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Abstract

An SEIRS epidemic with disease fatalities is introduced in a growing population

(modelled as a super-critical linear birth and death process). The study of the

initial phase of the epidemic is stochastic, while the analysis of the major outbreaks

is deterministic. Depending on the values of the parameters, the following scenarios

are possible. i) The disease dies out quickly, only infecting few; ii) the epidemic

takes o�, the number of infected individuals grows exponentially, but the fraction

of infected individuals remains negligible; iii) the epidemic takes o�, the number of

infected grows initially quicker than the population, the disease fatalities diminish

the growth rate of the population, but it remains super critical, and the fraction

of infected go to an endemic equilibrium; iv) the epidemic takes o�, the number of

infected individuals grows initially quicker than the population, the diseases fatalities

turn the exponential growth of the population to an exponential decay.

Keywords: SEIRS epidemic; threshold quantities; initial growth; endemic level.

1 Introduction

Infectious diseases remain a threat for developing countries as well as for developed coun-
tries. Many mathematicians focus their e�orts to understand the dynamics of infectious
diseases, in order to �nd the conditions to eradicate them. In mathematical modelling
of infectious disease epidemics, the population in which the disease is spreading is parti-
tioned in several compartments according to the status of the individuals, related to the
disease. Every epidemic model has at least, the compartment I of the infectious indi-
viduals who are infected and able to transmit the disease to others through contact, and
the compartment S of the susceptible individuals (those who are not infected but may
be infected if they contact an infectious individual). Two other compartments often used
are the compartment E of the exposed or latent individuals who are already infected but
not yet able to transmit the disease to others, and the compartment R of the recovered
or removed individuals (those who are healed from the disease with a permanent or non-
permanent immunity). In a SEIR epidemic, a susceptible individual infected through
a contact with an infectious, becomes infected and latent; at the end of the latent pe-
riod he/she becomes infectious and at the end of the infectious period he/she recovers
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with a life-long immunity. An SEIRS epidemic is almost the same as the preceding, the
only di�erence is that a recovered individual has a non-permanent immunity (He/she can
lose his immunity, becoming susceptible again). Diphtheria, in�uenza and pneumonia are
examples of diseases with latent period and non-permanent immunity [11].

In [5], Britton and Trapman studied stochastic SIR and SEIR models in a growing
population. They derived the basic reproduction number and the Malthusian parame-
ter of the epidemic, stated results for the initial phase and showed that the stochastic
proportions process converges to a deterministic process.

In [11], Greenhalgh studied an SEIRS deterministic model with vaccination and found
that under some conditions, the solution has Hopf bifurcations.

The aim of this paper is to study the dynamic of a stochastic SEIRS epidemic model
with disease induced mortality, in an exponentially growing population. As in [5] , we
assume that without the disease, the population has a birth rate λ, and a natural death
rate µ, such that λ > µ. That is, initially the population process is a super-critical linear
birth and death process. An SEIRS epidemic is introduced by infecting one individual.
With the disease, the population is divided in four compartments according to the status of
the individuals, related to the disease. The compartment S of the susceptible individuals,
the compartment E of the latent or exposed individuals , the compartment I of the
infectious individuals , and the compartment R of the removed individuals (those who
are healed of the disease with a non-permanent immunity). The process is initiated by
setting (S(0), E(0), I(0), R(0)) = (n − 1, 1, 0, 0). The transfer diagram of the model is
given by Figure 1.

We derive the Malthusian parameter α, the basic reproduction number R0 and the
probability of minor outbreak π of the epidemic. If R0 ≤ 1, then the disease cannot invade
the population, that remains a super critical process. If R0 > 1, then the epidemic has
a positive probability 1 − π of taking o�, with the remaining probability π, it dies out.
If the epidemic takes o�, another threshold parameter R1 determines the behavior of the
proportion of infected individuals. If R1 ≤ 1, then the fraction of infected stays small;
while it persists when R1 > 1. If R1 > 1, or equivalently α > λ − µ, then the number
of the infected grows initially quicker than the population, the disease fatalities diminish
the growth rate of the population. In this case the asymptotic behavior of the population
rely on a third threshold quantity R2. If R2 > 1, then the population goes on growing,
while it becomes a sub-critical process when R2 ≤ 1. In the latter case, when the number
of individuals become low, the population should vanish with the disease, or regrows after
the extinction of the epidemic.

We start by de�ning the stochastic model in Section 2. Then, in Section 3, we study
the initial phase of the epidemic, thereafter we consider the deterministic model in Section
4. Afterward, we give some illustrations by simulating di�erent scenarios of epidemics in
Section 5. In Section 6, we conclude the paper and discuss some perspectives.

2 The model

2.1 The initial dynamic of the population

Initially (before the introduction of the disease), the population model is a linear birth
and death (B-D) process with individual birth rate λ and individual death rate µ. We
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Figure 1: The transfer diagram of the SEIRS model

assume that λ > µ, that is the process is super-critical. N(t) denotes the number of
individuals in the population at time t.

2.2 The Markovian SEIRS epidemic model

Now, we de�ne a uniformly mixing Markovian epidemic model on the population described
above, implying that individuals give birth at rate λ and die from other causes at rate µ,
irrespective of disease status. Initially (at t = 0), the population consists of n susceptible
individuals. At this time, an SEIRS infectious disease is introduced by infecting one
individual. The disease spreading is modelled as follow. An infected individual remains
latent (infected but not yet infectious) for exponential time with rate ν. After this period,
he/she becomes infectious (unless he/she dies before). An infectious individual remains
infectious for an exponential time with rate δ (unless he/she dies before). The disease
induces an additional death rate σ for the infectious individuals. After the period of
infectiousness, an infectious individual recovers with a temporary immunity. A recovered
person remains immune for an exponential time with rate ρ unless he/she dies before.
After the period of immunity he/she becomes susceptible again. During the infectious
period, the infective has infectious contacts randomly in time according to a homogeneous
Poisson process with rate κ, each time with a uniformly selected random individual. If the
contacted person is susceptible, he/she becomes infected and latent (not yet infectious),
otherwise the contact has no e�ect. There is no vertical transmission, that is all the new
born individuals are susceptible.

Let Z(t) = (S(t), E(t), I(t), R(t)) respectively denote the number of susceptible, la-
tent, infectious and immune individuals at time t. Therefore, the population size at time
t is N(t) = S(t) + E(t) + I(t) + R(t) (Wherever n is important an n-index is added).
The population is initiated at Zn(0) = (Sn(0), En(0), In(0), Rn(0)) = (n−1, 1, 0, 0). How-
ever, later we also derive the probability of minor outbreak for an epidemic starting
with m latent individuals and j infectious individuals with a very small infected fraction
(m+ j � n).

In short, the population model has two parameters, the birth rate λ and the death rate
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µ; and the disease model has �ve parameters, the transmission rate κ, the end of latency
rate ν, the recovery rate δ, the disease death rate σ and the immunity waning rate ρ. The
possible events and their rates, when currently in state Z(t) = (S(t), E(t), I(t), R(t)) =
(u, v, x, y) = z, are given in Table 1.

The SI, SIS, SIR, SIRS, SEI, SEIS, SEIR models are special cases of the SEIRS model
de�ned above. If ρ = 0, then an infected individual cannot go back to the susceptible
state and we get an SEIR model. If ρ −→ ∞, then the recovered state vanishes and we
get an SEIS model. If ν −→ ∞, then the latent state vanishes giving an SIRS model.
If δ = 0, then we have lifelong infectivity and hence an SEI model. If ν −→ ∞ and
ρ −→∞, then the latent state and the recovered state vanish and we have an SIS model.
If ν −→∞ and δ = ρ = 0, then the latent state vanishes and we have lifelong infectivity,
giving hence an SI model. Therefore from the results of the SEIRS model, one can deduce
those of the others.

Event State change l Rate
Birth (1, 0, 0, 0) λN
Death of susceptible (−1, 0, 0, 0) µS
Death of exposed (0,−1, 0, 0) µE
Death of infective (0, 0,−1, 0) (µ+ σ)I
Death of recovered (0, 0, 0,−1) µR
Infection (−1, 1, 0, 0) κSI/N
End of latency (0,−1, 1, 0) νE
Recovery (0, 0,−1, 1) δI
Loss of immunity (1, 0, 0,−1) ρR

Table 1: The uniform Markovian dynamic SEIRS epidemic: type of events, their state
change l (The old state z = (u, v, x, y) is hence changed to z + l) and their rates.

In this section we have presented the stochastic SEIRS model studied in this paper.

3 Results for the initial phase

3.1 The dynamics of the population size N(t)

Without the disease, the population process is a linear super-critical birth and death
process with individual birth rate λ and individual death rate µ. But, with the introduc-
tion of the disease that induces an extra death rate σ for the infectious individuals, we
have two possible events. Birth with rate λN(t) and death with rate µN(t) + σI(t) =
[µ+σI(t)/N(t)]N(t), where N(t) is the current total number of individuals in the popula-
tion and I(t) the current number of infectious individuals. Then, the population process
is no longer a linear birth and death process (unless σ = 0). However, at the beginning of
the epidemic when the fraction of the infectious individuals is very small (I(t)/N(t) ≈ 0),
the population will behave almost as a linear birth and death process with birth rate λ
and death rate µ. Thus for the initial phase of the epidemic, we assume that the popu-
lation size is a linear super-critical birth and death process with birth rate λ and death
rate µ. On the other hand, if the epidemic takes o� after the initial phase, whenever the
fraction of the infectious individuals remains below (λ−µ)/σ, the population process will
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be a super-critical process, having a positive probability to grow to ∞. But, if the infec-
tious fraction grows beyond (λ−µ)/σ, then the population process becomes a sub-critical
process.

Remark 3.1. If (λ−µ)/σ ≥ 1 i.e. λ ≥ µ+σ, then N(t) is always a super-critical process
although the epidemic.

3.2 Approximation of the initial phase of the epidemic

Now, we consider the beginning of the epidemic, when the fraction of the infected individ-
uals is still small. E(t) increases with rate κI(t)S(t)/N(t) due to infection and decreases
by rate (ν + µ)E(t) due to death or end of latency. I(t) increases with rate νE(t) due to
end of latency, and decreases with rate (δ + µ + σ)I(t) due to recovery or death. As we
start with n− 1 susceptible and one infected, assuming that n is large, at the beginning
of the epidemic S(t)/N(t) is very close to 1. Then, the number of exposed individuals
increases almost with rate κI(t). Let Ln(t) = En(t) + In(t) be the number of infected
(latent or infectious) individuals at time t. Ln(t) can be approximated by a branching
process, L∞(t) = E∞(t) + I∞(t) with two stages: the childhood (or latent) stage E∞
and the adult (or infectious) stage I∞ [9, p. 54]. Initiated at (E∞(0), I∞(0)) = (1, 0),
where E∞(t) increases with rate κI∞(t) and decreases with rate (µ+ ν)E∞(t), and I∞(t)
increases with rate νE∞(t) (end of childhood) and decreases with rate (δ + µ + σ)I∞(t)
(end of adult stage).

Theorem 3.2. Let Ln(t) be the epidemic process and L∞(t) be the branching process
de�ned above. Then, Ln(t) converges weakly to L∞(t) (Ln

w
=⇒ L∞), as n −→∞, on any

�nite interval [0, t1].

Proof. Like initial phase of other epidemics [9, p. 54], when n tends to in�nity, the
transition probabilities of the epidemic converge to that of the branching process.

The results below are for the branching process L∞, but since Ln
w

=⇒ L∞, they apply
to the epidemic as n −→∞.

3.3 Thresholds

In this subsection, we derive the Malthusian parameter α and the basic reproduction
number R0 of the limiting branching process L∞.

The Malthusian parameter α is de�ned as the exponential growth/decay rate the
epidemic branching process has. It is the solution of∫ ∞

0
e−αtc(t)dt = 1, (3.1)

where c(t) is the expected rate at which an individual gives birth (has infectious contacts)
t time units after it was infected [16, page 10].

Theorem 3.3. The Malthusian parameter of the epidemic is given by

α = −
(
µ+

ν + δ + σ

2

)
+

√
(ν − δ − σ)2

4
+ κν. (3.2)
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Proof. In the SEIRS model, the contact rate is 0 during the latent period and κ during
the infectious period. By conditioning on when the latent period ends, it follows that

c(t) = κe−µt
∫ t

0
νe−νse−(δ+σ)(t−s)ds = κνe−(µ+δ+σ)t

∫ t

0
e−(ν−(δ+σ))sds.

Thus,

c(t) =


κν

ν − (δ + σ)

(
e−(µ+δ+σ)t − e−(ν+µ)t

)
, if ν 6= δ + σ,

κνte−(µ+δ+σ)t, if ν = δ + σ.

Inserting this into Equation (3.1), one gets

α =


−
(
µ+

ν + δ + σ

2

)
+

√
(ν − δ − σ)2

4
+ κν, if ν 6= δ + σ,

√
κν − (µ+ δ + σ), if ν = δ + σ.

Then,

α = −
(
µ+

ν + δ + σ

2

)
+

√
(ν − δ − σ)2

4
+ κν.

The basic reproduction number R0, is the expected number of secondary cases per
primary case in a virgin population [9, page 4].

Theorem 3.4. The basic reproduction number of the epidemic is

R0 =
νκ

(µ+ ν)(δ + µ+ σ)
. (3.3)

Proof. Let Y be the number of infectious contacts that an individual has during the
infectious period. Then,

P (Y = 0) =
µ

µ+ ν
+

ν

ν + µ
× δ + µ+ σ

κ+ δ + µ+ σ
.

The �rst term is the probability that the individual dies during the latent period, and
the second term the probability that the individual does not die during the latent period
but leaves the infectious compartment by death or recovery without an infectious contact.
And for all positive integer k,

P (Y = k) =
ν

µ+ ν
×
(

κ

κ+ δ + µ+ σ

)k
× δ + µ+ σ

κ+ δ + µ+ σ
.

Therefore, Z has a zero modi�ed geometric distribution [13, page 16], with parameter
p = (δ + µ+ σ)/(κ+ δ + µ+ σ) . Then the expected value of Y is

E(Y ) =
ν

µ+ ν
× 1− p

p
=

ν

µ+ ν
× κ

µ+ δ + σ
.

Thus,

R0 =
ν

µ+ ν
× κ

µ+ δ + σ
.
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Remark 3.5. The �rst factor is the probability that the individual does not die during
the latent period, and the second is the expected number of infectious contacts while being
infectious. An alternative way to derive R0 is by the relation R0 =

∫∞
0 c(t)dt [13, page

69]. This formula gives the same result as above.

As mentioned above, the SI, SIS, SIR, SIRS, SEI, SEIS, SEIR models are all sub-
models of the SEIRS model. Then, from the results obtained for the SEIRS model, we
deduce that of the others. In Table 2, we have the values of the basic reproduction number
R0 and the Malthusian parameter α of the models listed above. The fourth column gives
the changes to get the corresponding model. Further by setting σ = 0, one gets the
corresponding results for a disease without an additional death rate for the infectious.

Model R0 α Parameters change

SEIRS κν
(µ+ν)(µ+δ+σ)

−
(
µ+ ν+δ+σ

2

)
+
√

(ν−δ−σ)2

4
+ κν

SEIR κν
(µ+ν)(µ+δ+σ)

−
(
µ+ ν+δ+σ

2

)
+
√

(ν−δ−σ)2

4
+ κν ρ = 0

SEIS κν
(µ+ν)(µ+δ+σ)

−
(
µ+ ν+δ+σ

2

)
+
√

(ν−δ−σ)2

4
+ κν ρ→∞

SEI κν
(µ+ν)(µ+σ)

−
(
µ+ ν+σ

2

)
+
√

(ν−σ)2

4
+ κν δ = 0, ρ = 0

SIRS κ
µ+δ+σ

κ− (µ+ δ + σ) ν →∞
SIR κ

µ+δ+σ
κ− (µ+ δ + σ) ν →∞, ρ = 0

SIS κ
µ+δ+σ

κ− (µ+ δ + σ) ν →∞, ρ→∞
SI κ

µ+σ
κ− (µ+ σ) ν →∞, δ = 0, ρ = 0

Table 2: Thresholds for sub-models of the SEIRS model

Remark 3.6. The basic reproduction number R0 and the Malthusian parameter α are
identical for the SEIR, SEIS and SEIRS models.

From Equations (3.2) and (3.3), we have

α > 0⇐⇒ −
(
µ+

ν + δ + σ

2

)
+

√
(ν − δ − σ)2

4
+ κν > 0

⇐⇒ (ν − δ − σ)2

4
+ κν >

(
µ+

ν + δ + σ

2

)2

⇐⇒ 4κν > (2µ+ ν + δ + σ)2 − (ν − δ − σ)2

⇐⇒ 4κν > (2µ+ 2ν)(2µ+ 2δ + 2σ)

⇐⇒ κν

(µ+ ν)(µ+ δ + σ)
> 1

⇐⇒ R0 > 1.

It follows that the basic reproduction number R0 exceeds 1 if and only if, the Malthusian
parameter α exceeds 0. That is, the sign relation sign(α) = sign(R0 − 1) is veri�ed.

Remark 3.7. It is well known that to surely prevent the disease to invade the population,
R0 must be less than 1. To control the epidemic one need then to diminish R0. The basic
reproduction number R0 can be written in the following form.

R0 = κ× ν

µ+ ν
× 1

µ+ δ + σ
.
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So, it is clear that R0 increases with κ and ν, and decreases with µ, δ and σ. The contact
rate κ can be reduced by hospitalization or quarantine of the infectious individuals. The
recovery rate δ can be increased by medication. In the case of an epizootic, σ the disease
related death rate, can be increased by culling infectious animals.

We have derived two thresholds (the Malthusian parameter α and the basic repro-
duction number R0) of the SEIRS epidemic branching process, deduced the correspond-
ing thresholds for the sub-models of the SEIRS epidemic model and established that
sign(α) = sign(R0 − 1).

3.4 Main result for the initial phase

In this subsection, we derive the probability for a minor outbreak of the epidemic branch-
ing process, and state the main result for the initial phase of the epidemic.

Let π = P (limt L∞(t) = 0) be the probability of a minor outbreak of L∞ and Y be
the number of infectious contacts that an individual has during the infectious period. As
we start with one latent individual, π is the smallest positive solution of the equation
z = g(z), where g is the probability generating function (pgf) of Y [13, page 113]. We
have

g(z) =
∞∑
k=0

P (Y = k)zk

=
µ

µ+ ν
+

ν

µ+ ν

δ + µ+ σ

κ+ δ + µ+ σ
+
∞∑
k=1

ν

µ+ ν

δ + µ+ σ

κ+ δ + µ+ σ

(
κ

κ+ δ + µ+ σ

)k
zk

= a+
(1− a)b

1− (1− b)z
, with a =

µ

µ+ ν
and b =

δ + µ+ σ

κ+ δ + µ+ σ
.

Then, π is the smallest solution in [0, 1] of the following equation.

z = a+
(1− a)b

1− (1− b)z
. (3.4)

Equation (3.4) has two solutions,

z0 = 1 and z1 = a+
b

1− b
=

µ

µ+ ν
+
δ + µ+ σ

κ
=

µ

µ+ ν
+

ν

ν + µ

1

R0

.

Then, we have the following theorem.

Theorem 3.8. Let π be the probability of a minor outbreak of the epidemic when started
with one latent individual. Then,

π =


1 if R0 ≤ 1,

µ

µ+ ν
+

ν

µ+ ν

1

R0

if R0 > 1.
(3.5)

Corollary 3.9. Let π(m,k) be the probability of a minor outbreak when the epidemic started
with m latent individuals and k infectious individuals. Then,

π(m,k) =


1 if R0 ≤ 1,

(
µ

µ+ ν
+

ν

µ+ ν

1

R0

)m (
1

R0

)k
if R0 > 1.

(3.6)
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Proof. Let π(m,k) be the probability of a minor outbreak when the epidemic starts with
m latent and k infectious individuals. With this notation, we have
π(1,0) = P (minor outbreak|E(0) = 1, I(0) = 0) = π, and
π(0,1) = P (minor outbreak|E(0) = 0, I(0) = 1). Thus, π = µ/(µ+ ν) + (ν/(µ+ ν))π(0,1).
Therefore, π(0,1) = ((µ+ ν)/ν)π − µ/ν. Thus, by Equation (3.5) one gets

π(0,1) =


1 if R0 ≤ 1,

1

R0

if R0 > 1.
(3.7)

We have π(m,k) =
(
π(1,0)

)m (
π(0,1)

)k
, since all the m + k independent epidemics must die

out [13, page 112]. Thus, by Equations (3.5) and (3.7), we get Equation (3.6).

Remark 3.10. This result is the same as that of the SEIR stochastic model studied by
Allen and Lahodny in [1].

As noted above, due to the additive death rate in the infectious compartment, if the
epidemic takes o�, the population process can be turned to a sub-critical process. In
this case, the population may go extinct. As we start the process with n individuals,
assuming that n is large, we de�ne the probability of minor outbreak of the epidemic,
as the probability that the number of infected individuals does not exceed

√
n, that is

P (Ln(t) <
√
n,∀t ≥ 0) [9, page 55]. Let us state now the main result for the initial phase.

Theorem 3.11. Consider the uniform SEIRS epidemic model de�ned above, with
(Sn(0), En(0), In(0), Rn(0)) = (n − 1, 1, 0, 0), Ln(t) = En(t) + In(t), Nn(t) = Sn(t) +
En(t) + In(t) + Rn(t), and let L∞(t) denote the birth and death process de�ned above,
α its Malthusian parameter, π the probability of a minor outbreak of L∞, and πn :=
P (Ln(t) <

√
n,∀t ≥ 0) denote the probability of a minor outbreak of the epidemic. Then

as n→∞, we have the following results:

i. If α ≤ 0, then for any n, Ln(t)→ 0 as t→∞ with probability 1.

ii. If 0 < α < λ − µ, then πn → π = µ/(µ + ν) + ν/[(µ + ν)R0]. With the remaining
probability (1−πn)→ 1−π, Ln grows exponentially: Ln(t) ∼ eαt, but Ln(t)/Nn(t)→
0 as t→∞.

iii. If α > λ − µ , then πn → π = µ/(µ + ν) + ν/[(µ + ν)R0]. With the remaining
probability (1 − πn) → 1 − π, during the initial phase of the epidemic, Ln grows
exponentially with rate α.

Proof. i. If α < 0, then L∞ is sub-critical and dies out with probability 1. If α = 0,
then L∞ is critical and dies out with probability 1, since P (Y = 1) 6= 1 [13].

ii. If α > 0, then L∞ is super-critical. It dies out with probability π and with the
remaining probability 1 − π, it grows exponentially with rate α, that is L∞ ∼ eαt.
As Nn(t) ∼ e(λ−µ)t, if α < λ− µ, then Ln(t)/Nn(t) −→ 0, when t −→∞.

iii. If α > λ − µ, then α > 0 since λ − µ > 0. Thus, L∞ is super-critical. It dies out
with probability π and with the remaining probability 1− π, it grows exponentially
with rate α. As Ln =⇒ L∞, the same applies to Ln.
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Remark 3.12. If α > λ − µ, then L∞ is super-critical. Thus the epidemic may take
o�. If it does, the number of infected individuals grows initially with the rate α that is
larger than the initial growth rate of the population (λ − µ). After the initial phase, in
the case of a major outbreak, several scenarios are possible. i)The population goes on
growing exponentially, eventually with a lower rate; ii) due to the additive death rate of
the infectious, the e�ective death rate of the population becomes larger than its birth rate,
and the population process becomes a sub-critical process. The di�erent scenarios are
treated in Section 4 and illustrated by simulations in Section 5.

We have derived the probability of a minor outbreak of the epidemic branching process,
stated and shown the main result of the initial phase of the epidemic.

4 The deterministic SEIRS model

Now we consider the corresponding deterministic model of the stochastic model studied
above. As the population size is varying, we study �rst the fractions system and then de-
duce the asymptotic behavior of the compartments sizes. In this section the deterministic
sizes of the compartments S, E, I, R and the population size at the time t are denoted
S(t), E(t), I(t), R(t) and N(t) respectively.

The corresponding deterministic SEIRS model of the model above is given by the
following system of ordinary di�erential equations (ODE).

dS

dt
= λN + ρR− κS I

N
− µS,

dE

dt
= κS

I

N
− (ν + µ)E,

dI

dt
= νE − (δ + µ+ σ)I,

dR

dt
= δI − (ρ+ µ)R,

N = S + E + I +R,

S(0) > 0, E(0) > 0, I(0) > 0, R(0) ≥ 0.

(4.1)

Remark 4.1. System (4.1) is the same as System (2) studied by Greenhalgh in [11],
with a constant contact rate (β(N) = β), a constant death rate (f(N) = µ) and without
vaccination (p = q = 0). But Greenhalgh assumed that the death rate f(N) is a strictly
monotone increasing continuously di�erentiable function of N. So, the model that we study
is not a sub-model of that of Greenhalgh since we consider a constant death rate.

From System (4.1), we have dN/dt = (λ− µ)N − σI = (λ− µ− σi)N , where i is the
fraction of the infectious individuals. Thus, the population should grow if λ > µ + σi,
stabilize if λ = µ+ σi and decrease if λ < µ+ σi.

Theorem 4.2. N(t) is constant and positive (N(t) = N(0) > 0,∀t > 0), if and only if
the parameters verify the following equality:

(ρ+ µ)νκσλ+ ρκνδ(λ− µ)

−(ρ+ µ)(ν + µ)(δ + µ+ σ)[κ(λ− µ) + µσ] = 0,
(4.2)
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and the initial values verify

S(0) = (νκ)−1(ν + µ)(δ + µ+ σ)N(0),

E(0) = (νσ)−1(δ + µ+ σ)(λ− µ)N(0),

I(0) = σ−1(λ− µ)N(0),

R(0) = (σ(ρ+ µ))−1δ(λ− µ)N(0),

with N(0) > 0.

(4.3)

Proof. By using successively the derivatives of N, I, E,R and S, one gets that N(t) is
constant and positive, if and only if I, E,R and S are constant, the parameters verify
Equation (4.2) and the initial values verify System (4.3).

Generally, Equation (4.2) and System (4.3) are not veri�ed, thus N(t) is not constant.
Therefore, we consider the fractions s = S/N, e = E/N, i = I/N and r = R/N . By
System (4.1), one gets

ds

dt
= λ− λs+ ρr + (σ − κ)si,

de

dt
= κsi− (λ+ ν)e+ σei,

di

dt
= νe− (λ+ δ + σ)i+ σi2,

dr

dt
= −(λ+ ρ)r + δi+ σri,

s+ e+ i+ r = 1.

(4.4)

This system is equivalent to System (2.2) in [11], with p = q = 0.

Remark 4.3. The natural death rate µ does not intervene in the derivatives of the frac-
tions. This is logic, since this rate is the same for all the compartments, it has no e�ect
on the fractions.

Since r = 1− s− e− i, it is enough to study the system

ds

dt
= λ+ ρ− (λ+ ρ)s− ρe− ρi+ (σ − κ)si,

de

dt
= κsi− (λ+ ν)e+ σei,

di

dt
= νe− (λ+ δ + σ)i+ σi2,

(4.5)

in the domain
D = {(s, e, i); s ≥ 0, e ≥ 0, i ≥ 0, s+ e+ i ≤ 1}. (4.6)

Theorem 4.4. The domain D is positively invariant for System 4.5.

11



Proof. If s = 0, then ds/dt = λ + ρ(1 − e − i) > 0. If e = 0, then de/dt = κsi ≥ 0. If
i = 0, then di/dt = νe ≥ 0. If s+ e+ i = 1, then d(s+ e+ i)/dt = −δi ≤ 0. Then every
solution of System 4.5 starting in D, remains there for all t > 0. That is D is positively
invariant for System 4.5

In the following, we use the next generation matrix (NGM) described in [10] to derive
a threshold parameter, with threshold value 1 for System (4.5).
By setting ds/dt = de/dt = di/dt = 0 with e = i = 0 in System (4.5), we get s = 1.
Then, (1, 0, 0) is the unique disease free equilibrium (DFE) of System (4.5). e and i are
the infected fractions of the model. Thus, the infected subsystem is

de

dt
= κsi− (λ+ ν)e+ σei,

di

dt
= νe− (λ+ δ + σ)i+ σi2.

Hence, the linearized infected subsystem at the DFE is

de

dt
= κi− (λ+ ν)e,

di

dt
= νe− (λ+ δ + σ)i.

(4.7)

Let x = (e, i)t be the vector of the infected fractions. Thus, System (4.7) is equivalent to

.
x= (T + Σ)x,

with

T =

(
0 κ
0 0

)
and Σ =

(
−(λ+ ν) 0

ν −(λ+ δ + σ)

)
.

T is the transmissions matrix and Σ is the transitions matrix. Then, the next generation
matrix with large domain is

KL = −TΣ−1.

Let R1 be the spectral radius of KL. We have

R1 = ρ(KL) =
κν

(λ+ ν)(λ+ δ + σ)
. (4.8)

An equilibrium is said to be stable if nearby solutions stay nearby for all future time [14,
p. 175]. More precisely an equilibrium x∗ is said to be stable, if for every neighborhood
V of x∗ there is a neighborhood V1 of x∗, such that every solution starting in V1 remains
in V for all t > 0. If V1 can be chosen such that limt→∞ x(t) = x∗, then x∗ is said to be
asymptotically stable. An equilibrium is said to be unstable, when it is not stable. An
equilibrium x∗ is said to be globally asymptotically stable (GAS) in an invariant set D,
(x∗ ∈ D), if it is locally stable and limt→∞ x(t) = x∗, for every solution x(t) starting in
D.

Theorem 4.5. The disease free equilibrium (DFE) of System (4.5) is globally asymptot-
ically stable (GAS) in D, if R1 ≤ 1, and unstable if R1 > 1.
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Proof. Let f(s, e, i) be the Rhs of System (4.5). Then,

f(s, e, i) =

 λ+ ρ− (λ+ ρ)s− ρe− ρi+ (σ − κ)si
κsi− (λ+ ν)e+ σei
νe− (λ+ δ + σ)i+ σi2

 .
The Jacobian of f at the disease free equilibrium is

Df(1, 0, 0) =

 −(λ+ ρ) −ρ σ − κ− ρ
0 −(λ+ ν) κ
0 ν −(λ+ δ + σ)

 .
The characteristic polynomial of Df(1, 0, 0) is

P (x) = (−λ− ρ− x)[x2 + (2λ+ ν + δ + σ)x+ (λ+ ν)(λ+ δ + σ)− νκ].

−(λ + ρ) is an evident negative root of P (x). Thus, by the Routh-Hurwitz criterion [20,
page 11], all the roots of P (x) has negative real part if and only if (λ+ν)(λ+δ+σ)−νκ > 0.
And we have (λ+ ν)(λ+ δ+ σ)− νκ > 0⇐⇒ R1 < 1. Thus, the disease free equilibrium
is locally asymptotically stable if R1 < 1, and unstable if R1 > 1.

Let V denote the function de�ned on D by V (s, e, i) = νe+ (λ+ ν)i. Then,

.

V (s, e, i) = ν
de

dt
+ (λ+ ν)

di

dt
= ν[κsi− (λ+ ν)e+ σei] + (λ+ ν)[νe− (λ+ δ + σ)i+ σi2]

= i[νκs+ νσe+ (λ+ ν)σi− (λ+ ν)(λ+ δ + σ)]

= iL(s, e, i),

with L(s, e, i) = νκs+ νσe+ (λ+ ν)σi− (λ+ ν)(λ+ δ+σ). The a�nity of L implies that
it achieves its maximum at the extreme points of the boundary of the closed set D. But
L(0, 0, 0) = −(λ+ν)(λ+δ+σ), L(0, 0, 1) = −(λ+ν)(λ+δ), L(0, 1, 0) = −λσ−(λ+ν)(λ+δ)
and L(1, 0, 0) = νκ − (λ + ν)(λ + δ + σ) = (λ + ν)(λ + δ + σ)(R1 − 1). Thus,

.

V≤ 0 in
D if R1 ≤ 1. Then, V is a Lyapunov function of System (4.5). The only invariant subset
of the set with

.

V= 0 is {(1, 0, 0)}. It follows from LaSalle's Invariance Principle [14, p.
200], that the disease free equilibrium (DFE) is globally asymptotically stable (GAS) in
D, when R1 ≤ 1.

By Equations (4.8) and (3.2), we have

R1 > 1⇐⇒ κν

(λ+ ν)(λ+ δ + σ)
> 1

⇐⇒ κν > (λ+ ν)(λ+ δ + σ)

⇐⇒ κν >
1

4

(
(2λ+ ν + δ + σ)2 − (ν − δ − σ)2

)
⇐⇒ (ν − δ − σ)2

4
+ κν >

(2λ+ ν + δ + σ)2

4

⇐⇒
√

(ν − δ − σ)2

4
+ κν > λ+

ν + δ + σ

2

⇐⇒ −
(
µ+

ν + δ + σ

2

)
+

√
(ν − δ − σ)2

4
+ κν > λ− µ

⇐⇒ α > λ− µ.
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It follows that the fraction's threshold R1 exceeds 1 if and only if the Malthusian parameter
α, exceeds the initial growth rate of the population λ−µ. That is, we have the sign relation
sign(R1−1) = sign(α−(λ−µ)). Thus, the global stability of the disease free equilibrium
of the fraction's system when R1 < 1, con�rms that if α < λ−µ, then the infected fraction
vanishes even if the epidemic takes o� (Theorem (3.11) (ii)).

Greenhalgh has shown [11, Theorem 2.3] that if R1 > 1, then System (4.5) has at least
one endemic equilibrium, and that this equilibrium is unique and locally asymptotically
stable (LAS) when the average duration of immunity exceeds both the average infectious
and incubation periods, that is δ > ρ and ν > ρ. We have not proved, but we strongly
believe that if R1 > 1, then System (4.5) has one and only one endemic equilibrium, and
that this equilibrium is globally asymptotically stable in the interior ofD. The simulations
that we made support this conjecture (Figure 4 (c) and (d)).

Theorem 4.6. Let (S(t), E(t), I(t), R(t)) be a solution of System (4.1) and R0 denoted
the basic reproduction number given by Equation (3.3).

i. If R0 < 1, then (S(t), E(t), I(t), R(t)) −→ (∞, 0, 0, 0);

ii. if R0 = 1, then (S(t), E(t), I(t), R(t)) −→ (∞, E∗, I∗, R∗),
with E∗ > 0, I∗ > 0, R∗ > 0;

iii. if R0 > 1 ≥ R1, then (S(t), E(t), I(t), R(t)) −→ (∞,∞,∞,∞).

Remark 4.7. The case R1 > 1 is treated in Theorem 4.9.

Proof. We have

R0 =
νκ

(µ+ ν)(µ+ δ + σ)
and R1 =

νκ

(λ+ ν)(λ+ δ + σ)
.

Then, R0 > R1, since λ > µ. Therefore, in the three cases of the Theorem 4.6, we have
R1 ≤ 1. Let us assume that R1 ≤ 1. Thus, by Theorem (4.5), (s, e, i, r) −→ (1, 0, 0, 0)
when t −→ ∞. dN/dt = (λ − µ)N − σI = (λ − µ − σi)N . Then, dN/dt −→ (λ − µ)N ,
when t −→ ∞. Thus, N −→ ∞, when t −→ ∞ because λ > µ. Therefore, S −→ ∞,
when t −→∞, since S/N −→ 1. By using the derivatives of E and I, one gets

(
E

I

)′
= κs+ (δ + σ − ν)

E

I
− ν

(
E

I

)2

. Where the prime denotes the derivative.

Then,
(
E

I

)′
−→ κ+ (δ + σ − ν)

E

I
− ν

(
E

I

)2

, when t −→∞.

Thus E/I can be approximate by a solution of the following equation, when t −→∞.

y′ = κ+ (δ + σ − ν)y − νy2 (4.9)

Equation (4.9) is a Riccati's equation [12]. By solving it, one gets

y : t 7−→
(
Ce
√

∆t − ν√
∆

)−1

+
δ + σ − ν +

√
∆

2ν
, with C > 0, where ∆ = (δ+σ−ν)2+4νκ.
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Then, E/I −→ (δ + σ − ν +
√

∆)/(2ν), when t −→∞.
We have dI/dt = νE − (δ + µ + σ)I = [ν(E/I) − (δ + µ + σ)]I. Thus, by substituting
E/I by its asymptotic value, one gets

dI

dt
−→

[
δ + σ − ν +

√
∆

2
− (δ + µ+ σ)

]
I, when t −→∞;

and

δ + σ − ν +
√

∆

2
− (δ + µ+ σ) = −

(
µ+

δ + σ + ν

2

)
+

√
∆

2

= −
(
µ+

δ + σ + ν

2

)
+

√
(δ + σ − ν)2

4
+ κν

= α, the Malthusian parameter given by Equation (3.2).

Therefore, dI/dt −→ αI, when t −→∞.
As dE/dt = κSI/N − (ν + µ)E, S/N −→ 1 and E/I −→ (δ + σ − ν +

√
∆)/(2ν), after

some algebra, one gets dE/dt −→ αE, when t −→∞. As sign(α) = sign(R0 − 1),

(E, I) −→(0, 0) if R0 < 1;

(E, I) −→(E∗, I∗), with E∗ > 0 and I∗ > 0, if R0 = 1;

(E, I) −→(∞,∞) if R0 > 1.

For the number of the recovered R, as dR/dt = δI − (ρ + µ)R, it is obvious that R has
the same asymptotic behavior as I.

Remark 4.8. In the proof, we have shown that if R1 ≤ 1, then the Malthusian parameter
α of the stochastic model, is also the common asymptotic growth rate of the compartments
E and I, and λ− µ is the asymptotic growth rate of the population. Since sign(R1− 1) =
sign(α− (λ− µ)), this is coherent with Theorem 3.11 (ii).

Theorem 4.6 gives the asymptotic behavior of the compartments sizes, when R1 ≤ 1.
If R1 > 1, then the fraction disease free equilibrium is unstable. Therefore, the disease will
remain endemic in the population in term of the fraction infected. The following theorem
gives the asymptotic behavior of the compartments sizes, when R1 > 1, assuming that
the fraction system admits an endemic equilibrium that is globally asymptotically stable
in the interior of the feasible region D.

Theorem 4.9. Assume that R1 > 1 and that System (4.5) has a unique endemic equilib-

rium (s∗, e∗, i∗) that is globally asymptotically stable in
o

D, and set

R2 =
λ

µ+ σi∗
. (4.10)

i. If R2 > 1, then (S,E, I, R) −→ (∞,∞,∞,∞).

ii. If R2 = 1, then (S,E, I, R) −→ (S∗, E∗, I∗, R∗),
with S∗ > 0, E∗ > 0, I∗ > 0, R∗ > 0.

iii. If R2 < 1, then (S,E, I, R) −→ (0, 0, 0, 0).
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Proof. Let us assume that there is an endemic equilibrium (s∗, e∗, i∗) of the fraction System

(4.5) and that it is globally asymptotically stable in
o

D. Then,

dN

dt
−→ (λ− µ− σi∗)N , when t −→∞.

Asymptotically, the population would increase with rate λ, and decrease with rate µ+σi∗.
As the fraction system admits an endemic equilibrium, that is globally asymptotically
stable in the interior of the feasible region, all the compartments have the same asymptotic
behavior as the population. Let us set α2 = λ− µ− σi∗. The quantity α2 is the common
asymptotic exponential growth/decay rate of all the compartments S, E, I and R. We
have sign(α2) = sign(R2 − 1). Thus, the results follow.

In this section we have studied the corresponding deterministic SEIRS model of the
previous stochastic model. We derived a threshold quantity R1 for the fraction model.
If R1 ≤ 1, then the fraction's disease free equilibrium is globally asymptotically stable
in the feasible region D, otherwise it is unstable. When R1 ≤ 1, the behavior of the
number of infected is determined by the basic reproduction number R0. If R0 < 1, then
the number of infected vanishes. If R0 = 1, then the number of infected stabilizes to a
positive value; when R1 ≤ 1 < R0, then the number of infected grows exponentially, but
at a lower rate than the population. If R1 > 1, then the number of infected grows initially
quicker than the population and the asymptotic behavior of the population is governed
by the threshold quantity R2. If R2 < 1, then the population vanishes; if R2 = 1, then the
population stabilizes; if R2 > 1, then the population grows, but with a lower rate than
its initial growth rate.

5 Simulations

In this section, we use the software R to illustrate and con�rm the results found in the
previous sections. In the following, we set µ = 1, that is the time unit is the life expectancy,
except for the simulations of in�uenza epidemics in Burkina Faso where we set one year
as the time unit. The other parameters and the initial values are chosen arbitrary, unless
otherwise stated.

5.1 Simulations of the initial phase

In this subsection, we give some examples of simulations of epidemics starting by one latent
individual, and using di�erent values of the parameters. The population is initiated with
1 latent individual and 999 susceptible individuals.

In Figure 2 (a) and (b), where R0 = 0.41 and R0 = 0.73 respectively, all the 10
epidemics die without any major outbreak. In (a) the maximum of infected individuals
is 2, while it is 6 in (b).

In Figure 3, where R0 = 2, four simulated epidemics out of 10 have a major outbreak.
The other 6 epidemics die out without many getting infected. For the epidemics with
major outbreak, the number of the infected individuals grow exponentially but the time
where the exponential growth starts varies.

Now we estimate the probability of a minor outbreak π by simulating 1000 epidemics
and setting π̂n = n0/1000, where n0 is the number of minor epidemics. We set λ = 3, µ =
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(a) R0 = 0.414 (b) R0 = 0.733

Figure 2: (a) 10 SEIRS simulations with λ = 3, µ = 1, σ = 7, δ = 15, κ = 10, ν = 20, ρ = 5,
that givesR0 = 0.41, α = −7.82, π = 1. (b) 10 SEIRS simulations with λ = 1.2, µ = 1, σ =
7, δ = 5, κ = 10, ν = 20, ρ = 5, that gives R0 = 0.73, α = −2.30, π = 1. In both cases, all
the 10 epidemics die out without a major outbreak. However, they die out quicker and
the number of infected is fewer in (a) than in (b).

(a) (b)

Figure 3: 10 SEIRS simulations (6 dying quickly) with λ = 3, µ = 1, σ = 4, δ = 5, κ =
21, ν = 20, ρ = 5, n = 1000, R0 = 2, R1 = 1.52, α = 5.72, π = 0.52. In (b) we made a
zoom so that the six minor epidemics can be seen.

1, ν = 50, δ = 10, σ = 4, ρ = 3, and set successively κ = 10, 20, 30, 50, 100 to get di�erent
values of π. Table 3 gives the di�erent values of π and the estimate π̂n for n = 1000
and n = 2000 respectively. These results con�rm that the probability of extinction of the
branching process L∞ is a good approximation of the probability of a minor outbreak of
the epidemic starting with one latent individual in a population of size n, when n is large.
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n 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000
κ 10 10 20 20 30 30 50 50 100 100
R0 0.654 0.654 1.307 1.307 1.961 1.961 3.268 3.268 6.536 6.536
π 1.000 1.000 0.770 0.770 0.520 0.520 0.320 0.320 0.170 0.170
π̂n 1.000 1.000 0.788 0.782 0.513 0.520 0.303 0.329 0.165 0.172

Table 3: Estimation of the probability of minor outbreak πn of the epidemic starting with
one latent individual and n − 1 susceptible individuals. The theoretical result is π and
the simulated result is π̂n from 1000 simulations.

These simulations con�rm that when R0 is less than 1, the disease cannot invade the
population, and that if R0 is larger than 1, then with a positive probability (1− πn) −→
(1−π), the disease can invade the population, and in this case the number of the infected
individuals grows exponentially during the initial phase.

5.2 Simulations of major outbreaks

In this subsection, we show some simulations of major outbreaks, where the epidemic
starts with a positive fraction of infected individuals. So the simulations illustrate what
happens once the number of infected has reached a small but positive fraction of the
community. We use the blue color for the susceptible, green for the exposed, red for the
infectious and black for the recovered.

We start by simulating the deterministic fraction's system. In Figure 4, we have four
cases with R1 = 0.5, 1, 1.76, 5.33 respectively. In each case we have ten solutions paths
of System (4.4) with di�erent initial values. In (a) as in (b), the 10 solutions of System
(4.4) approach the disease free equilibrium, con�rming that if R1 ≤ 1, then the disease
free equilibrium of the deterministic fraction system is globally asymptotically stable in
the feasible region. In (c), all the 10 solutions approach the same endemic equilibrium
(s∗, e∗, i∗, r∗) ≈ (0.50, 0.13, 0.14, 0.24). In (d), all the 10 solutions approach the same
endemic equilibrium (s∗, e∗, i∗, r∗) ≈ (0.12, 0.49, 0.31, 0.08). The results of (c) and (d)
con�rm that when R1 > 1, the disease free equilibrium is unstable and that there is an
endemic equilibrium that is globally asymptotically stable in the interior of the feasible
region. That is the endemic level is independent of the starting value. However the
endemic equilibrium of (d) is di�erent of that of (c), hence the endemic equilibrium vary
with the parameters values.

In the following we simulate both the stochastic and the deterministic models. In
each case, we have simulated the stochastic epidemic, as well as integrated numerically
the deterministic system (4.1), both starting at the same values. From the numbers, we
got the fractions by setting s = S/N, e = E/N, i = I/N, r = R/N, with N = S + E +
I +R. One distinguishes the stochastic solutions from the deterministic by the fact that
the deterministic solutions are represented by smooth lines, while the solutions of the
stochastic solutions are represented by broken lines.

In Figure 5, where R0 = 1.27 > 1 and R1 = 0.95 < 1, the numbers of latent, infectious
and recovered grow exponentially as the population, but the population growth rate is
even larger and the fractions of the infected compartments go to zero. This means that,

18



(a) R1 = 0.5 (b) R1 = 1

(c) R1 = 1.76 (d) R1 = 5.33

Figure 4: Simulations of of System (4.4). In each case we have 10 solutions paths of
System (4.4) with di�erent initial values. For (a) we have λ = 2, µ = 1, σ = 8, δ =
5, κ = 9, ν = 10, ρ = 10 that gives R1 = 0.5. For (b) the parameters have the same
values as in (a) except that we set κ = 18 to get R1 = 1. In (a) and in (b) all the
solutions approach the disease free equilibrium (1, 0, 0, 0). The time scale is longer in
(b), so the epidemic takes longer time to die out when R1 is close to 1. For (c) we have
λ = 2, µ = 1, σ = 8, δ = 5, κ = 30, ν = 15, ρ = 2, that gives R1 = 1.76; all the solutions
approach the same endemic equilibrium (s∗, e∗, i∗, r∗) ≈ (0.50, 0.13, 0.14, 0.24). For (d),
we have λ = 2, µ = 1, σ = 8, δ = 5, κ = 100, ν = 8, ρ = 20 that gives R1 = 5.33; all the
solutions approach the same endemic equilibrium (s∗, e∗, i∗, r∗) ≈ (0.12, 0.49, 0.31, 0.08).

in term of the number of infected individuals, the disease is endemic, but the disease dies
out in term of the fractions.

In Figure 6, initially the number of the infected grows quicker than the number of
the susceptible. After that, the number of the susceptible declines. Afterward all the
compartments grow exponentially, but with a rate α2 ≈ 0.16 that is lower than the initial
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(a) numbers (b) Fractions

Figure 5: SEIRS curves with λ = 3, µ = 1, σ = 3, δ = 5, κ = 12, ν = 20, ρ = 3 that
gives R0 = 1.27, R1 = 0.95, π = 0.80, α = 1.61 The initial values are N(0) = 1000 with
(S(0), E(0), I(0), R(0)) = (800, 100, 100, 0). All the numbers grow exponentially. But
the population grow faster, and the fractions go to the disease free equilibrium. One
distinguishes hardly the deterministic curves from the stochastic because they are very
close.

growth rate of the population λ− µ = 1. The fractions go to an endemic equilibrium.

(a) Numbers (b) Fractions

Figure 6: SEIRS curves with λ = 2, µ = 1, σ = 4, δ = 5, κ = 21, ν = 20, ρ = 5 that gives
R0 = 2, R1 = 1.74, π = 0.52, α = 5.72. The initial values are (S(0), E(0), I(0), R(0)) =
(980, 10, 10, 0). All the numbers grow exponentially with rate α2 ≈ 0.16, while the frac-
tions go to an endemic equilibrium (s∗, e∗, i∗, r∗) ≈ (0.51, 0.11, 0.21, 0.17).

For Figure 7, the parameters are chosen such that Equation (4.2) is veri�ed, allowing
then the existence of endemic equilibrium for the deterministic System 4.1. The asymp-
totic reproduction number of the population R2 = 1, then for the deterministic solution,
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the population stabilizes, when t −→ ∞. The stochastic numbers �uctuate around the
deterministic numbers. The fractions have the same behavior as that of the numbers.

(a) Numbers (b) Fractions

Figure 7: SEIRS curves with λ = 1.73, µ = 1, σ = 5, δ = 6, κ ≈ 23.02, ν = 20, ρ = 3 that
gives R0 = 1.83, R1 = 1.66, α = 5.42, The initial values are (S(0), E(0), I(0), R(0)) =
(900, 70, 20, 10). The asymptotic growth rate of the population is α2 = 0, its asymptotic
reproduction number R2 = 1. Thus for the deterministic solutions the numbers approach
an endemic equilibrium (S∗, E∗, I∗, R∗) ≈ (581, 94, 157, 235) and the fractions go to an
endemic equilibrium (s∗, e∗, i∗, r∗) ≈ (0.55, 0.09, 0.15, 0.22). The stochastic solutions �uc-
tuate around the deterministic.

In Figure 8, for the deterministic model, the epidemic turned the population expo-
nential growth to an exponential decay due to the disease induced death rate, while the
fractions go to an endemic equilibrium. For the stochastic model, the population size
�rst decreases but at some instance when there are only few remaining individuals, the
disease goes extinct and then the population size starts growing again. The deterministic
model suggests that the population will go extinct, whereas in the stochastic model the
disease �rst dies out and then the population becomes super critical again, thus regrow-
ing. In the stochastic setting, what happens when the numbers become low is random.
Both the disease and the population could die out, or the population can grow again after
the extinction of the epidemic. Only analyzing the deterministic fraction model would
give a misleading conclusion since the fractions seem to stabilize, whereas in what really
happens is that all numbers in the deterministic model tend to 0.

In Figure 9, we have the case where R0 = 1. For the stochastic model the disease goes
extinct, while it persists in the deterministic one. In both models the population goes on
growing exponentially. In (b) we made a zoom to see the dynamics of E, I and R.

These simulations show the di�erent possible scenarios in the case of a major outbreak.
They con�rm the theoretical results and show the similarities and di�erences between the
stochastic model and the deterministic model.
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(a) Numbers (b) Fractions

Figure 8: SEIRS curves with λ = 2, µ = 1, σ = 8, δ = 5, κ = 30, ν = 20, ρ = 3 that gives
R0 = 2.04, R1 = 1.81, π = 0.51, α = 7.24, the initial values are (S(0), E(0), I(0), R(0)) =
(980, 10, 10, 0). The asymptotic decay rate of the population is α2 ≈ −0.39, its asymp-
totic reproduction number R2 ≈ 0.84. R1 > 1 and R2 < 1 thus, in the determin-
istic solutions, the numbers vanish, while the fractions go to an endemic equilibrium
(s∗, e∗, i∗, r∗) ≈ (0.48, 0.12, 0.17, 0.24). In the stochastic solution, all the numbers vanish
except the number of the susceptible that decreases until the extinction of the disease and
regrow exponentially after that.

5.3 Simulation of in�uenza epidemics in Burkina Faso

Now we simulate two in�uenza epidemics in Burkina Faso with two di�erent basic repro-
duction numbers. Burkina Faso is an inland country of West Africa. Its population in
2016 is about 16 000 000. The individual annual birth rate and death rate are estimated
to λ = 0.046 and µ = 0.0118 respectively [15].

According to the World Health Organization (WHO) [21], in�uenza is caused by a virus
that attacks mainly the respiratory tract: the nose, the throat, the bronchi and rarely also
the lungs. The infection usually lasts for about a week. It is characterized by sudden onset
of high fever, myalgia, headache and severe malaise, non-productive cough, sore throat,
and rhinitis. Most people recover within one to two weeks without requiring any medical
treatment. The virus is easily passed from person to person through the air by droplets
and small particles excreted when infected individuals cough or sneeze. The in�uenza
virus enters the body through the nose or the throat. It then takes between one and
four days for the person to develop symptoms. Someone su�ering from in�uenza can be
infectious from the day before he/she develops symptoms until seven days afterwards. The
disease spreads very quickly among the population especially in crowded circumstances.
Cold and dry weather enables the virus to survive longer outside the body than in other
conditions and, as a consequence, seasonal epidemics in temperate areas appear in winter.
Much less is known about the impact of in�uenza in the developing world. However,
in�uenza outbreaks in the tropics where viral transmission normally continues year-round
tend to have high attack and case-fatality rates. Therefore by setting one year as the
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(a) Numbers R0 = 1 (b) Numbers R0 = 1 (Zoom-in)

Figure 9: SEIRS curves with λ = 2, µ = 1, σ = 8, δ = 9, κ = 19.2, ν = 15, ρ = 3 that gives
R0 = 1, the initial values are (S(0), E(0), I(0), R(0)) = (90, 5, 3, 2). The population grows
exponentially in the stochastic and in the deterministic model. In the stochastic model
the latent, the infectious and the recovered vanish, while in the deterministic model, they
stabilize to positive values (E∗, I∗, R∗) ≈ (1.73, 1.44, 3.24). In (b) the scale is chosen to
show the dynamics of E, I and R; S(t) is much larger and not shown.

time unit, we make the following estimation for the in�uenza parameters. The latent
period is approximately 2.5 days, the infectious period is approximately 7 days and the
immunity period is approximately one year, thus ν = 365/2.5, δ = 365/7, ρ = 1. We
set the in�uenza case fatality rate (CFR) to 0.1% and deduce the in�uenza related death
rate σ ≈ 0.0522.

The reproduction number of the 1918 pandemic in�uenza is estimated to be between 2
and 3 [19]. Thus we set R0 = 2.5 and deduce the contact number κ = 130 from the other
parameters and Equation (3.3). We simulate the epidemic for a period of 10 years starting
in 2016 by integrating numerically the deterministic System (4.1). Figure 10 gives the
evolution of the numbers of susceptible, latent, infectious and recovered individuals and
the corresponding fractions during the 10 years. Figures 10 (c) and (d), show respectively
the dynamics of E and I and that of the fractions e and i. We have a peak with 2 783 834
infectious individuals at the 11th week of the epidemic. After that the number of infec-
tious declines because the number of susceptible is low. Afterward we have a minor peak
every year due to the immunity waning and the newborns that increase the number of
susceptible. The number of recovered individuals grow quickly and reach its maximum
13 139 592 at the 17th week. The fractions go to an endemic equilibrium through damped
oscillations. The population in 2026 is estimated to 22 370 000 individuals with 8 960 000
susceptible, 94 000 latent individuals, 260 000 infectious individuals and 13 060 000 recov-
ered with non-permanent immunity. The number of recovered individuals is larger than
the number of susceptible individuals. The fractions go to an endemic equilibrium with
more than 1% of the population infected at every time. As the in�uenza last about one
week and we have 52 weeks within a year, more than 50% of the population should be
infected during the year 2026. That will have a very important negative impact on the
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economy of the country. We have R1 ≈ 2.50 and R2 ≈ 3.71, thus R1 and R2 are both
larger than 1 and according to Theorem 4.9 the fractions should go to an endemic equi-
librium and all the compartments should grow exponentially. Therefore the simulations
agree with the theoretical results.

(a) Numbers (b) Fractions

(c) Numbers of infected (d) Fractions of infected

Figure 10: Simulation of in�uenza in Burkina Faso with R0 = 2.5. The parameters
values are λ = 0.046, µ = 0.0118, σ = 0.0522, δ = 365/7, κ = 130.5277, ν = 365/2.5, ρ =
1 that gives R0 = 2.5, R1 = 2.499. The initial values are (S(0), E(0), I(0), R(0)) =
(16 000 000, 1 000, 400, 10). By damped oscillations, the fractions approach an endemic
equilibrium (s∗, e∗, i∗, r∗) ≈ (0.400, 0.004, 0.012, 0.584). The initial growth rate of the
population is λ−µ = 0.0342, with the epidemic its asymptotic growth rate is α2 ≈ 0.0336
and its asymptotic reproduction number rate is R2 ≈ 3.707. (c) show the dynamics of E
and I; (d) show the dynamics of e and i.

The basic reproduction number for the novel in�uenza A (H1N1) has been estimated
to be between 1.4 and 1.6 [8]. Thus, we set now R0 = 1.5 and deduce the contact number
from the other parameters. The results of this simulation are shown in Figure 11. In this
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case the epidemic and the population have globally the same dynamics as above. But
the impact of the epidemic is fewer. The major peak of the epidemic happens later, at
the 25th week, with 794 004 infectious individuals. Contrary to the preceding case, the
number of the recovered individuals is below the number of the susceptible individuals.

(a) Numbers (b) Fractions

(c) Numbers (d) Fractions

Figure 11: Simulation of in�uenza in Burkina Faso with R0 = 1.5. The parameters
values are λ = 0.046, µ = 0.0118, σ = 0.0522, δ = 365/7, κ = 78.3166, ν = 365/2.5, ρ =
1 that gives R0 = 1.5, R1 = 1.499. The initial values are (S(0), E(0), I(0), R(0)) =
(16 000 000, 1 000, 400, 10). By damped oscillations, the fractions approach an endemic
equilibrium (s∗, e∗, i∗, r∗) ≈ (0.667, 0.002, 0.006, 0.324). The initial growth rate of the
population is λ−µ = 0.0342, with the epidemic its asymptotic growth rate is α2 ≈ 0.0339
and its asymptotic reproduction number is R2 ≈ 3.79. (c) show the dynamics of E and
I; (d) show the dynamics of e and i.

In [8], Coburn, Wagner and Blower simulated an in�uenza epidemic using a SIR model
with demography. Their result for the number of infectious individuals [8, Figure 2 (a)]
is similar to that of Figure 10 (c) and Figure 11 (c). We assume no seasonal e�ects.

25



Adding seasonality should make seasonal e�ects remain [8, Figure 2 (b)]. The simulations
of in�uenza in Burkina Faso show that in spite of the epidemic the population should go
on growing. But the number of infected individuals will grow also. Furthermore the peak
of the epidemic in the �rst year show that the emergence of a new strain of in�uenza
virus will be a very serious threat for the world. The Global In�uenza Program (GIP) of
the World Health Organization (WHO), provides Member States with strategic guidance,
technical support and coordination of activities essential to make their health systems
better prepared against this threat.

In this section we have illustrated and validated the theoretical results of the previous
sections by simulations.

6 Conclusion and discussions

In this paper we have studied a stochastic SEIRS epidemic model, with a disease related
death, in a population which grows exponentially without the disease. We assumed that
initially, the population process is a super-critical linear birth and death process with
birth rate λ and death rate µ.

We have derived, the basic reproduction number R0, the Malthusian parameter α and
the probability of minor outbreak π assuming that the initial size n of the population
tends to in�nity. Considering the deterministic model, we derived the threshold quantity
R1 for the fractions.

If R0 ≤ 1, then the disease dies out with probability 1. That is, there is no possibility
of major outbreak if R0 ≤ 1. In this case, the population remains a super-critical process.

If R0 > 1 then, with a positive probability, the epidemic can take o�. If the epidemic
takes o�, then the number of the infected (exposed or infectious) individuals grows ex-
ponentially with rate α. If 0 < α ≤ λ − µ, then the sizes of all the compartments grow
exponentially while the fraction of the infected individuals goes to 0. The number of
infected people grows, but at a lower rate than the population, implying that the frac-
tion infected becomes negligible. If α > λ − µ, then the number of infected individuals
grows initially with a rate that is larger than the population growth rate, and di�erent
scenarios are possible. Due to the additional death rate σ in the infectious compartment,
the population will go on growing but with a lower rate, or the population will become
a sub-critical branching process and thus have a decreasing size. In the latter case the
population vanishes in the deterministic model while in the stochastic one, what happens
when the numbers become low is random. Both the disease and the population could die
out, or the population could grow again after the extinction of the epidemic.

We have illustrated and validated the theoretical results by simulations. These sim-
ulations show the similarities and the di�erences between the stochastic model and the
corresponding deterministic model. If R0 > 1, then in the deterministic model, the epi-
demic will invade the population surely; while in the stochastic model, with a positive
probability π the disease vanishes. When R2 < 1, the population vanishes surely in the
deterministic model; whereas in the stochastic model, it can regrow exponentially after
the extinction of the epidemic. One need to remember that an epidemic is always a
stochastic process, and the deterministic model �ts only when we have a large community
with a large number of infectious individuals [6].

For some diseases (e.g. in�uenza, measles), the susceptibility and the infectiousness
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vary with the age of the individuals. Therefore it is more realistic to consider an hetero-
geneous population as in [18]. Furthermore adding seasonal forcing will increase realism
for seasonal diseases. For other diseases like sexually transmitted diseases (STD), a close
and/or long contact is required for transmission. Then the dynamics of the epidemic are
linked to the special network in the host population [4, 2, 18]. Due to the development
of the migration of populations, an epidemic starting in one location can be exported to
another one quickly, then a meta-population model is convenient to �nd the conditions
for a global health security [3, 7]. Under the leadership of the World Health Organiza-
tion (WHO) many policies (vaccination, medication, quarantine, etc.) are implemented
to prevent major outbreak of epidemics. Nevertheless the infectious diseases remain a
serious threat for Humanity. Another step towards realism is hence to extend this model
by adding vaccination [6, 11] and treatment [17]. This should allow to �nd the optimal
control strategy to realize the herd immunity, that is to prevent the major outbreaks of
infectious diseases.

Acknowledgments

We are grateful to the International Science Program (ISP) of Uppsala University and
the Swedish International Development Agency (SIDA) for their �nancial support.

References

[1] L. J. Allen and GE. Jr. Lahodny. (2012). Extinction Thresholds in Deterministic
and Stochastic Epidemic Models. Journal of Biological Dynamics, 6, 590 − 611.
https://doi.org/10.1080/17513758.2012.665502

[2] F. Ball, T. Britton and D. Sirl. (2013). A Network with Tunable Clustering, De-
gree Correlation and Degree Distribution, and an Epidemic Thereon. Journal of
Mathematical Biology, Vol. 66, Issue 4, pp 979−1019. http://dx.doi:10.1007/s00285-
012-0609-7

[3] F. Ball, T. Britton, T. House, V. Isham, D. Mollisone, L. Pellis and G. S. Tomba.
(2015). Seven Challenges for Metapopulation Models of Epidemics, Including House-
holds Models. Epidemics 10 63−67. http://dx.doi.org/10.1016/j.epidem.2014.08.001

[4] F. Brauer. (2008). An Introduction to Networks in Epidemic Modeling, in Mathemat-
ical Epidemiology, Lecture Notes in Mathematics. Vol 1945 pp 133− 145. Springer-
Verlag, Berlin.

[5] T. Britton and P. Trapman. (2014). Stochastic Epidemics in Growing Populations.
Bull. Math. Biol. 76: 985-996. http://dx.doi:10.1007/s11538-014-9942-x

[6] T. Britton. (2010). Stochastic Epidemic Models : A survey. Mathematical Biosciences
225, 24− 35. http://dx.doi.org/10.1016/j.mbs.2010.01.006

[7] V. Colizza and A. Vespignani. (2008) Epidemic Modeling in Metapopulation System
with Heterogeneous Coupling Pattern: Theory and Simulations. Journal of Theoret-
ical Biology 251 450− 467. http://dx.doi.org/10.1016/j.jtbi.2007.11.028

27



[8] B. J. Coburn, B. G. Wagner and S. Blower. (2009). Modeling In�uenza Epidemics
and Pandemics: Insights into the Future of Swine Flu (H1N1). BMC Medicine, 7(1),
30. http://dx.doi.org/10.1186/1741-7015-7-30

[9] O. Diekmann, H. Heesterbeek and T. Britton. (2013). Mathematical Tools for Un-
derstanding Infectious Disease Dynamics. Princeton University Press.

[10] O. Diekmann, H. Heesterbeek and M. G. Roberts. (2010). The Construction of Next-
Generation Matrices for Compartmental Epidemic Models. J. R. Soc. Interface 7,
873− 885. http://dx.doi.org/10.1098/rsif.2009.0386

[11] D. Greenhalgh. (1997). Hopf Bifurcation in Epidemic Models with a Latent Period
and Non permanent Immunity. Mathematical and Computer Modelling, 25.2: 85 −
107. http://dx.doi.org/10.1016/S0895-7177(97)00009-5

[12] D. R. Haaneim and F. M. Stein. (1969). Methods of Solution of the Riccati
Di�erential Equation. Mathematics Magasine vol. 42, No. 5 , pp. 233 − 240.
http://dx.doi.org/10.2307/2688697

[13] P. Haccou, P. Jagers and V. A. Valutin. (2005). Branching Processes: Variation,
Growth, and Extinction of Populations. Cambridge University Press, Cambridge.

[14] M. W. Hirsh, S. Smale and R. L. Devaney. (2004). Di�erential Equations, Dynamical
Systems and an Introduction to Chaos. Elsivier Academic Press.

[15] Le Burkina en Chi�res, Ed. 2011. Institut National de la Statistique et de la
Démographie.

[16] P. Jagers. (1975). Branching Processes with Biological Applications. New York:
Wiley.

[17] A. Kumar, P. K. Srivastava. (2017). Vaccination and Treatment as Con-
trol Interventions in an Infectious Disease Model with their Cost Optimization.
Communications in Nonlinear Science and Numerical Simulation 44 334 − 343.
http://dx.doi.org/10.1016/j.cnsns.2016.08.005

[18] J. C. Miller. (2007). Epidemic Size and Probability in Populations with Het-
erogeneous Infectivity and Susceptibility. Physical Review E. 76 : 010101(R).
https://doi.org/10.1103/PhysRevE.76.010101

[19] C. E. Mills, J. M. Robins and M. Lipsitch. (2004). Transmissibility of 1918 Pandemic
In�uenza. Nature, Vol. 432. http://dx.doi.org/10.1038/nature03063

[20] E. J. Routh. (1877). A Treatise on the Stability of a Given State of Motion:
Particularly Steady Motion. Macmillan and Company.

[21] World Health Organization (WHO) (2003). In�uenza. Fact sheet N o211 Revised
March 2003. www.who.int/mediacentre/factsheets/2003/fs211/en/

28


