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Abstract

Due to the problem of parameter uncertainty, specifying the location of the

tangency portfolio(TP) on the set of feasible portfolios becomes a challenging task.

The set of feasible portfolios is a parabola in the mean-variance space with optimal

portfolios lying on its upper part. Using statistical test theory, we want to decide if

the tangency portfolio is mean-variance efficient, i.e. if it belongs to the upper limb

of the efficient frontier. In the opposite case, the investor would prefer to invest into

the risk-free asset or into the global minimum variance portfolio which lies in the

vertex of the set of feasible portfolios. Assuming that the portfolio asset returns are

independent and multivariate normally distributed, we suggest a test on the location

of the tangency portfolio on the set of feasible portfolios. The distribution of the

test statistic is derived under both hypotheses, which we use to assess the power of

the test and construct a confidence interval. Moreover, out-of-sample performance

of the test is evaluated based on real data. The robustness to the assumption of

normality is investigated via an extensive simulation study where we show that the

new test is robust to the violation of the normality assumption and can also be used

for heavy-tailed stochastic models. Moreover, in an empirical study we apply the

developed theory to real data. We find that when the sample size is relatively large

and a stable period is present on the market, then the mean-variance efficiency of

the tangency portfolio can be statistically justified.

Keywords: tangency portfolio, feasible portfolios, test theory, power function, out-of-

sample performance
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1 Introduction

The question of wealth allocation is relevant for both individuals, e.g. retirement savings,

as well as for banks and other institutional investors. How this should be done in practice,

however depend on a multitude of factors, not the least the investors view on risk in

relation to return. The most influential approach to deal with this problem is the mean-

variance analysis proposed by Markowitz (1952). Following Markowitz (1952), the optimal

portfolio weights are found by minimizing the risk, i.e. the variance, of the portfolio for

a given level of the expected return.

In the case without a risk-free asset, Merton (1972) showed that all optimal solutions

of Markowitz’s optimization problem lie on the upper limb of the parabola in the mean-

variance space. This parabola is known as the efficient frontier and given by

V =
a− 2bR + cR2

ac− b2
, (1)

where a = µ′Σ−1µ, b = 1′Σ−1µ, c = 1Σ−11; R = w′µ is the expected return of the

portfolio with the weights w; V = w′Σw is its variance; µ and Σ are the expected return

vector and the covariance matrix of the asset returns, respectively. The symbol 1 denotes

the vector of ones of an appropriate order. Unfortunately, the set of parameters {a, b, c},
known as the efficient set of constants, does not possess an appropriate financial meaning.

Rewriting (1) we obtain an alternative expression of the efficient frontier

(R−RGMV )2 = s(V − VGMV ) (2)

where

RGMV =
1′Σ−1µ

1′Σ−11
and VGMV =

1

1′Σ−11
(3)

are the expected return and the variance of the global minimum variance portfolio (GMVP),

that is, the portfolio with the smallest variance among the efficient portfolios (see, e.g.,

Frahm (2010); Glombek (2014); Bodnar et al. (2017a,b)). The parameter

s = µ′Rµ with R = Σ−1 − Σ−111′Σ−1

1′Σ−11
(4)

stands for the slope coefficient of the parabola in the mean-variance space. The properties

of the efficient frontier together with the statement about the distribution of the sample

efficient frontier were discussed in detail by Bodnar and Schmid (2008); Kan and Zhou

(2008); Bodnar and Schmid (2009).

If there is a possibility to invest into a risk-free asset, then the efficient frontier becomes

a tangent line in the mean-variance space which is drawn from the return of the risk-

free asset to the parabola (2). The tangent point is known as the tangency portfolio
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Figure 1: Location of the tangency portfolio on the set of feasible portfolios in the two
cases: Figure 1(a) RGMV ≥ rf and Figure1(b) RGMV < rf .

(TP), see e.g., Ingersoll (1987). This portfolio maximizes the Sharpe ratio (SR), SR =

(w′µ−rf )/(
√

w′Σw), and it has recently received a lot of attention in the literature. For

instance, its statistical properties under different assumptions imposed on the distribution

of the asset returns were discussed in Lo (2002), whereas Britten-Jones (1999) derived an

exact test on the TP weights and showed that it is not possible to reject the null hypothesis

that the weight of the US market is equal to one in an international portfolio. Further,

while Okhrin and Schmid (2006) showed that the estimated weights of this portfolio do

not possess the first moment, Schmid and Zabolotskyy (2008) proved that the unbiased

estimator of the TP weights does not exist at all. Recently, Bodnar and Zabolotskyy

(2017) investigated the risk properties of the TP and showed that this portfolio is a very

risky investment opportunity which should be carefully considered in practice.

The location of the TP portfolio on the set of feasible portfolio depends crucially on

the relation between the expected return of the GMVP and the return of the risk-free

asset (see Figure 1). The TP is mean-variance efficient, i.e. it belongs to the upper part of

the efficient frontier as in Figure 1(a) only if the expected return of the GMVP is greater

than the return on the risk-free asset return (see, e.g., Ingersoll (1987, chapter 4)). On

the other hand, this consideration may not be appropriate in many practical situations

where the expected return of the GMVP is inferior to the return of the risk-free asset.

In this case the tangent line drawn to the set of feasible portfolios from the return of

the risk-free rate has no joint point with the efficient frontier and, consequently, the TP

belongs to the set of the feasible portfolios which are located on the lower part of the

parabola as shown in Figure 1(b). The investor would then prefer to invest into the risk-
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free asset or in the GMVP which lies in the vertex of the efficient frontier. We contribute

to the existing literature on the TP by deriving an exact test on its location on the set

of feasible portfolios. The distribution of the suggested test statistic is obtained under

both hypotheses. Moreover, out-of-sample performance of the portfolio determined by

implementing the derived test is assessed.

The remainder of the paper is organised as follows. Section 2 contains a detailed

description of statistical test theory for the location of the tangency portfolio on the set of

feasible portfolios. We concentrate on the derivation of the test statistic, its distribution

under both hypotheses, the analysis of the power function, and the construction of a

confidence interval. In Section 3, out-of-sample performance is presented. In Section

4, the numerical procedure for investigating the robustness of normality assumption are

provided, while empirical results are discussed in Section 5. Final remarks are presented

in Section 6. All proofs are found in the appendix.

2 Finite-sample test on the location of the tangency

portfolio

The location of the tangency portfolio on the set of feasible portfolios depends on the

relation between the risk-free rate rf and the expected return on the GMVP(RGMV ) as

shown in Figure 1. If the investor wants to be sure in the investment into the TP, (s)he

has to check if RGMV > rf . This problem can be formulated as a statistical test with the

hypotheses given by

H0 : RGMV ≤ rf against H1 : RGMV > rf . (5)

The rejection of the null hypothesis means that the TP lies on the upper part of the

efficient frontier as shown in Figure 1(a). In contrast, if the null hypothesis in (5) cannot

be rejected, then the investor cannot be certain of the optimality of the TP and allocation

into the risk-free asset could be considered as a suitable alternative.

Let X1, . . . ,Xn denote an independent k-dimensional sample of the asset returns,

where E[Xt] = µ and cov[Xt] = Σ, for t = 1, . . . , n. The test statistic for testing (5) is

obtained following the derivation in Bodnar and Schmid (2009) and is given by

T =

√
n− k√
n− 1

R̂GMV − rf√
1 + n

n−1 ŝ
√

V̂GMV

n

, (6)

where R̂GMV , V̂GMV , and ŝ are the sample estimators for RGMV , VGMV , and s given by

R̂GMV =
1′Σ̂−1µ̂

1′Σ̂−11
and V̂GMV =

1

1′Σ̂−11
(7)
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and

ŝ = µ̂′R̂µ̂, R̂ = Σ̂−1 − Σ̂−111′Σ̂−1

1′Σ̂−11
(8)

where

µ̂ =
1

n

n∑
t=1

Xt and Σ̂ =
1

n− 1

n∑
t=1

(Xt − µ̂)(Xt − µ̂)′

are the sample mean vector and the sample covariance matrix, respectively. Further, the

distribution of T is given by

Proposition 1. Let X1, . . . ,Xn be independent random vectors of asset returns with

Xt ∼ Nk(µ,Σ) for t = 1, . . . , n. Assume that Σ is positive definite and n > k. Then the

density of T is given by

fT (x) =
n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

ftn−k,δ(y)(x)fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy (9)

where

δ(y) =

√
n

1 + y(n/(n− 1))
SGMV and where SGMV =

RGMV − rf√
VGMV

is the Sharpe ratio of the GMVP. The slope parameter s is defined in (4).

The proof of Proposition 1 follows from Proposition 1 in Bodnar and Schmid (2009).

Hence, from Proposition 1 it is seen that the test statistic T may be represented as a

mixture of a non-central t distribution with n−k degrees of freedom and a non-centrality

parameter δ(y). Further, by using Proposition 1 it is possible to derive the critical value

for the test (5) at significance level α. The result of this is stated in Proposition 2, whose

proof is given in the appendix.

Proposition 2. Under the conditions of Proposition 1, it holds that

sup
VGMV >0,s≥0,RGMV ≤rf

GT,α,tn−k,1−α(SGMV , s) ≤ PH0:RGMV =rf (T > tn−k,1−α) = α,

where

GT,α,c(SGMV , s) = P(T > c) =
∫ ∞
c

fT (x)dx .

Thus, from Proposition 2 it is seen that the test of (5) rejects H0 in favour of H1 as

soon as T ≥ tn−k,1−α. Another important characteristic of a statistical test is its power

function. It turns out that the power function of the test (5) only depends on µ and Σ

in terms of SGMV and s and is given by

GT,α,tn−k,1−α(SGMV , s) = P(T > tn−k,1−α)

=
n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

(
1− Ftn−k,δ(y)(tn−k,1−α)

)
fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy.
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Figure 2: Power function of test (5) for portfolio dimension k ∈ {5, 10, 15, 20} and sample
size n = 50

This is a nice property of the suggested test which allows us to visualize its power

function for fixed values of k and n as a function of s and SGMV only. In Figures 2

and 3, we present the power of the test (5) for k ∈ {5, 10, 15, 20}, n ∈ {50, 250}, and

s = {0.1, 0.3, 0.5}. The values of SGMV smaller than or equal to 0 corresponds to the null

hypothesis. We observe that the power increases rapidly as SGMV becomes larger than

zero. It reaches one already for moderate values of SGMV . For example, it is close one for

SGMV around 0.2 when n = 250 corresponding to approximately one year of daily market

observations or five years of weekly data. Furthermore, we note that the power increases

if s decreases. This result is in line with the behaviour of the non-central F -distribution

whose distribution function is decreasing in the non-centrality parameter. This result also
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Figure 3: Power function of test (5) for portfolio dimension k ∈ {5, 10, 15, 20} and sample
size n = 100

7



has an interesting financial interpretation. If the slope parameter s is smaller, then the

optimal portfolio with the same Sharpe ratio and the excess expected return as one in the

case of larger s has a higher variance. Consequently, it deviates from the GMVP stronger

than in the case of larger s and thus can be easier detected by the test (5).

We conclude this section with the two important remarks:

Remark 1. Performing a statistical test on the hypotheses (5), one can only draw con-

clusions about investing into the TP. However, if the null hypothesis cannot be rejected,

then we still have no statistical justification about avoiding the wealth allocation into the

TP. In order to be sure that the TP belongs to the lower part of the parabola as in Figure

1(b), one has to perform the lower one-sided test with the hypotheses given by

H̃0 : RGMV ≥ rf against H̃1 : RGMV < rf . (10)

This test reject the null hypothesis, i.e. it confirms that the TP is not efficient, as soon

as T < tn−k,α where the statistic T is given in (6).

The power function of the test (10) is obtained similarly to the power function of the

test (5) and is given by

G̃T,α,tn−k,α(SGMV , s) = P(T < tn−k,α)

=
n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

(
Ftn−k,δ(y)(tn−k,α)

)
fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy.

which also only depends on µ and Σ through SGMV and s.

Remark 2. Using a one-to-one correspondence between a statistical test and an interval

estimation, we can draw a further important conclusion by using the suggested two tests.

Namely, it is possible to specify a (1 − α) one-sided confidence interval for the risk-free

rate such that if rf belongs to this interval, a conclusion about the investment into the TP

can be drawn.

In the case of the upper one-sided test this interval is given by

I1−α =

R̂GMV − tn−k,1−α
√
n− 1√
n− k

√
1 +

n

n− 1
ŝ

√
V̂GMV

n
,+∞

 ,
while for the lower one-sided we get

Ĩ1−α =

−∞, R̂GMV − tn−k,α
√
n− 1√
n− k

√
1 +

n

n− 1
ŝ

√
V̂GMV

n

 ,
Hence, for all rf 6∈ I1−α we conclude that the TP belongs to the efficient frontier and for

all rf 6∈ Ĩ1−α the TP lies on the lower part of the set of feasible portfolios.
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3 Out-of-sample performance

In this section we investigate the behaviour of the realized expected return of the GMVP

in the period n + 1 given by R̂GMV,n+1 = ŵ′GMV Xn+1 where Xn+1 is the vector of asset

returns at time point n + 1 and ŵGMV = Σ̂−11/(1′Σ̂−11) are the estimated weights of

the GMVP by using asset returns X1, ...,Xn. The aim is to provide statements about the

two conditional probabilities:

P1 = P
(
R̂GMV,n+1 > rf |R̂GMV > rf

)
(11)

and

P2 = P
(
R̂GMV,n+1 > rf |T > tn−k,1−α

)
(12)

While the probability in (11) can be considered as a naive approach about forecasting the

efficiency of the TP at time point t + 1 given that the estimated expected return of the

GMVP is larger than the return of the risk-free asset, the second probability provides a

similar statement which is based on the result of the statistical test developed in Section

2.

In order to determine the conditional probabilities in (11) and (12), we first derive the

joint distributions (R̂GMV,n+1, R̂GMV ) and (R̂GMV,n+1, T ) in Theorem 1 presented in terms

of their stochastic representations which is a very popular tool in computational statistics

(Givens and Hoeting (2012)), frequentist statistics (Gupta et al. (2013)) and Bayesian

statistics (Bodnar et al. (2017a)). Let the symbol
d
= denote equality in distribution.

Then we get the following results.

Theorem 1. Let X1, . . . ,Xn be independent random vectors of asset returns with Xt ∼
Nk(µ,Σ) for t = 1, . . . , n. Assume that Σ is positive definite and n > k. Then:

(a) the stochastic representation for (R̂GMV , R̂GMV,n+1) is given by

R̂GMV
d
= RGMV +

√
VGMV√
n

z4 +

√
1

n
ξ3 +

1

n

(√
ns+ z5

)2√
VGMV

z1√
ξ1

(13)

and

R̂GMV,n+1
d
= RGMV +

√
VGMV z6 +

√
VGMV

 √
s(
√
ns+ z5)√

ξ3 + (
√
ns+ z5)2

+ z7

 z1√
ξ1

+
√
VGMV

√
ξ4

(
z3√
ξ2

z1√
ξ1

+
z2√
ξ2

)
(14)

where z1, z2, z3, z4, z5, z6, z7 ∼ N (0, 1), ξ1 ∼ χ2
n−k+1, ξ2 ∼ χ2

n−k+2, ξ3 ∼ χ2
k−2, ξ4|z5, ξ3 ∼

χ2
k−2;δ2(s,ξ3,z5) with δ2(s, ξ3, z5) = sξ3

ξ3+(
√
ns+z5)

2 ; z1, z2, z3, z4, z6, z7, ξ1, ξ2, (z5, ξ3, ξ4) are

mutually independent.

9



(b) the stochastic representation for (T, R̂GMV,n+1) is given by (14) and

T
d
=

√
n− k√
ξ5

1√
1 +

ξ3+(
√
ns+z5)

2

ξ1

√nRGMV − rf√
VGMV

+ z4 +

√√√√ξ3 + (
√
ns+ z5)

2

ξ1
z1


(15)

where ξ5 ∼ χ2
n−k independent of z1, z2, z3, z4, z6, z7, ξ1, ξ2, (z5, ξ3, ξ4).

The proof of Theorem 1 is given in the appendix. The stochastic representations of

Theorem 1 appear to be a very useful tool to investigate the distributional properties of

(R̂GMV , R̂GMV,n+1) as well as of (T, R̂GMV,n+1). Moreover, they show that the distributions

of (R̂GMV , R̂GMV,n+1) and of (T, R̂GMV,n+1) depend on µ and Σ only through the three

parameters of the efficient frontier (RGMV , VGMV , s).

An important application of the stochastic representation for (R̂GMV , R̂GMV,n+1) and

of the stochastic representation for (T, R̂GMV,n+1) is that they allow for computation of

the conditional probabilities P1 and P2 from (11) and (12) in a simple and efficient way.

It is remarkable that a high numerical precision of the approximations of the conditional

probabilities can be obtained by increasing the size of the drawn samples.

In the case of (R̂GMV , R̂GMV,n+1), the following algorithm can be used to evaluate P1:

Algorithm 1 : Computing P1 from (11)

(i) fix the values of rf and (RGMV , VGMV , s);

(ii) generate independently zb1, z
b
2, z

b
3, z

b
4, z

b
5, z

b
6, z

b
7 ∼ N (0, 1), ξb1 ∼ χ2

n−k+1, ξ
b
2 ∼ χ2

n−k+2,
ξb3 ∼ χ2

k−2;

(iii) generate ξb4 ∼ χ2
k−2;δ2(s,ξb3,z

b
5)

with δ2(s, ξb3, z
b
5) =

sξb3

ξb3+(
√
ns+zb5)

2 ;

(iv) compute (R̂b
GMV , R̂

b
GMV,n+1) as in (13) and (14) by using zb1, z

b
2, z

b
3, z

b
4, z

b
5, z

b
6, z

b
7,

ξb1, ξ
b
2, ξ

b
3, ξ

b
4;

(v) determine
cb1 = 1{R̂bGMV >rf ,R̂

b
GMV,n+1>rf}

and cb2 = 1{R̂bGMV >rf}
,

where 1{A} is the indicator function of set A;

(vi) repeat steps (i)-(v) for b = 1, ..., B and approximate P1 by

P̂1 =

∑B
b=1 c

b
1∑B

b=1 c
b
2

10



For (T, R̂GMV,n+1), the above algorithm is slightly modified and it is given by

Algorithm 2 : Computing P2 from (12)

(i) fix the values of rf and (RGMV , VGMV , s);

(ii) generate independently zb1, z
b
2, z

b
3, z

b
4, z

b
5, z

b
6, z

b
7 ∼ N (0, 1), ξb1 ∼ χ2

n−k+1, ξ
b
2 ∼ χ2

n−k+2,
ξb3 ∼ χ2

k−2, ξ
b
5 ∼ χ2

n−k;

(iii) generate ξb4 ∼ χ2
k−2;δ2(s,ξb3,z

b
5)

with δ2(s, ξb3, z
b
5) =

sξb3

ξb3+(
√
ns+zb5)

2 ;

(iv) compute (T b, R̂b
GMV,n+1) as in (13) and (14) by using zb1, z

b
2, z

b
3, z

b
4, z

b
5, z

b
6, z

b
7,

ξb1, ξ
b
2, ξ

b
3, ξ

b
4;

(v) determine

cb1 = 1{T b>tn−k,1−α,R̂bGMV,n+1>rf}
and cb2 = 1{T b>tn−k,1−α};

(vi) repeat steps (i)-(v) for b = 1, ..., B and approximate P2 by

P̂2 =

∑B
b=1 c

b
1∑B

b=1 c
b
2
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In Figure 4 we present the approximated conditional probabilities P̂1 and P̂2 as a

function of RGMV − rf for rf = 0.001, VGMV = 0.001, and s = 0.22 . The values of

rf , VGMV , and s corresponds to the considered data sets of the empirical illustration of

Section 5.1 in Bodnar and Schmid (2009). We also put n = 50 (Figure 4) and consider

k ∈ {5, 10, 15, 20}. We observe that the probability P̂2 is always larger than P̂1 and,

consequently, the realized expected return of the GMVP at time (n + 1) is larger than

the risk-free rate with a higher probability when the decision about this investment op-

portunity is based on the test (5). Furthermore, we note that the distance between the

two curves in the figures is larger for smaller values of RGMV − rf and for larger values of

k.

4 Robustness to the assumption of normality

In this section we investigate the robustness of the test procedure presented in Section 2

when the assumption of normality is violated. The empirical power of the test is computed

via simulations by generating samples from the multivariate normal distribution and the

standardized multivariate t-distribution with 5 and 10 degrees of freedom, where the

standardization of the t-distribution is done in order to have samples with the same mean

vector and covariance matrices. Recall that as a result of Proposition 2 it is seen that the

power function of the test depends on the mean vector and the covariance matrix only

through the slope parameter s of the efficient frontier and the Sharpe ratio SGMV of the

GMVP. Due to this, we set Σ = Ik, an identity matrix of appropriate dimension k in the

simulation study, and consider several values of µ given by2

• µ1 = (0.1, 0, . . . , 0)′;

• µ2 = (0.1, 0.1, 0, . . . , 0)′;

• µ3 = (0.1, 0.1, 0.1, 0 . . . , 0)′;

• µ4 = (0.1, 0.1, 0.1, 0.1, 0, . . . , 0)′;

• µ5 = (0.1, 0.1, 0.1, 0.1, 0.1, 0, . . . , 0)′.

The resulting values of s and SGMV are summarized in Table 1. The values with SGMV ≤
0 corresponds to the null hypothesis in (5), while SGMV > 0 favours the alternative

hypothesis. For the cases SGMV = 0 we expected the empirical significance level of the

test obtained via simulations to be at the nominal significance level α = 0.05. Further,

the risk-free rate is set to be equal to 0.01 and the portfolio size is k ∈ {5, 10, 15, 20}.
Moreover, we observe that the slope parameter s becomes larger as k increases, while the

2From Proposition 2 it is seen that the power of test (5) only depends on µ and Σ through SGMV

and s, hence any choice of µ and Σ with the same values of SGMV and s will not affect the power of the
test if the asset returns are multivariate normally distributed.
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Figure 4: Probabilities P̂1 and P̂2 for portfolio dimension k ∈ {5, 10, 15, 20} and sample
size n = 50
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Sharpe ratio SGMV increases when the number of non-zero elements in the mean vector

becomes larger.

k s&SGMV µ1 µ2 µ3 µ4 µ5

s 0.0080 0.0120 0.0120 0.0080 0.0000
5 SGMV 0.0224 0.0671 0.1118 0.1565 0.2012

s 0.0090 0.0160 0.0210 0.0240 0.0250
10 SGMV 0.0000 0.0316 0.0632 0.0949 0.1265

s 0.0093 0.0173 0.0240 0.0293 0.0333
15 SGMV -0.0129 0.0129 0.0387 0.0645 0.0904

s 0.0095 0.018 0.0255 0.0320 0.0375
20 SGMV -0.0224 0.0000 0.0224 0.0447 0.0671

Table 1: Slope parameter s and Sharpe ratio SGMV for the portfolio dimension k ∈
{5, 10, 15, 20} and several values of µ

In Tables 2, 3 and 4 the results of the simulation study are presented for k ∈
{5, 10, 15, 20} and n ∈ {50, 100, 250}. Each value of the power function presented in

the tables is obtained by drawing B = 106 independent samples from the correspond-

ing model. The simulation study suggests that even though data are generated using a

heavy tailed t-distribution the tests are performing well. This observation remains true

independently of the considered sample size n and portfolio dimension k. Furthermore,

we observe that the power grows as the number of non-zero elements in the mean vector

becomes larger and decreases for larger values of k. The power is not larger than the nom-

inal significance level of the test, namely 5% in all cases where SGMV is non-positive and

it is always larger than 5% for SGMV > 0. This statements remains valid independently

if data are generated from the normal distribution or from the t-distribution. Finally, we

note that the empirical power obtained under the t-distribution is always smaller than the

one obtained for the normal distribution and, thus, the test becomes slightly conservative

when data are drawn from a heavy-tailed distribution, but it always keeps the nominal

significance level.

5 Empirical Study

In order to get a better understanding of the findings obtained in the previous sections,

we apply the derived theoretical results to real data. Weekly returns on 29 stocks listed

on Dow Jones Industrial (DJI) index are considered for the period from 0.1.01.2006 to

31.12.2015.3 The 13 weeks US treasury bill covering the aforementioned period is con-

sidered as a risk-free asset. The results are obtained for different portfolio dimension

3In comparison to daily returns Fama (1976) showed that the distribution of monthly returns is
approximately normal. On the other hand, the application of monthly data may result to the bias due
to time-varying dynamics in model parameters. For this reason, weekly returns are used as a trade-off
between daily and monthly returns.
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k Distribution µ1 µ2 µ3 µ4 µ5

Normal 0.0669 0.1151 0.1833 0.2731 0.3827
5 t5 0.0638 0.1061 0.1670 0.2473 0.3438

t10 0.0660 0.1110 0.1767 0.2622 0.3655
Normal 0.0497 0.0738 0.1055 0.1456 0.1952

10 t5 0.0464 0.0683 0.0952 0.1316 0.1752
t10 0.0485 0.0710 0.1012 0.1402 0.1866

Normal 0.0426 0.0582 0.0781 0.1020 0.1310
15 t5 0.0392 0.0526 0.0699 0.0912 0.1163

t10 0.0414 0.0561 0.0745 0.0969 0.1244
Normal 0.0389 0.0497 0.0634 0.0801 0.0991

20 t5 0.0348 0.0447 0.0567 0.0707 0.0873
t10 0.0371 0.0480 0.0607 0.0762 0.0941

Table 2: Power function for the portfolio dimension k ∈ {5, 10, 15, 20} and the sample
size n = 50. The nominal significance level of the test is α = 0.05.

k Distribution µ1 µ2 µ3 µ4 µ5

Normal 0.0771 0.1592 0.2869 0.4492 0.6234
5 t5 0.0715 0.1443 0.2546 0.4004 0.5631

t10 0.0744 0.1533 0.2733 0.4285 0.5985
Normal 0.0500 0.0889 0.1464 0.2239 0.3220

10 t3 0.0463 0.0801 0.1301 0.1976 0.2833
t5 0.0484 0.0856 0.1395 0.2129 0.3058

Normal 0.0388 0.0636 0.0981 0.1447 0.2041
15 t5 0.0352 0.0563 0.0864 0.1261 0.1772

t10 0.0374 0.0609 0.0934 0.1372 0.1928
Normal 0.0327 0.0499 0.0735 0.1053 0.1453

20 t5 0.0293 0.0442 0.0646 0.0909 0.1241
t10 0.0312 0.0479 0.0700 0.0990 0.1360

Table 3: Power function for the portfolio dimension k ∈ {5, 10, 15, 20} and the sample
size n = 100. The nominal significance level of the test is α = 0.05.
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k Distribution µ1 µ2 µ3 µ4 µ5

Normal 0.0966 0.2735 0.5372 0.7859 0.9339
5 t5 0.0877 0.2394 0.4732 0.7204 0.8921

t10 0.0939 0.2596 0.5114 0.7608 0.9185
Normal 0.0502 0.1231 0.2496 0.4240 0.6136

10 t5 0.0454 0.1075 0.2145 0.3650 0.5412
t10 0.0482 0.1167 0.2346 0.3988 0.5837

Normal 0.0326 0.0736 0.1445 0.2517 0.3892
15 t5 0.0295 0.0639 0.1234 0.2119 0.3295

t10 0.0316 0.0700 0.1356 0.2345 0.3637
Normal 0.0236 0.0498 0.0945 0.1643 0.2587

20 t5 0.0211 0.0428 0.0797 0.1360 0.2145
t10 0.0226 0.0471 0.0881 0.1530 0.2401

Table 4: Power function for the portfolio dimension k ∈ {5, 10, 15, 20} and the sample
size n = 250. The nominal significance level of the test is α = 0.05.

k ∈ {5, 10, 15, 20} and sample size n ∈ {50, 100, 250}. The chosen values of n roughly

correspond to one year, two years, and five years of weekly data.

5.1 Empirical distribution of p-values

In order to provide some general statements about the location of the TP on the effi-

cient frontier independently of the chosen stocks, we perform the test (5) for 1000 ran-

domly selected sets of stocks listed in the DJI index for each k ∈ {5, 10, 15, 20} and

n ∈ {50, 100, 250}. Namely, for all pairs of k and n we choose randomly k stocks listed in

DJI and their n most recent returns. Then, using these data we perform the test on the

hypothesis (5) and calculate the corresponding p-value. The procedure is repeated 1000

times resulting in a sample of p-values calculated from different sets of stocks with fixed

k and n. From these samples the histograms are constructed which are shown in Figure

5 for n = 50, in Figure 6 for n = 100, and in Figure 7 for n = 250.

We observe that the number of rejection of the null hypothesis depends crucially on the

sample size. For n = 50, we are not able to reject the null hypothesis at 5% significance

level in most of the considered cases. That is, it is not possible to conclude that the TP is

a suitable alternative to both the GMVP and the investment into the risk-free asset as it

might be located on the lower part of the feasible set of optimal portfolio. However, when

n increases, the p-values become smaller and, in particular, they are almost all below 10%

for n = 250. Table 5 provides further insight into the behavior of the p-values. Here,

the number of rejections of the null hypothesis (5) for the significance levels of 1%, 5%,

and 10% are present. The number of rejections dramatically increases when n becomes

larger. Also, we observe an increase when k is larger. To this end, we conclude that

the decision about the location of the tangency portfolio on the feasible set of portfolios
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Figure 5: Histograms of p-values for 1000 randomly sampled sets of stocks listed in the
DJI index in the case of k = 5 (top left), k = 10 (top right), k = 15 (bottom left), and
k = 20 (bottom right). For each chosen set of stocks n = 50 most recent returns are used.
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Figure 6: Histograms of p-values for 1000 randomly sampled sets of stocks listed in the
DJI index in the case of k = 5 (top left), k = 10 (top right), k = 15 (bottom left), and
k = 20 (bottom right). For each chosen set of stocks n = 100 most recent returns are
used.
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Figure 7: Histograms of p-values for 1000 randomly sampled sets of stocks listed in the
DJI index in the case of k = 5 (top left), k = 10 (top right), k = 15 (bottom left), and
k = 20 (bottom right). For each chosen set of stocks n = 250 most recent returns are
used.
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depends crucially on the amount of information used to make a decision. If the sample

size is small, then the test (5) is not powerful enough to reject the null hypothesis and to

be able to draw a conclusion about investing in the TP. This finding is in line with the

results of the simulation study presented in Section 4.

k/n
5 10 15 20

0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
50 0 2 6 0 2 8 0 6 18 1 7 26
100 0 25 98 0 13 89 2 29 123 3 44 124
250 90 575 846 67 685 946 63 719 956 84 753 957

Table 5: Number of rejections of the null hypothesis in (5) for 1000 randomly sampled sets
of stocks listed in the DJI index in the case of k ∈ {5, 10, 15, 20} and n ∈ {50, 100, 250}.
The significance level of the test is set to α ∈ {0.01, 0.05, 0.1}

5.2 Time series behavior of the p-values

In order to investigate the performance of the suggested test on the location of the tan-

gency portfolio at several time points, we apply the rolling window estimation (testing)

technique with sample size (window length) of n ∈ {50, 100, 250}. In all cases we choose

k = {5, 10, 15, 20} stocks listed in the DJI index following their alphabetical order.

In Figure 8 we present the values of the Sharpe ratio calculated for the estimated

GMVP. A very volatile behavior is present, especially when the window length is small.

If k increases, then the values of the calculated Sharpe ratio become larger showing a

positive effect of diversification, a well-known result in portfolio theory. Finally, larger

values of the Sharpe ratio are present at the end of the considered time period leading

to the conclusion that the capital market recovers after the financial crisis in 2008, while

negative values of the Sharpe ratio are present around the period of the financial crisis.

Finally, we point out, that larger values red of the Sharpe ratio can be obtained for smaller

sample sizes when most recent data are used in the construction of the GMVP. However,

in this case we also see more volatile behaviour of the estimated characteristics of the

GMVP which leads to higher risk.

In Figures 9, 10, and 11, the p-values (blue lines) are shown for the test (5) in the case

of k ∈ {5, 10, 15, 20} and n ∈ {50, 100, 250}. In addition, we also present the p-values

(red line) of the test (10) (see Remark 1 in Section 2) where we test if the TP lies on the

lower part of the efficient frontier under H1, i.e. we check if the TP is not mean-variance

efficient. Similarly to the Sharpe ratio, the p-values show high fluctuation over time when

using smaller sample size, while they are quite stable for larger sample sizes. For n = 50

the p-values of both tests are larger than the nominal significance level of 5% and, hence,

no decision about the investment into the TP could be done since both null hypotheses

cannot be rejected. This point is fully related to the power properties of the tests, i.e.

the window length is too small for drawing a conclusive decision. By increasing the value
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of n, the situation improves and we may draw conclusions concerning the mean-variance

efficiency of the TP in almost the whole period starting at the end of 2013 for n = 250.

In contrast, the decision about the inefficiency of the TP can be drawn at the end of 2008

when n = 50 and k ∈ {5, 10}. We also note that in all cases where the empirical Sharpe

ratio is negative, we are not able to reject the null hypothesis of the test (5).

Finally, we present the values of the conditional probabilities P̂1 and P̂2 in Table 6

which are defined in Section 3 as the probabilities that the realized expected return of

the GMVP is larger than the risk-free rate in the consequent period provided that the

estimated expected return of this portfolio is larger than the risk-free rate (for P̂1) or

the test (5) at significance level 5% rejects the null hypothesis (for P̂2). Note that the

number of cases used in the computation of P̂1 and P̂2 depends on the occurrence of the

events {R̂GMV > rf} and {T > tn−k,1−α}, respectively. The number of rejections of the

null hypothesis by test (5) are summarized in Table 6. In these cases, P̂2 were computed,

while slightly larger samples were used for the calculation of P̂1. Table 6 documents that

P̂2 outperforms P̂1 for n = 50 and n = 100, while they have the same performance for

n = 250. Hence, the best strategy to forecast the efficiency of the TP is to use the

statistical approach developed in Section 2. Furthermore, the results of Table 6 are in

line with the findings of the simulation study of Section 3 where similar performance is

documented.

k/n
5 10 15 20

Rej P̂1 P̂2 Rej P̂1 P̂2 Rej P̂1 P̂2 Rej P̂1 P̂2

50 87 0.9861 1 61 0.9744 1 70 0.9702 1 83 0.9862 1
100 96 0.9853 1 99 0.9823 1 124 0.9875 1 103 1 1
250 107 1 1 118 1 1 130 1 1 248 1 1

Table 6: Empirical probabilities P̂1 and P̂2 of the realized return of the GMVP to be
positive calculated for the first k ∈ {5, 10, 15, 20} stocks listed in the DJI index in the
alphabetical order. Rolling window estimation is used with the window length equal to
n ∈ {50, 100, 250}. The nominal significance level of the test (5) used in the calculations
of P̂2 is α = 0.05.
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Figure 9: p-values calculated for the test (5) (blue line) and for the test (10) (red line)
for the first k ∈ {5, 10, 15, 20} stocks listed in the DJI index in the alphabetical order.
Rolling window estimation is used with the window length equal to n = 50.

23



DJI k=5

year

p−
va

lu
e

0
0.

08
0.

2
0.

28
0.

4
0.

48
0.

6
0.

68
0.

8
0.

88
1

2008 2009 2010 2011 2012 2013 2014 2015 2016

H0 : RGMV ≤ rf

H0 : RGMV ≥ rf

DJI k=10

year

p−
va

lu
e

0
0.

08
0.

2
0.

28
0.

4
0.

48
0.

6
0.

68
0.

8
0.

88
1

2008 2009 2010 2011 2012 2013 2014 2015 2016

H0 : RGMV ≤ rf

H0 : RGMV ≥ rf

DJI k=15

year

p−
va

lu
e

0
0.

08
0.

2
0.

28
0.

4
0.

48
0.

6
0.

68
0.

8
0.

88
1

2008 2009 2010 2011 2012 2013 2014 2015 2016

H0 : RGMV ≤ rf

H0 : RGMV ≥ rf

DJI k=20

year

p−
va

lu
e

0
0.

08
0.

2
0.

28
0.

4
0.

48
0.

6
0.

68
0.

8
0.

88
1

2008 2009 2010 2011 2012 2013 2014 2015 2016

H0 : RGMV ≤ rf

H0 : RGMV ≥ rf

Figure 10: p-values calculated for the test (5) (blue line) and for the test (10) (red line)
for the first k ∈ {5, 10, 15, 20} stocks listed in the DJI index in the alphabetical order.
Rolling window estimation is used with the window length equal to n = 100.
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Figure 11: p-values calculated for the test (5) (blue line) and for the test (10) (red line)
for the first k ∈ {5, 10, 15, 20} stocks listed in the DJI index in the alphabetical order.
Rolling window estimation is used with the window length equal to n = 250.
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6 Summary

The tangency portfolio plays an important role in the financial literature and is usually

used as a market portfolio in the capital asset pricing model. However, due to the way

how the TP is constructed together with the large amount of uncertainty that is present in

financial markets, the TP might not be mean-variance efficient at all. Although a number

of studies is devoted to the estimation of the TP weights and investigating the distri-

butional properties of the tangency portfolio (see, Ingersoll (1987); Britten-Jones (1999);

Okhrin and Schmid (2006); Schmid and Zabolotskyy (2008); Bodnar and Zabolotskyy

(2017)), the problem of the location of the TP on the set of feasible portfolios has not

been treated in the literature to the best of our knowledge.

In this paper we introduce a finite-sample test on the mean-variance efficiency of

the tangency portfolio. The distribution of the test statistic is also derived under both

hypotheses. Further, it is shown that the suggested test is easily performed in practice by

comparing the value of the test statistic with the quantile of a t-distribution. Moreover,

the result under the alternative hypothesis is used to investigate the test power. Within

an extensive simulation study, we show that the new test is robust to the violation of the

normality assumption and can also be used for heavy-tailed stochastic models. Finally,

the theoretical results are applied to recent data based on the returns on the stocks

included into the DJI index. We conclude, empirically, that the TP is not mean-variance

efficient during some parts of the financial crisis. On the other hand, we are not able to

accept the efficiency of the TP when the sample size is small because of a large amount

of uncertainty present in the financial markets. However, if the sample size is relatively

large and a stable period is present on market, then the mean-variance efficiency of the

TP can be statistically justified.

7 Appendix

Proof of Proposition 2. For a given constant c, we get that

GT,α(SGMV , s) = P(T > c) =
∫ ∞
c

fT (x)dx

=
n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
c

∫ ∞
0

ftn−k,δ(y)(x)fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dydx

=
n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

(∫ ∞
c

ftn−k,δ(y)(x)dx
)
fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy

=
n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

(
1− Ftn−k,δ(y)(c)

)
fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy.

26



In using that 1− Ftn−k,δ(y)(c) > 1− Ftn−k,0(c) for all y ≥ 0 and RGMV < rf , we get

GT,α(SGMV , s) ≤
n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

(
1− Ftn−k,0(c)

)
fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy

=
(
1− Ftn−k,0(c)

) n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy︸ ︷︷ ︸

1

= 1− Ftn−k(c) = α.

with c = tn−k,1−α where tn−k,1−α denotes the (1 − α) quantile of the t-distribution with

n− k degrees of freedom.

Proof of Theorem 1. From Theorem 3.1.2 and Corollary 3.2.2 in Muirhead (1982), we get

µ̂ ∼ Nk(µ,Σ/n), (n − 1)Σ̂ ∼ Wk(n − 1,Σ) (k-dimensional Wishart distribution with

n − 1 degrees of freedom and the parameter matrix Σ); µ̂ and Σ̂ are independently

distributed. Moreover, we get Xn+1 is independent of both µ̂ and Σ̂ by the assumptions

of the theorem.

Let

Ω̂ =


µ̂′

X′n+1

1′k

 Σ̂−1
[
µ̂ Xn+1 1k

]

Since Σ̂ is independent of µ̂ and Xn+1, the conditional distribution of Ω̂ given µ̂ = µ0

and Xn+1 = X0 is equal to Ω̃ expressed as

Ω̃ =


µ′0
X′0
1′k

 Σ̂−1
[
µ0 X0 1k

]
=


µ′0Σ̂

−1µ0 µ′0Σ̂
−1X0 µ′0Σ̂

−11k

X′0Σ̂
−1µ0 X′0Σ̂

−1X0 X′0Σ̂
−11k

1′kΣ̂
−1µ0 1′kΣ̂

−1X0 1′kΣ̂
−11k


Defining

Ω =


µ′0Σ

−1µ0 µ′0Σ
−1X0 µ′0Σ

−11k

X′0Σ
−1µ0 X′0Σ

−1X0 X′0Σ
−11k

1′kΣ
−1µ0 1′kΣ

−1X0 1′kΣ
−11k


and using Theorem 3.2.11 by Muirhead (1982), we get that (n− 1)−1Ω̃−1 ∼ W3(n− k +

2,Ω−1). Hence, (n− 1)Ω̃ ∼ W−13 (n− k + 6,Ω).

Let

s0 = µ′0R̂µ0, h0 = X′0R̂µ0, v0 = X′0R̂X0.
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From Theorem 3.(b) in Bodnar and Okhrin (2008) we get

 µ′0Σ̂−11k

1′
k
Σ̂−11k

X′0Σ̂−11k

1′
k
Σ̂−11k

 ∣∣∣∣s0, h0, v0 ∼ N2


 µ′0Σ−11k

1′
k
Σ−11k

X′0Σ−11k
1′
k
Σ−11k

 , (n− 1)−1

1′kΣ
−11k

 s0 h0

h0 v0


 , (16)

where 1′kΣ̂
−11k = V̂ −1GMV is independent of

(
µ′0Σ̂−11k

1′
k
Σ̂−11k

,
X′0Σ̂−11k

1′
k
Σ̂−11k

, s0, h0, v0

)
and (see, e.g.,

Lemma A1 in Bodnar and Schmid (2009))

(n− 1)
V̂GMV

VGMV

∼ χ2
n−k. (17)

Moreover, we get that (Theorem 3.(b) in Bodnar and Okhrin (2008))

(n− 1)−1

 s0 h0

h0 v0

 ∼ W−12

n− k + 5,

 µ′0Rµ0 µ′0RX0

X′0Rµ0 X′0RX0


and, consequently,

(n− 1)
µ′0Rµ0

s0
∼ χ2

n−k+1, (18)

h0
s0
|v0 − h20/s0 ∼ N

(
X′0Rµ0

µ′0Rµ0

,
(n− 1)−1

µ′0Rµ0

(
v0 − h20/s0

))
,(19)

(n− 1)
X′0RX0 − (X′0Rµ0)

2/µ′0Rµ0

v0 − h20/s0
∼ χ2

n−k+2 (20)

as well as s0 is independent of h0/s0 and v0 − h20/s0. Let

ŝ = µ̂′R̂µ̂, ĥ = X′n+1R̂µ̂, v̂ = X′n+1R̂Xn+1.

Then the unconditional distributions of

ξ1 = (n− 1)
µ̂′Rµ̂

ŝ
and ξ2 = (n− 1)

X′n+1RXn+1 − (X′n+1Rµ̂)2/µ̂′Rµ̂

v̂ − ĥ2/ŝ

coincide with the corresponding conditional ones as given in (18) and (20) as well as ξ1 is

independent of ĥ/ŝ and ξ2.

(a) The application of (16)-(20) leads to the stochastic representation for
(
R̂GMV , R̂GMV,n+1

)
given by

R̂GMV
d
=

µ̂′Σ−11k
1′kΣ

−11k
+

√√√√(n− 1)−1

1′kΣ
−11k

√
sz1

d
=

µ̂′Σ−11k
1′kΣ

−11k
+

√√√√ µ̂′Rµ̂

1′kΣ
−11k

z1√
ξ1
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and

R̂GMV,n+1
d
=

X′n+1Σ
−11k

1′kΣ
−11k

+

√√√√(n− 1)−1

1′kΣ
−11k

(
h√
s
z1 +

√
v − h2/sz2

)

d
=

X′n+1Σ
−11k

1′kΣ
−11k

+

√√√√ µ̂′Rµ̂

1′kΣ
−11k

X′n+1Rµ̂

µ̂′Rµ̂

z1√
ξ1

+

√√√√√X′n+1RXn+1 −
(X′n+1Rµ̂)2

µ̂′Rµ̂
1′kΣ

−11k

(
z3√
ξ2

z1√
ξ1

+
z2√
ξ2

)

where z1, z2, z3 ∼ N (0, 1), ξ1 ∼ χ2
n−k+1, ξ2 ∼ χ2

n−k+2; z1, z2, z3, ξ1, ξ2 are mutually

independent.

Since

RΣ
Σ−11k

1′kΣ
−11k

=
R1k

1′kΣ
−11k

= 0,

we get that (see Corollary 7.8.6.1 in Gupta and Nagar (2000)) µ̂′Σ−11k
1′
k
Σ−11k

X′n+1Σ−11k
1′
k
Σ−11k

 and

 µ̂′Rµ̂ µ̂′RXn+1

X′n+1Rµ̂ X′n+1RXn+1


are independently distributed with µ̂′Σ−11k

1′
k
Σ−11k

X′n+1Σ−11k
1′
k
Σ−11k

 ∼ N2

RGMV 12,

 VGMV /n 0

0 VGMV

 .

Moreover, using that µ̂ and Xn+1 are independent, we get that

X′n+1Rµ̂

µ̂′Rµ̂
|µ̂ ∼ N

(
µ′Rµ̂

µ̂′Rµ̂
,

1

µ̂′Rµ̂

)

X′n+1RXn+1 −
(X′n+1Rµ̂)2

µ̂′Rµ̂
|µ̂ ∼ χ2

k−2;δ2(µ̂)
with

δ2(µ̂) = µRµ− (µ′Rµ̂)2

µ̂′Rµ̂
=
µ′Rµ

µ̂′Rµ̂
µ̂′
(

R− Rµµ′R

µ′Rµ

)
µ̂,

and the two quantities given µ̂ are independently distributed. These results follow

from Corollary 5.1.3a and Theorem 5.5.1 of Mathai and Provost (1992) since(
R− Rµ̂µ̂′R

µ̂′Rµ̂

)
Σ

Rµ̂

µ̂′Rµ̂
= 0
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and (
R− Rµ̂µ̂′R

µ̂′Rµ̂

)
Σ

(
R− Rµ̂µ̂R

µ̂′Rµ̂

)
= R− Rµ̂µ̂′R

µ̂′Rµ̂

with rank
((

R− Rµ̂µ̂′R
µ̂′Rµ̂

)
Σ
)

= k − 2.

In using that

µ̂′Rµ̂ = µ̂′
(

R− Rµµ′R

µ′Rµ

)
µ̂+ µ′Rµ

(
µ̂′Rµ

µ′Rµ

)2

and applying Corollary 5.1.3a and Theorem 5.5.1 of Mathai and Provost (1992), we

get that

µ̂′
(

R− Rµµ′R

µ′Rµ

)
µ̂ and

µ̂′Rµ

µ′Rµ

are independent with
µ̂′Rµ

µ′Rµ
∼ N

(
1,

n−1

µ′Rµ

)
and

nµ̂′
(

R− Rµµ′R

µ′Rµ

)
µ̂ ∼ χ2

k−2.

Hence, the stochastic representation for
(
R̂GMV , R̂GMV,n+1

)
expressed as

R̂GMV
d
= RGMV +

√
VGMV√
n

z4 +

√
1

n
ξ3 +

1

n

(√
ns+ z5

)2√
VGMV

z1√
ξ1

and

R̂GMV,n+1
d
= RGMV +

√
VGMV z6 +

√
VGMV

 √
s(
√
ns+ z5)√

ξ3 + (
√
ns+ z5)2

+ z7

 z1√
ξ1

+
√
VGMV

√
ξ4

(
z3√
ξ2

z1√
ξ1

+
z2√
ξ2

)

where z1, z2, z3, z4, z5, z6, z7 ∼ N (0, 1), ξ1 ∼ χ2
n−k+1, ξ2 ∼ χ2

n−k+2, ξ3 ∼ χ2
k−2, ξ4|z5, ξ3 ∼

χ2
k−2;δ2(s,ξ3,z5) with δ2(s, ξ3, z5) = sξ3

ξ3+(
√
ns+z5)

2 ; z1, z2, z3, z4, z6, z7, ξ1, ξ2, (z5, ξ3, ξ4) are

mutually independent.

(b) Let

a =

√
n− k√
n− 1

1√
1 + n

n−1 ŝ0

√
V̂GMV

n

.
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Given µ̂ = µ0 and Xn+1 = X0, we get

 a
(

X′0Σ̂−11k

1′
k
Σ̂−11k

− rf
)

X′0Σ̂−11k

1′
k
Σ̂−11k

 ∣∣∣∣s0, h0, v0

∼ N2


 a

(
µ′0Σ−11k
1′
k
Σ−11k

− rf
)

X′0Σ−11k
1′
k
Σ−11k

 , (n− 1)−1

1′kΣ
−11k

 a2s0 ah0

ah0 v0


 ,

Then, using the derivation of part (a) and (17) we get a stochastic representation for

R̂GMV,n+1 as in part (a) and a stochastic representation of T given by

T
d
=

√
n− k√
n− 1

1√
1 +

ξ3+(
√
ns+z5)

2

ξ1

√
ξ5

VGMV

(n−1)n

×

RGMV − rf +

√
VGMV√
n

z4 +

√
1

n
ξ3 +

1

n

(√
ns+ z5

)2√
VGMV

z1√
ξ1


=

√
n− k√
ξ5

1√
1 +

ξ3+(
√
ns+z5)

2

ξ1

√nRGMV − rf√
VGMV

+ z4 +

√√√√ξ3 + (
√
ns+ z5)

2

ξ1
z1

 ,

where ξ5 ∼ χ2
n−k independent of z1, z2, z3, z4, z6, z7, ξ1, ξ2, (z5, ξ3, ξ4).
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