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Abstract

Standard Markovian optimal stopping problems are consistent in the
sense that the �rst entrance time into the stopping set is optimal for each
initial state of the process. Clearly, the usual concept of optimality cannot
in a straightforward way be applied to non-standard stopping problems
without this time-consistent structure. This paper is devoted to the solu-
tion of time-inconsistent stopping problems with the reward depending on
the initial state using a game-theoretic approach in which each state of the
process corresponds to a player in the game. More precisely, we give a
precise equilibrium de�nition — of the type subgame perfect Nash equi-
librium based on pure Markov strategies. Such equilibria do not always
exist. We, however, develop an iterative approach to �nding such equilib-
rium stopping times for a general class of problems and apply this approach
to one-sided stopping problems on the real line. We furthermore prove a
veri�cation theorem based on a set of variational inequalities which also
allows us to �nd equilibria. As an application of the developed theory we
study a selling strategy problem under exponential utility and endogenous
habit formation.
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1 Introduction

Consider a Markovian process X with state space E ⊆ Rd and the problem of
choosing a stopping time τ in order to maximize the expected discounted reward

Ex(e−rτF (Xτ , x)), for each current state x ∈ E.

Note that the dependence of the reward F (Xτ , x) on the current state x implies
that this is not a standard optimal stopping problem. Speci�cally, the problem
is inconsistent in the sense that we cannot generally expect the existence of an
optimal stopping time that is independent of the current state x. In other words,
if an optimal stopping time is optimal for the current state x, then it will generally
not be optimal at a later time, call it t, after adjusting the reward, since the then
current state Xt will typically be di�erent from x. Optimal stopping and more
general optimal control problems with this property are called time-inconsistent.
It is clear that the time-inconsistency implies that the usual notion of optimality
cannot be applied straightforwardly — it must �rst be clari�ed how the time-
inconsistent stopping problem should be interpreted. One way of dealing with
this issue is of course to treat the problem as a parametrized, by the current state
x, optimal stopping problem and ignore the issue that the corresponding optimal
stopping time will not generally be optimal at later times. In the literature this is
known as a pre-commitment strategy. In the present paper we instead interpret
the time-inconsistent stopping problem using a game-theoretic approach where
we let each state x correspond to an agent, who all play a sequential game against
each other regarding when to stop the processX — and then we look for equilib-
rium strategies i.e. equilibrium stopping times. The type of equilibria we consider
are subgame perfect Nash equilibria based on pure Markov strategies (known as
pure Markov perfect equilibria), see Remark 2.5 for an explanation of these terms.
The present paper contains, to our knowledge, the �rst general treatment of the
game-theoretic approach to time-inconsistent stopping problems.
The structure of the paper is as follows. In Section 1.1 we describe previous
literature related to time-inconsistent problems. In Section 2 we formulate the
general time-inconsistent stopping problem introduced above in more detail and
de�ne the notions of pure Markov strategies and subgame perfect Nash equilib-
ria in this setting. We also present an example which proves that an equilibrium
(of the type we consider) does not always exist. In Section 3 we develop an iter-
ative approach to �nding equilibrium stopping times in a general setting under
certain assumptions. As an application of this iterative approach we, in Section
4, study a class of one-sided problems on the real line. In Section 5 we present
a veri�cation theorem for time-inconsistent optimal stopping based on a set of
variational inequalities that we call the time-inconsistent variational inequalities.
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Illustrative examples are studied in Sections 3, 4, and 5. In Example 5.7 we ap-
ply the veri�cation theorem to �nd equilibrium selling strategies for an investor
with exponential utility and endogenous habit formation.

1.1 Previous literature

Time-inconsistency in �nancial economics typically arises for either of the fol-
lowing reasons:

(i) Endogenous habit formation,

(ii) Non-exponential discounting,

(iii) Mean-variance utility.

Stopping problems with (i) and (ii) can be formulated and studied in the frame-
work of the present paper whereas (iii) goes beyond this framework. Stopping
problems with (ii)—(iii) are described below. A stopping problem with (i) is stud-
ied in Example 5.7. See also [4] for a short description of (i)—(iii).
There is a substantial �nancial economics literature that studies speci�c time-
inconsistent problems; in either continous or discrete time, for either stochastic
or deterministic models, and using either game-theoretic or pre-commitment ap-
proaches. Historically important papers include [16, 30, 32, 33]. We remark that
most of these papers consider problems of control type. Papers in �nancial eco-
nomics studying time-inconsistent stopping problems include [1, 10, 11, 17, 18].
The �rst paper to use a game-theoretic approach — based on subgame perfect
Nash equilibria — to time-inconsistency, there termed consistent planning, was
[33], where a deterministic problem under non-exponential discounting in dis-
crete time is studied. Further �nancial economics research in this direction can
be found in [2, 16, 22, 30, 32].
Early papers of a more mathematical kind to consider the game-theoretic ap-
proach — based on subgame perfect Nash equilibria — in time-inconsistent prob-
lems in continuous time are [12, 14], who study optimal consumption and invest-
ment under non-exponential (hyperbolic) discounting. Inspired by the approach
of e.g. [12, 14], the �rst papers to develop a general mathematical theory for
�nding subgame perfect Nash equilibria for time-inconsistent stochastic control
problems in Markovian models are [3, 4]. The main feature of that theory is a
generalization of the standard HJB equation called the extended HJB system and
the main result is a veri�cation theorem saying that if a solution to the extended
HJB system exists then it corresponds to an equilibrium. In [24] it is shown that
a regular equilibrium is necessarily a solution to an extended HJB system. Other
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papers studying speci�c time-inconsistent control problems from a more math-
ematical perspective include [5, 9, 13, 19, 23].
Papers of a more mathematical kind to study time-inconsistent stopping include
[20] who study a stopping problem with non-exponential discounting and [26,
29] (see the discussion below). We refer to [4, 20, 26, 29] for short surveys of the
literature on time-inconsistent problems.
Endogenous habit formation problems (see Example 5.7) are time-inconsistent
because the reward depends on the current state. Stopping problems of this kind
can therefore be studied in the framework of the present paper. A version of the
non-exponential discounting stopping problem corresponds to maximizing

Et,x(δ(τ − t)F̃ (Xτ )) (1.1)

with respect to stopping times τ , where the discounting function δ : [0,∞) →
[0, 1] is a decreasing (non-exponential) function satisfying δ(0) = 1. Problem
(1.1) can in our framework be obtained by letting one of the dimensions of X
correspond to time, i.e., by considering the time-space process.
Mean-variance problems are, however, time-inconsistent for the fundamentally
di�erent reason that the expression to be maximized is a non-linear function of
the expected value of a reward. Hence, mean-variance problems cannot be stud-
ied in the present framework. A version of the mean-variance stopping problem
is to �nd a stopping time τ that maximizes

Ex(Xτ )− cV arx(Xτ ), where c > 0 is a �xed constant. (1.2)

In [29], this mean-variance stopping problem is studied for an underlying geo-
metric Brownian motion (i.e. a mean-variance selling problem in a Black-Scholes
market). The problem is interpreted and solved in two di�erent ways, by the
introduction of two di�erent de�nitions of optimality. Static optimality, cor-
responds to �nding, for a �xed x > 0, a stopping time that maximizes (1.2).
The static optimality de�nition corresponds to a pre-commitment approach. Dy-
namic optimality, corresponds to �nding a stopping time τ ∗ such that there is no
other stopping time σ with Px(EXτ∗ (Xσ)− cV arXτ∗ (Xσ) > Xτ∗) > 0 for some
x > 0. This is a novel interpretation of time-inconsistent problems, that does not
rely on game-theoretic arguments, see, however, Remark 3.3 below. We refer to
[29] for a discussion of the di�erence between the game-theoretic approach and
the dynamic optimality approach. Time-inconsistent stopping problems with
more general non-linear functions of the expected reward are studied in [26]
using an approach which is inspired by [29].
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2 Problem formulation

On the �ltered probability space (Ω,F , (Ft)t≥0,Px) we consider a strong Markov
process X = (Xt)t≥0 taking values in (E,B) where E ⊆ Rd and B is the
corresponding Borel σ-algebra and X0 = x ∈ E. We assume that the �ltra-
tion satis�es the usual conditions and X to have cádlág sample paths and to be
quasi left continuous and that x 7→ Px(F ) is measurable for each F ∈ F . The
associated expectations are denoted by Ex. Without loss of generality we as-
sume that (Ω,F) equals the canonical space so that the shift operator θ given by
θt(ω)(s) = ω(t + s) for ω = (ω(t))t≥0 ∈ Ω and t, s ≥ 0 is well-de�ned. The
class of stopping times with respect to (Ft)t≥0 is denoted byM.
Consider a function F : E ×E → R and the problem of �nding a stopping time
τ such that it maximizes, over the class of stopping timesM,

Jτ (x) := Ex
(
e−rτF (Xτ , x)1{τ<∞}

)
, for each x ∈ E,

where r ≥ 0 is a constant and — to guarantee that all expectations are well-
de�ned — the function F (·, y) is measurable and bounded from below for each
�xed y ∈ E. For the ease of exposition we will in the rest of the paper not
explicitly write out indicator functions of the type 1{τ<∞} in expected values,
but instead implicitly assume that they are there.
The di�erence in our formulation to usual Markovian optimal stopping problems
is that the reward F (Xτ , x) explicitly depends on the initial state X0 = x. In the
standard formulation, the reward F (Xτ , x) is independent of x. In that classical
case, it is well-known that — under minimal assumptions — an optimal stopping
time is Markovian in the sense that it is a �rst entrance time into the stopping
set, see, e.g., [31], I.2.2. In particular, this solution is consistent meaning that
one rule is optimal for each initial state, i.e. such problems are consistent with
Bellman’s principle of optimality.
This kind of consistency can of course not be expected in our formulation. We
therefore have to be careful how to reinterpret the concept of optimality. Clearly,
we could choose di�erent stopping times for di�erent starting points x. This,
however, does not represent the following interpretation of our problem:
We interpret the time-inconsistent stopping problem above as a stopping prob-
lem for a person whose preferences, identi�ed with the reward function F (·, x),
change as the state x changes. Based on this we think of the person as compris-
ing versions of herself, one version for each state x. These versions of the person
can then be thought of as agents who play a sequential game against each other,
where the game regards when to stop the process X . Note that the number of
players in this game is generally uncountable. Each agent, i.e. each x-version of
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the person, then has the possibility, at x, to either stop, or not stop. A reasonable
de�nition of an equilibrium strategy, in this case an equilibrium stopping time τ̂ ,
should therefore be such that the following holds:
Under the assumption that each other version of the person uses τ̂ then,

(i) no x-version of the agent wants to stop in her state before τ̂ , and

(ii) no x-version of the agent wants to continue for an "in�nitesimal" time if τ̂
calls for stopping.

We thus de�ne an equilibrium stopping time τ̂ using conditions which guarantee
that no agent wants to deviate from τ̂ . Furthermore, we demand that the decision
whether to stop or not should depend directly only on the preferences of each
agent x and not, for example, on the outcome of some randomization procedure,
or on events from the past, cf. Remark 2.5. These conditions are, in reverse order,
formalized in the following de�nitions.

De�nition 2.1. A stopping time τ ∈ M is said to be a pure Markov strategy
stopping time if it is the entrance time of the state process into a set in the state
space, more speci�cally, if τ = inf{t ≥ 0 : Xt ∈ S} for some measurable S ⊆ E.
Denote the set of such stopping times by N .

De�nition 2.2. A stopping time τ̂ ∈ N is said to be a (pure Markov strategy)
equilibrium stopping time if, for all x ∈ E,

Jτ̂ (x)− F (x, x) ≥ 0, and (2.1)

lim inf
h↘0

Jτ̂ (x)− Jτ̂◦θτh+τh(x)

Ex(τh)
≥ 0, (2.2)

where τh = inf{t ≥ 0 : |Xt −X0| ≥ h}.

De�nition 2.3. If τ̂ is a (pure Markov strategy) equilibrium stopping time then
the function Jτ̂ (x), x ∈ E, is said to be the (pure Markov strategy) equilibrium
value function corresponding to τ̂ . The function

fτ̂ (x, y) := Ex(e−rτ̂F (Xτ̂ , y)), (x, y) ∈ E × E

is said to be the auxiliary function corresponding to τ̂ .

It follows that the equilibrium value function satis�es

Jτ̂ (x) = fτ̂ (x, x) = Ex(e−rτ̂F (Xτ̂ , x)), x ∈ E.
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This paper is devoted to the question of how to �nd equilibrium stopping times
(of the type in De�nition 2.2).
The interpretation of (2.1) is that each x-agent should prefer the equilibrium
strategy over stopping directly. The interpretation of (2.2) is that each x-agent
should prefer the equilibrium strategy over not stopping on the short (stochastic)
time interval [0, τh), over which we interpret the x-agent as being in charge,
given that the equilibrium strategy is played from τh and onwards.
Remark 2.4. De�nition 2.2 is inspired by time-inconsistent stopping problems in
�nancial economics, see e.g. [11, 18], and the equilibrium de�nition for time-
inconsistent stochastic control problems, see e.g. [3, 4].
Remark 2.5. Let us informally describe some of the game theoretic jargon used
above, for a reference see e.g. [25]. A Markov strategy depends on past events
that are payo�-relevant. Markov strategies can be pure or mixed. A pure strategy
is one that determines the actions of the agents without randomization. In our
setting, the actions of the agents are to stop or not to stop, hence �rst entrance
times correspond to pure strategies. A mixed strategy is one that randomly se-
lects pure strategies. In our situation, this could be realized by extending the
underlying �ltration in a suitable way and consider general stopping times with
respect to this �ltration. See Example 2.6 below for an illustration. A subgame
perfect Nash equilibrium is a strategy that forms a Nash equilibrium at any time
t, and a Markov perfect equilibrium is a subgame perfect Nash equilibrium in
which all players use Markov strategies. Thus, De�nition 2.2 corresponds to a
subgame perfect Nash equilibrium, and more speci�cally a pure Markov perfect
equilibrium.

Example 2.6. As mentioned above, in standard Markovian optimal stopping
problems, we only have to consider �rst entrance times and the �ltration gener-
ated by X . Moreover, any additional information included in some larger �ltra-
tion cannot improve the optimal value function as long as the process is Marko-
vian also with respect to the larger �ltration. Similarly, in Markovian Dynkin-
type stopping games it is also the case that equilibria can be found (under tech-
nical assumptions) as �rst-entrance times, see [15]. This is however not the case
for equilibrium stopping problems in general as we will see in the following ex-
ample.
Consider a discrete time processX that lives on the state spaceE = {∂1, a, b, ∂2} ⊆
R where ∂1 and ∂2 are absorbing states and

Pa(X1 = ∂1) = Pa(X1 = b) = Pb(X1 = a) = Pb(X1 = ∂2) =
1

2
.

Let r = 0 and de�ne X∞ = limt→∞Xt.
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∂1 a b ∂2

1/2 1/2

1/2 1/2

(X can of course be embedded into a continuous time Markov chain, so that we
do not leave the setting of this paper). Let

F (x, a) =


0, x = ∂1

1, x = a

3, x = b

0, x = ∂2,

F (x, b) =


4, x = ∂1

0, x = a

1, x = b

0, x = ∂2

and F (·, ∂i) = 0 for i = 1, 2. We will now show that no entrance time of the state
process X into a subset S ⊆ E can be an equilibrium stopping time, i.e. no pure
Markov strategy equilibrium stopping time exists. We do this by investigating
all such stopping sets S. Since ∂1 and ∂2 are absorbing we can without loss of
generality assume that ∂1, ∂2 ∈ S. It remains to consider the following four sets:

(i) S = {∂1, ∂2, a, b}: This stopping set corresponds to the rule that both agent
a and agent b should always stop when they get the chance. But this rule
cannot correspond to an equilibrium stopping time, since agent a would
obtain 1 when stopping but she obtains 1

2
·0+ 1

2
·3 = 3

2
> 1 (in expectation)

if she deviates from the rule by never stopping.

(ii) S = {∂1, ∂2, a}: This stopping set corresponds to the rule that a should
stop and b should continue. But this cannot correspond to an equilibrium
stopping time, since agent b obtains 1

2
· 0 + 1

2
· 0 = 0 when continuing and

1 > 0 when stopping.

(iii) S = {∂1, ∂2, b}: This stopping set corresponds to the rule that b should stop
and a should continue. Let V0,0(b) denote the value that agent b obtains
when not following this rule. Then V0,0(b) = 1

2
· 0 + 1

2
(1
2
· 4 + 1

2
V0,0(b))⇒

V0,0(b) = 4
3
. Note that agent b obtains 1 < V0,0(b) when stopping. This

means that the set {∂1, ∂2, b} cannot be the stopping set of an equilibrium
stopping time.

8



(iv) S = {∂1, ∂2}: This stopping set corresponds to the rule that both a and
b should continue. Since agent a obtains zero in the absorbing states she
prefers to stop since this gives her 1.

The above implies that there is no equilibrium stopping time in the set of pure
Markov strategy stopping times. However, a mixed strategy equilibrium stop-
ping time (in the sense de�ned below for this example) does exist, as we shall
now see. Consider the stopping time τp,q de�ned as follows: for any t ∈ N0 given
{τp,q ≥ t}, if Xt ∈ {∂1, ∂2} then τp,q = t, if Xt = a then τp,q = t with probabil-
ity p, and if Xt = b then τp,q = t with probability q (assume that the �ltration
(Ft)t≥0 is large enough for τp,q be be a stopping time with respect to (Ft)t≥0).
Heuristically, the stopping time τp,q corresponds to the agents a and b �ipping
biased coins in order to decide whether to stop or not. Let Vp,q(x), x ∈ {a, b},
denote the (expected) value that agent x obtains when τp,q is used.
The following ad hoc de�nition, which is inspired by [34], will be used only in
the present example:
A stopping time of the type τp,q (de�ned above) is said to be a mixed strategy
stopping time. A mixed strategy stopping time τp′,q′ is said to be a mixed strategy
equilibrium stopping time if Vp,q′(a) ≤ Vp′,q′(a) for all p ∈ [0, 1] and Vp′,q(b) ≤
Vp′,q′(b) for all q ∈ [0, 1].
Heuristically, a mixed strategy equilibrium stopping time τp′,q′ is a strategy from
which neither agent a (nor b) wants to deviate from by choosing another mixed
strategy τp,q′ (τp′,q), i.e. they do not want to deviate by choosing another biased
coin (including degenerate biased coins, i.e. with p, q ∈ {0, 1}).
We obtain

Vp,q(a) = p · 1 + (1− p)
[
1

2
· 0 +

1

2

(
q · 3 + (1− q)

(
1

2
Vp,q(a) +

1

2
· 0
))]
⇒

Vp,q(a) =
p+ 3

2
(1− p)q

1− 1
4
(1− p)(1− q)

, and

Vp,q(b) = q · 1 + (1− q)
[
1

2
· 0 +

1

2

(
p · 0 + (1− p)

(
1

2
Vp,q(b) +

1

2
· 4
))]
⇒

Vp,q(b) =
q + (1− p)(1− q)

1− 1
4
(1− p)(1− q)

.

Choose p′ = 1
5

and q′ = 3
5
, i.e. consider the mixed strategy stopping time τ 1

5
, 3
5
.

The corresponding expected values are V 1
5
, 3
5
(a) = V 1

5
, 3
5
(b) = 1. All we need to

do in order to verify that τ 1
5
, 3
5

is a mixed strategy equilibrium stopping time, is
to check that neither agent a nor agent bwants to deviate from it, i.e. we need to
verify thatVp, 3

5
(a) ≤ V 1

5
, 3
5
(a) = 1 for all p ∈ [0, 1] and thatV 1

5
,q(b) ≤ V 1

5
, 3
5
(b) = 1
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for all q ∈ [0, 1]. This is easily done as in fact Vp, 3
5
(a) = V 1

5
,q(b) = 1 for all

p, q ∈ [0, 1]. It follows that the stopping time τ 1
5
, 3
5

is indeed a mixed strategy
equilibrium stopping time.

3 A forward iteration approach

The previous example illustrates that there is no hope to come up with a general
method to �nd equilibrium stopping times (of the pure Markov strategy type,
see De�nition 2.2). In particular cases, this can however be done. We now pro-
pose an approach for constructing a candidate for an equilibrium stopping time
by solving a — possibly terminating — sequence of ordinary optimal stopping
problems. More precisely, we construct a set Ŝ and prove that — under certain
assumptions — the �rst entrance time τŜ into Ŝ is an equilibrium stopping time.
To this end, write

S0 := ∅, v0(x, y) := sup
τ

Ex(e−rτF (Xτ , y)).

and de�ne recursively for all n ≥ 1

Sn := {x ∈ E : vn−1(x, x) = F (x, x)},
vn(x, y) := sup

τ≤τSn
Ex(e−rτF (Xτ , y)).

Note that vn(·, y) is the value function of an ordinary optimal stopping problem
for the processX absorbed inSn. It holds thatS1, S2, ... is an increasing sequence
of sets and we assume that

S1, S2, . . . are closed sets. (A1)

We denote the closure of the union⋃∞n=0 Sn inE by Ŝ. Moreover, vn is decreasing
in n and therefore converges to a limit v∞. By the construction of the problem,
it is furthermore natural to assume that

v∞(x, x) = sup
τ≤τŜ

Ex(e−rτF (Xτ , x)) for all x ∈ E. (A2)

Our candidate for the equilibrium stopping time is now the �rst entrance time
τŜ into Ŝ. The heuristic motivation is as follows: In case it is rational for the
agent in state y = x to stop immediately in the starting state X0 = x in problem
vn(x, x), n minimal, say, there is no reason for her not to stop immediately in x
under the global time τŜ as τŜ ≤ τSn . Hence, the agent should accept τŜ when
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x ∈ Ŝ.
On the other hand, in the case x 6∈ Ŝ, there exists a stopping time τ ≤ τŜ
that gives strictly more expected reward than to stop immediately. In case the
structure of the problem is such that

(2.2) is satis�ed with τ̂ = τŜ for all x ∈ Ŝ\
⋃
n∈N

Sn, (A3)

and

F (x, x) ≤ Ex(e−rτŜF (XτŜ
, x)) for all x 6∈ Ŝ, (A4)

we see that it is also in this case optimal for the agent to accept τŜ . Indeed:

Theorem 3.1. Under the assumptions (A1) – (A4), the stopping time τŜ de�ned
above is an equilibrium stopping time.

Proof. Write τ̂ = τŜ for short. Let us �rst consider x 6∈ Ŝ. As Ŝ is closed, we �nd
h0 > 0 such that the open ball B(x, h0) around x with radius h0 is a subset of
Ŝc. Therefore,

Jτ̂ (x) = Jτ̂◦θτh+τh(x)

for all h ≤ h0, so that (2.2) is ful�lled automatically. Furthermore, (A4) warrants
(2.1).
For x ∈ Ŝ\⋃n∈N Sn, (2.1) holds trivially as τ̂ calls for immediate stopping, and
(A3) yields (2.2).
It remains to check that the equilibrium conditions (2.1) and (2.2) are ful�lled for
x ∈ ⋃

n∈N Sn. In this case (2.1) holds trivially. For the second property, �nd
n ∈ N such that x ∈ Sn \ Sn−1. As Sn−1 is closed, there exists ε0 > 0 such
that the ball B(x, ε0) around x with radius ε0 is a subset of Scn−1. Then, for each
h < ε0 it holds that τ̂ ◦ θτh + τh ≤ τSn−1 and therefore

F (x, x) = vn(x, x) = sup
τ≤τSn−1

Ex(e−rτF (Xτ , x))

≥ Ex(e−rτ̂◦θτh+τhF (Xτ̂◦θτh+τh , x)) = Jτ̂◦θτh+τh(x),

where we used that x ∈ Sn implies vn(x, x) = F (x, x) and vn−1(x, x) = F (x, x).
This yields

lim inf
h↘0

Jτ̂ (x)− Jτ̂◦θτh+τh(x)

Ex(τh)
= lim inf

h↘0

F (x, x)− Jτ̂◦θτh+τh(x)

Ex(τh)
≥ 0.

Remark 3.2. We now discuss the assumptions above.
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• On (A1): Optimal stopping sets are well-known to be closed under weak
assumptions, see [31], I.2.2. In particular, (A1) is obviously ful�lled if

x 7→ F (x, x), x 7→ vn(x, x) are continuous.

• On (A2): This assumption warrants that — in the sense described above
— the optimal stopping sets of the problems related to vn converge to the
optimal stopping set of the limiting problem. In particular, if the procedure
terminates, i.e., there exists n0 ∈ N such that Sn0 = Sn0+1, then assump-
tion (A2) is automatically ful�lled.

• On (A3): This assumption is trivially ful�lled when the procedure termi-
nates. In general, it can be understood as a version of a smooth �t property
for the limiting problem.

• On (A4): In contrast to the previous conditions, (A4) is more than a techni-
cal regularity assumption. As mentioned above, it is by construction clear
that for x 6∈ Ŝ, there exists a stopping time τ ≤ τŜ with strictly larger ex-
pected reward than to stop immediately. But it is not clear in general that
τŜ also has this property. As discussed at the end of this section, Example
3.5 is a counterexample.

Remark 3.3. In some cases of interest, for example in Section 4, the procedure
terminates already after one step, i.e.

Ŝ = {x ∈ E : F (x, x) = sup
τ

Ex(e−rτF (Xτ , x))}.

Under (A1) it holds that Xτ̂ ∈ Ŝ, where we write τ̂ = τŜ as above. Hence, in the
case of termination after one step, we obtain, using the strong Markov property,
for all x ∈ E and all stopping times σ,

Px
(
EXτ̂

(
e−rσF (Xσ, X0)

)
> F (Xτ̂ , Xτ̂ )

)
= 0.

This may be interpreted as an adaptation of the notion of dynamic optimality (see
Section 1.1) to our setup. Hence, in this case the equilibrium (a local property)
is in this sense also dynamically optimal (a global property). We remark that the
equilibrium in Example 3.4 below is not dynamically optimal.

We close this section by discussing two examples. A general class of examples
with a one-sided equilibrium stopping time found by this approach is discussed
separately in Section 4.
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Example 3.4. We now consider an underlying one-dimensional Wiener process
X and �x a discount rate r > 0. To illustrate the theory with an explicit example,
we look at the reward function

F (x, y) :=

x+ , y ≥ 0,

(−x)+ , y < 0.

A (somewhat arti�cial) �nancial interpretation is that the holder of a perpetual
American option with strike 0 in a Bachelier market is uncertain whether she has
bought a put or a call option. She is inherently optimistic and changes her belief
depending on the state the process is in. If the current state is non-negative,
i.e. y ≥ 0, she believes that the derivative is a call, and a put otherwise. Using
standard approaches to the solution of optimal stopping problems, such as a free
boundary approach or the harmonic function technique of [6], it is straightfor-
ward to �nd that for �xed y ≥ 0

v0(x, y) = sup
τ

Ex(e−rτF (Xτ , y)) =

x , x ≥ x1,

a1e
cx , x < x1,

where c =
√

2r, x1 = 1/c and a1 = 1/(ec). Due to symmetry, we have for y < 0
that v0(x, y) = v0(−x,−y). Therefore,

S1 = (−∞,−x1] ∪ [x1,∞).

Now, we can go on iteratively to �nd vn and Sn again using standard arguments
for optimal stopping problems for di�usions. Writing

fn(x) = ane
−cx + bne

cx,

we try to �nd xn+1, an, bn such that

fn(−xn−1) = 0,

fn(xn) = xn,

f ′n(xn) = 1.

This system is indeed solvable and the solution is given by

an =
1

2
ecxn

(
xn −

1

c

)
,

bn =
1

2
e−cxn

(
xn +

1

c

)

13



and x = xn is the unique solution in (0, xn−1) of

e2cx = e−2cxn−1

1
c

+ x
1
c
− x

.

Then,
Sn = (−∞,−xn] ∪ [xn,∞)

and for y ≥ 0

vn(x, y) =


x , x ≥ xn+1,

fn(x) , −xn+1 ≤ x < xn+1,

0 , x < −xn+1

and, as above, for y < 0 it holds that vn(x, y) = vn(−x,−y). It is easily seen that
xn converges monotonically to the unique solution x = x∗ in (0, 1/c) of

e4cx =
1
c

+ x
1
c
− x

,

so that
Ŝ = (−∞,−x∗] ∪ [x∗,∞)

and for y ≥ 0

v∞(x, y) =


x , x ≥ x∗,

f∞(x) , −x∗ ≤ x < x∗,

0 , x < −x∗

with
f∞(x) =

1

2
ecx
∗
(
x∗ − 1

c

)
e−cx +

1

2
e−cx

∗
(
x∗ +

1

c

)
ecx.

Again, v∞(x, y) = v∞(−x,−y) for y < 0.
It is straightforwardly veri�ed that (A1) and (A2) are ful�lled. (A3) holds by the
smoothness of the function v∞ in x∗. (A4) could be veri�ed using the theory
developed in the following section. Here, it is however immediately checked
elementary due to the convexity of f∞ for x ≥ 0 and f ′∞(x∗) = 1. Hence,
Theorem 3.1 yields that

τ̂ = inf{t ≥ 0 : |Xt| ≥ x∗}

is an equilibrium stopping time.
Example 3.5. We now come back to Example 2.6. We already know that there
is no pure Markov strategy equilibrium stopping time, so that the approach de-
scribed in this section cannot be successful. Indeed, S1 = {∂1, ∂2} and the pro-
cedure terminates after this step. As argued in Example 2.6 (iv), this is no equi-
librium stopping time. More precisely, condition (A4) fails to hold true.
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Figure 1: The functions x 7→ v∞(x, x) and x 7→ F (x, x) for c = 1. Here, x∗ ≈
0.9575.

4 A class of one-sided solvable problemswith po-
tential jumps

As a more advanced application of the method in the previous example, we con-
sider a Markov process on the real line. To construct an equilibrium stopping
time for a wide class of examples, we consider the general setting of [8] for the
auxiliary optimal stopping problems with value function

vy(x) = sup
τ

Ex(e−rτF (Xτ , y)), y ∈ R. (4.1)

That is, we assume that each function F (·, y) has a representation of the form

F (x, y) = Ex
(
Qy(MT )

)
,

where Mt := sup0≤s≤tXs, t ≥ 0, denotes the running maximum process of X
and T is an exponentially with parameter r distributed random variable inde-
pendent of X . In this section we assume that r > 0. At �rst sight, it is not clear
at all why such a representation should exist. However, as detailed in Section 2.2
of [8], it always exists under suitable integrability and smoothness assumptions.
More explicitly, it is given by

Qy(z) :=
1

r

∫ z

−∞
(r − AX)F (u, y)Px(XT ∈ du|MT = z),

Px(XT ∈ du|MT = z) := Px(XT ∈ du , MT ∈ dz)/Px(MT ∈ dz),
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where AX denotes the (extended) in�nitesimal generator of X .
Remark 4.1. IfAX is applied to a function E×E → R thenAX should, here and
in the following, be understood to only act on the �rst variable.

The conditional density used above can be found (semi-)explicitly for general
Lévy processes and di�usions, so that also Qy is given in analytical terms in
these cases. The following result, which follows directly from Theorem 2.5 in
[8], then leads to the solution of the auxiliary optimal stopping problems in case
they are of a one-sided form:

Lemma 4.2. Assume that for each y there exists a point x∗y such that

(B1) Qy(x) ≤ 0 for x ≤ x∗y,

(B2) Qy(x) is positive and non-decreasing for x > x∗y.

Then, the value function of the auxiliary optimal stopping problem (4.1) is given by

vy(x) = Ex
(
Qy(MT )1{MT≥x∗y}

)
and

τ ∗y := inf{t ≥ 0 : Xt ≥ x∗y}

is an optimal stopping time.

Now, using the approach described in Section 3, we obtain the following veri-
�cation theorem for problems where the underlying auxiliary optimal stopping
problems are one-sided.

Theorem 4.3. In the one-dimensional setting of this section assume that for each y
there exists a point x∗y such that (B1) and (B2) hold true. Furthermore, assume that
there exists a point x∗ such that x∗y ≤ y for y ≥ x∗ and x∗y ≥ x∗ for y ≤ x∗. Then

τ̂ := inf{t ≥ 0 : Xt ≥ x∗}

is an equilibrium stopping time.

Remark 4.4. The conditions of Theorem 4.3 imply that if the function y 7→ x∗y is
continuous then x∗ is the unique �xed point of that function.

Proof. Note that Lemma 4.2 yields that the forward iteration sequence of Section
3 is given by

S1 = [x∗,∞)
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and the procedure then terminates, i.e. S1 = S2 = S3 = ... = Ŝ and S1 is closed
(this can easily be seen directly and it also follows from the following argument).
To apply Theorem 3.1, it remains to check (A4), i.e.

F (x, x) ≤ Ex(e−rτ̂F (Xτ̂ , x)) for all x < x∗.

This, however, holds as

F (x, x) = Ex
(
Qx(MT )

)
≤ Ex

(
Qx(MT )1{MT≥x∗}

)
,

where we used that Qx(MT ) is non-positive on {MT < x∗} ⊆ {MT < x∗x} by
(B1). We conclude by noting that Lemma 2 in [7] yields

Ex
(
Qx(MT )1{MT≥x∗}

)
= Ex(e−rτ̂F (Xτ̂ , x)).

Remark 4.5. By applying the previous results to −X , we immediately obtain an
analogous result for the case that the auxiliary optimal stopping sets are of left-
sided type (−∞, x∗y].

Example 4.6. To illustrate the general approach above, we consider a perpetual
American call problem with state-dependent strike K(y) in a general Lévy mar-
ket. One interpretation is an investor who has forgotten the concerted strike of
the option. Depending on the state of the price process, she changes her opinion
on the concerted strike. More concretely, her reward function for the log-price
process X has the structure

F (x, y) = (ex −K(y))+,

where we assume that the function K : R → (0,∞) is continuous and non-
increasing; the interpretation of this is that the investor believes the strike to be
lower when the asset price is higher. Let X be a general Lévy process. To avoid
trivial cases, we assume X not to be a subordinator and to ful�ll E0(e

X1) < er.
For technical reasons, we �rst ignore the (·)+, i.e. we change the reward function
to

F̃ (x, y) = ex −K(y),

which makes some arguments and notations in the following shorter. Using the
approach from [8], or just by guessing, we see that the function Qy is given by

Qy(x) = aex −K(y),

where a = 1/E0 e
MT < 1, see also [27]. The value of a can be found more ex-

plicitly for many classes of processes. For example, for Lévy processes without
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positive jumps, MT is exponentially distributed. In the case of a Wiener pro-
cess X , we obtain a =

√
2r−1√
2r

. The optimal stopping boundary for the auxiliary
problem is therefore, by Lemma 4.2, given by x∗y = log(K(y)/a). Now use the
properties of K(·) to verify that that the conditions of Theorem 4.3 are satis�ed
and that there exits a (unique) �xed point

x∗ = log(K(x∗)/a).

It follows from Theorem 4.3 that the equilibrium stopping time for the reward
function F̃ (x, y) is given by

τ̂ = inf{t ≥ 0 : Xt ≥ x∗}. (4.2)

We may therefore conclude that the corresponding equilibrium value function
J̃τ̂ (x) := Ex

(
e−rτ̂ F̃ (Xτ̂ , x)

)
and the reward function F̃ (x, y) satisfy the equi-

librium properties (2.1) and (2.2).
In order to show that (4.2) is an equilibrium stopping time also for the origi-
nal reward function F (x, y) = (ex − K(y))+, let us verify that also Jτ̂ (x) :=

Ex
(
e−rτ̂F (Xτ̂ , x)

)
and F (x, y) satisfy (2.1) and (2.2): First, note that if x is such

that ex∗−K(x) ≥ 0, then J̃τ̂ (x) = Ex
(
e−rτ̂ (eXτ̂ −K(x))

)
= Ex

(
e−rτ̂ (eXτ̂ −K(x))+

)
=

Jτ̂ (x), and similarly J̃τ̂◦θτh+τh(x) = Jτ̂◦θτh+τh(x). Moreover, if x is such that
ex
∗ − K(x) < 0, then we are in the continuation region and hence τ̂ =

τ̂ ◦ θτh + τh for su�ciently small h. It follows that Jτ̂ (x) = Jτ̂◦θτh+τh(x) for
su�ciently small h. We conclude that Jτ̂ (x) satis�es (2.2). Second, note that if
x ≥ x∗ then Jτ̂ (x) = F (x, x) and (2.1) follows trivially. Let us deal with the case
x < x∗. If x is such that ex−K(x) < 0 then F (x, x) = 0, and since Jτ̂ (x) ≥ 0, it
follows that (2.1) satis�ed. If x is such that ex −K(x) ≥ 0 then ex∗ −K(x) > 0
which implies that Jτ̂ (x) = J̃τ̂ (x) and F̃ (x, x) = F (x, x). We conclude that
Jτ̂ (x) and F (x, x) satisfy (2.1).
We have thus shown that the equilibrium stopping time for the original reward
F (x, y) = (ex−K(y))+ is also given by (4.2) and it follows that the correspond-
ing equilibrium value function can be written as

Jτ̂ (x) =


ex −K(x), x ≥ x∗,

Ex
(
e−rτ̂

(
eXτ̂ −K(x)

)+)
, x < x∗,

where more explicitly, for x with logK(x) < x∗,

Ex
(
e−rτ̂

(
eXτ̂ −K(x)

)+)
= Ex

(
e−rτ̂

(
eXτ̂ −K(x)

))
= aEx

(
eMT 1{MT≥x∗}

)
−K(x)Px(MT ≥ x∗),
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Remark 4.7. A put-version of Example 4.6 can be interpreted — economically
more meaningful — as an equilibrium selling problem under endogenous habit
formation and exponential utility in a Bachelier market. That problem is, how-
ever, analyzed and discussed in the more realistic Black-Scholes market in Ex-
ample 5.7.

5 The time-inconsistent variational inequalities

In the rest of the paper we assume that the state processX is the strong solution
to the d-dimensional SDE

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x ∈ E, (5.1)

whereW is an r-dimensional Wiener process, the state spaceE ⊆ Rd is an open
set, and the deterministic functions µ and σ are continuous. Standard conditions
for the existence of a strong solution to (5.1) can be found in e.g. [21]. Note that
we do not exclude the possibility that E = Rd. The generator AX is now given
by the di�erential operator

AX =
d∑
i

µi(x)
∂

∂xi
+

1

2

d∑
i,j

ai,j(x)
∂2

∂xixj
, a(x) := σ(x)σT (x).

5.1 A heuristic derivation of the time-inconsistent varia-
tional inequalities

In this subsection we heuristically derive the time-inconsistent variational in-
equalities. We remark that this section is only of motivational value and that
there are no claims of rigor in the derivation. In this subsection we consider
r = 0 for the ease of exposition. Suppose an equilibrium stopping time τ̂ exists,
see De�nition 2.2. Recall that τh = inf{t ≥ 0 : |Xt−X0| ≥ h} and let fτ̂ (Xτh , x)
denote the auxiliary function that uses the equilibrium stopping time given the
starting value Xτh . Given su�cient regularity, we use the strong Markov prop-
erty to see that

Jτ̂◦θτh+τh(x) := Ex(F (Xτ̂◦θτh+τh , x))

= Ex(EXτh (F (Xτ̂ , x)))

= Ex(fτ̂ (Xτh , x)) (5.2)

and Itô’s formula to obtain

Ex(fτ̂ (Xτh , x)) = fτ̂ (x, x) + Ex
(∫ τh

0
AXfτ̂ (Xt, x)dt

)
, (5.3)
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where we recall that the di�erential operator AX operates only on the �rst vari-
able. We now use the dominated convergence theorem, Lebesgue’s di�erentia-
tion theorem, (5.2), (5.3) and Jτ̂ (x) = fτ̂ (x, x) (cf. De�nition 2.3) to obtain, under
su�cient regularity,

lim inf
h↘0

Jτ̂ (x)− Jτ̂◦θτh+τh(x)

Ex(τh)
= lim inf

h↘0

fτ̂ (x, x)− Ex(fτ̂ (Xτh , x))

Ex(τh)

= lim inf
h↘0

Ex (
∫ τh
0 −AXfτ̂ (Xt, x)dt)

Ex(τh)
= −AXfτ̂ (x, x).

This, of course, re�ects the well-known characterization of the in�nitesimal gen-
erator due to Dynkin. The de�nition of an equilibrium stopping time in De�ni-
tion 2.2 therefore translates to AXfτ̂ (x, x) ≤ 0 and Jτ̂ (x) − F (x, x) ≥ 0. Now
note that Jτ̂ (x) = fτ̂ (x, x) implies that the equilibrium value function Jτ̂ (x) is
completely determined by the auxiliary function fτ̂ (x, y). We therefore summa-
rize the above in terms of the auxiliary function:

fτ̂ (x, x) ≥ F (x, x), x ∈ E (5.4)
AXfτ̂ (x, x) ≤ 0, x ∈ E.

For any x, stopping yields the valueF (x, x). Using (5.4) we see that it is therefore
optimal, for the x-agent, to stop if and only if fτ̂ (x, x) = F (x, x). Suppose that
the set

C = {x ∈ E : fτ̂ (x, x) > F (x, x)}

is open, where C is said to be the continuation region. It follows that the corre-
sponding equilibrium stopping time is the �rst exit time from C , or analogously
the �rst entrance time into the stopping region E\C , i.e

τE\C = inf{t ≥ 0 : Xt ∈ E\C} = inf{t ≥ 0 : Xt /∈ C}, (5.5)

which implies that fτ̂ (x, y) = Ex(F (XτE\C , y)) for all x and y. By (5.5) it is
also clear that if x ∈ E\C , then τE\C = 0 which implies that fτ̂ (x, y) =
Ex(F (XτE\C , y)) = F (x, y). It therefore holds, for any y, that

fτ̂ (x, y) = F (x, y), x ∈ E\C.

Moreover, since fτ̂ (x, y) = Ex(F (XτE\C , y)) it follows that fτ̂ (Xt, y) is a mar-
tingale on C , for any �xed y, given su�cient regularity. Hence, for any �xed
y,

AXfτ̂ (x, y) = 0, x ∈ C.
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Let us summarize our �ndings. If an equilibrium stopping time exists then, under
the assumption of su�cient regularity, it is given by τE\C de�ned in (5.5) and the
auxiliary function fτ̂ (x, y) = Ex(F (τE\C , y)) satis�es

AXfτ̂ (x, x) ≤ 0, x ∈ E,

and for any �xed y ∈ E

AXfτ̂ (x, y) = 0, x ∈ C,
fτ̂ (x, y)− F (x, y) = 0, x ∈ E\C,

where

C = {x ∈ E : fτ̂ (x, x) > F (x, x)} .

We call the expressions above the time-inconsistent variational inequalities.

5.2 A veri�cation theorem

Let us de�ne the time-inconsistent variational inequalities in more detail.

De�nition 5.1. A function f : E×E → R is said to satisfy the time-inconsistent
variational inequalities if∗

AXf(x, x)− rf(x, x) ≤ 0, x ∈ E\∂C, (5.6)

and, for each �xed y ∈ E,

AXf(x, y)− rf(x, y) = 0, x ∈ C, (5.7)
f(x, y)− F (x, y) = 0, x ∈ E\C, (5.8)

where

C := {x ∈ E : f(x, x) > F (x, x)} .

Moreover, the function f(·, y) : E → R must, for each �xed y ∈ E, satisfy:

(i) f(·, y) ∈ C(C) ∩ C2(C), where C denotes the closure of C in E,

(ii) f(·, y) ∈ C1(B(y, ε)) ∩ C2(B(y, ε)\∂C) for some ε > 0, where the second
order derivative is locally bounded (near ∂C),

(iii) f(·, y) is bounded on C .
∗Recall that the di�erential operator AX operates only on the �rst variable, in e.g. f(x, x).
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Lastly, we also demand that:

(iv) C is open and ∂C 6= ∅ is a Lipschitz surface†.

(v) lim supz /∈∂C→y(AXf(z, y)− rf(z, y)) ≤ 0, for y ∈ ∂C .

Theorem 5.2. Suppose that a function f : E×E → R solves the time-inconsistent
variational inequalities. Suppose that the state process X that solves the SDE (5.1)
spends almost no time on the boundary ∂C , i.e.∫ ∞

0
I∂C(Xt)dt = 0 a.s., (5.9)

and that

τ̂ := inf{t ≥ 0 : Xt /∈ C} <∞ a.s., (5.10)

for each starting value X0 = x ∈ E. Then,

• J : E → R, with J(x) := f(x, x), is an equilibrium value function,

• f : E × E → R is the corresponding auxiliary function, and

• the stopping time τ̂ in (5.10) is the corresponding equilibrium stopping time.

Proof. Recall that the state space E ⊆ Rd is here assumed to be an open set and
note that E can here, without loss of generality, be taken to be connected, since
X has continuous sample paths. Let {Ck}∞k=1 be an increasing sequence of open,
bounded and connected sets with Ck ⊆ C and ∪∞k=1Ck = C . Consider arbitrary
y ∈ E and x ∈ C , which implies that x ∈ Ck for any k ≥ k′, for some k′. Let
τk = inf{t ≥ 0 : Xt /∈ Ck} ∧ k. Use (i), Itô’s formula and (5.7) to obtain

f(x, y) = Ex
(
e−rτkf(Xτk , y)−

∫ τk

0
e−rt(AXf(Xt, y)− rf(Xt, y))dt

)
= Ex

(
e−rτkf(Xτk , y)

)
where the Itô integral has vanished by the continuity of σ(x), the continuity of
the trajectories of X , the continuity of ∂2f(x,y)

∂x2
on C , and the boundedness of

Xs on the bounded stochastic interval [0, τk]. Note that (5.8), (i) and (iv) imply,
for �xed y ∈ E, that f(·, y) is continuous on C with f(x, y) = F (x, y) on ∂C ,
where ∂C 6= ∅ by assumption. Since, f(·, y) is bounded on C (cf. (iii)) we may

†For a de�nition see [28, ch. 10].
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thus use the bounded convergence theorem, and that τk → τ̂ a.s. as k →∞ (cf.
(5.10)), to obtain

f(x, y) = lim
k→∞

Ex
(
e−rτkf(Xτk , y)

)
= Ex

(
e−rτ̂F (Xτ̂ , y)

)
. (5.11)

Using (5.8) and (5.10) we see that this implies that

f(x, y) = Ex(e−rτ̂F (Xτ̂ , y)) on E × E. (5.12)

De�nition 2.2, De�nition 2.3 and (5.12) yield the following: if we can prove that

f(x, x)− F (x, x) ≥ 0, for each x ∈ E, and (5.13)

lim inf
h↘0

f(x, x)− Jτ̂◦θτh+τh(x)

Ex(τh)
≥ 0, for each x ∈ E, (5.14)

then it follows that τ̂ in (5.10) is an equilibrium stopping time, that J(x) :=f(x, x)
is the corresponding equilibrium value function and that f(x, y) is the corre-
sponding auxiliary function. Thus, all we have left to do is to show that (5.13)
and (5.14) are satis�ed.
Since f(x, y) solves the time-inconsistent variational inequalities we know that
f(x, x) > F (x, x) on C and f(x, x) = F (x, x) on E\C . It follows that (5.13)
holds.
For each �xed y ∈ E, observe thatB(y, ε) andB(y, ε)∩C are open,B(y, ε)\∂(B(y, ε)∩
C) = B(y, ε)\∂C and that ∂(B(y, ε)∩C) is a Lipschitz surface (cf. (iv)). It there-
fore follows from (ii) and Theorem D.1 in [28, App. D] that there exists, for each
�xed y ∈ E and some ε > 0 , a sequence of functions {fi(·, y)}∞i=1 such that

(a) fi(·, y) ∈ C(B(y, ε)) ∩ C2(B(y, ε)) for each i,

(b) fi(·, y) converges to f(·, y) uniformly on compact subsets of B(y, ε) as
i→∞,

(c) AXfi(·, y) converges toAXf(·, y) uniformly on compact subsets ofB(y, ε)\∂C
as i→∞,

(d) {AXfi(·, y)}∞i=1 is locally bounded on B(y, ε).

For any �xed x ∈ E, h ∈ (0, ε), i and k > 0 it thus follows from Itô’s formula
that

fi(x, x) = Ex
(
e−rτh∧kfi(Xτh∧k, x)−

∫ τh∧k

0
e−rt(AXfi(Xt, x)− rfi(Xt, x))dt

)
.
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where the Itô integral has vanished for reasons analogous to the above. Because
of the continuity in (a) and Xt being bounded on [0, τh] we can use the bounded
convergence theorem to obtain

fi(x, x) = lim
k→∞

fi(x, x)

= Ex
(

lim
k→∞

(
e−rτh∧kfi(Xτh∧k, x)−

∫ τh∧k

0
e−rt(AXfi(Xt, x)− rfi(Xt, x))dt

))

= Ex
(
e−rτhfi(Xτh , x)−

∫ τh

0
e−rt(AXfi(Xt, x)− rfi(Xt, x))dt

)
.

Set the unde�ned ∂2f(x,y)
∂x2

, x ∈ ∂C, to zero. Now use the convergence and bound-
edness properties in (b), (c), and (d), and the regularity in (5.9), and the bounded
convergence theorem to obtain

f(x, x) = lim
i→∞

fi(x, x)

= Ex
(

lim
i→∞

(
e−rτhfi(Xτh , x)−

∫ τh

0
e−rt(AXfi(Xt, x)− rfi(Xt, x))dt

))

= Ex
(
e−rτhf(Xτh , x)−

∫ τh

0
e−rt(AXf(Xt, x)− rf(Xt, x))dt

)
. (5.15)

Now use (5.12) and the strong Markov property to see that

Ex(e−rτhf(Xτh , x)) = Ex(e−rτh EXτh (e−rτ̂F (Xτ̂ , x)))

= Ex(e−r(τ̂◦θτh+τh)F (Xτ̂◦θτh+τh , x))

= Jτ̂◦θτh+τh(x), (5.16)

where we also relied on (iii) and (5.8). Using (5.15) and (5.16) we rewrite the left
hand side of (5.14) as

lim inf
h↘0

−Ex (
∫ τh
0 e−rt(AXf(Xt, x)− rf(Xt, x))dt)

Ex(τh)

= − lim sup
h↘0

Ex (
∫ τh
0 e−rt(AXf(Xt, x)− rf(Xt, x))dt)

Ex(τh)
. (5.17)

Hence, all we have left to do in order to show that (5.14) is true, i.e. to conclude
the proof, is to show that (5.17) is non-negative for all x ∈ E. Let us do this.
First consider an arbitrary x ∈ E\∂C . Recall that µ(x), σ(x) and the trajectories
of X are continuous. Note that h ∈ (0, ε) implies that the process (Xt)0≤t≤τh
with X0 = x stays in B(x, ε). The regularity properties in (ii) therefore imply
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that the integrand in (5.17), i.e. e−rt(AXf(Xt, x)− rf(Xt, x)), is a.e. continuous
in t a.s. Recall that Xs is bounded on [0, τh] when h ∈ (0, ε). Note also that that
if we pick a su�ciently small h = h(ω) then the integrand in (5.17) is continuous
in t a.s, since we can for su�ciently small h = h(ω) avoid the issue that ∂2f(x,y)

∂x2

is arbitrarily set to 0 at ∂C . It follows that we may use the bounded convergence
theorem and Lebesgue’s di�erentiation theorem to obtain that (5.17) is equal to

− (AXf(x, x) + rf(x, x)) ≥ 0, for x ∈ E\∂C

where the inequality follows from (5.6). Now consider an arbitrary x ∈ ∂C .
Replace the integrand in (5.17) with a right-continuous version (in t a.s.) and use
(v) and (5.9) in the following way

− lim sup
h↘0

Ex (
∫ τh
0 e−rt(AXf(Xt, x)− rf(Xt, x))dt)

Ex(τh)

= − lim sup
h↘0

Ex
(∫ τh

0 limk↘0 sup0<l≤k e
−r(t+l)(AXf(Xt+l, x)− rf(Xt+l, x))dt

)
Ex(τh)

≥ − lim sup
z /∈∂C→x

(AXf(z, x)− rf(z, x)) ≥ 0, for x ∈ ∂C.

We have thus shown that (5.17) is non-negative for all x ∈ E.

Remark 5.3. In the case r > 0 then the condition in (5.10) is not necessary in
order for the veri�cation theorem to be true, since in this case (iii) is su�cient to
obtain (5.11) (using also our convention regarding expected values and in�nite
stopping times, as described in the beginning of Section 2).
Remark 5.4. The continuous di�erentiability requirement (ii) and requirement
(iv) imply that we can approximate the function f(·, y) by the sequence of C2
functions fi(·, y), on which we can apply the standard Itô formula. After this we
let i → ∞ and e�ectively �nd that Dynkin’s formula (5.15) holds. We remark
that the continuous di�erentiability requirement (ii) could in some settings be
relaxed if we instead of using the current approach were to use a more general
version of Itô’s formula based on the concept of local time, see e.g. [21, 31].
Remark 5.5. Let us underline that we can now apply the standard procedure to
use the veri�cation theorem in order to �nd equilibrium value functions and
equilibrium stopping times in particular cases. More precisely:

(i) Make an ansatz, i.e. make an educated guess of how the solution f(x, y) to
the time-inconsistent variational inequalities should look like. The guess
f(x, y) should typically have traits in common with F (x, y) and involve
unspeci�ed parameters, see e.g. the a, b and x∗ in Example 5.6 below.
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(ii) Use the veri�cation theorem to verify that f(x, y) can solve the time-
inconsistent variational inequalities (and the regularity conditions of the
veri�cation theorem) for some speci�c values of the parameter(s). Note
that the point of step (ii) is two-fold 1) to make sure that the guess f(x, y)
has any chance of solving the time-inconsistent variational inequalities,
and 2) to determine the unspeci�ed parameters of f(x, y).

(iii) If the previous steps were successful then you may use the veri�cation
theorem to conclude that the guess f(x, y), with the speci�ed parameter(s),
is indeed the auxiliary function, that J(x) := f(x, x) is the corresponding
equilibrium value function and that τ̂ := inf{t ≥ 0 : Xt /∈ C} is the
equilibrium stopping time, where C := {x ∈ E : f(x, x) > F (x, x)}.

Example 5.6. Let us re-analyze the optimistic holder of the perpetual American
option from Example 3.4 using the veri�cation theorem. The advantage here is
that we do not have to solve a sequence of free boundary problems, but can make
a direct ansatz for the value function. Since the state process is a Wiener process
it follows that E = R. As x 7→ e−cx, x 7→ ecx, c =

√
2r, are the fundamental

solutions to AXf = rf and due to symmetry, a natural guess for a solution to
the time-inconsistent variational inequalities is

f(x, y) =


x , x ≥ x∗,

ae−cx + becx , −x∗ < x < x∗, y ≥ 0

0 , x ≤ −x∗,

and f(x, y) = f(−x,−y), y < 0, with the continuation region C = (−x∗, x∗),
for some parameters a, b and x∗ to be determined. For f(·, y) to be continuous,
we need

ae−cx
∗

+ becx
∗

= x∗,

aecx
∗

+ be−cx
∗

= 0.

For su�cient smoothness of f(·, x∗) we furthermore need

−cae−cx∗ + cbecx
∗

= 1.

Elementary arguments yield that this system of equations indeed has a solution
given by

f(x, y) =


x , x ≥ x∗,
1
2
ecx
∗
(x∗ − 1

c
)e−cx + 1

2
e−cx

∗
(x∗ + 1

c
)ecx , −x∗ < x < x∗, y ≥ 0

0 , x ≤ −x∗,
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where x∗ ∈ (0, 1/c) satis�es

−e4cx∗(x∗ − 1

c
) = x∗ +

1

c
. (5.18)

Using elementary methods one can now verify that:

• x 7→ f(x, y) is convex and ∂f(x∗,y)
∂x

= 1 for x, y ≥ 0 which implies that
C = (−x∗, x∗) = {x ∈ R : f(x, x)− F (x, x) > 0}, which also implies
that (5.9) and the condition in (5.10) are ful�lled (we remark that the last
condition is not necessary since r > 0, cf. Remark 5.3),

• conditions (5.8), (i), (iii) and (iv) hold.

Let us explicitly verify condition (ii). Naively taking derivatives gives us

∂f(x, y)

∂x
=


1 , x ≥ x∗,

− c
2
ecx
∗
(x∗ − 1

c
)e−cx + c

2
e−cx

∗
(x∗ + 1

c
)ecx , −x∗ < x < x∗, y ≥ 0

0 , x ≤ −x∗,

∂f(x, y)

∂x
=


0 , x ≥ x∗,
c
2
ecx
∗
(x∗ − 1

c
)ecx − c

2
e−cx

∗
(x∗ + 1

c
)e−cx , −x∗ < x < x∗, y < 0

−1 , x ≤ −x∗.
It is easy to check that these derivatives are well de�ned except at points (x, y)
satisfying (x, y) = (x∗, y) with y < 0 or (x, y) = (−x∗, y) with y ≥ 0. Hence,
for �xed y, f(·, y) ∈ C1(B(y, ε)), for a su�ciently small ε > 0. Naively taking
derivatives again gives us

∂2f(x, y)

∂x2
=


0 , x > x∗,
c2

2
ecx
∗
(x∗ − 1

c
)e−cx + c2

2
e−cx

∗
(x∗ + 1

c
)ecx , −x∗ < x < x∗, y ≥ 0

0 , x < −x∗,

∂2f(x, y)

∂x2
=


0 , x > x∗,
c2

2
ecx
∗
(x∗ − 1

c
)ecx + c2

2
e−cx

∗
(x∗ + 1

c
)e−cx , −x∗ < x < x∗, y < 0

0 , x < −x∗.
We thus see that f(·, y) ∈ C2(B(y, ε)\∂C), for any y ∈ E, and that this deriva-
tive is locally bounded. We have thus veri�ed (ii). Now use that c =

√
2r and

the above to obtain
AXf(x, y)− rf(x, y) = 1

2
∂2f(x,y)
∂x2

− rf(x, y)

=


−rx < 0 , x > x∗,

0 , −x∗ < x < x∗, y ≥ 0

0 , x < −x∗,
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AXf(x, y)− rf(x, y) = 1
2
∂2f(x,y)
∂x2

− rf(x, y)

=


0 , x > x∗,

0 , −x∗ < x < x∗, y < 0

rx < 0 , x < −x∗.

This means that (5.6), (5.7) and (v) are also satis�ed. We have thus veri�ed
that the function f(x, y) with x∗ determined in (5.18) is a solution to the time-
inconsistent variational inequalities. The veri�cation theorem therefore implies
that τ̂ = inf{t ≥ 0 : Xt /∈ (−x∗, x∗)} is an equilibrium stopping time and that
the corresponding equilibrium value function is

J(x) =


x , x ≥ x∗,
1
2
ecx
∗
(x∗ − 1

c
)e−cx + 1

2
e−cx

∗
(x∗ + 1

c
)ecx , 0 ≤ x < x∗,

1
2
ecx
∗
(x∗ − 1

c
)ecx + 1

2
e−cx

∗
(x∗ + 1

c
)e−cx , −x∗ < x < 0,

−x , x ≤ −x∗.

Example 5.7. Equilibrium selling strategies under endogenous habit for-
mation and exponential utility. We will now study a model for selling strate-
gies under exponential utility and endogenous habit formation, using the veri-
�cation theorem. Section 1.1 contains information about previous literature on
related problems.
Consider an investor who wishes to optimally dispose of an asset in a Black-
Scholes market. Speci�cally, the price of the asset, measured in e.g USD or MUSD,
is given by the process X satisfying

dXt = σXtdWt.

We model the utility of the investor as exponential, but we also let her utility
be inversely related to the present price of the asset, which makes the problem
time-inconsistent. Speci�cally, we assume that the agent wishes to maximize

Ex
(
e−rτ

(
1− e−a(Xτ+g(x)−k)

))
,

where a, r, k > 0 are constants and g : [0,∞)→ R is a non-increasing bounded
function such that x 7→ x+ g(x) is non-decreasing and g(0) = 0.
We will study this endogenous habit formation selling problem without making
any functional assumptions for g(·). In Figure 2, we present the solution to the
problem for a particular speci�cation of g(·).
Remark 5.8. The reward function of the present model corresponds to the func-
tion F (x, y) := 1−e−a(x+g(y)−k), which is clearly time-inconsistent and bounded
on [0,∞)2. If g(·) = 0 and k = 0 then we recover a standard exponential utility
function.
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Remark 5.9. We interpret this model as the investor having formed a habit re-
garding what she thinks the asset should be worth, and the larger the current
value of the asset is the less happy she will be for a given selling price in the
future. The parameter a is a measure of the risk aversion of the investor: a larger
a means more risk aversion. The parameter r is a measure of the impatience of
the investor: a larger r means more impatience. The nonstandard feature of this
model is the function g(·) which we interpret to be a measure of the habit for-
mation of the investor. The assumption that g(·) is non-increasing is interpreted
as follows: the smaller the current price x is, the happier the investor is given
the same future selling price. The assumption that x 7→ x + g(x) is increasing
means that the investor cannot become less happy for a larger selling price given
immediately selling. The parameter k allows the possibility for negative utility.

A reasonable starting point is to try with a one-sided solution C = (0, x∗). We
therefore guess that the auxiliary function is

f(x, y) =


1− e−a(x+g(y)−k) , x ≥ x∗,

Ex
(
e−rτ[x∗,∞)

(
1− e

−a
(
Xτ[x∗,∞)

+g(y)−k
)))

, 0 < x < x∗,

for some x∗ to be determined. Using standard theory, see e.g [28, ch. 9,10], we
note that the function f(x, y) can be simpli�ed using

Ex
(
e−rτ[x∗,∞)

(
1− e

−a
(
Xτ[x∗,∞)

+g(y)−k
)))

=
(
x

x∗

)γ (
1− e−a(x∗+g(y)−k)

)

where γ = 1
2

+
√

1
4

+ 2r
σ2 . Naively taking derivatives therefore gives us

∂f(x, y)

∂x
=

ae
−a(x+g(y)−k) , x ≥ x∗,

γ x
γ−1

x∗γ

(
1− e−a(x∗+g(y)−k)

)
, 0 < x < x∗.

In order for (ii) to be ful�lled x∗ must satisfy

x∗ae−a(x
∗+g(x∗)−k) = γ

(
1− e−a(x∗+g(x∗)−k)

)
(5.19)

which means that x∗ must be the zero of the function

H(x) = γ − e−a(x+g(x)−k)(γ + ax), (5.20)

which must be veri�ed to exist uniquely in (0,∞) for the particular choice of
g(·). Note that a unique x∗ exists if there is no habit formation i.e. with g(·) = 0;
to see this note that if g(·) = 0 then H(0) = γ(1 − eak) < 0 and H ′(x) =
ae−a(x−k)(ax+ γ − 1) > 0 on [0,∞), since γ > 1.
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Taking derivatives again gives us

∂2f(x, y)

∂x2
=

−a
2e−a(x+g(y)−k) , x > x∗,

γ(γ − 1)x
γ−2

x∗γ

(
1− e−a(x∗+g(y)−k)

)
, 0 < x < x∗.

Using AXf(x, y) = 1
2
x2σ2 ∂

2f(x,y)
∂x2

and γ(γ − 1) = 2r
σ2 , we obtain

AXf(x, y)− rf(x, y) =

=

−
x2

2
σ2a2e−a(x+g(y)−k) − r

(
1− e−a(x+g(y)−k)

)
, x > x∗,

x2

2
σ2 2r

σ2
xγ−2

x∗γ

(
1− e−a(x∗+g(y)−k)

)
− r

(
x
x∗

)γ (
1− e−a(x∗+g(y)−k)

)
, 0 < x < x∗,

=

−
x2

2
σ2a2e−a(x−g(y)−k) − r

(
1− e−a(x+g(y)−k)

)
, x > x∗,

0 , 0 < x < x∗,

which implies that f(x, y) satis�es (5.7). It follows from (5.19) that x∗ + g(x∗)−
k > 0, which since x+ g(x) is non-decreasing implies that

AXf(x, x)−rf(x, x) = −x
2

2
σ2a2e−a(x+g(x)−k)−r

(
1− e−a(x+g(x)−k)

)
< 0, x > x∗.

Hence, (5.6) is satis�ed. Condition (v) is veri�ed in the same way. Conditions (i),
(ii), (iii) and (iv) are directly veri�ed. Now, if g(·) is such that

C := (0, x∗) = {x ∈ R : f(x, x)− F (x, x) > 0} (5.21)

holds then conditions (5.8) and (5.9) follow, and all the conditions of the veri�ca-
tion theorem are hence ful�lled (the condition in (5.10) is not necessary in this
case, cf. Remark 5.3).
To show that (5.21) holds for the case g(·) = 0 it is su�cient to show that(

x

x∗

)γ (
1− e−a(x∗−k)

)
> 1− e−a(x−k), 0 < x < x∗.

This is trivially true if the right side is non-positive since the left side is positive
by (5.19), and we may thus treat the right side and the left side as positive. It is
therefore su�cient to show that

κ(x) :=
x∗γ

1− e−a(x∗−k)
x−γ

(
1− e−a(x−k)

)
< 1, 0 < x < x∗.

We obtain that κ′(x) = x∗γ

1−e−a(x∗−k)x
−γ−1(−H(x)), and since x∗ is assumed to be

the unique zero of H(·) and H(0) < 0 it follows that κ′(x) > 0, where we also
used (5.19) to see that the �rst fraction in κ(x) is positive. Since κ(x∗) = 1 it
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Figure 2: x 7→ J(x) (solid, black) and x 7→ F (x, x) (dashed, black), with g(x) =
arccot(x) − π

2
, here x∗ ≈ 3.3524. x 7→ J(x) (solid, red) and x 7→ F (x, x)

(dashed, red), with g(x) = 0, here x∗ ≈ 1.3412. x 7→ arccot(x) − π
2

(dotted,
black). a = 0.7, r = 0.1, k = 0.5 and σ = 1.

follows that κ(x∗) < 1 for 0 < x < x∗ and we are done. In order to show that
(5.21) holds when g(·) 6= 0, we must show that(

x

x∗

)γ (
1− e−a(x∗−k)e−ag(x)

)
> 1− e−a(x−k)e−ag(x), 0 < x < x∗.

This is trivially true if the right side is non-positive; to see this use that the
left side is positive by (5.19) and since g(·) is non-increasing. We may thus
treat both the left and the right sides as positive; and since 1 − e−a(x−k) >
1− e−a(x−k)e−ag(x) we may also treat 1− e−a(x−k) as positive. It is thus enough
to show that

(
x∗

x

)γ
1−e−a(x−k)e−ag(x)
1−e−a(x∗−k)e−ag(x) < 1, 0 < x < x∗. But 1−e−a(x−k)e−ag(x)

1−e−a(x∗−k)e−ag(x) <
1−e−a(x−k)
1−e−a(x∗−k) and the result follows from the case when g(·) = 0.
We conclude that if g(·) is such that H(·) in (5.20) has a unique zero x∗, then
the equilibrium stopping time is τ̂ = inf{t ≥ 0 : Xt ≥ x∗} and the equilibrium
value function is

J(x) =

1− e−a(x+g(x)−k) , x ≥ x∗,(
x
x∗

)γ (
1− e−a(x∗+g(x)−k)

)
, 0 < x < x∗.
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