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Abstract

In this paper we estimate the mean-variance (MV) portfolio in the high-dimensional

case using the recent results from the theory of random matrices. We construct a linear

shrinkage estimator which is distribution-free and is optimal in the sense of maximizing

with probability 1 the asymptotic out-of-sample expected utility, i.e., mean-variance ob-

jective function. Its asymptotic properties are investigated when the number of assets p

together with the sample size n tend to infinity such that p/n→ c ∈ (0,+∞). The results

are obtained under weak assumptions imposed on the distribution of the asset returns,

namely the existence of the fourth moments is only required. Thereafter we perform nu-

merical and empirical studies where the small- and large-sample behavior of the derived

estimator is investigated. The suggested estimator shows significant improvements over

the naive diversification and it is robust to the deviations from normality.

JEL Classification: G11, C13, C14, C58, C65

Keywords: expected utility portfolio, large-dimensional asymptotics, covariance matrix estima-

tion, random matrix theory.

1 Introduction

In the seminal paper of Markowitz (1952) the author suggests to determine the optimal compo-

sition of a portfolio of financial assets by minimizing the portfolio variance assuming that the
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expected portfolio return attains some prespecified fixed value. By varying this value we obtain

the whole efficient frontier in the mean-standard deviation space. Despite of its simplicity, this

approach justifies the advantages of diversification and is a standard technique and benchmark

in asset management. Equivalently (see, Tobin (1958), Bodnar et al. (2013)) we can obtain

the same portfolios by maximizing the expected quadratic utility (EU) with the optimization

problem given by

w′µn −
γ

2
w′Σnw→ max subject to w′1p = 1 , (1.1)

where w = (ω1, . . . , ωp)
′ is the vector of portfolio weights, 1p is the p-dimensional vector of ones,

µn and Σn are the p-dimensional mean vector and the p× p covariance matrix of asset returns,

respectively. The quantity γ > 0 determines the investor’s behavior towards risk. It must be

noted that the maximization of the mean-variance objective function (1.1) is equivalent to the

maximization of the exponential utility (CARA) function under the assumption of normality

of the asset returns. In this case γ equals the investor’s absolute risk aversion coefficient (see,

e.g., Pratt (1964)).

The solution of the optimization problem (1.1) is well known and it is given by

wEU = wGMV + γ−1Qnµn , (1.2)

where

Qn = Σ−1n −
Σ−1n 1p1

′
pΣ
−1
n

1′pΣ
−1
n 1p

(1.3)

and

wGMV =
Σ−1n 1p

1′pΣ
−1
n 1p

(1.4)

is the vector of the weights of the global minimum variance portfolio.

In practice, however, the above mentioned approach of constructing an optimal portfolio

frequently shows poor out-of-sample performance in terms of various performance measures.

Even naive portfolio strategies, e.g., equally weighted portfolio (see, DeMiguel et al. (2009)),

often outperform the mean-variance strategy. One of the reasons is the estimation risk. The

unknown parameters µn and Σn have to be estimated using historical data on asset returns.

This results in the ”plug-in” estimator of the EU portfolio (1.2) which is a traditional and

simple way to evaluate the portfolio in practice. This estimator is constructed by replacing in

(1.2) the mean vector µn and the covariance matrix Σn with their sample counterparts. Okhrin

and Schmid (2006) derive the expected return and the variance of the sample portfolio weights

under the assumption that the asset returns follow a multivariate normal distribution, while

Bodnar and Schmid (2011) obtain the exact finite-sample distribution. Recently, Bodnar et al.

(2016) extended these results to the case n < p.

The estimation of the parameters has a negativ impact on the performance of the asset

allocation strategy. This was noted in a series of papers with Merton (1980), Best and Grauer

(1991), Chopra and Ziemba (1993) among others. Several approaches have arisen to reduce
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the consequences of estimation risk. One strand of research opted for the Bayesian framework

and using appropriate priors take the estimation risk into account already while building the

portfolio. The second strand relied on the shrinkage techniques and is related to the method

exploited in this paper. A straightforward way to improve the properties of the estimators for

µn and Σn is to use the shrinkage approach (see, Jorion (1986), Ledoit and Wolf (2004)). Al-

ternatively, one may apply the shrinkage estimation to the portfolio weights directly. Golosnoy

and Okhrin (2007) consider the multivariate shrinkage estimator by shrinking the portfolios

with and without the riskless asset to an arbitrary static portfolio. A similar technique is used

by Frahm and Memmel (2010), who constructed a feasible shrinkage estimator for the GMV

portfolio which dominates the traditional one. At last, Bodnar et al. (2017) suggest a shrink-

age estimator for the GMV portfolio which is feasible even for the singular sample covariance

matrix.

An important issue nowadays is, however, the asset allocation for large portfolios. The sam-

ple estimators work well only in the case when the number of assets p is fixed and substantially

smaller than the sample size n. This case is known as the standard asymptotics in statistics

(see, Le Cam and Lo Yang (2000)). Under this asymptotics the traditional sample estimator

is a consistent estimator for the EU portfolio. But what happens when the dimension p and

the sample size n are comparable of size, say p = 900 and n = 1000? Technically, here we

are in the situation when both the number of assets p and the sample size n tend to infin-

ity. In the case when p/n tends to some concentration ratio c > 0 this asymptotics is known

as high-dimensional asymptotics or “Kolmogorov” asymptotics (see, e.g., Bai and Silverstein

(2010)). If c is close to one the sample covariance matrix tends to be close to a singular one

and when c > 1 it becomes singular. The sample estimator of the EU portfolio behaves badly

in this case both from the theoretical and practical points of view (see, e.g., El Karoui (2010)).

The sample covariance matrix is very unstable and tends to under- or overestimate the true

parameters for c smaller but close to 1 (see, Bai and Shi (2011)). For c > 1 the inverse sam-

ple covariance does not exist and the portfolio cannot be constructed in the traditional way.

Taking the above mentioned information into account the aim of the paper is to construct a

feasible and simple shrinkage estimator of the EU portfolio which is optimal in an asymptotic

sense and is additionally distribution-free. The estimator is developed using the fast growing

branch of probability theory, namely random matrix theory. The main result of this theory is

proved by Marčenko and Pastur (1967) and further extended under very general conditions by

Silverstein (1995). Now it is called Marc̆enko-Pastur equation. Its importance arises in many

areas of science because it shows how the true covariance matrix and its sample estimator are

connected asymptotically. Knowing this we can build suitable estimators for high-dimensional

quantities which depend on Σn. In our case this refers to the shrinkage intensities. Note how-

ever, that the optimal shrinkage intensity depends again on the unknown characteristics of the

asset returns. To overcome this problem we derive consistent estimators for specific functions

(quadratic and bilinear forms) of the inverse sample covariance matrix and succeed to provide

consistent estimators for the optimal shrinkage intensities.
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The rest of paper is organized as follows. In the next section, we construct a shrinkage

estimator for the optimal portfolio weights obtained by shrinking the mean-variance weights

to an arbitrary target portfolio. The oracle shrinkage intensity and the corresponding feasible

bona-fide estimators for c < 1 and c > 1 are established as well. The derived results are

evaluated in Section 3 in extensive simulation and empirical studies. All proofs are moved to

in the Appendix.

2 Optimal shrinkage estimator of mean-variance portfo-

lio

Let Yn = (y1,y2, ...,yn) be the p× n data matrix which consist of n vectors of the returns on

p ≡ p(n) assets. Let E(yi) = µn and Cov(yi) = Σn for i ∈ 1, ..., n. We assume that p/n →
c ∈ (0,+∞) as n → ∞. This type of limiting behavior is known as ”the large dimensional

asymptotics” or ”the Kolmogorov asymptotics”. In this case the traditional sample estimators

perform poor or even very poor and tend to over/underestimate the unknown parameters of

the asset returns, e.g., the mean vector and the covariance matrix.

Throughout the paper it is assumed that there exists a p × n random matrix Xn which

consists of independent and identically distributed (i.i.d.) real random variables with zero

mean and unit variance such that

Yn = µn1
′
n + Σ

1
2
nXn . (2.1)

It must be noted that the observation matrix Yn has the dependent rows but independent

columns. Broadly speaking, this means that we allow arbitrary cross-sectional correlations of

the asset returns but assume their independence over time. Although this assumption looks

quite restrictive for financial applications, there exist stronger results from random matrix the-

ory which show that the model can be extended to (weakly) depending variables by demanding

more complicated conditions on the elements of Yn (see, Bai and Zhou (2008)) or by controlling

the number of dependent entries as dimension increases (see, Hui and Pan (2010), Friesen et al.

(2013), Wei et al. (2016)). Nevertheless, this will only make the proofs more technical, but

leave the results unchanged. For that reason we assume independent asset returns over time

only to simplify the proofs of the main theorems.

The three assumptions which are used throughout the paper are

(A1) The covariance matrix of the asset returns Σn is a nonrandom p-dimensional positive

definite matrix.

(A2) The elements of the matrix Xn have uniformly bounded 4 + ε moments for some ε > 0.

(A3) There exist Ml,Mu ∈ (0,+∞) such that Ml ≤ 1′pΣ
−1
n 1p, µ′nΣ

−1
n µn ≤Mu.

4



All of these regularity assumptions are general enough to fit many real world situations.

The assumption (A1) together with (2.1) are usual for financial and statistical problems and

impose no strong restrictions. The assumption (A2) is a technical one and can be relaxed

for practical purposes (see, section with simulations). The assumption (A3) requires that the

quantities which are used in the calculations are finite. This assumption is quite general and

imposes no additional constrains neither on the mean vector µn, like its Euclidean norm is

bounded, nor on the covariance matrix Σn, like its eigenvalues lie in the compact interval.

The last point allows us to assume a factor model for the data matrix Yn which implies that

the largest eigenvalue of Σn is of order p (c.f. Fan et al. (2008), Fan et al. (2012), Fan et al.

(2013)). Finally, assumption (A3) ensures that 1′pΣ
−1
n µn is finite as well which follows directly

from the Cauchy-Schwarz inequality. This implies that the variance and the expected return

of the global minimum variance portfolio are uniformly bounded in p.

The sample covariance matrix is given by

Sn =
1

n
Yn(In −

1

n
1n1

′
n)Y′n =

1

n
Σ

1
2
nXn(In −

1

n
1n1

′
n)X′nΣ

1
2
n , (2.2)

where the symbol In stands for the n-dimensional identity matrix. The sample mean vector

becomes

ȳn =
1

n
Yn1n = µn + Σ

1
2
n x̄n with x̄n =

1

n
Xn1n . (2.3)

2.1 Oracle estimator. Case c < 1

In this section we consider the optimal shrinkage estimator for the EU portfolio weights pre-

sented in the introduction by optimizing the shrinkage parameter α and fixing some target

portfolio b.

The resulting estimator for c < 1 is given by

ŵGSE = αnŵS + (1− αn)b with b′1p = 1 and b′Σnb ≤ ∞ , (2.4)

where the vector ŵS is the sample estimator of the EU portfolio given in (1.2), namely

ŵS =
S−1n 1p

1′pS
−1
n 1p

+ γ−1Q̂nȳn (2.5)

with

Q̂n = S−1n −
S−1n 1p1

′
pS
−1
n

1′pS
−1
n 1p

. (2.6)

The target portfolio b ∈ Rp is a given nonrandom (and further random independent of Yn)

vector with b′1p = 1 and uniformly bounded variance. No assumption is imposed on the

shrinkage intensity αn which is the object of our interest.

The aim is now to find the optimal shrinkage intensity for a given nonrandom target portfolio

b which maximizes the mean-variance objective function (1.1). The maximization problem is
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given by

U = ŵ′GSE(αn)µn −
γ

2
ŵ′GSE(αn)ΣnŵGSE(αn) −→ max with respect to αn . (2.7)

The expected utility function (2.7) can be rewritten as

U = αnŵ
′
Sµn + (1− αn)b′µn −

γ

2

(
α2
nŵ
′
SΣnŵS + 2αn(1− αn)b′ΣnŵS + (1− αn)2b′Σnb

)
→ max

with respect to αn . (2.8)

Next, taking the derivative of U with respect to αn and setting it equal to zero we get

∂U

∂αn
= (ŵS − b)′µn − γ

(
αnŵ

′
SΣnŵS + (1− 2αn)b′ΣnŵS − (1− αn)b′Σnb

)
.

From the last equation it is easy to find the optimal shrinkage intensity α∗n given by

α∗n = γ−1
(ŵS − b)′(µn − γΣnb)

(ŵS − b)′Σn(ŵS − b)
. (2.9)

To ensure that α∗n is the unique maximizer of (2.7) the second derivative of U must be negative,

which is always fulfilled. Indeed, it follows from the positive definitiveness of the matrix Σn,

namely
∂2U

∂α2
n

= −γ(ŵS − b)′Σn(ŵS − b) < 0 . (2.10)

In the next theorem we show the asymptotic properties of the optimal shrinkage intensity

α∗n under large dimensional asymptotics.

Theorem 2.1. Assume (A1)-(A3). Then it holds that

|α∗n − α∗|
a.s.−→ 0 for

p

n
→ c ∈ (0, 1) as n→∞

with

α∗ = γ−1
(RGMV −Rb)

(
1 +

1

1− c

)
+ γ(Vb − VGMV ) +

γ−1

1− c
s

1

1− c
VGMV − 2

(
VGMV + γ−1

1−c(Rb −RGMV )
)

+ γ−2
(

s

(1− c)3
+

c

(1− c)3

)
+ Vb

,

(2.11)

where RGMV =
1′Σ−1n µn

1′Σ−1n 1
and VGMV =

1

1′Σ−1n 1
are the expected return and the variance of

the true global minimum variance portfolio, while s = µ′nQnµn is the slope parameter of the

efficient frontier. The quantities Rb = b′µn and Vb = b′Σnb denote the expected return and

the variance of the target portfolio b.

Next we assess the performance of the classical estimator of the portfolio weights ŵS and

the optimal shrinkage weights ŵGSE. As a measure of performance we consider the relative

increase in the utility of the portfolio return compared to the portfolio based on true parameters
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of asset returns. The results are summarized in the following corollary.

Corollary 2.1. (a) Let UEU and US be the expected quadratic utilities for the true EU portfolio

and its traditional estimator. Then under the assumptions of Theorem 2.1, the relative loss of

the traditional estimator of the EU portfolio is given by

RS =
UEU − US
UEU

a.s.−→
γ
2

(
1

1−c − 1
)
· VGMV + γ−1

(
−1

2
− 1

(1−c) + 1
2(1−c)3

)
· s+ γ−1

2
· c
(1−c)

RGMV − γ−1

2
· s− γ

2
VGMV

(2.12)

for p
n
→ c ∈ (0, 1) as n→∞.

(b) Let UGSE be the expected quadratic utility for optimal shrinkage estimator of the EU

portfolio. Under the assumptions of Theorem 2.1, the relative loss of the optimal shrinkage

estimator is given by

RGSE =
UEU − UGSE

UEU

a.s.−→ (α∗)2RS + (1− α∗)2Rb for
p

n
→ c ∈ (0, 1) as n→∞. (2.13)

2.2 Oracle estimator. Case c > 1.

Here, similarly as in Bodnar et al. (2017), we will use the generalized inverse of the sample

covariance matrix Sn. Particularly, we use the following generalized inverse of the sample

covariance matrix Sn

S∗n = Σ−1/2n

(
1

n
XnX

′
n − x̄nx̄

′
n

)+

Σ−1/2n , (2.14)

where ′+′ denotes the Moore-Penrose inverse. It can be shown that S∗n is a generalized inverse of

Sn satisfying S∗nSnS
∗
n = S∗n and SnS

∗
nSn = Sn. However, S∗n is not exactly equal to the Moore-

Penrose inverse because it does not satisfy the conditions (S∗nSn)′ = S∗nSn and (SnS
∗
n)′ = SnS

∗
n.

In case c < 1 the generalized inverse S∗n coincides with the usual inverse S−1n . Moreover, if Σn is

a multiple of identity matrix then S∗n is equal to the Moore-Penrose inverse S+
n . In this section,

S∗n is used only to determine an oracle estimator for the weights of the MV portolio. The bona

fide estimator is constructed in the next section.

Thus, the oracle estimator for c > 1 is given by

ŵ∗GSE = α+
n ŵS∗ + (1− α+

n )b with b′1p = 1 and b′Σnb <∞ , (2.15)

where the vector ŵS∗ is the sample estimator of the EU portfolio given in (1.2), namely

ŵS∗ =
S∗n1p

1′pS
∗
n1p

+ γ−1Q̂∗nȳn (2.16)

with

Q̂∗n = S∗n −
S∗n1p1

′
pS
∗
n

1′pS
∗
n1p

. (2.17)

Again, the shrinkage intensity α+
n is the object of our interest. In order to save place we skip

the optimization procedure for α+
n as it is only slightly different from the case c < 1. Thus, the
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optimal shrinkage intensity α+
n in case c > 1 is given by

α+
n = γ−1

(ŵS∗ − b)′(µn − γΣnb)

(ŵS∗ − b)′Σn(ŵS∗ − b)
. (2.18)

In the next theorem we find the asymptotic equivalent quantity for α+
n in the case p/n →

c ∈ (1,+∞) as n→∞.

Theorem 2.2. Assume (A1)-(A3). Then it holds that

∣∣∣α+
n − α+

∣∣∣ a.s.−→ 0 for
p

n
→ c ∈ (1,+∞) as n→∞

with

α+ = γ−1
(RGMV −Rb)

(
1 +

1

c(c− 1)

)
+ γ(Vb − VGMV ) +

γ−1

c(c− 1)
s

c2

(c− 1)
VGMV − 2

(
VGMV + γ−1

c(c−1)(Rb −RGMV )
)

+
γ−2

(c− 1)3
(s+ c) + Vb

, (2.19)

where RGMV =
1′Σ−1n µn

1′Σ−1n 1
and VGMV =

1

1′Σ−1n 1
are the expected return and the variance of

the true global minimum variance portfolio, while s = µ′nΣnµn is the slope parameter of the

efficient frontier. The quantities Rb = b′µn and Vb = b′Σnb denote the expected return and

the variance of the target portfolio b.

Similarly as for the case c < 1 we provide here the expression for the relative losses.

Corollary 2.2. (a) Let UEU and US be the expected quadratic utilities for the true EU portfolio

and its traditional estimator. Then under the assumptions of Theorem 2.2, the relative loss of

the traditional estimator of the EU portfolio is given by

RS =
UEU − US
UEU

a.s.−→
γ
2

(
c2

c−1 − 1
)
· VGMV + γ−1

(
−1

2
− 1

c(c−1) + 1
2(c−1)3

)
· s+ γ−1

2
· c
(1−c)3

RGMV − γ−1

2
· s− γ

2
VGMV

(2.20)

for p
n
→ c ∈ (1,+∞) as n→∞.

(b) Let UGSE be the expected quadratic utility for the optimal shrinkage estimator of the EU

portfolio. Under the assumptions of Theorem 2.2, the relative loss of the optimal shrinkage

estimator is given by

RGSE =
UEU − UGSE

UEU

a.s.−→ (α+)2RS+(1−α+)2Rbn for
p

n
→ c ∈ (1,+∞) as n→∞. (2.21)

2.3 Estimation of unknown parameters. Bona fide estimator

The limiting shrinkage intensity α∗ is not feasible in practice, since the quantities it depends on,

i.e. RGMV , VGMV , s, Rb and Vb, are unknown. In this subsection we derive the corresponding
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consistent estimators. The results are summarized in two propositions dealing with the cases

c ∈ (0, 1) and c ∈ (1,∞) respectively. The statements follow directly from the proofs of

Theorems 2.1 and 2.2.

Proposition 2.1. The consistent estimators of RGMV , VGMV , s, Rb and Vb under large dimen-

sional asymptotics p/n→ c < 1 as n→∞ are given by

R̂c = R̂GMV
a.s.−→ RGMV (2.22)

V̂c =
1

1− p/n
V̂GMV

a.s.−→ VGMV (2.23)

ŝc = (1− p/n)ŝ− p/n a.s.−→ s (2.24)

R̂b = b′ȳn
a.s.−→ Rb (2.25)

V̂b = b′Snb
a.s.−→ Vb , (2.26)

where R̂GMV , V̂GMV and ŝ are traditional plug-in estimators.

Using Proposition 2.1 we can immediately construct a bona-fide estimator for expected

utility portfolio weights in case c < 1. It holds that

ŵBFGSE = α̂∗
(

S−1n 1p
1′pS

−1
n 1p

+ γ−1Q̂nȳn

)
+ (1− α̂∗)b (2.27)

with

α̂∗ = γ−1
(R̂c − R̂b)

(
1 +

1

1− p/n

)
+ γ(V̂b − V̂c) +

γ−1

1− p/n
ŝc

1

1− p/n
V̂c − 2

(
V̂c + γ−1

1−p/n(R̂b − R̂c)
)

+ γ−2
(

ŝc
(1− p/n)3

+
p/n

(1− p/n)3

)
+ V̂b

(2.28)

where R̂c, V̂c, ŝc, R̂b and V̂b are given above in (2.1). The expression (2.27) is the optimal

shrinkage estimator for a given target portfolio b in sense that the shrinkage intensity α̂∗ tends

almost surely to its optimal value α∗ for p/n→ c ∈ (0, 1) as n→∞.
The situation is more complex in case c > 1. Here we can present only oracle estimators for

the unknown quantities RGMV , VGMV and s.

Proposition 2.2. The consistent oracle estimators of RGMV , VGMV , s under large dimensional

asymptotics p/n→ c > 1 as n→∞ are given by

R̂o
c = R̂GMV

a.s.−→ RGMV

V̂ o
c =

1

p/n(p/n− 1)
V̂GMV

a.s.−→ VGMV

ŝoc = p/n[(p/n− 1)ŝ− 1]
a.s.−→ s ,

where R̂GMV , V̂GMV and ŝ are the traditional plug-in estimators.
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Here, the quantities from Proposition 2.2 are not the bona fide estimators, since the matrix

S∗n depends on the unknown quantities. Thus, we propose a reasonable approximation using

the application of the Moore-Penrose inverse S+
n . It is easy to verify that in case of Σn = σ2Ip

for any σ > 0 the considered approximation becomes the exact one.

Taking into account the above discussion and the result of Theorem 2.2, the bona fide

estimators of the quantities RGMV , VGMV and x in case c > 1 is approximated by

R̂+
c ≈ ȳ′nS

+
n1p

1′pS
+
n1p

for c ∈ (1,+∞) (2.29)

V̂ +
c ≈ 1

p/n(p/n− 1)

1

1′pS
+
n1p

for c ∈ (1,+∞) (2.30)

ŝ+c ≈ p/n[(p/n− 1)ȳ′nQ
+
n ȳn − 1] for c ∈ (1,+∞) . (2.31)

The application of (2.29) leads to the bona fide optimal shrinkage estimator of the GMV

portfolio in case c > 1 expressed as

ŵ+
BFGSE = α̂+

(
S+
n1p

1′pS
+
n1p

+ γ−1Q̂+
n ȳn

)
+ (1− α̂+)bn , (2.32)

with

α̂+ = γ−1
(R̂+

c − R̂b)

(
1 +

1

p/n(p/n− 1)

)
+ γ(V̂b − V̂ +

c ) +
γ−1

p/n(p/n− 1)
ŝ+c

(p/n)2

p/n− 1
V̂ +
c − 2

(
V̂ +
c + γ−1

p/n(p/n−1)(R̂b − R̂+
c )
)

+
γ−2

(p/n− 1)3
(ŝ+c + p/n) + V̂b

, (2.33)

where R̂b and V̂b are given in (2.25) and (2.26), respectively; Q+
n = S+

n −
S+
n11′S+

n

1′S+
n1

and S+
n is

the Moore-Penrose pseudo-inverse of the sample covariance matrix Sn.

3 Simulation and empirical studies

In this section we illustrate the performance and the advantages of the derived results using

simulated and real data. Particularly we address the estimation precision of the shrinkage co-

efficient and compare the traditional estimator with the asymptotic intensity and its consistent

estimator.

3.1 Simulation study

For simulation purposes we select the structure of the spectrum of the covariance matrix and of

the mean vector to make it consistent with the characteristics of the empirical data. Particularly,

for each dimension p we select the expected returns equally spread on the interval -0.3 to 0.3,

capturing a typical spectrum of daily returns measured in percent. The covariance matrix has

a strong impact on the properties of the shrinkage intensity and for this reason we consider
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several structures of its spectra. Replicating the properties of empirical data we generate

covariance matrices with eigenvalues satisfying the equation λi = 0.1eδc·(i−1)/p for i = 1, ..., p.

Thus the smallest eigenvalue is 0.1 and by selecting appropriate values for c we control the

largest eigenvalue and thus the condition index of the covariance matrix. Large condition

indices imply ill-conditioned covariance matrices, with the eigenvalues very sensitive to changes

of the elements. We choose δ to attain the condition indices of 150, 1000 and 8000. The target

portfolio weights are set equal to the weights of the equally weighted portfolio, i.e. bi = 1/p for

i = 1, ..., p.

First we assess the general behavior of the oracle and bona-fide shrinkage intensities as

functions of c. The oracle shrinkage intensities are computed using expressions in (2.11) and

(2.19) for the cases c < 1 and c > 1, respectively. The parameters these expressions depend

on are computed using the true mean vector and the true covariance matrix. For the bona-

fide shrinkage intensities we estimate these parameters consistently and thus use expressions

in (2.28) and (2.33). The results are illustrated for different condition indices in Figure 1. We

observe that in all cases the shrinkage intensity falls to zero if c → 1− and increases with c if

c > 1. Thus if c is small the shrinkage estimator puts higher weight on the classical estimator of

the portfolio weights, due to lower estimation risk. If c tends to 1 the system becomes unstable

because of eigenvalues which are close to zero. In this case the portfolio weights collapse

to the target portfolio weights. With c further increasing the shrinkage intensity increases

too, implying that the pseudo-inverse covariance matrix can be evaluated in a proper way.

The fraction of the EU portfolio increases with c in this case. Furthermore, the discrepancy

between the oracle and bona-fide estimators naturally increases with higher condition indices.

However, the shrinkage intensities are smaller for lower condition indices. This can be explained

by the specific impact of the condition indices on the portfolio characteristics VGMV and s.

Simulations showed that VGMV increases in the condition index and s decreases. Thus their

complex interaction in the expression for the limit of α+
n results in the decreasing behavior of

the shrinkage intensity as a function of the condition index.

In a similar fashion we analyze the relative losses of portfolios based on the traditional, the

oracle and the bona-fide estimators. As a benchmark, we take the equally weighted portfolio

which is also the target portfolio of the shrinkage estimator. The relative losses as functions of c

for fixed p = 150 are plotted in Figure 2. For c < 1 the losses of the traditional estimator show

explosive behavior and are comparable to the shrinkage-based estimators only for very small

values of c. Thus the traditional estimator is reliable only if the sample size is at least three times

larger than the dimension. The performance of the two shrinkage-based estimators is similar

and stable over the whole range of c excluding a small neighborhood of one. It is important that

the shrinkage-based portfolio clearly dominates the equally weighted benchmark. However, the

losses are not monotonous and attain the maximum for c between 0.5 and 0.8. For c between 0.9

and 1.2 the shrinkage-based estimators lead to discontinuous and unstable losses, disadvising

the investors from using samples sizes comparable with the dimension. For c > 1 the situation

is similar with an extremely small difference between oracle- and bona-fide-based losses also in
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the limit. The traditional estimators attains the minimal loss for c between two and three and

increase steadily for larger intensities.

The behavior of losses as functions of the dimension p is illustrated in Figure 3. The fraction

c is set to 0.2, 0.5, 0.8 and 2 from left to right, while the condition index equals 150, 1000 and

8000 from top to bottom. From financial perspective it is important to note that the traditional

estimator outperforms the equally weighted portfolio only for small values of c (in the particular

setup for c < 0.3), thus when the classical estimators are stable and robust. For larger c the

losses of the traditional estimator increase dramatically and are comparable with the remaining

estimators only for c > 1. As before the oracle and the bona-fide estimators show similar results

and clearly beat the benchmarks. Furthermore, the performance is stable for a wide range of

dimensions. Note that all losses are decreasing functions of the dimension. Several exceptions

can be found for the shrinkage-based strategies, but these can be due to poor validity of the

asymptotic results for relatively small dimensions.

3.2 Empirical study

The data sets used in this study covers daily data on 445 S&P500 constituents available for

the whole period from 01.01.2004 till 10.10.2014. The investor allocates his wealth to the

constituents for prespecified values of p and c with daily reallocation. For simplicity we neglect

the transaction costs in the below discussion. For illustration purposes we consider the first

p = 50 and 100 assets in alphabetic ordering and c = 0.2, 0.5, 0.8 and 2. The risk aversion

coefficient equals 10. In contrary to the simulation study the true parameters are not known

for real data. Thus the oracle shrinkage coefficient is computed using the plug-in and not the

consistent estimators of the portfolio characteristics.

The time series of estimated shrinkage coefficients (oracle and bona fide) is given in Figure

4. We observe that for small values of c and thus a low estimation risk the shrinkage inten-

sities are close to one. The behavior is very stable, but mimics the periods of high and low

volatility of financial markets, particularly with spikes in 2009 and 2011. Thus high volatility

on financial markets causes higher shrinkage coefficients and thus larger fraction of the mean-

variance portfolio. This can be justified by stronger effects of diversification during turmoil

periods. With larger c the certainty in the classical portfolio diminishes. This results in lower

and more volatile the shrinkage intensities. The investors prefers equally weighted portfolio

due large estimation risk. The bona fide estimator is smaller than the oracle counterpart for

moderate values of c, but becomes larger if c tends to one. For c > 2 the shrinkage coefficients

are unstable, with a better behavior for larger portfolio consisting of 100 assets.

To illustrate the economic advantages of the derived theoretical results we consider the

certainty equivalent, the Sharpe ratio, the Value-at-risk and the expected shortfall (both at

0.01 and 0.05 levels) as performance measures of real-data trading strategies. To robustify the

procedure we randomly draw 1000 portfolios of size p = 50, 100, 300 from the population of

size 455. For each of the portfolios we implement dynamic trading strategies for the last 200
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days. We compute the optimal portfolio weights using the most recent n observations obtained

for c = 0.2, 0.5, 0.8 and 2. The realized returns for each portfolio are used to compute the

above mentioned performance measures. The averages over all 1000 portfolios of given size are

summarized in Tables 1-3. For small c values, e.g. c = 0.2 the traditional estimator performs

well and dominates all the alternatives. This coincides with the conclusions in the simulation

study. For c = 0.5 the trading strategies based on the oracle and bona-fide estimators become

superior. For c = 0.8 the evidence is mixed if we take the benchmarks into account. For some

parameter constellations and measures the equally weighted portfolio is dominating, while for

other the shrinkage-based strategies stay superior. For c = 2 the equally weighted portfolio

dominate in the majority of the cases. The traditional estimator obviously fails and provides

frequently useless results. Additionally to the evidence from the simulation study in the previous

section, we conclude that the shrinkage-based strategies are economically advantageous too if

c < 1 and not close to one. This conclusion is robust with respect to the portfolio composition

and the chosen performance measure. For large c the shrinkage-based portfolios still improve

the traditional estimator, but cannot outperform the benchmark.

4 Summary

In this paper we consider the portfolio selection in high-dimensional framework. Particularly,

we assume that the number of assets p and the sample size n tend to infinity, but their ratio

p/n tends to constant c. Note that the c maybe larger than one, implying that we have more

assets than observations. Because of the large estimation risk we suggest a shrinkage-based

estimator of the portfolio weights, which shrinks the mean-variance portfolio to the equally

weighted portfolio. For the established shrinkage intensity we derive the limiting value. It

depends on c and on the characteristics of the efficient frontier. Unfortunately the result is only

an oracle value and is not feasible in practice, since it depends on unknown quantities. Thus we

suggest a bona-fide estimator which overcomes this problem. From the technical point of view

we rely on the theory of random matrices and work with the asymptotic behavior of linear and

quadratic forms in mean vector and (pseudo)-inverse covariance matrix. In extensive simulation

and empirical studies we evaluate the performance of established results with artificial and real

data. If the sample size is smaller than or comparable to the dimension, then the performance

is poor and some simple alternatives, e.g. equally weighted portfolio, should be favored.

5 Appendix A: Proofs

Here the proofs of the theorems are given. Recall that the sample mean vector and the sample

covariance matrix are given by

ȳn =
1

n
Yn1n = µn + Σ

1
2
n x̄n with x̄n =

1

n
Xn1n (5.1)
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and

Sn =
1

n
Yn(I− 1

n
11′)Y′n = Σ

1
2
nVnΣ

1
2
n with Vn =

1

n
Xn(I− 1

n
11′)X′n , (5.2)

respectively. Later on, we also make use of Ṽn defined by

Ṽn =
1

n
XnX

′
n (5.3)

and the formula for the 1-rank update of usual inverse given by (c.f., Horn and Johnsohn (1985))

V−1n = (Ṽn − x̄nx̄
′
n)−1 = Ṽ−1n +

Ṽ−1n x̄nx̄
′
nṼ
−1
n

1− x̄′nṼ
−1
n x̄n

(5.4)

as well as the formula for the 1-rank update of Moore-Penrose inverse (see,Meyer (1973))

expressed as

V+
n =

(
Ṽ′ − x̄nx̄

′
n

)+
= Ṽ+

n −
Ṽ+
n x̄nx̄

′
n(Ṽ+

n )2 + (Ṽ+
n )2x̄nx̄

′
n(Ṽ+

n )

x̄′n(Ṽ+
n )2x̄n

+
x̄′n(Ṽ+

n )3x̄n

(x̄′n(Ṽ+
n )2x̄n)2

Ṽ+
n x̄nx̄

′
nṼ

+
n . (5.5)

First, we present an important lemma which is a special case of Theorem 1 in Rubio and

Mestre (2011).

Lemma 5.1. Assume (A2). Let a nonrandom p× p-dimensional matrix Θp and a nonrandom

n×n-dimensional matrix Θn possess a uniformly bounded trace norms (sum of singular values).

Then it holds that

∣∣∣tr (Θp(Ṽn − zIp)−1
)
−m(z)tr (Θp)

∣∣∣ a.s.−→ 0 (5.6)∣∣∣tr (Θn(1/nX′nXn − zIn)−1
)
−m(z)tr (Θn)

∣∣∣ a.s.−→ 0 (5.7)

for p/n −→ c ∈ (0,+∞) as n→∞, where

m(z) = (x(z)− z)−1 and m(z) = −1− c
z

+ cm(z) (5.8)

with

x(z) =
1

2

(
1− c+ z +

√
(1− c+ z)2 − 4z

)
. (5.9)

Proof of Lemma 5.1: The application of Theorem 1 in Rubio and Mestre (2011) leads to (5.6)

where x(z) is a unique solution in C+ of the following equation

1− x(z)

x(z)
=

c

x(z)− z
. (5.10)

The two solutions of (5.10) are given by

x1,2(z) =
1

2

(
1− c+ z ±

√
(1− c+ z)2 − 4z

)
. (5.11)
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In order to decide which of two solutions is feasible, we note that x1,2(z) is the Stieltjes transform

with a positive imaginary part. Thus, without loss of generality, we can take z = 1 + c+ i2
√
c

and get

Im{x1,2(z)} = Im
{

1

2

(
2 + i2

√
c± i2

√
2c
)}

= Im
{

1 + i
√
c(1±

√
2)
}

=
√
c
(
1±
√

2
)
,

(5.12)

which is positive only if the sign ” + ” is chosen. Hence, the solution is given by

x(z) =
1

2

(
1− c+ z +

√
(1− c+ z)2 − 4z

)
. (5.13)

The second assertion of the lemma follows directly from Bai and Silverstein (2010).

Second, we will need the following technical lemmas.

Lemma 5.2. Assume (A2). Let θ and ξ be universal nonrandom vectors with bounded Eu-

clidean norms. Then it holds that

∣∣∣ξ′Ṽ−1n θ − (1− c)−1ξ′θ
∣∣∣ a.s.−→ 0 , (5.14)

x̄′nṼ
−1
n x̄n

a.s.−→ c , (5.15)

x̄′nṼ
−1
n θ

a.s.−→ 0 , (5.16)∣∣∣ξ′Ṽ−2n θ − (1− c)−3ξ′θ
∣∣∣ a.s.−→ 0 , (5.17)

x̄′nṼ
−2
n x̄n

a.s.−→ c

(1− c)
, (5.18)

x̄′nṼ
−2
n θ

a.s.−→ 0 (5.19)

for p/n −→ c ∈ (0, 1) as n→∞ .

Proof of Lemma 5.2: Since the trace norm of θξ′ is uniformly bounded, i.e.

||θξ′||tr ≤
√
θ′θ

√
ξ′ξ <∞,

we get from Lemma 5.1 that

|tr((Ṽn − zIp)−1θξ′)−m(z)tr(θξ′)| a.s.−→ 0 for p/n→ c < 1 as n→∞

Furthermore, the application of m(z)→ (1− c)−1 as z → 0 leads to

|ξ′Ṽ−1n θ − (1− c)−1ξ′θ| a.s.−→ 0 for p/n→ c < 1 as n→∞ ,

which proves (5.14).
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For deriving (5.15) we consider

x̄′nṼ
−1
n x̄n = lim

z→0+
tr

[
1√
n

X′n

(
1

n
XnX

′
n − zIp

)−1 1√
n

Xn

(
1n1

′
n

n

)]

= lim
z→0+

tr

[(
1n1

′
n

n

)]
+ ztr

[(
1

n
X′nXn − zIn

)−1 (1n1
′
n

n

)]
,

where the last equality follows from the Woodbury formula (e.g., Horn and Johnsohn (1985)).

The application of Lemma 5.1 leads to

tr

[(
1n1

′
n

n

)]
+ ztr

[(
1

n
X′nXn − zIn

)−1 (1n1
′
n

n

)]
a.s.−→ [1 + (c− 1) + czm(z)] tr

[(
1n1

′
n

n

)]

for p/n −→ c < 1 as n → ∞ where m(z) is given by (5.8). Setting z → 0+ and taking into

account lim
z→0+

m(z) =
1

1− c
we get

x̄′nṼ
−1
n x̄n

a.s.−→ 1 + c− 1 = c for
p

n
−→ c ∈ (0, 1) as n→∞ .

The result (5.16) was derived in Pan (2014) (see, p. 673 of this reference).

Next, we prove (5.17). It holds that

ξ′Ṽ−2n θ =
∂

∂z
tr
[(

Ṽn − zIp
)−1

θξ′
]∣∣∣∣∣
z=0

=
∂

∂z
ζn(z)

∣∣∣∣∣
z=0

where ζn(z) = tr
[(

Ṽn − zI
)−1

θξ′
]
. From Lemma 5.1 ζn(z) tends a.s. to m(z)ξ′θ as n → ∞.

Furthermore,

∂

∂z
m(z)

∣∣∣∣
z=0

=
∂

∂z

1

x(z)− z

∣∣∣∣
z=0

= − x′(z)− 1

(x(z)− z)2

∣∣∣∣
z=0

= −

1

2

(
1− 1+c−z√

(1−c+z)2−4z

)
− 1

(x(z)− z)2

∣∣∣∣∣∣∣∣
z=0

=
1

(1− c)3
.

(5.20)

Consequently,

|ξ′S−2n θ − (1− c)−3ξ′Σ−1n θ| a.s.−→ 0 for p/n→ c < 1 as n→∞ .

Let ηn(z) = x̄′n(Ṽn − zI)−1x̄n and Θn =

(
1n1

′
n

n

)
. Then

x̄′nṼ
−2
n x̄n =

∂

∂z
ηn(z)

∣∣∣∣∣
z=0

,
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where

ηn(z) = tr

[
1√
n

X′n

(
1

n
XnX

′
n − zIp

)−1 1√
n

XnΘn

]
= tr(Θn) + ztr

[
(1/nX′nXn − zIn)−1Θn

]
a.s.−→ 1 + zm(z) = c+ czm(z)

for
p

n
→ c ∈ (0, 1) as n→∞. Hence,

x̄′nṼ
−2
n x̄n

a.s.−→ cm(0) + cz
∂

∂z
m(z)

∣∣∣∣∣
z=0

=
c

1− c

for
p

n
→ c ∈ (0, 1) as n→∞.

Finally, we get

x̄′nṼ
−2
n θ =

∂

∂z
tr
[
x̄′n
(
Ṽn − zIp

)−1
θ
]∣∣∣∣∣
z=0

a.s.−→ 0

for
p

n
→ c ∈ (0, 1) as n→∞.

Lemma 5.3. Assume (A2). Let θ and ξ be universal nonrandom vectors with bounded Eu-

clidean norms. Then it holds that

∣∣∣ξ′V−1n θ − (1− c)−1ξ′θ
∣∣∣ a.s.−→ 0 , (5.21)

x̄′nV
−1
n x̄n

a.s.−→ c

1− c
, (5.22)

x̄′nV
−1
n θ

a.s.−→ 0 , (5.23)∣∣∣ξ′V−2n θ − (1− c)−3ξ′θ
∣∣∣ a.s.−→ 0 , (5.24)

x̄′nV
−2
n x̄n

a.s.−→ c

(1− c)3
, (5.25)

x̄′nV
−2
n θ

a.s.−→ 0 (5.26)

for p/n −→ c ∈ (0, 1) as n→∞.

Proof of Lemma 5.3: From (5.4) we obtain

ξ′V−1n θ = ξ′Ṽ−1n θ +
ξ′Ṽ−1n x̄nx̄

′
nṼ
−1
n θ

1− x̄′nṼ
−1
n x̄n

a.s.−→ (1− c)−1ξ′θ

for p/n −→ c ∈ (0, 1) as n→∞ following (5.14)-(5.16). Similarly, we get (5.22) and (5.23).
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In case of (5.23), we get

ξ′V−2n θ = ξ′Ṽ−2n θ +
ξ′Ṽ−2n x̄nx̄

′
nṼ
−1
n θ

1− x̄′nṼ
−1
n x̄n

+
ξ′Ṽ−1n x̄nx̄

′
nṼ
−2
n θ

1− x̄′nṼ
−1
n x̄n

+ x̄′nṼ
−2
n x̄n

ξ′Ṽ−1n x̄nx̄
′
nṼ
−1
n θ

(1− x̄′nṼ
−1
n x̄n)2

a.s.−→ (1− c)−1ξ′θ

for p/n −→ c ∈ (0, 1) as n→∞. Similarly,

x̄′nV
−2
n x̄n = x̄′nṼ

−2
n x̄n +

x̄′nṼ
−2
n x̄nx̄

′
nṼ
−1
n x̄n

1− x̄′nṼ
−1
n x̄n

+
x̄′nṼ

−1
n x̄nx̄

′
nṼ
−2
n x̄n

1− x̄′nṼ
−1
n x̄n

+ x̄′nṼ
−2
n x̄n

x̄′nṼ
−1
n x̄nx̄

′
nṼ
−1
n x̄n

(1− x̄′nṼ
−1
n x̄n)2

=
x̄′nṼ

−2
n x̄n

(1− x̄′nṼ
−1
n x̄n)2

a.s.−→ c

(1− c)3

and

x̄′nV
−2
n θ = x̄′nṼ

−2
n θ +

x̄′nṼ
−2
n x̄nx̄

′
nṼ
−1
n θ

1− x̄′nṼ
−1
n x̄n

+
x̄′nṼ

−1
n x̄nx̄

′
nṼ
−2
n θ

1− x̄′nṼ
−1
n x̄n

+ x̄′nṼ
−2
n x̄n

x̄′nṼ
−1
n x̄nx̄

′
nṼ
−1
n θ

(1− x̄′nṼ
−1
n x̄n)2

a.s.−→ 0

for p/n −→ c ∈ (0, 1) as n→∞.

Lemma 5.4. Assume (A2). Let θ and ξ be universal nonrandom vectors with bounded Eu-

clidean norms and let Pn = V−1n − V−1
n ηη′V−1

n

η′V−1
n η

where η is a universal nonrandom vectors with

bounded Euclidean norm. Then it holds that

ξ′Pnθ
a.s.−→ (1− c)−1

(
ξ′θ − ξ′ηη′θ

η′η

)
, (5.27)

x̄′nPnx̄n
a.s.−→ c

1− c
, (5.28)

x̄′nPnθ
a.s.−→ 0 , (5.29)

ξ′P2
nθ

a.s.−→ (1− c)−3
(
ξ′θ − ξ′ηη′θ

η′η

)
, (5.30)

x̄′nP
2
nx̄n

a.s.−→ c

(1− c)3
, (5.31)

x̄′nP
2
nθ

a.s.−→ 0 (5.32)

for p/n −→ c ∈ (0, 1) as n→∞.

Proof of Lemma 5.4: It holds that

ξ′Pnθ = ξ′V−1n θ − ξ′V−1n ηη′V−1n θ

η′V−1n η
a.s.−→ (1− c)−1

(
ξ′θ − ξ′ηη′θ

η′η

)
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for p/n −→ c ∈ (0, 1) as n→∞ following (5.21). Similarly, we get

x̄′nPnx̄n = x̄′nV
−1
n x̄n −

x̄′nV
−1
n ηη′V−1n x̄n
η′V−1n η

a.s.−→ c

1− c

and

x̄′nPnθ = x̄′nV
−1
n θ − x̄′nV

−1
n ηη′V−1n θ

η′V−1n η
a.s.−→ 0

for p/n −→ c ∈ (0, 1) as n→∞.

The rest of the proof follows from the equality

P2
n = V−2n −

V−2n ηη′V−1n
η′V−1n η

− V−1n ηη′V−2n
η′V−1n η

+ η′V−2n η
V−1n ηη′V−1n
(η′V−1n η)2

and Lemma 5.3.

Proof of Theorem 2.1: The optimal shrinkage intensity can be rewritten in the following way

α∗n = γ−1
ŵ′S(µn − γΣnb)− b′(µn − γΣnb)

ŵ′SΣnŵS − 2b′ΣnŵS + b′Σnb
(5.33)

= γ−1

1′S−1n (µn − γΣnb)

1′S−1n 1
+ γ−1ȳ′nQ̂n(µn − γΣnb)− b′(µn − γΣnb)

1′S−1n ΣnS−1n 1

(1′S−1n 1)2
+ 2γ−1

ȳ′nQ̂nΣnS−1n 1

1′S−1n 1
+ γ−2ȳ′nQ̂nΣnQ̂nȳn − 2

b′ΣnS−1n 1

1′S−1n 1
− 2γ−1b′ΣnQ̂nȳn + b′Σnb

and ȳn = µn + Σ1/2
n x̄n and Sn = Σ1/2

n VnΣ
1/2
n .

From Assumption (A3), we get that the following vectors Σ−1/2n 1, Σ−1/2n (µn − γΣnb),

Σ−1/2n µn, and Σ1/2
n b possess bounded Euclidean norms. As a result, the application of Lemma

5.2 leads to

1′S−1n 1 = 1′Σ−1/2n V−1n Σ−1/2n 1
a.s.−→ (1− c)−11′Σ−1n 1,

1′S−1n (µn − γΣnb) = 1′Σ−1/2n V−1n Σ−1/2n (µn − γΣnb)
a.s.−→ (1− c)−11′Σ−1n (µn − γΣnb),

b′ΣnS
−1
n 1 = b′ΣnΣ

−1/2
n V−1n Σ−1/2n 1

a.s.−→ (1− c)−1b′ΣnΣ
−1
n 1 = (1− c)−1,

1′S−1n ΣnS
−1
n 1 = 1′Σ−1/2n V−2n Σ−1/2n 1

a.s.−→ (1− c)−31′Σ−1n 1

for p/n −→ c ∈ (0, 1) as n→∞.

Finally, from Lemma 5.3 and 5.4 as well as by using the equalities

Q̂n = Σ−1/2n PnΣ
−1/2
n and PnV

−1
n = V−2n −

V−1n ηη′V−2n
η′V−1n η
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with η = Σ−1/2n 1 we obtain

ȳ′nQ̂n(µn − γΣnb) = µ′nΣ
−1/2
n PnΣ

−1/2
n (µn − γΣnb) + x̄′nPnΣ

−1/2
n (µn − γΣnb)

a.s.−→ (1− c)−1µ′nQn(µn − γΣnb),

ȳ′nQ̂nΣnS
−1
n 1 = µ′nΣ

−1/2
n PnV

−1
n Σ−1/2n 1 + x̄′nPnV

−1
n Σ−1/2n 1

a.s.−→ (1− c)−3µ′nQn1 = 0,

ȳ′nQ̂nΣnQ̂nȳn = x̄′nP
2
nx̄n + 2µ′nΣ

−1/2
n P2

nx̄n + µ′nΣ
−1/2
n P2

nΣ
−1/2
n µn

a.s.−→ c

(1− c)3
+ (1− c)−3µ′nQnµn,

b′ΣnQ̂nȳn = b′Σ1/2
n Pnx̄n + b′Σ1/2

n PnΣ
−1/2
n µn

a.s.−→ (1− c)−1
(

b′µn −
1′Σ−1n µn

1′Σ−1n 1

)

for p/n −→ c ∈ (0, 1) as n→∞.
Substituting the above results into the expression of the shrinkage intensity, we get α∗n

a.s.−→
α∗, where

α∗ = γ−1

1′Σ−1n (µn − γΣnb)

1′Σ−1n 1
+

γ−1

1− c
µ′nQn(µn − γΣnb)− b′(µn − γΣnb)

1

1− c
1

1′Σ−1n 1
+ γ−2

(
1

(1− c)3
µ′nQnµn +

c

(1− c)3

)
− 2

1

1′Σ−1n 1
− 2γ

−1

1−c

(
b′µn −

1′Σ−1n µn
1′Σ−1n 1

)
+ b′Σnb

(5.34)

Denoting now VGMV =
1

1′Σ−1n 1
, RGMV =

1′Σ−1n µn

1′Σ−1n 1
, s = µ′nQnµn, Rb = b′µn and making

some technical manipulations we get the statement of Theorem 2.1.

For the proof of Theorem 2.2 we need several results about the properties of Moore-Penrose

inverse which are summarized in the following three lemmas.

Lemma 5.5. Assume (A2). Let θ and ξ be universal nonrandom vectors with bounded Eu-
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clidean norms. Then it holds that

ξ′Ṽ+
n θ

a.s.−→ c−1(c− 1)−1ξ′θ , (5.35)

ξ′(Ṽ+
n )2θ

a.s.−→ (c− 1)−3ξ′θ , (5.36)

x̄′Ṽ+
n x̄n = 1 , (5.37)

x̄′(Ṽ+
n )2x̄n

a.s.−→ 1

c− 1
, (5.38)

x̄′(Ṽ+
n )3x̄n

a.s.−→ c

(c− 1)3
, (5.39)

x̄′(Ṽ+
n )4x̄n

a.s.−→ c(c+ 1)

(c− 1)5
, (5.40)

x̄′Ṽ+
n θ

a.s.−→ 0 , (5.41)

x̄′(Ṽ+
n )2θ

a.s.−→ 0 , (5.42)

x̄′(Ṽ+
n )3θ

a.s.−→ 0 (5.43)

for p/n −→ c ∈ (1,+∞) as n→∞ .

Proof of Lemma 5.5: It holds that

Ṽ+ =
(

1

n
XnX

′
n

)+

=
1√
n

Xn

(
1

n
X′nXn

)−2 1√
n

X′n

and, similarly,

(Ṽ+)i =
1√
n

Xn

(
1

n
X′nXn

)−(i+1) 1√
n

X′n for i = 2, 3, 4.

Let Θ = θξ′. It holds that

ξ′Ṽ+
n θ = tr

[
1√
n

Xn

(
1

n
X′nXn

)−2 1√
n

X′nΘ

]
=

∂

∂z
tr

[
1√
n

Xn

(
1

n
X′nXn − zIn

)−1 1√
n

X′nΘ

]∣∣∣∣∣
z=0

,

ξ′(Ṽ+
n )2θ = tr

[
1√
n

Xn

(
1

n
X′nXn

)−3 1√
n

X′nΘ

]
=

1

2

∂2

∂z2
tr

[
1√
n

Xn

(
1

n
X′nXn − zIn

)−1 1√
n

X′nΘ

]∣∣∣∣∣
z=0

.

The application of Woodbury formula (matrix inversion lemma, see, e.g., Horn and Johnsohn

(1985)),

1√
n

Xn

(
1

n
X′nXn − zIn

)−1 1√
n

X′n = Ip + z
(

1

n
XnX

′
n − zIp

)−1
(5.44)

leads to

ξ′Ṽ+
n θ =

∂

∂z
ztr

[(
1

n
XnX

′
n − zIp

)−1
Θ

]∣∣∣∣∣
z=0

,

ξ′(Ṽ+
n )2θ =

1

2

∂2

∂z2
ztr

[(
1

n
XnX

′
n − zIp

)−1
Θ

]∣∣∣∣∣
z=0

.

From the proof of Lemma 5.2 we know that the matrix Θ possesses the bounded trace norm.
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Then the application of Lemma 5.1 leads to

ξ′Ṽ+
n θ

a.s.−→ ∂

∂z

z

x(z)− z

∣∣∣∣∣
z=0

ξ′θ ,

ξ′(Ṽ+
n )2θ

a.s.−→ 1

2

∂2

∂z2
z

x(z)− z

∣∣∣∣∣
z=0

ξ′θ

for p/n→ c > 1 as n→∞, where x(z) is given in (5.9).

Let us make the following notations

θ(z) =
z

x(z)− z
and φ(z) =

x(z)− zx′(z)

z2
.

Then the first and the second derivatives of θ(z) are given by

θ′(z) = θ2(z)φ(z) and θ
′′
(z) = 2θ(z)θ′(z)φ(z) + θ2(z)φ′(z) . (5.45)

Using L’Hopital’s rule, we get

θ(0) = lim
z→0+

θ(z) = lim
z→0+

z

x(z)− z
= lim

z→0+

1

(x′(z)− 1)
=

1

1

2

(
1− 1 + c

|1− c|

)
− 1

= −c− 1

c
,

(5.46)

φ(0) = lim
z→0+

φ(z) = lim
z→0+

x(z)− zx′(z)

z2
= −1

2
lim
z→0+

x
′′
(z) = −1

2
lim
z→0+

−2c

((1− c+ z)2 − 4z)3/2
=

c

(c− 1)3
,

(5.47)

and

lim
z→0+

φ′(z) = − lim
z→0+

2(x(z)− zx′(z)) + z2x
′′
(z)

z2

= − lim
z→0+

2φ(z) + x
′′
(z)

z
= − lim

z→0+
(2φ′(z) + x

′′′
(z)) , (5.48)

which implies

φ′(0) = lim
z→0+

φ′(z) = −1

3
lim
z→0+

x
′′′

(z) = −1

3
lim
z→0+

6c(z − c− 1)

((1− c+ z)2 − 4z)5/2
=

2c(c+ 1)

(c− 1)5
. (5.49)

Combining (5.45), (5.46), (5.47), and (5.49), we get

θ
′
(0) = lim

z→0+
θ
′
(z) = θ2(0)φ(0) =

1

c(c− 1)

and

θ
′′
(0) = lim

z→0+
θ
′′
(z) = 2θ3(0)φ2(0) + θ2(0)φ′(0) =

2

(c− 1)3
.
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Hence,

ξ′Ṽ+
n θ

a.s.−→ 1

c(c− 1)
ξ′Σ−1n θ for p/n→ c > 1 as n→∞,

ξ′(Ṽ+
n )2θ

a.s.−→ 1

(c− 1)3
ξ′Σ−1n θ for p/n→ c > 1 as n→∞ .

Taking into account that

x̄′nṼ
+
n x̄n =

1

n
1′nX

′
nXn(X′nXn)−2X′nXn1n =

1

n
1′n1n = 1 .

we get (5.37). Similarly, using

x̄′n(Ṽ+
n )ix̄n = 1/n1′n(1/nX′nXn)−(i−1)1n for i = 2, 3, 4

we get

1/n1′n(1/nX′nXn)−11n = lim
z→0+

tr[(1/nX′nXn − zI)−1Θ]
a.s.−→ m(0) ,

1/n1′n(1/nX′nXn)−21n = lim
z→0+

∂

∂z
tr[(1/nX′nXn − zI)−1Θ]

a.s.−→ m′(0) ,

1/n1′n(1/nX′nXn)−21n =
1

2
lim
z→0+

∂2

∂z2
tr[(1/nX′nXn − zI)−1Θ]

a.s.−→ 1

2
m′′(0)

for p/n→ c > 1 as n→∞, where Θn = 1/n1n1
′
n.

The application of the equality (c.f., Bai and Silverstein (2010))

m(z) = −
(
z − c

1 +m(z)

)−1
.

leads to2

m(0) ≡ lim
z→0+

m(z) =
1

c
(1 +m(0)) ,

which is linear in m(0) and results

m(0) =
1

c− 1
. (5.50)

For the next one we investigate the first derivative of m(z) with respect to z, namely

m′(z) =

[
z − c

1 +m(z)

]−2 (
1 +

cm′(z)

(1 +m(z))2

)
.

2Note that m(z) is bounded as z → 0+ because for any contour C = {x + iy|y ∈ [0, y0]} the Stieltjes
transform m(z) is analytic on C and, thus, there exists δ > 0 s.t. sup

z∈C
|m(k)(z)| < δk+1k! (see, e.g., Bai and

Silverstein (2004), p. 585).
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Now for z → 0+ we obtain

m′(0) =

[
c

1 +m(0)

]−2 (
1 +

cm′(0)

(1 +m(0))2

)
=

(
1 +m(0)

c

)2

+
m′(0)

c
,

which is again a linear equation in m′(0). Thus, using (5.50) we have

(1− c−1)m′(0) =

1 +
1

c− 1
c


2

As a result, we get

m′(0) =
c

(c− 1)3
.

Finally, we calculate

m′′(z) = −2

[
z − c

1 +m(z)

]−3 (
1 +

cm′(z)

(1 +m(z))2

)2

+

[
z − c

1 +m(z)

]−2 (
cm′′(z)((1 +m(z))2)− 2c(m′(z))2(1 +m(z))

(1 +m(z))4

)

which leads to

m′′(0) = 2
(m′(0))2

m(0)
+ (m(0))2

(
cm′′(0)

(1 +m(0))2
− 2c(m′(0))2

(1 +m(0))3

)

and, consequently,

m′′(0) = 2
c(c+ 1)

(c− 1)5
.

As a result, we obtain (5.38)-(5.40).

For (5.41) we consider

x̄′Ṽ+
n θ = tr

[
Ip + z

(
1

n
XnX

′
n − zIp

)−1
θx̄′

]
= x̄′θ + zx̄′

(
Ṽn − zIp

)−1
θ .

Because of (5.16), it holds that x̄′
(
Ṽn − zIp

)−1
θ is uniformly bounded as z −→ 0. Moreover,

x̄′θ
a.s.−→ 0 as p −→ ∞ following Kolmogorov’s strong law of large numbers (c.f., Sen and

Singer (1993, Theorem 2.3.10), since θ has a bounded Euclidean norm. Hence, x̄′Ṽ+
n θ

a.s.−→ 0

for p/n −→ c ∈ (1,+∞) as n→∞.

Finally, in the case of (5.42) and (5.43), we get

x̄′(Ṽ+
n )2θ =

∂

∂z
ztr

[(
1

n
XnX

′
n − zIp

)−1
θx̄′

]∣∣∣∣∣
z=0

a.s.−→ 0 ,

x̄′(Ṽ+
n )3θ =

1

2

∂2

∂z2
ztr

[(
1

n
XnX

′
n − zIp

)−1
θx̄′

]∣∣∣∣∣
z=0

a.s.−→ 0.
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for p/n −→ c ∈ (1,+∞) as n→∞.

Lemma 5.6. Assume (A2). Let θ and ξ be universal nonrandom vectors with bounded Eu-

clidean norms. Then it holds that

ξ′V+
n θ

a.s.−→ c−1(c− 1)−1ξ′θ , (5.51)

x̄′nV
+
n x̄n

a.s.−→ 1

c− 1
, (5.52)

x̄′nV
+
n θ

a.s.−→ 0 , (5.53)

ξ′(V+
n )2θ

a.s.−→ (c− 1)−3ξ′θ , (5.54)

x̄′n(V+
n )2x̄n

a.s.−→ c

(c− 1)3
, (5.55)

x̄′n(V+
n )2θ

a.s.−→ 0 (5.56)

for p/n −→ c ∈ (1,+∞) as n→∞.

Proof of Lemma 5.6: From (5.5) we get

ξ′V+
n θ = ξ′Ṽ+

n θ −
ξ′Ṽ+

n x̄nx̄
′
n(Ṽ+

n )2θ + ξ′(Ṽ+
n )2x̄nx̄

′
nṼ

+
n θ

x̄′n(Ṽ+
n )2x̄n

+
x̄′n(Ṽ+

n )3x̄n

(x̄′n(Ṽ+
n )2x̄n)2

ξ′Ṽ+
n x̄nx̄

′
nṼ

+
n θ

a.s.−→ c−1(c− 1)−1ξ′θ

for p/n −→ c ∈ (1,+∞) as n→∞ following (5.35)-(5.37). Similarly, we get

x̄′nV
+
n x̄n = x̄′nṼ

+
n x̄n −

x̄′nṼ
+
n x̄nx̄

′
n(Ṽ+

n )2x̄n + x̄′n(Ṽ+
n )2x̄nx̄

′
nṼ

+
n x̄n

x̄′n(Ṽ+
n )2x̄n

+
x̄′n(Ṽ+

n )3x̄n

(x̄′n(Ṽ+
n )2x̄n)2

x̄′nṼ
+
n x̄nx̄

′
nṼ

+
n x̄n

a.s.−→ 1

c− 1

and

x̄′nV
+
n θ = x̄′nṼ

+
n θ −

x̄′nṼ
+
n x̄nx̄

′
n(Ṽ+

n )2θ + x̄′n(Ṽ+
n )2x̄nx̄

′
nṼ

+
n θ

x̄′n(Ṽ+
n )2x̄n

+
x̄′n(Ṽ+

n )3x̄n

(x̄′n(Ṽ+
n )2x̄n)2

x̄′nṼ
+
n x̄nx̄

′
nṼ

+
n θ

a.s.−→ 0

for p/n −→ c ∈ (1,+∞) as n→∞.
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Now, we consider the equality

[
(Ṽn − x̄nx̄′n)+

]2
=

(
Ṽ+
n −

Ṽ+
n x̄nx̄′n(Ṽ+

n )2 + (Ṽ+
n )2x̄nx̄′n(Ṽ+

n )

x̄′n(Ṽ+
n )2x̄n

+
x̄′n(Ṽ+

n )3x̄n

(x̄′n(Ṽ+
n )2x̄n)2

Ṽ+
n x̄nx̄′nṼ+

n

)2

= (Ṽ+
n )2 +

[
x̄′n(Ṽ+

n )3x̄n

(x̄′n(Ṽ+
n )2x̄n)2

Ṽ+
n x̄nx̄′nṼ+

n −
(Ṽ+

n )2x̄nx̄′nṼ+
n + Ṽ+

n x̄nx̄′n(Ṽ+
n )2

x̄′n(Ṽ+
n )2x̄n

]2

− 2(Ṽ+
n )2x̄nx̄′n(Ṽ+

n )2 + Ṽ+
n x̄nx̄′n(Ṽ+

n )3 + (Ṽ+
n )3x̄nx̄′nṼ+

n

x̄′n(Ṽ+
n )2x̄n

+
x̄′n(Ṽ+

n )3x̄n

(x̄′n(Ṽ+
n )2x̄n)2

(Ṽ+
n x̄nx̄′n(Ṽ+

n )2 + (Ṽ+
n )2x̄nx̄′nṼ+

n )

= (Ṽ+
n )2 +

x̄′n(Ṽ+
n )4x̄n

(x̄′n(Ṽ+
n )2x̄n)2

Ṽ+
n x̄nx̄′nṼ+

n −
(x̄′n(Ṽ+

n )3x̄n)2

(x̄′n(Ṽ+
n )2x̄n)3

Ṽ+
n x̄nx̄′nṼ+

n

+
x̄′n(Ṽ+

n )3x̄n

(x̄′n(Ṽ+
n )2x̄n)2

[
(Ṽ+

n )2x̄nx̄′nṼ+
n + Ṽ+

n x̄nx̄′n(Ṽ+
n )2
]

− (Ṽ+
n )2x̄nx̄′n(Ṽ+

n )2 + Ṽ+
n x̄nx̄′n(Ṽ+

n )3 + (Ṽ+
n )3x̄nx̄′nṼ+

n

x̄′n(Ṽ+
n )2x̄n

Hence,

ξ′(V+
n )2θ = ξ′(Ṽ+

n )2θ +
x̄′n(Ṽ+

n )4x̄n

(x̄′n(Ṽ+
n )2x̄n)2

ξ′Ṽ+
n x̄nx̄

′
nṼ

+
n θ −

(x̄′n(Ṽ+
n )3x̄n)2

(x̄′n(Ṽ+
n )2x̄n)3

ξ′Ṽ+
n x̄nx̄

′
nṼ

+
n θ

+
x̄′n(Ṽ+

n )3x̄n

(x̄′n(Ṽ+
n )2x̄n)2

[
ξ′(Ṽ+

n )2x̄nx̄
′
nṼ

+
n θ + ξ′Ṽ+

n x̄nx̄
′
n(Ṽ+

n )2θ
]

− ξ′(Ṽ+
n )2x̄nx̄

′
n(Ṽ+

n )2θ + ξ′Ṽ+
n x̄nx̄

′
n(Ṽ+

n )3θ + ξ′(Ṽ+
n )3x̄nx̄

′
nṼ

+
n θ

x̄′n(Ṽ+
n )2x̄n

a.s.−→ (c− 1)−3ξ′θ ,

x̄′n(V+
n )2x̄n = x̄′n(Ṽ+

n )2x̄n +
x̄′n(Ṽ+

n )4x̄n

(x̄′n(Ṽ+
n )2x̄n)2

− (x̄′n(Ṽ+
n )3x̄n)2

(x̄′n(Ṽ+
n )2x̄n)3

+ 2
x̄′n(Ṽ+

n )3x̄n

x̄′n(Ṽ+
n )2x̄n

− x̄′n(Ṽ+
n )2x̄n − 2

x̄′n(Ṽ+
n )3x̄n

x̄′n(Ṽ+
n )2x̄n

=
x̄′n(Ṽ+

n )4x̄n

(x̄′n(Ṽ+
n )2x̄n)2

− (x̄′n(Ṽ+
n )3x̄n)2

(x̄′n(Ṽ+
n )2x̄n)3

a.s.−→ c

(c− 1)3
,

and

x̄′n(V+
n )2θ = x̄′n(Ṽ+

n )2θ +
x̄′n(Ṽ+

n )4x̄n

(x̄′n(Ṽ+
n )2x̄n)2

x̄′nṼ
+
n θ −

(x̄′n(Ṽ+
n )3x̄n)2

(x̄′n(Ṽ+
n )2x̄n)3

x̄′nṼ
+
n θ

+
x̄′n(Ṽ+

n )3x̄n

(x̄′n(Ṽ+
n )2x̄n)2

[
x̄′n(Ṽ+

n )2x̄nx̄
′
nṼ

+
n θ + x̄′n(Ṽ+

n )2θ
]

− x̄′n(Ṽ+
n )2x̄nx̄

′
n(Ṽ+

n )2θ + x̄′n(Ṽ+
n )3θ + x̄′n(Ṽ+

n )3x̄nx̄
′
nṼ

+
n θ

x̄′n(Ṽ+
n )2x̄n

a.s.−→ 0

for p/n −→ c ∈ (1,+∞) as n→∞.

26



Lemma 5.7. Assume (A2). Let θ and ξ be universal nonrandom vectors with bounded Eu-

clidean norms and let P+
n = V+

n − V+
n ηη′V+

n

η′V+
n η

where η is a universal nonrandom vectors with

bounded Euclidean norm. Then it holds that

ξ′P+
nθ

a.s.−→ c−1(c− 1)−1
(
ξ′θ − ξ′ηη′θ

η′η

)
, (5.57)

x̄′nP
+
n x̄n

a.s.−→ 1

c− 1
, (5.58)

x̄′nP
+
nθ

a.s.−→ 0 , (5.59)

ξ′(P+
n )2θ

a.s.−→ (c− 1)−3
(
ξ′θ − ξ′ηη′θ

η′η

)
, (5.60)

x̄′n(P+
n )2x̄n

a.s.−→ c

(c− 1)3
, (5.61)

x̄′n(P+
n )2θ

a.s.−→ 0 (5.62)

for p/n −→ c ∈ (1,+∞) as n→∞.

Proof of Lemma 5.7: It holds that

ξ′P+
nθ = ξ′V+

n θ −
ξ′V+

nηη
′V+

n θ

η′V+
nη

a.s.−→ c−1(c− 1)−1
(
ξ′θ − ξ′ηη′θ

η′η

)

for p/n −→ c ∈ (1,+∞) as n→∞ following (5.35). Similarly, we get

x̄′nP
+
n x̄n = x̄′nV

+
n x̄n −

x̄′nV
+
nηη

′V+
n x̄n

η′V+
nη

a.s.−→ 1

c− 1

and

x̄′nP
+
nθ = x̄′nV

+
n θ −

x̄′nV
+
nηη

′V+
n θ

η′V+
nη

a.s.−→ 0

for p/n −→ c ∈ (1,+∞) as n→∞.

The rest of the proof follows from the equality

(P+
n )2 = (V+

n )2 − (V+
n )2ηη′V+

n

η′V+
nη

− V+
nηη

′(V+
n )2

η′V+
nη

+ η′(V+
n )2η

V+
nηη

′V+
n

(η′V+
nη)2

and Lemma 5.6.
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Proof of Theorem 2.2: In case of c > 1, the optimal shrinkage intensity is given by

α+
n = γ−1

ŵ′S∗(µn − γΣnb)− b′(µn − γΣnb)

ŵ′S∗ΣnŵS∗ − 2b′ΣnŵS∗ + b′Σnb

= γ−1

1′S∗n(µn − γΣnb)

1′S∗n1
+ γ−1ȳ′nQ̂∗n(µn − γΣnb)− b′(µn − γΣnb)

1′S∗nΣnS∗n1

(1′S∗n1)2
+ 2γ−1

ȳ′nQ̂∗nΣnS∗n1

1′S∗n1
+ γ−2ȳ′nQ̂∗nΣnQ̂∗nȳn − 2

b′ΣnS∗n1

1′S∗n1
− 2γ−1b′ΣnQ̂∗nȳn + b′Σnb

,

where ȳn = µn + Σ1/2
n x̄n and S∗n = Σ−1/2n V+

nΣ−1/2n .

From Assumption (A3), we get that the following vectors Σ−1/2n 1, Σ−1/2n (µn − γΣnb),

Σ−1/2n µn, and Σ1/2
n b possess bounded Euclidean norms. As a result, the application of Lemma

5.2 leads to

1′S∗n1 = 1′Σ−1/2n V+
nΣ−1/2n 1

a.s.−→ c−1(c− 1)−11′Σ−1n 1,

1′S∗n(µn − γΣnb) = 1′Σ−1/2n V+
nΣ−1/2n (µn − γΣnb)

a.s.−→ c−1(c− 1)−11′Σ−1n (µn − γΣnb),

b′ΣnS
∗
n1 = b′ΣnΣ

−1/2
n V+

nΣ−1/2n 1
a.s.−→ c−1(c− 1)−1b′ΣnΣ

−1
n 1 = c−1(c− 1)−1,

1′S∗nΣnS
∗
n1 = 1′Σ−1/2n (V+

n )2Σ−1/2n 1
a.s.−→ (c− 1)−31′Σ−1n 1

for p/n −→ c ∈ (1,+∞) as n→∞.

Finally, from Lemma 5.3 and 5.4 as well as by using the equalities

Q̂∗n = Σ−1/2n P+
nΣ−1/2n and P+

nV+
n = (V+

n )2 − V+
nηη

′(V+
n )2

η′V+
nη

with η = Σ−1/2n 1 we obtain

ȳ′nQ̂
∗
n(µn − γΣnb) = µ′nΣ

−1/2
n P+

nΣ−1/2n (µn − γΣnb) + x̄′nPnΣ
−1/2
n (µn − γΣnb)

a.s.−→ c−1(c− 1)−1µ′nQn(µn − γΣnb),

ȳ′nQ̂
∗
nΣnS

∗
n1 = µ′nΣ

−1/2
n P+

nV+
nΣ−1/2n 1 + x̄′nP

+
nV+

nΣ−1/2n 1
a.s.−→ (c− 1)−3µ′nQn1 = 0,

ȳ′nQ̂
∗
nΣnQ̂

∗
nȳn = x̄′n(P+

n )2x̄n + 2µ′nΣ
−1/2
n (P+

n )2x̄n + µ′nΣ
−1/2
n (P+

n )2Σ−1/2n µn

a.s.−→ c

(c− 1)3
+ (c− 1)−3µ′nQnµn,

b′ΣnQ̂
∗
nȳn = b′Σ1/2

n P+
n x̄n + b′Σ1/2

n P+
nΣ−1/2n µn

a.s.−→ c−1(c− 1)−1
(

b′µn −
1′Σ−1n µn

1′Σ−1n 1

)

for p/n −→ c ∈ (1,+∞) as n→∞.
Hence, α+

n
a.s.−→ α+, where

α+ = γ−1

1′Σ−1n (µn − γΣnb)

1′Σ−1n 1
+

γ−1

c(c− 1)
µ′nQn(µn − γΣnb)− b′(µn − γΣnb)

c2

(c− 1)

1

1′Σ−1n 1
+

γ−2

(c− 1)3
(µ′nQnµn + c)− 2

1

1′Σ−1n 1
− 2 γ−1

c(c−1)

(
b′µn −

1′Σ−1n µn
1′Σ−1n 1

)
+ b′Σnb
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This completes the proof of Theorem 2.2.
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6 Appendix B

Tables and Figures
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Figure 1: The asymptotic optimal shrinkage intensity as a function of c (left) and of the sample
size n (right).
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Figure 2: The relative losses for the portfolios based on optimal shrinkage estimator, the
traditional estimator, the bona-fide estimator and the equally weighted portfolio as a function
of c for different values of c, fixed p = 150 and different values of the condition index (150,
1000, 8000 from top to bottom).
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Figure 4: The oracle and the bona fide shrinkage coefficients for the first 50 assets (left) and
100 assets (right) and c = 0.2, 0.5, 0.8 and 2 (from top to bottom).
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p = 50 and c = 0.2
CE SR VaR ES

average median average median α = 0.05 α = 0.01 α = 0.05 α = 0.01
trad -1.76555 -1.71384 0.04102 0.04408 0.02672 0.34622 -1.24698 -2.22581
oracle -1.66281 -1.6279 0.03836 0.04062 -0.95527 -1.44478 -0.93466 -1.40688
bona fide -1.64487 -1.61976 0.03703 0.03898 -0.95752 -1.46251 -1.298 -1.75999
equal -2.46546 -2.45708 0.01747 0.01667 -0.96238 -1.48418 -1.30493 -1.75763
gmv -1.7044 -1.66003 0.04474 0.04742 -1.24698 -2.22581 -1.31805 -1.77074

p = 50 and c = 0.5
CE SR VaR ES

average median average median α = 0.05 α = 0.01 α = 0.05 α = 0.01
trad -3.10895 -2.86948 0.04032 0.04331 0.03955 0.55934 -1.25216 -2.2334
oracle -2.19538 -2.1336 0.03413 0.03582 -1.20093 -1.86062 -1.1323 -1.74002
bona fide -2.05219 -2.01325 0.03172 0.03291 -1.0931 -1.69468 -1.67068 -2.3468
equal -2.47703 -2.46523 0.0176 0.01776 -1.08567 -1.76208 -1.50844 -2.05655
gmv -2.75714 -2.59012 0.0523 0.05292 -1.25216 -2.2334 -1.53213 -2.08616

p = 50 and c = 0.8
CE SR VaR ES

average median average median α = 0.05 α = 0.01 α = 0.05 α = 0.01
trad -18.80143 -17.72463 0.02055 0.02023 0.04277 1.74382 -1.2472 -2.22427
oracle -2.39894 -2.3866 0.02031 0.01865 -2.879 -4.87552 -1.97098 -3.21846
bona fide -2.6238 -2.60074 0.01976 0.01916 -1.22955 -2.06654 -4.3227 -6.63222
equal -2.47045 -2.45915 0.01769 0.01775 -1.26809 -2.0478 -1.76774 -2.369
gmv -8.67635 -8.15525 0.03241 0.03245 -1.2472 -2.22427 -1.78173 -2.40348

p = 50 and c = 2
CE SR VaR ES

average median average median α = 0.05 α = 0.01 α = 0.05 α = 0.01
trad -24.44784 -23.7383 -0.01239 -0.01112 0.00525 1.25693 -1.24935 -2.22743
oracle -9.38714 -9.17254 -0.01261 -0.01219 -3.51657 -5.97855 -1.8153 -2.84675
bona fide -12.18357 -11.86633 -0.01316 -0.01154 -2.23072 -3.59898 -5.30814 -8.08356
equal -2.47412 -2.46527 0.01819 0.01805 -2.52278 -4.14614 -3.22776 -4.80051
gmv -6.27938 -6.13782 0.00498 0.00615 -1.24935 -2.22743 -3.6993 -5.53501

Table 1: Certainty equivalent, Sharpe ratio, Value-at-Risk and expected shortfall averaged over
1000 randomly chosen portfolios of size 50 and different values of c. The trading period is fixed
at 200 days from 01.01.2014 to 10.10.2014.
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p = 100 and c = 0.2
CE SR VaR ES

average median average median α = 0.05 α = 0.01 α = 0.05 α = 0.01
trad -1.50488 -1.42101 0.07882 0.07822 0.04445 0.29945 -1.24151 -2.23059
oracle -1.43113 -1.37694 0.07404 0.07361 -0.83142 -1.22887 -0.81285 -1.19665
bona fide -1.41588 -1.3674 0.07227 0.07182 -0.84239 -1.25081 -1.11574 -1.51356
equal -2.40043 -2.40332 0.01838 0.01793 -0.84853 -1.26252 -1.13456 -1.53018
gmv -1.45281 -1.37389 0.08036 0.07994 -1.24151 -2.23059 -1.14451 -1.53959

p = 100 and c = 0.5
CE SR VaR ES

average median average median α = 0.05 α = 0.01 α = 0.05 α = 0.01
trad -2.49811 -2.46517 0.0491 0.04971 0.03676 0.45061 -1.23692 -2.22751
oracle -1.91599 -1.90005 0.04445 0.045 -1.11946 -1.71233 -1.03912 -1.58793
bona fide -1.81656 -1.80127 0.04215 0.04214 -1.0366 -1.57957 -1.5364 -2.13475
equal -2.3951 -2.39566 0.01829 0.01801 -1.02879 -1.61281 -1.40842 -1.91279
gmv -2.21631 -2.18907 0.05454 0.05278 -1.23692 -2.22751 -1.42153 -1.91837

p = 100 and c = 0.8
CE SR VaR ES

average median average median α = 0.05 α = 0.01 α = 0.05 α = 0.01
trad -13.80483 -12.91635 0.01926 0.02058 0.05212 1.30538 -1.23559 -2.21778
oracle -2.3052 -2.30347 0.01972 0.01965 -2.51969 -3.98799 -1.72483 -2.70894
bona fide -2.47104 -2.45862 0.01965 0.01888 -1.2176 -2.09414 -3.56849 -5.13616
equal -2.39085 -2.38622 0.01833 0.01824 -1.24107 -2.05829 -1.76804 -2.34152
gmv -6.47477 -6.21022 0.0456 0.04673 -1.23559 -2.21778 -1.76762 -2.3518

p = 100 and c = 2
CE SR VaR ES

average median average median α = 0.05 α = 0.01 α = 0.05 α = 0.01
trad -63.01361 -61.25124 -0.00829 -0.00975 0.00518 1.43255 -1.24095 -2.22977
oracle -26.16811 -25.54021 -0.01134 -0.01164 -5.38551 -9.20075 -1.88699 -2.96903
bona fide -30.1065 -29.23551 -0.0116 -0.01258 -3.57836 -5.9384 -8.07706 -12.15231
equal -2.39875 -2.39528 0.01783 0.01755 -3.83868 -6.30492 -5.22286 -7.63462
gmv -7.15755 -7.02123 0.00445 0.00353 -1.24095 -2.22977 -5.56355 -8.10265

Table 2: Certainty equivalent, Sharpe ratio, Value-at-Risk and expected shortfall averaged over
1000 randomly chosen portfolios of size 100 and different values of c. The trading period is
fixed at 200 days from 01.01.2014 to 10.10.2014.
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p = 300 and c = 0.2
CE SR VaR ES

average median average median α = 0.05 α = 0.01 α = 0.05 α = 0.01
trad -1.46987 -1.46758 0.0976 0.09865 0.05329 0.30154 -1.24017 -2.25125
oracle -1.45133 -1.44916 0.09577 0.09693 -0.78201 -1.33434 -0.77598 -1.33958
bona fide -1.44735 -1.44579 0.09533 0.09653 -0.77761 -1.32319 -1.19482 -1.99672
equal -2.35709 -2.35673 0.01836 0.0184 -0.77692 -1.32071 -1.19054 -2.0004
gmv -1.45443 -1.45252 0.09732 0.09887 -1.24017 -2.25125 -1.18975 -2.0013

p = 300 and c = 0.5
CE SR VaR ES

average median average median α = 0.05 α = 0.01 α = 0.05 α = 0.01
trad -1.79542 -1.76418 0.07044 0.07 0.04827 0.31888 -1.23951 -2.24925
oracle -1.51127 -1.50021 0.06434 0.0643 -0.8869 -1.29331 -0.82115 -1.2044
bona fide -1.46261 -1.45231 0.06235 0.06242 -0.85692 -1.2443 -1.16634 -1.52194
equal -2.35432 -2.35385 0.01839 0.01837 -0.85904 -1.2505 -1.12257 -1.45355
gmv -1.54615 -1.51707 0.08519 0.08328 -1.23951 -2.24925 -1.12727 -1.46092

p = 300 and c = 0.8
CE SR VaR ES

average median average median α = 0.05 α = 0.01 α = 0.05 α = 0.01
trad -9.06343 -8.96082 0.01513 0.01544 0.02813 0.84991 -1.23959 -2.24892
oracle -2.20963 -2.20671 0.01901 0.01914 -2.16156 -3.34203 -1.46594 -2.24366
bona fide -2.4478 -2.43266 0.01839 0.01848 -1.25743 -2.04462 -2.99941 -4.21906
equal -2.35577 -2.35489 0.01824 0.01837 -1.29321 -1.9974 -1.77034 -2.29253
gmv -4.22143 -4.22323 0.0306 0.03216 -1.23959 -2.24892 -1.77521 -2.31476

p = 300 and c = 2
CE SR VaR ES

average median average median α = 0.05 α = 0.01 α = 0.05 α = 0.01
trad -85.42486 -84.6437 -0.03032 -0.02978 0.05349 1.30579 -1.23807 -2.2519
oracle -38.05023 -37.83635 -0.02152 -0.02114 -6.7731 -10.05307 -1.80992 -2.84784
bona fide -43.39013 -43.0466 -0.02558 -0.02517 -4.52543 -6.66035 -9.06877 -12.26569
equal -2.35459 -2.35355 0.01836 0.01846 -4.84062 -7.13362 -6.0214 -8.08897
gmv -6.47548 -6.42183 0.04717 0.04649 -1.23807 -2.2519 -6.44415 -8.65646

Table 3: Certainty equivalent, Sharpe ratio, Value-at-Risk and expected shortfall averaged over
1000 randomly chosen portfolios of size 300 and different values of c. The trading period is
fixed at 200 days from 01.01.2014 to 10.10.2014.
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