use Eq. (17) as it is.

In the model, Ii is the data that is obtained from each individual simu-
lated epidemic and a, r and b are treated as unknown parameters. By fitting
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Eq. (18) to the data we obtain estimates of the parameter triple (a, r, b).
The fit is performed using least squares regression by supplying Eq. (18) as
a custom function to the fit-function in Matlab [15]. The fit-function is sup-
plied with starting points (0.5, 0.5, 0.5), minimum allowed values (−10, 0, 0)
and maximum allowed values (5, 105, 100) for the parameter triple. In addi-
tion, R2

adj (the adjusted coefficient of determination, see e.g. [20, page 433]),
produced by the fit-function, was inspected, but the value was not used to
discard any results. R2

adj were in general high, except for epidemics on the
road network. These depart most from the shape assumed by the generalized
growth model and this is also reflected in the large variation in parameter
estimates that can be seen in Figure 2.

Conditioned on having a good fit, we can then interpret a as a measure
of how linear or how exponential the epidemic growth is. Values of a close
to 1 can be interpreted as having exponential growth, while values close
to 0 correspond to linear growth, such as we expect for the square lattice.
Negative values correspond to sub-linear growth.

How good the fit needs to be to draw conclusions about a single epidemic
depends on the application. However, through simulation we have access
to many epidemics from each graph. Thus we can assess how similar or
how different graphs are by comparing the parameter estimates from a large
number of simulated epidemics for each graph. As already stated in [24] this is
a phenomenological approach and as such it does not properly justify why this
specific model and parametrization of the growth curve should be used. We
justify the method by also simulating epidemics on known (reference) graphs
and by using parameter estimates from those. Our reference graphs are
regular lattices and configuration model graphs. We interpret the parameter
estimates from the empirical graphs with respect to those obtained on the
reference graphs.

The branching process approximation discussed in Section 2.3 works well
until there is a substantial probability that an infected vertex tries to infect
an already immune vertex. Given that J is the total number of vertices that
has been infected in the epidemic, this probability would in a configuration

model be approximately Jµ̃
nµ

, i.e. the proportion of already infected stubs
divided by the total number of stubs. For the datasets we analyze this
probability grows fastest for the LiveJournal dataset. This is because of the

high quotient of µ̃
µ
≈ 5. If we, arbitrarily, allow this probability to be at most

5%, thus reducing the instantaneous reproduction number by approximately
the same amount, we cannot allow J

n
to be more than approximately 1% for

the LiveJournal dataset and slightly higher for the other datasets. Setting
this limit too low gives too few generations for the statistical analysis, thus
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increasing the confidence intervals for the parameters, and setting it too
high means that the branching process approximation is no longer good and
we should expect biased parameter estimates (generally too low values of
a), indicating that the growth is not exponential), even when working with
configuration model graphs. In this paper we set the limit to 1% for all
datasets. We have tried (but not shown in this report) limits that are both
lower and higher, and the chosen limit appeared to result in an acceptable
compromise between imprecision and bias for the parameter estimates.

Finally, we make a couple of notes regarding the chosen model. First,
we note that it is not a predictive model, but rather a way to characterize
the early phase of simulated epidemics on graphs. If we wanted to make
predictions forward in time, then it is not certain that this model is the best
method. We should then also validate the predictive properties of the model.
Secondly, we are aware that data points are correlated, but we chose not to
take this into account when fitting the data. We justify this by also including
reference graphs in the same type of analysis that is used for the empirical
graphs.

3 Results

In this section we present results of the statistical analysis for epidemics on
the empirical graphs and compare the result with epidemics on some reference
networks.

We have used 104 epidemics (with I0 = 1) from each of the graphs in
Table 1 and performed a least square fit to Eq. (18). Data used are from
i = 1 until approximately a total of 1% of all vertices in the graph have been
infected (see Section 2.5). For the maximum bound restriction of epidemics,
we set c = 3 in the simulations. This is because some of the graphs do not
allow for large epidemic outbreaks with c = 2, while c = 3 results in large
epidemic on all graphs. For the corresponding simulation using Bernoulli
thinning to restrict the epidemic, p was selected to give a similar growth
rate early in the epidemic.

The results are summarized in Figure 2 where we have plotted the esti-
mated values of parameters a versus r. We remind the reader that a corre-
sponds to the shape of growth where values close to 1 indicate exponential
growth and values close to 0 indicate linear growth, while r is a measure of
the growth rate, corresponding to the Malthusian parameter when we have
exponential growth. In this paper the estimates of a are of most interest.
For reference, we have included some configuration model and square lattice
graphs together with the empirical graphs.
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Figure 2: Each dot in the figure corresponds to an individual epidemic that has been
fit to Eq. (18). For each graph 104 epidemics were simulated. The overall “cloud” of
point estimates of the parameters characterizes each graph in terms of what type of
epidemics it produces. For the left figure maximum bound c = 3 was used and for the
right figure Bernoulli thinning was used. Graph names in parenthesis indicate that
the configuration model was used. Note the logarithmic scale on the horizontal axis.

We note that most of the graphs produce epidemics with estimated pa-
rameter values in the vicinity of a = 1, while the road network and the square
lattice data are spread out around a = 0. This indicates that most of the
graphs produce epidemics that grow exponentially early on, while the road
network and the square lattice show an essentially linear growth. Note the
similarity between the configuration model simulation of D2 (the square lat-
tice) and some of the empirical graphs. Somewhat surprising to the authors
is that D6 (the six dimensional lattice) seems to produce restricted epidemics
that grow exponentially, while we would have expected polynomial growth
for these (in this case with a = 4/5, while the median estimated a-value is
approximately 0.95). The explanation is that because of the relatively high
dimension of the graph and the strong restriction on the spread of the epi-
demic, early on vertices still have many available neighbours that are not
yet infected and the epidemic can be approximated by a branching process.
While this would eventually change to polynomial growth if allowed to con-
tinue long enough, there is no space for this in a finite graph. Note that low
r may also be a sign of non-exponential growth, since exponential growth
with base close to 1 is hardly distinguishable from polynomial growth.

To better be able to observe differences in the estimated values of a, box
plots of the a-estimates are shown in Figure 3. In the plot outliers have been
ignored to make the central part of the data more visible.
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Figure 3: The figure shows a box plot of the estimates of a for each graph from
Figure 2. Graph names in parenthesis indicate that the configuration model was used.

In order to see the effect of the restriction we place on the epidemic we
show D2 and D6 using the maximum bound restriction, with different values
of c, in Figure 4. We note that lower values of c (more restricted epidemic)
move the parameter estimates towards higher a-estimate for both lattices.
For the D2 graph event when we use the highest possible restriction c = 3
the growth is still clearly polynomial, but for the D6 graph we can shift the
a-estimates so close to 1 that epidemics on the graph appear exponential. We
conclude that if the epidemic spreads through only some smaller fraction of
the available edges we can see exponential growth early on in the epidemic.
One underlying assumption for this conclusion is that large epidemics are
possible in the first place, i.e. that the graph is sufficiently well connected.

From the plots we also see that epidemics on the road network show much
more variation than on the square lattice. The road network seems to be a
mixture of strongly connected portions and long stretches of vertices in long
lines connected only by single edges along the way. This is what we may
expect from a road network for a large geographical area consisting both of
densely connected cities and loosely connected countryside.

4 Discussion

The main purpose of this paper was to find a method to distinguish be-
tween empirical graphs which allow for initial exponential growth of an SIR
epidemic and graphs which do not. If we know that exponential growth
or close to exponential growth is possible, we can use statistical machinery

19



-1

-0.5

0

0.5

1

1.5

  
C

M

  
L

J

  
(D

2
)

  
S

R

  
S

w

  
D

6

  
R

d

  
D

2
0

0.2

0.4

0.6

0.8

1

  
D

6
 c

=
2

  
D

6
 c

=
3

  
D

6
 c

=
4

  
D

6
 c

=
5

  
D

6
 c

=
1

0

  
D

6
 c

=
2

0

  
D

2
 c

=
3

  
D

2
 c

=
4

  
D

2
 c

=
5

  
D

2
 c

=
1

0

  
D

2
 c

=
2

0

Figure 4: The figure to the left shows a box plot for unrestricted epidemics. Graph
names in parenthesis indicate that the configuration model was used. The figure to
the right shows epidemics restricted with different values of c.

already created for analyzing the growth potential of epidemics. To make
this distinction we use the generalized growth model of [24] as presented in
Section 2.5 above. This model has three parameters, but only a (which de-
scribes the shape—polynomial or exponential—of the initial growth) and r
(which is a measure of the rate of growth) are relevant in this paper. We
are mainly interested in a, but we cannot ignore r because the estimates of
the two parameters are strongly dependent. Indeed, we see in Figure 2 that
although different epidemic simulations can produce very different parame-
ter estimates, in the (r, a) plot estimates of epidemics on different underlying
networks can still be distinguished.

Ideally, when a is close to 1 (how close depends on the application) we may
conclude that the graph allows for epidemics that exhibit exponential growth.
In (Figure 3) we visualize the distribution of the estimates for parameter a for
the individual graphs. This graph gives an indication of how close the growth
of the epidemic is to exponential growth, but the figure must be interpreted
with care. If the growth of the epidemic exactly follows the model with
parameter a = 1 and r close to 0, then the growth is indeed exponential,
but still very slow and it is very hard to distinguish this exponential growth
from polynomial growth, with a larger r. Because the empirical networks are
finite and we only observe a limited number of generations, we often do not
have enough data to reliably distinguish between exponential growth with a
small growth rate and polynomial growth. This observation is articulated in
Figure 2, where we see that some simulated epidemics on the road network
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(which is clearly two dimensional) produce estimates of a that are close to
1. However, for those simulations also the obtained estimates of r are low
(typically 0.1 or lower).

For the Swedish population dataset comparing the original dataset with
a randomized version indicates that there are some effects that may be at-
tributed to spatial constraints, but the difference is mainly seen on the rate
of growth through the parameter r and no so much on the parameter a. A
possible conclusion is that the spatial constraints slow down the epidemic,
but that the growth is still close to exponential (see e.g. [22] for a purely
spatial model which allows for exponential growth of the epidemic).

The analysis of epidemics on the six dimensional lattice indicate that
when the epidemic is restricted as in this report (Section 2.4) the resulting
early epidemic growth is essentially exponential. This can be explained as
follows. Because vertices infect only a few of its neighbours, most neigh-
bours of infected vertices will still be susceptible, so the local depletion of
susceptibles is only felt after several generations, when probably already a
considerable fraction of all the vertices are no longer susceptible. In addi-
tion, on an infinite six dimensional lattice In will grow as a five dimensional
polynomial, which corresponds with an a-value of 4/5 in Eq. (17), which is
relatively close to 1.

In the present work we only considered point estimates for the (r, a)
parameter pair, in future work it is worth studying confidence regions for
those parameters, based on one single observed epidemic on a network. In
addition to summarizing data by fitting it to a model, the strength of models
is to be able to make predictions. There are two classes of predictions we
might desire. We may want to predict the continued development of a single
epidemic in the future based on how it developed up until some point in time.
We may also want to predict the development of future (new) epidemics
on the same graph based on knowledge of a (limited) number of previous
epidemics. For these predictions it is essential that we know whether we may
expect exponential growth or not. We have not attempted to investigate the
possibility of making such predictions in this paper, but it is certainly worth
studying in future work.
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A Derivation of the Expected Reproduction

Number for the Restricted Epidemic on

the Configuration Model

We now study the expected reproduction number for a restricted epidemic
on the configuration model. We assume that the branching process is valid
and thus that each vertex produces offspring independently, but drawn from
the same distribution L. We focus on studying the expectation of L and
derive it based on the degree distribution Z̃ (see Section 2.3).

For maximum bound we consider Z̃ = k given and then k − 1 edges can
carry the infection on (taking into account that the infection cannot spread
back on the edge that it arrived on). For each such stub consider the event
Ai = “edge i carries the infection on” (with i = 1, 2, . . . , k − 1) and define
the indicator variable

1{Ai} =

1 if Ai,

0 otherwise.

Then the number of offspring L conditioned on Z̃=k becomes

L | Z̃=k =
k−1∑
i=1

1{Ai}

There are c attempts at carrying the infection on and for each one a
neighbour is selected uniformly at random, with replacement. Thus P(Ai) =

1 − P(Ai
{) = 1 −

(
k−1
k

)c
, since for each of c attempts the probability is k−1

k

that vertex i is not selected to carry the infection on. Here Ai
{ indicates the

complement of Ai. Thus

E[L | Z̃ = k] = E

[
k−1∑
i=1

1{Ai}

]
=

k−1∑
i=1

E
[
1{Ai}

]
=

k−1∑
i=1

P(Ai)

=
k−1∑
i=1

(
1−

(
k − 1

k

)c)
= (k − 1)

(
1−

(
1− 1

k

)c)

and so

E
[
L | Z̃

]
=

(
Z̃ − 1

) (
1−

(
1− 1

Z̃

)c)
,

finally
E[L] = E

[
E
[
L | Z̃

]]
= E

[(
Z̃ − 1

) (
1−

(
1− 1

Z̃

)c)]
. (19)
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