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Abstract

In this paper we present several goodness-of-fit tests for the centralized Wishart pro-

cess, a popular matrix-variate time series model used to capture the stochastic properties of

realized covariance matrices. The new test procedures are based on the extended Bartlett

decomposition derived from the properties of the Wishart distribution and allows to obtain

sets of independently and standard normally distributed random variables under the null

hypothesis. Several tests for normality and independence are then applied to these vari-

ables in order to support or to reject the underlying assumption of a centralized Wishart

process. In order to investigate the influence of estimated parameters on the suggested

testing procedures in the finite-sample case, a simulation study is conducted. Finally,

the new test methods are applied to real data consisting of realized covariance matrices

computed for the returns on six assets traded on the New York Stock Exchange.
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1 Introduction

The ability to model and to predict covariance matrices of asset returns is a crucial aspect in

many financial applications, such as portfolio allocation, option pricing and risk management.

A classical discrete time modeling approach is based on the multivariate GARCH-type models

which were first introduced by Bollerslev et al. (1988) with the aim to capture the conditional

heteroscedasticity present in the daily data. Further modifications of the multivariate GARCH

processes were proposed by Engle and Kroner (1995); Engle (2002); Aielli (2013) with Bauwens

et al. (2006) providing a review of these types of models. Another approach to model dynamics

in the second moments of asset returns is based on the multivariate stochastic volatility models

reviewed by Asai et al. (2006).

Due to the rapid development of the computer industry, it has recently become possible

to use high-frequency financial data, such as one-minute returns, five-minutes returns, etc. to

capture the dynamics in covariance matrices computed for daily frequency (see, e.g., Barndorff-

Nielsen and Shephard (2004); Bibinger et al. (2014, 2017) and references therein). This has

lead to the development of new approaches to model the stochastic behavior of daily (condi-

tional) covariance matrices based on high frequency data, in which intraday returns are used to

consistently estimate low frequency covariance matrices. A number of such models are based

on the assumption that the realized covariance matrices are driven by an underlying centralized

Wishart process (Golosnoy et al. (2012); Noureldin et al. (2012)).

Wishart processes as models for the multivariate stochastic volatility were introduced by

Philipov and Glickman (2006); Gouriéroux et al. (2009). They have recently been intensively

investigated in a number of studies, like Golosnoy et al. (2012); Noureldin et al. (2012); Jin and

Maheu (2012); Hansen et al. (2016); Opschoor et al. (2017); Yu et al. (2017); Anatolyev and

Kobotaev (2017). This approach appears attractive since the conditional distribution of realized

covariance matrices is modeled by the Wishart distribution which is a well-established model

for almost surely positive definite matrices (see, e.g., Gupta and Nagar (2000)), an inherent

property of realized covariance matrices.

In order to investigate how well the model fits observed data, a measure of forecasting

accuracy on out-of-sample data is commonly used. Golosnoy et al. (2012) evaluates the fit of

the conditional autoregressive Wishart (CAW) model by computing vectors of standardized

residuals which are tested for the presence of autocorrelation by applying a univariate Ljung-
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Box test. This is a common approach used in econometric literature which is based on the fact

that the residuals in the misspecified model often are autocorrelated (Johnston and DiNardo

(1997)). However, this diagnostic procedure does not fully test the underlying assumption of a

Wishart process, an assumption which must be fulfilled if the model is to be reliably used as,

for example, a forecasting tool. Its main drawback is that it is based on the first two conditional

moments of the Wishart process only and, consequently, it cannot detect deviations that are

present in the moments of higher orders.

We contribute to the existent literature on the Wishart process by proposing new goodness-

of-fit tests on this stochastic matrix-variate model. In the derivation we use the properties

of the Wishart distribution to attain the extended Bartlett decomposition from which the test

statistics are obtained. The size and power properties of the new test procedures are investigated

by the means of a simulation study and they are then compared to those obtained by the

application of standardized residuals as suggested in Golosnoy et al. (2012). An important

difference between the new procedures and the existent approach is that while the method

presented in Golosnoy et al. (2012) controls for the first two conditional moments of the Wishart

process, the new procedures take the full distribution into consideration. Moreover, the new

method is applicable to any model driven by a centralized Wishart process, and as such can

be employed in a variety of areas, not restricted to cases of a particular model, such as the

conditional autoregressive Wishart process.

The paper is structured as follows. Section 2 introduces a centralized Wishart process

and presents its distributional properties. The extended Bartlett decomposition used in the

derivation of the test statistics is given in Theorem 1. The goodness-of-fit tests are provided

in Section 3, while their sizes and powers are investigated in Section 4 and compared to the

results obtained for the existent approach. In Section 5 the new testing procedures are applied

to real data consisting of six stocks traded on the New York Stock Exchange. Section 6 con-

cludes. Proofs and complementary tables with the results of simulation study are moved to the

Appendix.

2 CentralizedWishart process and its stochastic properties

Let {Rt}1≤t≤T be a time series of symmetric positive definite n × n matrices and let Ft−1 =

{Rt−1,Rt−2, . . .} denote a filtration determined by the observation matrices Rt−1,Rt−2, . . ..
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Then {Rt}1≤t≤T follows a centralized Wishart process if

Rt|Ft−1 ∼ Wn (ν,St) , (1)

where Wn denotes the n × n Wishart distribution, ν > n − 1 the scalar degrees of freedom2

and St an n × n symmetric, positive definite scale matrix measurable with respect to Ft−1 at

time t − 1. Further, let S
1
2
t be the lower-triangular Cholesky root of St. By Theorem 3.2.5 in

Muirhead (1982) we then get

Qt|Ft−1 = S
− 1

2
t Rt(S

− 1
2

t )′ ∼ Wn (ν, In) . (2)

Note that the conditional distribution of Qt given Ft−1 does not depend on the σ–algebra Ft−1

and, consequently, Qt is unconditionally Wishart distributed.

Thus, the random matrix Qt represents the underlying variability of the centralized Wishart

process at time t once the scaling has been removed. In Theorem 1, we present an extension of

Bartlett decomposition, presented in Bartlett (1934). This result will be later used in Section

3 to derive goodness-of-fit tests for a centralized Wishart process. The proof of Theorem 1 is

given in the Appendix.

Theorem 1. (Extended Bartlett decomposition)

Let A ∼ Wn (ν, In) where ν > n − 1 and define A = TT′ where T = (tij)i,j=1,...,n is a lower-

triangular n× n matrix with positive diagonal elements. Then:

(i) tij, 1 ≤ j ≤ i ≤ n are mutually independent;

(ii) tij ∼ N (0, 1) (standard normal distribution) for 1 ≤ j < i ≤ n;

(iii) t2ii ∼ Γ(ν−i+1
2

, 2) (gamma distribution with shape (ν−i+1)/2 and scale 2) for i = 1, . . . , n.

With the aid of Theorem 1 we can decompose Qt in the following way:

Qt = UtU
′

t (3)

where Ut is the lower-triangual Cholesky root whose squared diagonal elements u2
ii,t, i =

1, . . . , n, are distributed as Γ(ν−i+1
2

, 2), while all elements below the diagonal uij,t, 1 ≤ j < i ≤ n,

2Following the discussion on p. 87 in Muirhead (1982), we use the extended definition of the Wishart

distribution allowing for any real valued degrees of freedom ν > n− 1.
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are standard normally distributed. Moreover, uij,t, 1 ≤ j ≤ i ≤ n are independent. Then de-

fine eij = uij, 1 ≤ j < i ≤ n and eii,t = Φ−1(FΓ( ν−i+1
2

,2)(u
2
ii,t)) for i = 1, . . . , n where Φ denotes

the cumulative distribution function (CDF) of the standard normal distribution and FΓ( ν−i+1
2

,2)

stands for the CDF of the Γ(ν−i+1
2

, 2)-distribution. This integral transformation ensures that

eii,t, i = 1, . . . , n, are standard normally distributed random variables.

Now let

et = (e11,t, . . . , en1,t, e22,t, . . . , enn,t)
′ (4)

for 1 ≤ t ≤ T . Then, et ∼ N (0k, Ik) (multivariate standard normal distribution) where

k = n(n+ 1)/2, 0k is a k× 1 zero vector and Ik a k× k identity matrix. Finally, using that the

conditional distribution of Qt does not depend on Ft−1 and that in the definition of the vector

et only the elements of matrix Qt are used, we get that the residual vectors et, t = 1, . . . , T are

mutually independently distributed. It is remarkable that this result holds independently of

the equation used to model St and can be used to develop goodness-of-fit tests on a centralized

Wishart processes which are presented in Section 3.

3 Goodness-of-fit tests

In this section we use the findings of Theorem 1 to derive several goodness-of-fit tests for

centralized Wishart processes which in Section 4 are then applied to the special case of the

conditionally autoregressive Wishart process considered in Golosnoy et al. (2012).

The null hypotheses of the considered tests are given by

H0 : Rt follows a centralized Wishart process with parameters ν and St (5)

against H1 : Rt does not follow a centralized Wishart process with parameters ν and St .

Note that the null hypothesis in (5) is also rejected when Rt still has a centralized Wishart

process but with other parameters as specified under H0. Hence, it also controls the validity

of the model which is fitted to describe the dynamics in St. Another possibility to reject H0 is

when the true data generating process deviates from the family of centralized Wishart processes.

In the derivation of the test statistics we employ the properties of centralized Wishart

processes discussed in the previous section. Namely, the application of extended Bartlett de-

composition with the integral transformation applied to the squared diagonal elements of the

matrix Ut leads to the sequence of independent and multivariate standard normally distributed
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random vectors et as given in (4). Then the null hypothesis in (5) can be equivalently expressed

in terms of the sequence et, t = 1, . . . , T, where its distributional and time series properties are

verified.

3.1 Noise matrix and its partitions

Using the transformation described after Theorem 1, we define the k×T noise matrix E , again

k = n(n+ 1)/2 being the number of components in the vector et, as

E = (e1, . . . , eT ) = {eij,t}1≤j≤i≤n,t=1,...,T , (6)

which is the collection of the vectors given in (4). As a result, the matrix E consists of

Tn(n + 1)/2 independent and standard normally distributed random variables under the null

hypothesis in (5). Hence goodness-of-fit tests evaluating these properties can be applied directly

to E in order to test the validity of the Wishart process.

However, the independence and identical distribution of elements in E also allows for tests

on any suitable partition of E. Such a procedure can be informative about what parts of the

matrix process that invalidates the null hypothesis, if any. Given that {Rt}1≤t≤T is a discrete

time process, it can be of interest to investigate if Rt at each t follows a centralized Wishart

distribution, or if a sequence Rt+1, . . . ,Rt+τ follows a centralized Wishart process from time

t+ 1 to t+ τ , for example during a selected week or month.

To this end, let T = mτ and consider the column-block partition EB given as

E = (E1, . . . ,Em) with El = (el(τ−1)+1, . . . , elτ ). (7)

Again note that following Theorem 1, the elements of El for l = 1, . . . ,m are independently and

standard normally distributed. Now let dl be a goodness-of-fit test statistic calculated for El

and define d = (d1, . . . , dm)′. Then the components of d are independently distributed and each

of them is used to test the validity of a centralized Wishart process during the corresponding

time period. Finally, one can base the decision of the validity of a centralized Wishart process

for each submatrix El, l = 1, . . . ,m on the vector of p-values p = (p1, . . . , pm)′, where pl is the

p-value associated with dl, instead of d. In contrast to d, the univariate marginal distributions

of the vector p are uniform distributions on [0, 1] and consequently they are independent of the

dimensionality of matrices El, l = 1, . . . ,m.
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Similarly, appropriate goodness-of-fit tests can aslo be applied to each of the k component

of the vectors et for t = 1, ..., T . To this end, consider the row partition EC given as

E = (ẽ11, . . . , ẽn1, ẽ22, . . . , ẽnn)′ with ẽij = (eij,1, . . . , eij,T )′, (8)

where 1 ≤ j ≤ i ≤ n. In this case, the aim is to investigate which components of the vector et

are responsible for the violation of the null hypothesis in (5). Note that in general when several

tests are performed simultaneously the multiplicity correction on the significance level should

be kept in mind.

The construction of E together with appropriate partitions of E allows us to perform

goodness-of-fit tests on any centralized Wishart process aiming to model observed series of

symmetric positive definite matrices. When the null hypothesis of a centralized Wishart pro-

cess is true, any given test statistic assessing independent standard normality, computed on

the elements in E or on the elements in any matrix or vector of its partitions, will follow the

corresponding null distribution.

3.2 Tests based on standard normality

Since the elements of E are independent and standard normally distributed under the null

hypothesis in (5), a goodness-fit-test on a centralized Wishart process with known values of ν

and St can be performed by testing if

H0 : eij,t is normally distributed (9)

against H1 : eij,t is not normally distributed

based on an independent sample eij,t for 1 ≤ j ≤ i ≤ n and t = 1, . . . , T .

The testing problem (9) is well studied in statistics with a number of existent approaches.

For example, the test can be performed by using the Kolmogorov-Smirnov statistic (Massey Jr

(1951)), the Anderson-Darling test (Anderson and Darling (1954)), the Shapiro-Wilk approach

(Shapiro and Wilk (1965)), the Lilliefors test (Lilliefors (1967)).

Similarly we can perform tests on the mean and the variance of the components of E.

Namely, in using the t-test we will test if

H0 : E(eij,1) = 0 against H1 : E(eij,1) 6= 0. (10)
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The statistic of the t-test is given by

Tmean =
√
kT

ē

se
, (11)

where

ē =
1

kT

∑
j≤i

T∑
t=1

eij,t and s2
e =

1

kT − 1

∑
j≤i

T∑
t=1

(eij,t − ē)2

are the sample mean and the sample variance obtained from {eij,t}1≤j≤i≤n,t=1,...,T . Under the

null hypothesis, it holds that Tmean is asymptotically standard normally distributed.

Finally, a test on the equality of the variance to one can be applied as well with the hy-

potheses given by

H0 : Var(eij,t) = 1 against H1 : Var(eij,t) 6= 1 , (12)

and the test statistic expressed as

Tvar = (kT − 1)s2
e, (13)

which has a χ2
kT−1-distribution under H0.

Correspondingly, the above tests can be applied to each matrix in the partition EB and to

each vector in the partition EC in order to test for standard normality in different time periods

and for different components of et, respectively.

3.3 Tests based on autocorrelations

If a time series model is misspecified, then the residuals obtained from this model often appear to

be autocorrelated (see, e.g., Tsay (2005)). As a result, testing for the presence of autocorrelation

in the residuals is a common way to validate the model in practice. Following this procedure and

using the matrix E, in this section we construct several goodness-of-fit tests for a centralized

Wishart process, designed to verify the presence of autocorrelated vectors in E. The testing

hypotheses are given by

H0 : No autocorrelation is present up to lag L (14)

against H1 : Autocorrelation is present up to lag L

This test is performed by employing the multivariate Ljung-Box test (see, Tsay (2005)) whose

asymptotic null distribution was derived by Hosking (1980). The test is applied to E, treating

its columns as observation vectors.
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Alternatively, a collection of univariate Ljung-Box tests can be applied to verify the pres-

ence of autocorrelations in each vector of the partition EC . This approach ignores the cross-

sectional dependencies in the residuals, while reducing the degrees of freedom of the limiting

χ2-distribution and thus increasing the power of each individual test. Finally, the test for auto-

correlation in residuals is usually performed not only to the original residuals but also to their

corresponding squared values.

While the test on the autocorrelations in the residuals and their squared values check the

properties of their first two moments, the goodness-of-fit tests of Section 3.2 monitor the whole

distribution function. Consequently, the tests based on the Ljung-Box statistics seems to be

a better choice if the fit of St is of interest, while the approach of Section 3.2 might be more

useful to check if the Wishart distribution is an appropriate assumption for the standardized

process Qt as given in (3).

3.4 Specification of ν and St

The tests in Sections 3.2 and 3.3 are designed under the assumption that both quantities ν

and St are known precisely. The violation of this assumption could have a large effect on

the performance of the suggested tests. The parameter ν is usually fitted in practice by the

maximum likelihood estimator and, consequently, it is consistent and asymptotically normal

distributed under some regularity conditions.

The situation of the specification of St is more involved. By its definition, the matrix St is

measurable with respect to filtration Ft−1. In practice, however, several approaches could be

applied to model St with the conditional autoregressive Wishart (CAW) process considered in

Golosnoy et al. (2012) and the HEAVY model introduced by Noureldin et al. (2012) to be the

most popular ones. In both cases St is model by its previous realizations, the realizations of

the process Rt up to time t − 1, and some parameter matrices. Noureldin et al. (2012) used

the maximum likelihood method to estimate the parameter matrices and proved that these

estimators are consistent and asymptotically normally distributed. As a result, if the sample

size is relatively large with respect to the process dimension, then the impact of the estimation

error is expected to be small and it can be ignored in practice. On the other side, if the sample

size is not large enough, then it has to be taken into account, which could be achieved via

bootstrap (Davison and Hinkley (1997); Horowitz et al. (2003); Efron and Hastie (2016)).
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4 Finite sample performance

In order to investigate the size and power properties of the proposed test procedures under

parameter uncertainty when the sample size T is finite, two simulation studies of the conditional

autoregressive Wishart process of Golosnoy et al. (2012) are conducted in this section. The

first study, found in Section 4.3, investigates the power when the autoregressive structure of a

Wishart process is violated, i.e., the model equation for St is misspecified. The second study,

found in Section 4.4, investigates the size and the power when both the autoregressive structure

of the Wishart process as well as the assumption of the Wishart distribution are violated.

4.1 Conditional autoregressive Wishart process

Given a filtration of past observations Ft−1 = {Rt−1,Rt−2, . . .} the conditionally autoregressive

Wishart process of order (p, q) denoted by CAW(p, q) is specified as

Rt|Ft−1 ∼ Wn(ν,St/ν), (15)

with

St = CC′ +
p∑
i=1

BiSt−iB
′
i +

q∑
i=1

AiRt−iA
′
i. (16)

Golosnoy et al. (2012) derive the maximum likelihood estimators for the parameters of this

model, while Noureldin et al. (2012) provided the conditions under which these estimators are

consistent when the sample size T tends to infinity. In our simulation study we deal with

the case of finite T with the aim to investigate the influence of parameter uncertainty on the

performance of the suggested goodness-of-fit tests. We also compare the new procedures with

the existent approach for model diagnostics which is proposed in Golosnoy et al. (2012) and is

described in Section 4.2 as a benchmark procedure.

In the simulation study, we use the diagonal CAW(p, q) model (here denoted by DCAW(p, q)),

as suggested in Golosnoy et al. (2012) of sizes n = 2, 4, 6. The DCAW model entails that each

parameter matrix A1, . . . ,Aq,B1, . . .Bq in (15) and (16) is diagonal with n unknown parame-

ters. The diagonal CAW model is chosen over the full CAW model in order to reduce parameter

estimation time.

The simulations are performed by generating a series {Rt}1≤t≤T of T matrices that are con-

ditionally Wishart distributed according to (15) where St in (16) is computed with the starting

values R0,R−1,S0, S−1 and parameters θp,q = {A1, . . . ,Aq,B1, . . .Bq,C, ν} as given in Table
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Parameter A1 A2 B1 B2 C ν R0 S0 R−1 S−1

Value 1
2In

2
5In

1
2In

2
5In In 20 In In In In

Table 1: Parameters and start values used in the simulation study.

1. Then the parameters of the model are estimated by the maximum likelihood method in each

simulation, and a scale matrix series {Ŝt}1≤t≤T is computed given the estimated parameters.

Using both {Rt}1≤t≤T and {Ŝt}1≤t≤T the noise matrix E is then computed according to (2)-

(6). Finally, the proposed tests of Section 3 are applied first to E, then to the matrices of the

partition EB and then to the vectors of the partition EC .

4.2 Benchmark procedure

As a benchmark method to the tests on the vector partition EC proposed in Section 3, we

consider the testing procedure presented in Golosnoy et al. (2012). Let

vt = V ar[rt|Ft−1]−
1
2 (rt − E[rt|Ft−1]), (17)

where rt = vech(Rt) with vech(.) denote the vech operator which transforms a symmetric

matrix to a vector (see, e.g., Harville (1997)). For the conditional mean vector and covariance

matrix, Golosnoy et al. (2012) uses, in accordance with the Wishart distribution,

E[Rt|Ft−1] = St (18)

and

Cov[rij,t, rlm,t|Ft−1] =
1

ν
(sil,tsjm,t + sim,tsjl,t). (19)

where St = {sij,t}i,j=1,...,n for t = 1, . . . , T .

As for the testing procedures of Section 3, we also define the corresponding noise matrix as

V = (v1, . . . ,vT ) = {vij,t}1≤j≤i≤n,t=1,...,T , (20)

with, for the k components of vt, the partition VC given as

V = (ṽ11, . . . , ṽn1, ṽ22, . . . , ṽnn)′ with ṽij = (vij,1, . . . , vij,T )′. (21)

Thus, under the null hypothesis the elements of each vector ṽij will be serially uncorrelated.

As such, the approach presented in Golosnoy et al. (2012) applies the univariate Ljung-Box test

to each of these vectors as a model diagnostic.
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Note that the benchmark procedure involves only the first two conditional moments of an

autoregressive Wishart process. As such, we expect that it will be able to detect violations

from the model assumptions related to this, like a misspecification of the conditional model

for St, while it might have some difficulties if the departures from the model assumptions are

present in the dynamics of higher moments.

4.3 Violation of autoregressive structure

The model from which Rt, t = 1, . . . , T are drawn is a DCAW(2,2) model with parameters and

starting values as listed in Table 1. In each simulation run, we consider several values for the

model dimension n ∈ {2, 4, 6} and generate 2100 random matrices. In order to remove the

effect of the initial values, the first 100 observations are discarded, leaving the sample of size

T = 2000 in each series.

The violation of the autoregressive structure in the equation for St is captured by fitting

DCAW(0,0), DCAW(0,1), DCAW(1,1), DCAW(1,2), DCAW(2,1) models to the generated data

by applying the maximum likelihood method.3 We also fit DCAW(2,2) process to the generated

data in order to study the size of the suggested tests whose nominal level is set to be equal to

5%.

The set of estimated parameters for a DCAW(p, q) model is denoted θ̂p,q = {Â1, . . . , Âq,

B̂1, . . . B̂q, Ĉ, ν̂}, and the associated conditional scale matrix series as {Ŝt;p,q} for t = 1, . . . , T .

We further use the notation Ep,q and Vp,q for the noise matrices E and V obtained from {R̂t},

{Ŝt;p,q}, t = 1, . . . , T and the estimator ν̂. Finally, let EB
p,q and EC

p,q be the block and component

partitions of Ep,q and VC
p,q the component partition of Vp,q. In EB

p,q, a block size of 20 columns

is used.

The complete simulation procedure for each n = 2, 4, 6 is summarized as follows:

1. Simulate a matrix series of size 2100 using (15) and (16) given the starting values

S−1,S0,R−1 and R0 and a parameter set θ2,2 = {A1,A2,B1,B2,C, ν} which are pro-

vided in Table 1. The first 100 values of the series is discarded in order to remove the

effect of starting values. The resulting series is denoted by {Rt}1≤t≤T .
3The DCAW(1,0) model is not included in the simulation study, since it not is influenced by the observed

data series {Rt}1≤t≤T and the performance of the considered tests is similar to the ones obtained for the

DCAW(0,0) model.
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2. Estimate parameters sets θ̂0,0, θ̂0,1, θ̂1,1, θ̂1,2 ,θ̂2,1 and θ̂2,2 of the models DCAW(0,0),

DCAW(0,1), DCAW(1,1), DCAW(1,2), DCAW(2,1), and DCAW(2,2) respectively.

3. Given the estimated parameters and the series {Rt}1≤t≤T , compute the corresponding

scale matrix series {Ŝt;p,q}1≤t≤T corresponding to each of the models of different lag orders

(p, q) as in the previous step.

4. For each order (p, q), calculate the noise matrices Ep,q and Vp,q as well as their partitions

EB
p,q, EC

p,q, and VC
p,q.

5. Apply the following tests, and record their resulting p-values:

• To Ep,q: Anderson-Darling test on normality, Lilliefors test on normality, t-test for

the equality of mean to 0, χ2-test for the equality of variance 1, multivariate Ljung-

Box test to the columns of Ep,q as well as to their the squared values;4

• To each column block of partition EB
p,q: Anderson-Darling test on normality, Lilliefors

test on normality, Shapiro-Wilks test on normality, t-test for the equality of mean

to 0, χ2-test for the equality of variance to 1;

• To each vector of partition EC
p,q: Anderson-Darling test on normality, Lilliefors test

on normality, Shapiro-Wilks test on normality, t-test for the equality of mean to 0,

χ2-test for the equality of variance 1, univariate Ljung-Box test to each vector as

well as to their squares;

• To each vector of the partition VC
p,q: univariate Ljung-Box test.

6. Repeat the steps (1)-(5) 1000 times and compute the relative number of rejections for

each goodness-of-fit test with the nominal significance level of α = 5%.

The rejection rates in the case of Ep,q are reported in Table 2 for n = 2, 4, 6, while the

corresponding results in the case of the component-wise partitions EC
p,q and VC

p,q are given in

Table 3 for n = 2. Additional results for the component-wise partitions EC
p,q and VC

p,q for n = 4

and n = 6 as well as for the block partition EB
p,q can be found in the Appendix (see, Tables

A1-A4 and Table A5, respectively). In the case of the block partition the average rejection
4In all Ljung-Box tests the number of lags in the null hypothesis is set to 8, i.e., the closest integer to

ln(2000).
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rates with respect to the blocks are provided. The Ljung-Box tests on squared residuals are

denoted "Ljung-Box sq." in the tables.

In Table 2 we observe that all tests on the noise matrix Ep,q possess rejection rates of

around or below 0.05 for all dimensions n = 2, 4, and 6 under the true model DCAW(2,2),

as expected. However, similar rejection rates are also present under the alternative model

DCAW(1,2), indicating that the tests cannot distinguish between these two models. In the

case of DCAW(1,1) and DCAW(2,1), the rejection rates of multivariate Ljung-Box test are

around 0.35, while the other tests have rejection rates of around or below 0.05 as for the true

model. For DCAW(0,1) and DCAW(0,0), both the normality tests and multivariate Ljung-Box

tests have high rejection rates. The tests based on the mean and the variance has a rejection

rate of zero for all models. In general, the Ljung-Box tests on squared residuals produce similar

or lower rejection rates than the ordinary Ljung-Box test.

Table 3 shows similar results for the component-wise partitions EC
p,q and VC

p,q in case n = 2.

Corresponding results for n = 4, 6 are found in Table A1-A4 in the Appendix. The tests on

components of DCAW(0,0) DCAW(0,1) exhibit rejection rates well above nominal level for

a number of the considered tests. The univariate Ljung-Box test produces rejection rates of

around 0.35 on components of DCAW(1,1) and DCAW(2,1), while rejection rates for compo-

nents of DCAW(1,2) are around nominal level for all tests. Comparing the univariate Ljung-Box

tests on the vector components of EC
p,q derived in Section 3 and on the vector components of

VC
p,q derived in the benchmark method in Section 4.2, equivalent rejection rates are produced.

Finally, Table A5 in the Appendix show the rejection rates from the column block partition

EB
p,q with 20 columns in each block. Here high rejection rates for DCAW(0,1) and DCAW(0,0)

is observed, mainly for the tests on mean and variance.

To summarize, concerning the tests on Ep,q, the models DCAW(0,0) and DCAW(0,1) are

rejected by the multivariate Ljung-Box test in 100% of the simulations, and rejected by the

normality tests to some extent. The models DCAW(1,1) and DCAW(2,1) are rejected by the

multivariate Ljung-Box in about 35% of the simulations. The DCAW(1,2) model does not

exhibit a rejection rate above nominal levels for any of the tests. Regarding the univariate

Ljung-Box method, the procedure proposed in Section 3 and the benchmark approach produce

similar results. In general, a good performance by the tests for serial autocorrelation is not

surprising, since the violations are present in the autoregressive structure in the introduced

alternative models.
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n=2

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 0.86 0.21 0.06 0.06 0.06 0.06

Lilliefors 0.68 0.15 0.05 0.04 0.05 0.05

Mean 0 0.00 0.00 0.00 0.00 0.00 0.00

Variance 1 0.00 0.00 0.00 0.00 0.00 0.00

Multivariate Ljung-Box 1.00 1.00 0.35 0.04 0.35 0.02

Multivariate Ljung-Box sq. 1.00 0.55 0.06 0.06 0.06 0.06

n=4

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 0.95 0.27 0.06 0.05 0.06 0.06

Lilliefors 0.82 0.15 0.04 0.04 0.04 0.04

Mean 0 0.00 0.00 0.00 0.00 0.00 0.00

Variance 1 0.00 0.00 0.00 0.00 0.00 0.00

Multivariate Ljung-Box 1.00 1.00 0.36 0.04 0.35 0.03

Multivariate Ljung-Box sq. 1.00 0.70 0.07 0.07 0.07 0.06

n=6

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 1.00 0.49 0.04 0.04 0.04 0.04

Lilliefors 0.92 0.26 0.02 0.03 0.03 0.03

Mean 0 0.00 0.00 0.00 0.00 0.00 0.00

Variance 1 0.00 0.00 0.00 0.00 0.00 0.00

Multivariate Ljung-Box 1.00 1.00 0.38 0.04 0.38 0.03

Multivariate Ljung-Box sq. 1.00 0.83 0.04 0.05 0.04 0.05

Table 2: Rejection rates of the goodness-of-fit tests based on Ep,q in the case of n = 2, 4, 6. Data
is simulated from a DCAW(2,2) model, and then estimated for DCAW model of order (0,0),
(0,1), (1,1), (1,2), (2,1), (2,2). Rejection rates are reported for each test applied to each model
fit. Rejection rates larger than the nominal significance level 5% are emphasised in bold.
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e11 e12 e22 e11 e12 e22

Set: ECp,q. Test: Anderson-Darling. Set: ECp,q. Test: Variance 1.

DCAW(0,0) 0.74 0.20 0.69 DCAW(0,0) 0.15 0.15 0.21

DCAW(0,1) 0.16 0.06 0.18 DCAW(0,1) 0.02 0.04 0.03

DCAW(1,1) 0.07 0.06 0.05 DCAW(1,1) 0.02 0.02 0.01

DCAW(1,2) 0.07 0.06 0.06 DCAW(1,2) 0.01 0.01 0.02

DCAW(2,1) 0.07 0.06 0.05 DCAW(2,1) 0.02 0.02 0.02

DCAW(2,2) 0.07 0.06 0.06 DCAW(2,2) 0.01 0.02 0.02

Set: ECp,q. Test: Lilliefors. Set: ECp,q. Test: Ljung-Box.

DCAW(0,0) 0.57 0.12 0.53 DCAW(0,0) 1.00 1.00 1.00

DCAW(0,1) 0.11 0.04 0.12 DCAW(0,1) 1.00 1.00 1.00

DCAW(1,1) 0.06 0.05 0.06 DCAW(1,1) 0.28 0.32 0.27

DCAW(1,2) 0.05 0.05 0.05 DCAW(1,2) 0.02 0.04 0.02

DCAW(2,1) 0.06 0.05 0.06 DCAW(2,1) 0.28 0.31 0.27

DCAW(2,2) 0.05 0.05 0.05 DCAW(2,2) 0.01 0.02 0.01

Set: ECp,q. Test: Shapiro-Wilks. Set: ECp,q. Test: Ljung-Box sq.

DCAW(0,0) 0.84 0.28 0.79 DCAW(0,0) 1.00 1.00 1.00

DCAW(0,1) 0.24 0.07 0.24 DCAW(0,1) 0.40 0.48 0.36

DCAW(1,1) 0.07 0.06 0.06 DCAW(1,1) 0.06 0.05 0.05

DCAW(1,2) 0.06 0.06 0.06 DCAW(1,2) 0.04 0.04 0.02

DCAW(2,1) 0.07 0.06 0.06 DCAW(2,1) 0.06 0.05 0.05

DCAW(2,2) 0.06 0.06 0.06 DCAW(2,2) 0.06 0.04 0.04

Set: ECp,q. Test: Mean 0. Set: VC
p,q. Test: Ljung-Box. v11 v12 v22

DCAW(0,0) 0.00 0.00 0.00 DCAW(0,0) 1.00 1.00 1.00

DCAW(0,1) 0.00 0.00 0.00 DCAW(0,1) 1.00 1.00 1.00

DCAW(1,1) 0.00 0.00 0.00 DCAW(1,1) 0.29 0.31 0.28

DCAW(1,2) 0.00 0.00 0.00 DCAW(1,2) 0.02 0.04 0.01

DCAW(2,1) 0.00 0.00 0.00 DCAW(2,1) 0.29 0.31 0.27

DCAW(2,2) 0.00 0.00 0.00 DCAW(2,2) 0.01 0.03 0.01

Table 3: Rejection rates for the goodness-of-fit tests based on the component-wise partitions
EC
p,q and VC

p,q in the case of n = 2. Data are simulated from a DCAW(2,2) model, and then
estimated for DCAW models of order (0,0), (0,1), (1,1), (2,1), (1,2) and (2,2). Rejection rates
are reported for each test applied to each model fit. Rejection rates larger than the nominal
significance level 5% are emphasised in bold.
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4.4 Violation of autoregressive structure and Wishart distribution

This study closely follows the study presented in Section 4.3 but a further violation of the

true model is present in the data generating process. Given a filtration of past observations

Ft−1 = {Rt−1,Rt−2, . . .} we define

R̃t =
d− 2

ηt
Rt, (22)

Rt|Ft−1 ∼ Wn(ν,St/ν), (23)

ηt ∼ χ2
d, (24)

St = CC′ +
p∑
i=1

BiSt−iB
′
i +

q∑
i=1

AiR̃t−iA
′
i, (25)

where Rt|Ft−1 and ηt are independent; the parameters and starting values are given again in

Table 1. Thus, although E[R̃t|Ft−1] = E[Rt|Ft−1], R̃t does not follow a centralized Wishart

process, since the conditional distribution is not longer a Wishart distribution. In order to assess

the rejection rates of the considered testing procedures based on this model, the steps 1-6 of

the simulation study presented in Section 4.3 are repeated with the series {Rt}1≤t≤T replaced

by {R̃t}1≤t≤T for d = 10, 20, 30. Note that the case d → ∞ produces the models presented

in 4.3. Again, the procedure is repeated 1000 times and the rejection rates are computed for

the noise matrix Ep,q (see, Table 4), the component-wise partitions EC
p,q and VC

p,q (see, Table 5

and Tables A6-A7 in the Appendix) as well as for the block partition5 EB
p,q (see, Table A8 in

the Appendix) at nominal significance level α = 5%. Note that all of the considered models

deviate from the process specified under H0.

For n = 2 and each value d = 10, 20, 30, Table 4 displays rejection rates equal to 1 for all

normality tests applied to Ep,q for each model DCAW(p, q). The multivariate Ljung-Box tests

possess similar rejection rates to those presented in the simulation study of Section 4.3 for all

models. Also, similarly to the study in the previous section, the tests on mean and variance

produce low rejection rates.

Table 5 shows the rejection rates for the component-wise partitions EC
p,q and VC

p,q in the

case of d = 30. The results for d = 10 and d = 20 are found in Tables A6 and A7 in the

Appendix, respectively. The rejection rates are similar for each simulation study independently

of d = 10, 20, 30, although they tend to drop with increasing d, regarding most tests. This is

expected since larger values of d correspond to smaller violations to the assumption of the true
5Again with column block size 20.
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DCAW(2,2) model. For each model, the tests on normality and variance produce high rejection

rates regarding most of the components. Rejection rates for the mean tests and tests on the

off-diagonal component e12 tend to be lower in general. The univariate Ljung-Box tests show

similar patterns as those observed in the previous simulation study for both the tests proposed

in Section 3 and the benchmark approach, with rejection rates close to 1 for DCAW(0,0) and

DCAW(0,1); around 0.2-0.3 for DCAW(1,1) and DCAW(2,1); and rejection rates at nominal

levels for DCAW(1,2) and DCAW(2,2). As such, given a correctly specified autoregressive

structure, applying the benchmark method described in Section 4.2 will not detect violations

to the distributional assumption, while applying the procedures presented in Section 3 will

detect such violations.

Table A8 presents the rejection rates from the block partition EB
p,q with 20 columns in each

block. In general, each test has a rejection rate of 0.09 or above, for every model and value of

d. As mentioned previously, the rejection rates decrease as d increases and the violation of the

assumption of a pure Wishart distribution becomes smaller.

To summarize, the normality tests on Ep,q presented in Section 3 are able to reject each

of the tested models when the data are generated as in (22) with the values d = 10, 20, 30 in

100% of the simulations. The tests on the block and component partitions similarly produce

rejection rates above nominal levels. This is in contrast to the benchmark method based on (20)

presented in Golosnoy et al. (2012) which is not able to detect the violations in the DCAW(2,2)

model.

5 Empirical application

5.1 Data

The goodness-of-fit testing procedures suggested in Section 3 are applied to evaluate the CAW

model fitted to a series of realized covariance matrices for six stocks traded on the New York

Stock Exchange: American Express Inc. (AXP), Citigroup (C), General Electric (GE), Home

Depot Inc. (HD), International Business Machines (IBM) and JPMorgan Chase & Co. (JPM),

which is the same data set as described by Chiriac and Voev (2011). The series consists of

daily realized covariance matrices in time period from the 1st of January, 2000 to the 30th
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d=10
Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 1.00 1.00 1.00 1.00 1.00 1.00

Lilliefors 1.00 1.00 1.00 1.00 1.00 1.00

Mean 0 0.00 0.00 0.00 0.00 0.00 0.00

Variance 1 0.00 0.00 0.00 0.00 0.00 0.00

Multivariate Ljung-Box 1.00 1.00 0.32 0.07 0.32 0.06

Multivariate Ljung-Box sq. 1.00 0.96 0.11 0.10 0.11 0.10

d=20

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 1.00 1.00 1.00 1.00 1.00 1.00

Lilliefors 1.00 1.00 1.00 1.00 1.00 1.00

Mean 0 0.00 0.00 0.00 0.00 0.00 0.00

Variance 1 0.00 0.00 0.00 0.00 0.00 0.00

Multivariate Ljung-Box 1.00 1.00 0.33 0.03 0.33 0.03

Multivariate Ljung-Box sq. 1.00 0.90 0.07 0.07 0.07 0.07

d=30

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 1.00 1.00 1.00 1.00 1.00 1.00

Lilliefors 1.00 1.00 1.00 1.00 1.00 1.00

Mean 0 0.00 0.00 0.00 0.00 0.00 0.00

Variance 1 0.00 0.00 0.00 0.00 0.00 0.00

Multivariate Ljung-Box 1.00 1.00 0.34 0.04 0.33 0.02

Multivariate Ljung-Box sq. 1.00 0.83 0.07 0.06 0.07 0.06

Table 4: Rejection rates of the goodness-of-fit tests based on Ep,q in the case of n = 2 and
d = 10, 20, 30. Data is simulated from (22), and then estimated for DCAW model of order
(0,0), (0,1), (1,1), (1,2), (2,1), (2,2). Rejection rates are reported for each test applied to each
model fit. Rejection rates larger than the nominal significance level 5% are emphasised in bold.
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e11 e12 e22 e11 e12 e22

Set: ECp,q. Test: Anderson-Darling. Set: ECp,q. Test: Variance 1.

DCAW(0,0) 1.00 0.77 1.00 DCAW(0,0) 1.00 1.00 0.85

DCAW(0,1) 1.00 0.33 1.00 DCAW(0,1) 1.00 1.00 0.98

DCAW(1,1) 1.00 0.17 1.00 DCAW(1,1) 1.00 1.00 1.00

DCAW(1,2) 1.00 0.18 1.00 DCAW(1,2) 1.00 1.00 1.00

DCAW(2,1) 1.00 0.17 1.00 DCAW(2,1) 1.00 1.00 1.00

DCAW(2,2) 1.00 0.18 1.00 DCAW(2,2) 1.00 1.00 1.00

Set: ECp,q. Test: Lilliefors. Set: ECp,q. Test: Ljung-Box.

DCAW(0,0) 1.00 0.52 1.00 DCAW(0,0) 1.00 1.00 1.00

DCAW(0,1) 1.00 0.18 0.99 DCAW(0,1) 1.00 1.00 1.00

DCAW(1,1) 0.96 0.10 0.96 DCAW(1,1) 0.27 0.33 0.25

DCAW(1,2) 0.96 0.11 0.95 DCAW(1,2) 0.02 0.06 0.02

DCAW(2,1) 0.96 0.09 0.96 DCAW(2,1) 0.27 0.33 0.25

DCAW(2,2) 0.95 0.12 0.96 DCAW(2,2) 0.01 0.04 0.01

Set: ECp,q. Test: Shapiro-Wilks. Set: ECp,q. Test: Ljung-Box sq.

DCAW(0,0) 1.00 0.87 1.00 DCAW(0,0) 1.00 1.00 1.00

DCAW(0,1) 1.00 0.53 1.00 DCAW(0,1) 0.53 0.61 0.66

DCAW(1,1) 1.00 0.32 1.00 DCAW(1,1) 0.06 0.04 0.05

DCAW(1,2) 1.00 0.32 1.00 DCAW(1,2) 0.05 0.04 0.05

DCAW(2,1) 1.00 0.32 1.00 DCAW(2,1) 0.06 0.04 0.05

DCAW(2,2) 1.00 0.32 1.00 DCAW(2,2) 0.05 0.04 0.05

Set: ECp,q. Test: Mean 0. Set: VC
p,q. Test: Ljung-Box. v11 v12 v22

DCAW(0,0) 0.01 0.00 0.50 DCAW(0,0) 1.00 1.00 1.00

DCAW(0,1) 0.00 0.00 0.22 DCAW(0,1) 1.00 1.00 1.00

DCAW(1,1) 0.00 0.00 0.07 DCAW(1,1) 0.24 0.30 0.23

DCAW(1,2) 0.00 0.00 0.08 DCAW(1,2) 0.02 0.06 0.02

DCAW(2,1) 0.00 0.00 0.07 DCAW(2,1) 0.24 0.30 0.23

DCAW(2,2) 0.00 0.00 0.06 DCAW(2,2) 0.01 0.05 0.01

Table 5: Rejection rates for the goodness-of-fit tests based on the component-wise partitions EC
p,q

and VC
p,q in the case of n = 2 and d = 30. Data are simulated from (22), and then estimated for

DCAW models of order (0,0), (0,1), (1,1), (2,1), (1,2) and (2,2). Rejection rates are reported
for each test applied to each model fit. Rejection rates larger than the nominal significance level
5% are emphasised in bold.
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of July, 2008 resulting in 2156 daily observations. The first two data points are used for the

initial values of Rt and St leading to T = 2154. The variance development of each stock over

the considered time period is displayed in Figure 1. Higher volatilities are present during the

period from 2000 to 2003 with a further increase observed at the end of the considered period.

5.2 Fitting the CAW models to data

Several CAW(p, q) models (as described by (15) and (16)) of various lag orders (p, q) are fitted

to data described in Section 5.1 by the maximum likelihood method. The estimating procedure

is conducted first for the lowest lag order model. Models with higher order lags then use the

estimates of the lower order model as starting values in the numerical maximization of the

likelihood function. Additionally, for each model, a set of several different starting values is

considered in order to control for local maximums. The testing procedures used in Section 4

are then conducted.

Table 6 presents the p-values of the tests applied to the noise matrix Ep,q derived from

each of the estimated CAW(p, q) models with p, q ≤ 2.6 For almost all of the considered tests

with the exception of the t-test on mean, the null hypothesis of an CAW model is rejected at

significance level α = 0.05 (even 0.01).

Tables A9 and A10 in the Appendix show the p-values for the tests performed on the

component-wise partitions EC
p,q and VC

p,q. Here, the null hypothesis is rejected in most cases

when the tests on normality are employed. However, as the model lag order increases, fewer

tests reject the null hypothesis in general. Note that the univariate Ljung-Box test based on

the partition VC
p,q as in (21) and (17) rejects fewer components than the same test based on the

partition EC
p,q. Such a result can be explained by the fact that the elements of the vectors in EC

p,q

are independent by construction, while the elements of the vectors in VC
p,q are just uncorrelated.

This could influence the power of the test suggested in Golosnoy et al. (2012).

Furthermore, Table A11 displays the rejection rates of the proposed goodness-of-fit tests

applied to the block partition EB
p,q with block size equal to 20 (resulting in 107 blocks), as

described in Section 4. The tests for normality, namely Anderson-Darling test, Lilliefors test,

and Shapiro-Wilk test, possess the average rejection rates of roughly 1 for all of the considered

models, while the test on the mean, the test on the variance, and the test on autocorrelation
6The lag order (1,0) is again excluded with the same motivation as in Section 4
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Figure 1: Variances of the six stocks traded on the New York Stock Exchange: American Express
Inc. (AXP), Citigroup (C), General Electric (GE), Home Depot Inc. (HD), International
Business Machines (IBM) and JPMorgan Chase & Co. (JPM) for the period from the 1st of
January, 2000 to the 30th of July, 2008. The values are obtained as the corresponding diagonal
elements rii,t, i = 1, . . . , 6 of the realized covariance matrices Rt for t = 1, . . . , T .
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Test CAW(0,0) CAW(0,1) CAW(1,1) CAW(1,2) CAW(2,1) CAW(2,2)

Anderson-Darling 0.00 0.00 0.00 0.00 0.00 0.00

Lilliefors 0.00 0.00 0.00 0.00 0.00 0.00

Mean 0 0.00 0.61 0.21 0.16 0.14 0.11

Variance 1 0.00 0.00 0.00 0.00 0.00 0.00

Multivariate Ljung-Box 0.00 0.00 0.00 0.00 0.00 0.00

Multivariate Ljung-Box sq. 0.00 0.00 0.00 0.01 0.00 0.01

Table 6: The p-values of the proposed goodness-of-fit tests on the validity of CAW(p,q) models
with p, q ≤ 2 based on Ep,q. The data consist of the realized covariance matrices calculated for
the six stocks traded on the New York Stock Exchange: American Express Inc. (AXP), Citigroup
(C), General Electric (GE), Home Depot Inc. (HD), International Business Machines (IBM)
and JPMorgan Chase & Co. (JPM) for the period from the 1st of January, 2000 to the 30th
of July, 2008. Bold values indicate that the null hypothesis of a CAW model is rejected at
significance level of 5%.

are less powerful for the lag orders above (0,0). No rejection rate is however close to 5%, which

would support the null hypothesis of each block having i.i.d standard normal elements.

Further, let p = (p1, . . . , p107)′, where pl, l = 1, . . . , 107 is the p-value associated with a

specific test applied to column block l. In accordance with the discussion in Section 3.1, the

elements of p will be independent and will each follow a uniform distribution on [0, 1] under

the null hypothesis. In order to illustrate the model fit in different time periods, the vector

p for p-values of the various tests on the block partition of the CAW(2,2) model is plotted

in Figure 2. The dotted line represents the nominal significance level of 5% and as such, a

value below this line mean that the null hypohtesis for the corresponding block, which in turn

repsresents 20 trading days7, is rejected at significance level 5%. The three tests for normality

rejects basically every block, with a few exceptions which takes place mainly in the middle of

the time period, namely around 2003-2006. According to Figure 1 this is a period where the

stock variances are relatively low. The p-values from the test on the mean is relatively evenly

spread over the time period, while the p-values obtained from the test on the variance tend to

be somewhat clustered for low p-values.

In general the suggested testing procedures do not support the statement that the supplied

data can be well fitted with a CAW model of the lag order (2,2) or lower.
7The last block represents 34 trading days
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Figure 2: The p-values of the proposed goodness-of-fit tests on the validity of the CAW(2,2)
model based on the column block partition EB

p,q with the block size equal to 20, plotted over time.
The data consist of the realized covariance matrices calculated for the six stocks traded on the
New York Stock Exchange: American Express Inc. (AXP), Citigroup (C), General Electric
(GE), Home Depot Inc. (HD), International Business Machines (IBM) and JPMorgan Chase
& Co. (JPM) for the period from the 1st of January, 2000 to the 30th of July, 2008. The
dotted line represents the nominal significance level of 5%.
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6 Conclusion

Model diagnostics plays an important role when a time series model is fitted to real data. When

the model is misspecified, then residuals calculated are usually autocorrelated. As a result, the

classical way to validate the model’s ability to fit real data is based on an autocorrelation test

which is usually done by using the Ljung-Box test.

Recently, modeling and analysing high-frequency data have become very popular topics in

financial econometrics (see, e.g., Andersen et al. (2003); Hautsch (2011)). Owning to develop-

ments of computer techniques, it is today possible to store and analyse huge data sets with the

aim of improving the performance of holding portfolio. As a result, the usage of the realized

covariance matrix in portfolio theory has become a popular topic in finance (Hautsch et al.

(2015); Callot et al. (2017)).

The Wishart autoregressive process has recently been introduced to capture the dynam-

ics in realized covariance matrices (see, e.g., Gouriéroux et al. (2009); Golosnoy et al. (2012);

Noureldin et al. (2012); Hansen et al. (2016); Opschoor et al. (2017); Yu et al. (2017)). In

order to validate the fit of the model, the Ljung-Box test was considered in Golosnoy et al.

(2012). However, this approach relies only on the first two conditional moments of the au-

toregressive Wishart process and, consequently, it cannot detect violations from the model in

higher moments.

In this paper, we suggest an alternative procedure for validating the assumption of a central-

ized Wishart process which is based on the extended Barlett decomposition of a random matrix

that has a Wishart distribution. As a result, several procedures for testing goodness-of-fit for

centralized Wishart processes are derived. Since the model depends on unknown parameters

which are estimated by employing the maximum likelihood method, the parameter uncertainty

should be kept in mind when the testing procedures are applied to real data of small and

moderate sizes. We investigate this point through simulations and find that the suggested

goodness-of-fit tests are relatively robust to this issue. Finally, an application to a real data set

consisting of six stock traded on the New York Stock Exchange is provided. Here, we found

that the conditional autoregressive Wishart process does not provide a good fit to real data

due to deviations from the model assumptions which are present in higher moments.

Our empirical finding motivates further research in the topic of modeling the dynamics

in the realized covariance matrices which should take into account not only the conditionally
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heteroscedastic behaviour of the scale matrix of the Wishart distribution, but also possess

the ability to capture the dynamics in higher moments. Although this is a very important

topic in financial engineering, the issue remain unresolved and require further methodological

development and empirical investigation in the future.

7 Appendix

7.1 Proof of Theorem 1

The density function of A is given by

f(A) =
1

2nν/2Γn(ν
2
)
etr(−

1
2
A)|A|(ν−n−1)/2dA, (26)

where dA is the volume element of A. Following the proof of Theorem 3.2.14 in Muirhead

(1982), we get

tr(A) =
n∑
j≤i

t2ij

|A| =
n∏
i=1

t2ii

dA = 2n
n∏
i=1

tn+1−i
ii

n∧
j≤i

dtij.

Substituting these equalities into (26) leads to

f(A) =
1

2nν/2Γn(ν
2
)
e
−
∑n

i≤j t
2
ij2n

n∏
i=1

tν−iii

n∧
j≤i

dtij,

where

Γn(
ν

2
) = πn(n−1)/4

n∏
i=1

Γ(
ν − i+ 1

2
)

2nν/2−n(n−1)/4−n = 2
∑n

i=1
( ν−i+1

2
−1).

Hence,

f(A) =
n∏
j<i

1√
2π
e−

t2
ij
2 dtij

n∏
i=1

1

2(ν−i+1)/2−1Γ(ν−i+1
2

)
e−

t2
ii
2 tν−iii dtii.

or, equivalently,

f(A) =
n∏
j<i

1√
2π
e−

t2
ij
2 dtij

n∏
i=1

1

2(ν−i+1)/2Γ(ν−i+1
2

)
e−

t2
ii
2 (t2ii)

(ν−i+1)/2−1dt2ii,
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which is the joint density of independent random variables tij ∼ N (0, 1) and t2ii ∼ Γ(ν−i+1
2

, 2), 1 ≤

j < i ≤ n. Finally, The support of shape-parameter of the univariate gamma distribution im-

poses the condition ν > n− 1.
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7.2 Additional Tables

e11 e12 e13 e14 e22 e23 e24 e33 e34 e44

Set: ECp,q. Test: Anderson-Darling.

DCAW(0,0) 0.73 0.18 0.20 0.21 0.71 0.17 0.17 0.66 0.18 0.63

DCAW(0,1) 0.18 0.06 0.07 0.06 0.16 0.05 0.05 0.15 0.06 0.13

DCAW(1,1) 0.05 0.05 0.05 0.06 0.04 0.06 0.04 0.05 0.06 0.05

DCAW(1,2) 0.05 0.05 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.05

DCAW(2,1) 0.05 0.05 0.05 0.06 0.04 0.06 0.04 0.05 0.06 0.05

DCAW(2,2) 0.06 0.05 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.05

Set: ECp,q. Test: Lilliefors.

DCAW(0,0) 0.56 0.13 0.13 0.14 0.55 0.11 0.12 0.48 0.12 0.44

DCAW(0,1) 0.13 0.05 0.05 0.05 0.12 0.04 0.04 0.12 0.04 0.10

DCAW(1,1) 0.05 0.04 0.06 0.04 0.03 0.05 0.05 0.05 0.05 0.05

DCAW(1,2) 0.05 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.05

DCAW(2,1) 0.05 0.04 0.06 0.04 0.03 0.05 0.05 0.05 0.04 0.05

DCAW(2,2) 0.05 0.04 0.06 0.05 0.04 0.04 0.04 0.05 0.04 0.05

Set: ECp,q. Test: Shapiro-Wilks.

DCAW(0,0) 0.83 0.29 0.28 0.30 0.80 0.26 0.27 0.76 0.25 0.71

DCAW(0,1) 0.25 0.08 0.10 0.08 0.24 0.07 0.07 0.20 0.07 0.20

DCAW(1,1) 0.05 0.05 0.06 0.06 0.05 0.05 0.05 0.06 0.05 0.05

DCAW(1,2) 0.05 0.04 0.06 0.07 0.05 0.05 0.05 0.05 0.05 0.05

DCAW(2,1) 0.06 0.05 0.06 0.07 0.04 0.05 0.05 0.06 0.05 0.05

DCAW(2,2) 0.05 0.04 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05

Set: ECp,q. Test: Mean 0.

DCAW(0,0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DCAW(0,1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DCAW(1,1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DCAW(1,2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DCAW(2,1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DCAW(2,2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A1: Rejection rates for the goodness-of-fit tests based on the component-wise partition
EC
p,q in the case of n = 4. Data are simulated from a DCAW(2,2) model, and then estimated for

DCAW models of order (0,0), (0,1), (1,1), (2,1), (1,2) and (2,2). Rejection rates are reported
for each test applied to each model fit. Rejection rates larger than the nominal significance level
5% are emphasised in bold.
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e11 e12 e13 e14 e22 e23 e24 e33 e34 e44

Set: ECp,q. Test: Variance 1.

DCAW(0,0) 0.34 0.30 0.32 0.33 0.20 0.18 0.19 0.29 0.31 0.58

DCAW(0,1) 0.08 0.07 0.08 0.07 0.07 0.05 0.07 0.08 0.07 0.12

DCAW(1,1) 0.04 0.03 0.03 0.03 0.04 0.03 0.04 0.05 0.03 0.04

DCAW(1,2) 0.04 0.03 0.03 0.03 0.04 0.03 0.04 0.05 0.02 0.04

DCAW(2,1) 0.04 0.03 0.03 0.03 0.04 0.03 0.04 0.05 0.03 0.04

DCAW(2,2) 0.04 0.03 0.03 0.03 0.04 0.03 0.04 0.05 0.02 0.04

Set: ECp,q. Test: Ljung-Box.

DCAW(0,0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DCAW(0,1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DCAW(1,1) 0.32 0.34 0.33 0.31 0.27 0.32 0.28 0.27 0.26 0.23

DCAW(1,2) 0.04 0.04 0.03 0.04 0.03 0.05 0.03 0.04 0.03 0.03

DCAW(2,1) 0.33 0.33 0.33 0.31 0.28 0.30 0.27 0.27 0.26 0.24

DCAW(2,2) 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02

Set: ECp,q. Test: Ljung-Box sq.

DCAW(0,0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DCAW(0,1) 0.41 0.46 0.47 0.46 0.38 0.42 0.44 0.33 0.38 0.31

DCAW(1,1) 0.06 0.07 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05

DCAW(1,2) 0.07 0.07 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05

DCAW(2,1) 0.06 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

DCAW(2,2) 0.07 0.07 0.05 0.05 0.05 0.04 0.05 0.06 0.05 0.05

Set: VC
p,q. Test: Ljung-Box. v11 v12 v13 v14 v22 v23 v24 v33 v34 v44

DCAW(0,0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DCAW(0,1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DCAW(1,1) 0.33 0.34 0.32 0.30 0.31 0.32 0.31 0.30 0.30 0.28

DCAW(1,2) 0.03 0.04 0.04 0.04 0.03 0.05 0.04 0.03 0.03 0.03

DCAW(2,1) 0.34 0.33 0.31 0.30 0.31 0.31 0.31 0.31 0.29 0.29

DCAW(2,2) 0.01 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02

Table A2: Rejection rates for the goodness-of-fit tests based on the component-wise partitions
EC
p,q and VC

p,q in the case of n = 4. Data are simulated from a DCAW(2,2) model, and then
estimated for DCAW models of order (0,0), (0,1), (1,1), (2,1), (1,2) and (2,2). Rejection rates
are reported for each test applied to each model fit. Rejection rates larger than the nominal
significance level 5% are emphasised in bold.
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n=2

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 0.07 0.05 0.05 0.05 0.05 0.05

Lilliefors 0.06 0.05 0.05 0.05 0.05 0.05

Shapiro-Wilks 0.07 0.05 0.05 0.05 0.05 0.05

Mean 0 0.40 0.19 0.05 0.05 0.05 0.05

Variance 1 0.22 0.08 0.05 0.05 0.05 0.05

n=4

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 0.09 0.05 0.05 0.05 0.05 0.05

Lilliefors 0.08 0.05 0.05 0.05 0.05 0.05

Shapiro-Wilks 0.10 0.06 0.05 0.05 0.05 0.05

Mean 0 0.39 0.19 0.05 0.05 0.05 0.05

Variance 1 0.29 0.10 0.05 0.05 0.05 0.05

n=6

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 0.11 0.06 0.05 0.05 0.05 0.05

Lilliefors 0.09 0.05 0.05 0.05 0.05 0.05

Shapiro-Wilks 0.13 0.07 0.05 0.05 0.05 0.05

Mean 0 0.38 0.18 0.05 0.05 0.05 0.05

Variance 1 0.33 0.12 0.05 0.05 0.05 0.05

Table A5: Rejection rates for the goodness-of-fit tests based on the column block partition EB
p,q

in the case of n = 2, 4, 6. Data are simulated from a DCAW(2,2) model, and then estimated for
DCAW models of order (0,0), (0,1), (1,1), (2,1), (1,2) and (2,2). Rejection rates are reported
for each test applied to each model fit. Rejection rates larger than the nominal significance level
5% are emphasised in bold.
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e11 e12 e22 e11 e12 e22

Set: ECp,q. Test: Anderson-Darling. Set: ECp,q. Test: Variance 1.

DCAW(0,0) 1.00 1.00 1.00 DCAW(0,0) 1.00 1.00 1.00

DCAW(0,1) 1.00 1.00 1.00 DCAW(0,1) 1.00 1.00 1.00

DCAW(1,1) 1.00 0.97 1.00 DCAW(1,1) 1.00 1.00 1.00

DCAW(1,2) 1.00 0.97 1.00 DCAW(1,2) 1.00 1.00 1.00

DCAW(2,1) 1.00 0.97 1.00 DCAW(2,1) 1.00 1.00 1.00

DCAW(2,2) 1.00 0.97 1.00 DCAW(2,2) 1.00 1.00 1.00

Set: ECp,q. Test: Lilliefors. Set: ECp,q. Test: Ljung-Box.

DCAW(0,0) 1.00 1.00 1.00 DCAW(0,0) 1.00 1.00 1.00

DCAW(0,1) 1.00 0.94 1.00 DCAW(0,1) 1.00 1.00 1.00

DCAW(1,1) 1.00 0.80 1.00 DCAW(1,1) 0.24 0.35 0.22

DCAW(1,2) 1.00 0.80 1.00 DCAW(1,2) 0.01 0.12 0.02

DCAW(2,1) 1.00 0.81 1.00 DCAW(2,1) 0.24 0.35 0.23

DCAW(2,2) 1.00 0.80 1.00 DCAW(2,2) 0.01 0.10 0.01

Set: ECp,q. Test: Shapiro-Wilks. Set: ECp,q. Test: Ljung-Box sq.

DCAW(0,0) 1.00 1.00 1.00 DCAW(0,0) 1.00 1.00 1.00

DCAW(0,1) 1.00 1.00 1.00 DCAW(0,1) 0.67 0.77 0.84

DCAW(1.1) 1.00 0.99 1.00 DCAW(1,1) 0.08 0.06 0.07

DCAW(1,2) 1.00 0.99 1.00 DCAW(1,2) 0.07 0.05 0.06

DCAW(2,1) 1.00 0.99 1.00 DCAW(2,1) 0.08 0.06 0.07

DCAW(2,2) 1.00 0.99 1.00 DCAW(2,2) 0.07 0.06 0.06

Set: ECp,q. Test: Mean 0. Set: VC
p,q. Test: Ljung-Box. v11 v12 v22

DCAW(0,0) 1.00 0.05 1.00 DCAW(0,0) 1.00 1.00 1.00

DCAW(0,1) 1.00 0.00 1.00 DCAW(0,1) 1.00 1.00 1.00

DCAW(1,1) 1.00 0.00 1.00 DCAW(1,1) 0.15 0.23 0.14

DCAW(1,2) 1.00 0.00 1.00 DCAW(1,2) 0.02 0.11 0.01

DCAW(2,1) 1.00 0.00 1.00 DCAW(2,1) 0.16 0.23 0.14

DCAW(2,2) 1.00 0.00 1.00 DCAW(2,2) 0.01 0.10 0.01

Table A6: Rejection rates for the goodness-of-fit tests based on the component-wise partitions
EC
p,q and VC

p,q in the case of n = 2 and d = 10. Data are simulated from (22), and then
estimated for DCAW models of order (0,0), (0,1), (1,1), (2,1), (1,2) and (2,2). Rejection rates
are reported for each test applied to each model fit. Rejection rates larger than the nominal
significance level 5% are emphasised in bold.
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e11 e12 e22 e11 e12 e22

Set: ECp,q. Test: Anderson-Darling. Set: ECp,q. Test: Variance 1.

DCAW(0,0) 1.00 0.94 1.00 DCAW(0,0) 1.00 1.00 0.98

DCAW(0,1) 1.00 0.66 1.00 DCAW(0,1) 1.00 1.00 1.00

DCAW(1,1) 1.00 0.40 1.00 DCAW(1,1) 1.00 1.00 1.00

DCAW(1,2) 1.00 0.41 1.00 DCAW(1,2) 1.00 1.00 1.00

DCAW(2,1) 1.00 0.39 1.00 DCAW(2,1) 1.00 1.00 1.00

DCAW(2,2) 1.00 0.41 1.00 DCAW(2,2) 1.00 1.00 1.00

Set: ECp,q. Test: Lilliefors. Set: ECp,q. Test: Ljung-Box.

DCAW(0,0) 1.00 0.79 1.00 DCAW(0,0) 1.00 1.00 1.00

DCAW(0,1) 1.00 0.36 1.00 DCAW(0,1) 1.00 1.00 1.00

DCAW(1,1) 1.00 0.19 1.00 DCAW(1,1) 0.26 0.34 0.25

DCAW(1,2) 1.00 0.18 1.00 DCAW(1,2) 0.02 0.08 0.02

DCAW(2,1) 1.00 0.19 1.00 DCAW(2,1) 0.27 0.33 0.25

DCAW(2,2) 1.00 0.18 1.00 DCAW(2,2) 0.01 0.06 0.01

Set: ECp,q. Test: Shapiro-Wilks. Set: ECp,q. Test: Ljung-Box sq.

DCAW(0,0) 1.00 0.98 1.00 DCAW(0,0) 1.00 1.00 1.00

DCAW(0,1) 1.00 0.82 1.00 DCAW(0,1) 0.58 0.66 0.75

DCAW(1,1) 1.00 0.60 1.00 DCAW(1,1) 0.06 0.06 0.07

DCAW(1,2) 1.00 0.60 1.00 DCAW(1,2) 0.04 0.05 0.06

DCAW(2,1) 1.00 0.60 1.00 DCAW(2,1) 0.06 0.06 0.07

DCAW(2,2) 1.00 0.60 1.00 DCAW(2,2) 0.05 0.05 0.06

Set: ECp,q. Test: Mean 0. Set: VC
p,q. Test: Ljung-Box. v11 v12 v22

DCAW(0,0) 0.30 0.00 0.97 DCAW(0,0) 1.00 1.00 1.00

DCAW(0,1) 0.02 0.00 0.98 DCAW(0,1) 1.00 1.00 1.00

DCAW(1,1) 0.00 0.00 0.95 DCAW(1,1) 0.23 0.27 0.22

DCAW(1,2) 0.00 0.00 0.93 DCAW(1,2) 0.01 0.08 0.02

DCAW(2,1) 0.00 0.00 0.95 DCAW(2,1) 0.23 0.27 0.22

DCAW(2,2) 0.00 0.00 0.93 DCAW(2,2) 0.01 0.06 0.01

Table A7: Rejection rates for the goodness-of-fit tests based on the component-wise partitions
EC
p,q and VC

p,q in the case of n = 2 and d = 20. Data are simulated from (22), and then
estimated for DCAW models of order (0,0), (0,1), (1,1), (2,1), (1,2) and (2,2). Rejection rates
are reported for each test applied to each model fit. Rejection rates larger than the nominal
significance level 5% are emphasised in bold.
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d=10

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 0.31 0.33 0.36 0.36 0.36 0.36

Lilliefors 0.24 0.26 0.28 0.28 0.28 0.28

Shapiro-Wilks 0.34 0.39 0.41 0.41 0.41 0.42

Mean 0 0.52 0.30 0.12 0.12 0.12 0.12

Variance 1 0.52 0.33 0.25 0.25 0.25 0.25

d=20

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 0.16 0.16 0.16 0.16 0.16 0.16

Lilliefors 0.13 0.12 0.12 0.12 0.12 0.12

Shapiro-Wilks 0.19 0.20 0.21 0.21 0.21 0.21

Mean 0 0.49 0.27 0.10 0.10 0.10 0.10

Variance 1 0.38 0.20 0.14 0.14 0.14 0.14

d=30

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 0.12 0.11 0.11 0.11 0.11 0.11

Lilliefors 0.10 0.09 0.09 0.09 0.09 0.09

Shapiro-Wilks 0.14 0.14 0.14 0.14 0.14 0.14

Mean 0 0.48 0.26 0.09 0.09 0.09 0.09

Variance 1 0.32 0.16 0.10 0.10 0.10 0.12

Table A8: Rejection rates for the goodness-of-fit tests based on the column block partition EB
p,q

for the block size 20, n = 2, and d = 10, 20, 30. Data are simulated from (22), and then
estimated for DCAW models of order (0,0), (0,1), (1,1), (2,1), (1,2) and (2,2). Rejection rates
are reported for each test applied to each model fit. Rejection rates larger than the nominal
significance level 5% are emphasised in bold.
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Test CAW(0,0) CAW(0,1) CAW(1,1) CAW(1,2) CAW(2,1) CAW(2,2)

Anderson-Darling 1.00 0.97 0.98 0.98 0.97 0.97

Lilliefors 1.00 0.94 0.95 0.96 0.96 0.95

Shapiro-Wilks 1.00 0.99 0.98 0.98 1.00 0.98

Mean 0 0.95 0.63 0.30 0.31 0.32 0.34

Variance 1 0.93 0.72 0.70 0.69 0.72 0.69

Multivariate Ljung-Box 0.95 0.52 0.55 0.59 0.56 0.58

Multivariate Ljung-Box sq. 0.86 0.34 0.37 0.36 0.36 0.38

Table A11: Average rejection rates of the proposed goodness-of-fit tests on the validity of
CAW(p,q) models with p, q ≤ 2 based on the column block partition EB

p,q with the block size
equal to 20. The data consist of the realized covariance matrices calculated for the six stocks
traded on the New York Stock Exchange: American Express Inc. (AXP), Citigroup (C), General
Electric (GE), Home Depot Inc. (HD), International Business Machines (IBM) and JPMorgan
Chase & Co. (JPM) for the period from the 1st of January, 2000 to the 30th of July, 2008.
Rejection rates larger than 0.05 are emphasised in bold.
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